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Graphene-based 3D XNOR-VRRAM with ternary precision
for neuromorphic computing
Batyrbek Alimkhanuly1,2, Joon Sohn3, Ik-Joon Chang1 and Seunghyun Lee 1,2✉

Recent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate,
and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such
networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are
key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with
microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material,
the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure.
Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired
architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations
on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the
importance of material innovation in neuromorphic computing.
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INTRODUCTION
Deep neural networks (DNN) have made significant progress in
the field of brain-inspired learning for various applications,
including voice and image recognition1,2. For practical purposes,
such computation-intensive tasks can be performed in graphic
processing units3. This suggests the notion that within the frames
of the von Neumann paradigm, the on-chip application of DNN is
significantly constrained due to the segregation of memory and
processing units.
For this reason, the next-generation computer technology is

shifting towards memory-centric architectures, such as in-memory,
near-memory, and neuromorphic computing4–6. Compared to
conventional silicon devices, emerging memory technologies can
make a massive contribution to achieving optimal memory
applicable in neuromorphic computing7–10. These memory devices
include two-terminal resistive random-access memory (RRAM)7,
phase-change memory11, magnetoresistive memory (STT-
MRAM)12, and three-terminal ferroelectric transistors (FeFET)4,13.
As a nonvolatile memory, RRAM is noted to be a strong candidate
with high density14, fast switching (~10–100 ns)15, low power16,
CMOS compatibility, and excellent endurance/retention
properties17.
In an attempt to further simplify the neural network, recent

studies have obtained a beneficial compromise between reducing
the immense model size (~16–32X) and deterioration of learning
accuracy18,19. This compromise was achieved by quantizing 32-bit
floating weights to 1-bit binary (−1, +1) precision. Consequently,
the inference computation is also simplified, where the vector-
matrix multiplication operation with floating weights can be
replaced by addition/subtraction in a Binary Neural Network18. In
turn, this simplification can be further optimized into an XNOR and
bit-counting operation in XNOR-Net19. It is noted that the model
can provide improvements in energy efficiency, computation rate,
and cost by using a weight-pruning technique, thus achieving

ternary precision (−1, 0, +1)20. Therefore, such algorithms can be
practically implemented using binary RRAM devices as synaptic
networks21–24.
In conventional cross-point architectures, frequently used for

two-terminal memories, the critical mask steps increase rapidly as
the stack number increases25. This limits both bit-cost efficiency
and the integration density of the whole array. To overcome such
limitations, 3D vertical stacking technologies, such as VNAND for
flash memories26 and VRRAM for resistive memories, are currently
implemented to achieve high-density arrays with optimal bit-
costs25,27–29. VRRAMs have demonstrated good write/read mar-
gins, energy consumption, and parallel programming proper-
ties23,27,30. However, using conventional metal materials as a
word-plane (WP) electrode may, owing to its intrinsic parasitic
properties, limit both planar and vertical sizes of 3D VRRAM28. In
addition, recently proposed techniques for weighted-sum (WS)
operations with binary RRAM devices limit the full application of
multiple layers31. The specified factors impede 3D VRRAM
application in neuromorphic computing for large image dataset
recognition.
Therefore, a holistic approach integrating emerging devices,

circuits, and system-level analysis is required to overcome these
issues. With its remarkable electronic and thermal conductivity,
graphene is a potential candidate to replace metal-based
interconnects for various devices, including 3D VRRAM32,33. In
the case of the VRRAM, integrating graphene sheets as a WP
electrode will drastically change the response of the individual
devices within an array34–36, thus requiring a distinctive program-
ming scheme to have a positive impact on the system.
Consequently, inspired by the studies on 1-bit ternary precision
quantization18–20, applications with RRAM devices21–24, and 3D
VRRAM technology25,27–30, this work investigated the potential of
the graphene-based VRRAM array as a memory-centric, neuro-
morphic computing platform. The graphene edges were used as
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electrodes in individual devices to extract device characteristics for
statistical analysis. Based on the intrinsic behavior of the devices, a
large-scale multilayer 3D vertical RRAM array was simulated for
read, write, and weighted-sum operations. With XNOR algorithm-
inspired architecture, the graphene-based VRRAMs resulted in
considerably higher recognition accuracy compared to VRRAMs
using conventional metals such as Pt. The difference was found to
be the result of both the improvement of the device and the
enhanced performance of the interconnect.

