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Exponential Lower Bound for Berge-Ramsey Problems
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Abstract
We give an exponential lower bound for the smallest N such that no matter how we

c-color the edges of a complete r-uniform hypergraph on N vertices, we can always

find a monochromatic Berge-Kn.
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Gerbner and Palmer [5], generalizing the definition of hypergraph cycles due to

Berge, introduced the following notion. A hypergraph H contains a Berge copy of a
graph G, if there are injections W1 : VðGÞ ! VðHÞ and W2 : EðGÞ ! EðHÞ such

that for every edge uv 2 EðGÞ the containment W1ðuÞ;W1ðvÞ 2 W2ðuvÞ holds, i.e.,
each graph edge can be mapped into a distinct hyperedge containing it to create a

copy of G. If jEðHÞj ¼ jEðGÞj, then we say that H is a Berge-G, and we denote such

hypergraphs by BG.
The study of Ramsey problems for such hypergraphs started independently in

2018 by three groups of authors [1, 4, 6]. Denote by RrðBG; cÞ the size of the

smallest N such that no matter how we c-color the r-edges of Kr
N , the complete r-

uniform hypergraph, we can always find a monochromatic BG. In [1] RrðBKn; cÞ
was studied for n ¼ 3; 4. In [4] it was conjectured that RrðBKn; cÞ is bounded by a

polynomial of n (depending on r and c), and they showed that RrðBKn; cÞ ¼ n if

r[ 2c and RrðBKn; cÞ ¼ nþ 1 if r ¼ 2c, while R3ðBKn; 2Þ\2n (also proved in

[6]). In [6] a superlinear lower bound was shown for r ¼ c ¼ 3 and for every other r

for large enough c. This was improved in [3] to RrðBKn; cÞ ¼ XðndÞ if c[ ðd �
1Þ r

2

� �
and RrðBKn; cÞ ¼ Xðn1þ1=ðr�2Þ= log nÞ. We further improve these to disprove

the conjecture of [4].

Theorem Rr BKn; cð Þ[ 1þ 1
r2

� �n�1
if c[ r

2

� �
.
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Proof It is enough to prove the statement for c ¼ r
2

� �
þ 1. For r ¼ 2 this reduces to

the classical Ramsey’s theorem, so we can assume r� 3. We can also suppose

n� r
2

� �
þ 1 ¼ c, or the lower bound becomes trivial. Suppose N�ð1þ 1

r2
Þn�1

.

Assign randomly (uniformly and independently) a forbidden color to every pair of

vertices in Kr
N . Color the r-edges of K

r
N arbitrarily, respecting the following rule: if

fu; vg � E, then the color of E cannot be the forbidden color of fu; vg. Since
c[ r

2

� �
, this leaves at least one choice for each edge. Following the classic proof of

the lower bound of the Ramsey’s theorem, now we calculate the probability of

having a monochromatic BKn. The chance of a monochromatic BKn on a fixed set of

n vertices for a fixed color is at most ðc�1
c Þ

n
2ð Þ, as the fixed color cannot be the

forbidden one on any of the pairs of vertices. Thus the expected number of

monochromatic BKn’s is at most c N
n

� �
ðc�1

c Þ
n
2ð Þ. If this quantity is less than 1, then we

know that a suitable coloring exists. Since c� n� n!, it is enough to show that

N\ð c
c�1

Þ
n�1
2 , but this is true using c ¼ r

2

� �
þ 1 and r� 3. h

1 Remarks and Acknowledgment

As was brought to my attention by an anonymous referee, my construction for r ¼ 3

and c ¼ 4 is essentially the same as the one used in the proof of Theorem 1(ii) in [2]

for a different problem, the 4-color Ramsey number of the so-called hedgehog. A

hedgehog with body of order n is a 3-uniform hypergraph on nþ n
2

� �
vertices such

that n vertices form its body, and any pair of vertices from its body are contained in

exactly one hyperedge, whose third vertex is one of the other n
2

� �
vertices, a different

one for each hypderedge. It is easy to see that such a hypergraph is a Berge copy of

Kn, and while their result, an exponential lower bound for the 4-color Ramsey

number of the hedgehog, does not directly imply mine, their construction is such

that it also avoids a monochromatic BKn.

It is an interesting problem to determine how RrðBKn; cÞ behaves if c� r
2

� �
. The

first open case is r ¼ c ¼ 3, just like for hedgehogs.
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1. Axenovich, M., Gyárfás, A.: A note on Ramsey numbers for Berge-G hypergraphs. Discrete Math.

342(5), 1245–1252 (2019)
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