Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T16:25:21.529Z Has data issue: false hasContentIssue false

Beilinson–Drinfeld Schubert varieties and global Demazure modules

Published online by Cambridge University Press:  25 May 2021

Ilya Dumanski
Affiliation:
Department of Mathematics, HSE University, Usacheva str. 6, Moscow, 119048, Russia Independent University of Moscow, Bolshoy Vlasyevskiy Pereulok 11, Moscow, 119002, Russia; E-mail: ilyadumnsk@gmail.com
Evgeny Feigin*
Affiliation:
Department of Mathematics, HSE University, Usacheva str. 6, Moscow, 119048, Russia Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russia; E-mail: evgfeig@gmail.com
Michael Finkelberg
Affiliation:
Department of Mathematics, HSE University, Russia, Usacheva str. 6, Moscow, 119048, Russia Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russia Institute for Information Transmission Problems of RAS, Moscow, Russia; E-mail: fnklberg@gmail.com

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We compute the spaces of sections of powers of the determinant line bundle on the spherical Schubert subvarieties of the Beilinson–Drinfeld affine Grassmannians. The answer is given in terms of global Demazure modules over the current Lie algebra.

Type
Algebra
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Baumann, P., Kamnitzer, J. and Knutson, A., ‘The Mirkovic-Vilonen basis and Duistermaat-Heckman measures’, Preprint, 2019, arXiv:1905.08460.Google Scholar
Beauville, A. and Laszlo, Y., ‘Un lemme de descente’, C. R. Math. Acad. Sci. Paris 320(3) (1995), 335340.Google Scholar
Beilinson, A. and Drinfeld, V., Chiral Algebras, American Mathematical Society Colloquium Publications vol. 51 (American Mathematical Society, Providence, RI, 2004).Google Scholar
Beilinson, A. and Drinfeld, V., ‘Quantization of Hitchin’s integrable system and Hecke eigensheaves’, Preprint, 1994, http://www.math.uchicago.edu/mitya/langlands.Google Scholar
Braverman, A. and Finkelberg, M., ‘Weyl modules and $q$-Whittaker functions’, Math. Ann. 359(1), (2014), 4559.CrossRefGoogle Scholar
Braverman, A. and Finkelberg, M., ‘Semi-infinite Schubert varieties and quantum K-theory of flag manifolds’, J. Amer. Math. Soc. 27(4) (2014), 11471168.CrossRefGoogle Scholar
Braverman, A. and Finkelberg, M., ‘Twisted zastava and $q$-Whittaker functions’, J. Lond.Math. Soc. (2) 96(2) (2017), 309325.CrossRefGoogle Scholar
Brookner, A., Corwin, D., Etingof, P. and Sam, S.V., ‘On Cohen-Macaulayness of ${S}_n$-invariant subspace arrangements’, Int. Math. Res. Not. IMRN NNN(7) (2016), 21042126.CrossRefGoogle Scholar
Cautis, S. and Kamnitzer, J., ‘Categorical geometric symmetric Howe duality’, Selecta Math. (N.S.) 24(2) (2018), 15931631.CrossRefGoogle Scholar
Cautis, S. and Williams, H., ‘Cluster theory of the coherent Satake category’, J. Amer. Math. Soc. 32(3) (2019), 709778.CrossRefGoogle Scholar
Chari, V., Fourier, G. and Khandai, T., ‘A categorical approach to Weyl modules’, Transform. Groups 15(3) (2010), 517549.CrossRefGoogle Scholar
Chari, V. and Ion, B., ‘BGG reciprocity for current algebras’, Compos. Math. 151 (2015), 12651287.CrossRefGoogle Scholar
Chari, V. and Loktev, S., ‘Weyl, Demazure and fusion modules for the current algebra of ${\mathrm{sl}}_{r+1}$’, Adv. Math. 207(2) (2006), 928960.CrossRefGoogle Scholar
Chari, V. and Pressley, A., ‘Weyl modules for classical and quantum affine algebras’, Represent. Theory 5 (2001), 191223.CrossRefGoogle Scholar
Dumanski, I. and Feigin, E., ‘Reduced arc schemes for Veronese embeddings and global Demazure modules’, Preprint, 2019, arXiv:1912.07988.Google Scholar
Etingof, P., Gorsky, E. and Losev, I., ‘Representations of rational Cherednik algebras with minimal support and torus knots’, Adv. Math. 277 (2015), 124180.CrossRefGoogle Scholar
Feigin, B. and Loktev, S., On Generalized Kostka Polynomials and the Wuantum Verlinde Rule, American Mathematical Society Translations: Series 2 vol. 194 (American Mathematical Society, Providence, RI, 1999).Google Scholar
Feigin, E. and Makedonskyi, I., ‘Semi-infinite Plücker relations and Weyl modules’, Int. Math. Res. Not. IMRN 2020 14 (2018), 43574394.Google Scholar