RESULTS
3D VRRAM single device structure and response
In this work, fabricated TiN/HfOx/Pt and TiN/HfOx/graphene
structures are referred to as Pt-RRAM and Gr-RRAM, respectively,
denoting 3D VRRAM with platinum (Pt) and graphene plane
electrodes. Figure 1a,b depicts the cross-sectional schematic of Pt-
RRAM and Gr-RRAM single devices with two stacked layers. In 3D
VRRAM, the active memory cells are sandwiched between pillar
and multilayer plane electrodes27,35,37. The thicknesses of Pt and
graphene electrodes are 5 nm and ~3 Å, respectively. Figure 1c–e
shows the high-resolution transmission electron microscopy (TEM)
image of cross-sections of both Pt-RRAM and Gr-RRAM devices.
The Al2O3 layer was used as an adhesion promoter since it has
higher surface energy compared to thermally oxidized SiO2.
Nevertheless, fabricating an extra adhesion layer is not a crucial
stage, as high-quality graphene can be transferred directly on the
SiO2 substrate

37.
The DC I–V characteristics of Pt-RRAM and Gr-RRAM devices

with two layers are shown in Fig. 1f. In contrast to the Pt-based
devices, we can achieve unconventional switching in VRRAM with
graphene plane electrodes, where one of the noticeable distinc-
tions includes the inverted polarity of the programming voltage.
In conventional 3D memory, the SET operation is achieved by

applying the positive bias on the pillar electrode (TiN) and
negative on the WP electrode (Pt)27,28, whereas for Gr-RRAM, the
SET is carried out by applying a negative bias on the pillar
electrode (TiN) and positive on the plane electrode (graphene).
This difference can be explained by the fact that in RRAMs, TiN is
commonly used as an oxygen reservoir, and a TiOxN1−x interfacial
layer is formed at the TiN/HfOx interface, facilitating the
accumulation and the discharge of the oxygen ions27. Although
such a principle is also applicable to Gr-RRAM35,37, distinctive
device features were implemented by utilizing graphene as an
active electrode, as it can also be operated as a stand-alone
oxygen reservoir34. Conducting the soft dielectric breakdown and
initiating the primary defects in the bulk metal oxide layer
determines the further behavior of the Gr-RRAM device by
activating one of the electrodes. This means that the polarity of
the forming voltage of graphene-based VRRAM with TiN/HfOx/
graphene structure dictates toward which electrode (TiN or
graphene) oxygen ions will initially migrate, assigning the
consequent programming operation characteristics. More detailed
illustrations are shown in Supplementary Fig. 1.

The stochasticity in device response, and programming
schemes
Before estimating VRRAM array performance, it is important to
ascertain the repeatability of the single devices in temporal
means. The device DC responses for 30 cycles are shown in Fig. 2a,
b for Pt-RRAM and Gr-RRAM devices, where median curves are
shown in blue and red, respectively. Furthermore, Supplementary
Fig. 2 shows the SET voltage variations in distinctive quasi-static
sweeps for 100 cycles in both VRRAMs, whereas cycle-to-cycle
variations (σ/μ) were found to be 13 and 6.4% for Pt-RRAM and Gr-
RRAM devices, respectively. The switching voltages and the
currents are considerably lower for Gr-RRAM than for Pt-RRAM
due to its much thinner graphene electrode and its highly focused
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Fig. 1 3D VRRAM single device structure. a, b Single device cross-sectional schematic for a Pt and b graphene plane electrode-based VRRAM
with two layers. In this work, TiN/HfOx/graphene and TiN/HfOx/Pt 3D VRRAM structure can be further referred to as Gr-RRAM and Pt-RRAM,
respectively. c High-resolution TEM image of Pt-RRAM device from previous work34 (Scale bar: 5 nm). d High-resolution TEM image of Gr-RRAM
device (Scale bar: 30 nm). e Layer 1 example image, where graphene was transferred on top of the Al2O3 layer serving as an adhesion
promoter. (Scale bar: 5 nm). f Typical semilogarithmic I–V curve of the top and bottom layers for both Pt- and Gr-RRAM devices.
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electrical field at the edge34. The lack of a TiOxN1−x barrier layer,
which impedes current conductance at the pillar electrode and
the active memory interface, is another reason for low voltage
operation34,36.
Due to the stochastic nature and the unconventional switching