Feigin, E. and Makedonskyi, I., ‘Vertex algebras and coordinate rings of semi-infinite flags’, Comm. Math. Phys. 369 (2019), 221244.CrossRefGoogle Scholar
Finkelberg, M. and Mirkoviić, I., ‘Semi-infinite flags I. Case of global curve ${\mathbb{P}}^1$’, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, American Mathematical Society Translations: Series 2 vol. 194 (American Mathematical Society, Providence, RI, 1999), 81112.Google Scholar
Fourier, G. and Littelmann, P., ‘Tensor product structure of affine Demazure modules and limit constructions’, Nagoya Math. J. 182 (2006), 171198.CrossRefGoogle Scholar
Fourier, G. and Littelmann, P., ‘Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions’, Adv. Math. 211(2) (2007), 566593.CrossRefGoogle Scholar
Frenkel, E. and Ben-Zvi, D., Vertex Algebras and Algebraic Curves, second edn, Mathematical Surveys and Monograph vol. 88 (American Mathematical Society, Providence, RI, 2004).CrossRefGoogle Scholar
Fulton, W., Young Tableaux, with Applications to Representation Theory and Geometry (Cambridge University Press, Cambridge, 1997).Google Scholar
Joseph, A., ‘On the Demazure character formula’, Ann. Sci. Éc. Norm. Supér. (4) 18(3) (1985), 389419.CrossRefGoogle Scholar
Kac, V., Infinite-Dimensional Lie Algebras (Cambridge University Press, Cambridge, UK, 1993).Google Scholar
Kamnitzer, J., ‘The Beilinson-Drinfeld Grassmannian and symplectic knot homology’, in Grassmannians, Moduli Spaces and Vector Bundles, Clay Mathematics Proceedings vol. 14 (American Mathematical Society, Providence, RI, 2011), 8194.Google Scholar
Kasatani, M., Miwa, T., Sergeev, A.N. and Veselov, A.P., ‘Coincident root loci and Jack and Macdonald polynomials for special values of the parameters’, Contemp. Math. 417 (2006), 207225.CrossRefGoogle Scholar
Kato, S., ‘Demazure character formula for semi-infinite flag manifolds’, Math. Ann. 371 (2018), no. 3–4, 17691801.CrossRefGoogle Scholar
Kato, S., Naito, S. and Sagaki, D., ‘Pieri-Chevalley type formula for equivariant $K$-theory of semi-infinite flag manifolds’, Preprint, 2017, arXiv:1702.02408Google Scholar
Kodera, R. and Naoi, K., ‘Loewy series of Weyl modules and the Poincaré polynomials of quiver varieties’, Publ. Res. Inst. Math. Sci. 48(3) (2012), 477500.CrossRefGoogle Scholar
Kumar, S., ‘Demazure character formula in arbitrary Kac-Moody setting’, Invent. Math. 89 (1987), 395423.CrossRefGoogle Scholar
Kumar, S., Kac-Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics vol. 204 (Birkhäuser Boston, Inc., Boston, MA, 2002).CrossRefGoogle Scholar
Mathieu, O., Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque vol. 159–160 (Société Mathématique de France, Astérisque, 1988), 267 pp.Google Scholar
Mirković, I. and Vybornov, M., ‘Quiver varieties and Beilinson-Drinfeld Grassmannians of type A’, Preprint, 2007, arXiv:0712.4160.Google Scholar
Mustata, M., ‘Jet schemes of locally complete intersection canonical singularities’, Invent. Math. 145 (2001), 397424. With an appendix by D. Eisenbud and E. Frenkel.CrossRefGoogle Scholar
Mustata, M., ‘Moduli spaces and arcs in algebraic geometry’, lecture notes (2006). URL: http://www.math.lsa.umich.edu/mmustata/lectures_arcs.pdf.Google Scholar
Naoi, K., ‘Weyl modules, Demazure modules and finite crystals for non-simply laced type’, Adv. Math. 229(2) (2012), 875934.CrossRefGoogle Scholar
Nash, J.F., ‘Arc structure of singularities’, Duke Math. J. 81 (1995), 3138.CrossRefGoogle Scholar
Kato, S., ‘Frobenius splitting of Schubert varieties of semi-infinite flag manifolds’, Preprint, 2018, arXiv:1810.07106.Google Scholar
Sergeev, A. and Veselov, A., ‘Deformed quantum Calogero–Moser systems and Lie superalgebras’, Comm. Math. Phys. 245 (2004), 249278.CrossRefGoogle Scholar
Zhu, X., ‘Affine Demazure modules and T-fixed point subschemes in the affine Grassmannian’, Adv. Math. 221(2) (2009), 570600.CrossRefGoogle Scholar
Zhu, X., ‘An introduction to affine Grassmannians and the geometric Satake equivalence’, in Geometry of Moduli Spaces and Representation Theory, IAS/Park City Mathematics Series 24 (American Mathematical Society, Providence, RI, 2017) 59154.CrossRefGoogle Scholar