behavior of the Gr-RRAM devices, a protocol must be set up for
safe write and read operations based on experimental results. As
these devices have asymmetric bipolar characteristics, the write
operation can be categorized as SET and RESET, shown in Fig. 2c,
d. As a result, one can establish criteria for array programming
conditions depending on the biasing scheme. For the considered
½ bias scheme in a 3D Pt-RRAM array, the safe programming
conditions should include the applied voltage pulse in the range
of 1.5 to 2 V for SET and −1.5 to −2.4 V for RESET to ensure the
switching without ½ bias disturbance of half-selected cells (i.e., VW
= {2 V, −2.4 V}). In Gr-RRAMs, a voltage range of −1.0 to −1.5 V for
SET and 0.4 to 0.5 V for RESET are expected to perform the current
switching in the selected RRAM cell; therefore, the applied pulse
should have an amplitude of VW= {−1.5, 0.5 V}. Otherwise, the
resistive switching in the metal oxide may result in probabilistic
behavior, in which the switching probability roughly follows the
Gaussian distribution. For a safe reading operation, the read pulse
should be in the range of 0.1 V to ½ bias of the minimum safe
write amplitude; in this work, it is 0.1 V (i.e., VR= 0.1 V).
Figure 3a, b displays the DC characteristics from five randomly

chosen Pt-RRAM and Gr-RRAM devices. Supplementary Fig. 3

shows the cumulative distribution function for HRS and LRS in
several measured devices. Overall, both VRRAMs show compar-
able uniformity while Gr-RRAM has a larger memory window. The
magnitudes of HRS and LRS are relatively high with graphene WP,
which is beneficial for array applications. Under pulse measure-
ments, Gr-RRAM has a tolerable fluctuation at a 1.5 V/500 ns
programming condition while maintaining a minimum detected
ON/OFF ratio greater than 10 (Fig. 3c). From the retention test, the
read noise can be retrieved before the unintended resistance shift
under various thermal stresses ranging from ~145 to 200 °C
(shown in Fig. 3d). As expected, the read noise is more substantial
at the elevated temperature. To further estimate the array
performance, it is essential to build a single device model that
can accurately reflect the VRRAM resistive switching behaviors.
Therefore, the Verilog-A compact model was configured based on
the concepts of tunneling gap evolution, accurately demonstrated
in the Stanford RRAM design38–41, and conductive filament (CF)
radial evolutions42,43. One of the pillars of this work is based on
the statistical study achieved by the extensive experimental
measurements. Consequently, the RRAM model was defined
considering the intrinsic programming variations and read noise.
Figure 3e,f shows the experimental and simulated models of the
DC characteristics with a tolerable fitting. The programming
energy of the Gr-RRAM device is drastically smaller, due to
reduced switching voltage and current (IW= 5 μA), than the Pt-
RRAM (IW= 80 μA), as shown in Supplementary Fig. 4.
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Fig. 2 The programming scheme based on the switching characteristics. a, b Illustration of cycle-to-cycle variation in DC I-V characteristics
of a Pt-RRAM, where the median curve is shown in blue, and b Gr-RRAM, where the median curve is shown in the red lines. c, d Programming
and reading protocols based on experimental results for c Pt-RRAM and d Gr-RRAM devices for further implementation in 3D VRRAM array
simulation.
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The modeling of the 3D VRRAM array with graphene word
planes
Figure 4a illustrates a virtual 3D VRRAM array schematic with a 2D
graphene film as the WP electrode. The thickness tdi of the isolation
layer (SiO2 dielectric) is selected according to the type and
dimensions of the plane electrode. The vertical density of the 3D
array highly depends on the isolation layer and word plane
thicknesses; thus, Gr-RRAM brings favorable impact. More detailed

information can be found in Supplementary Note 1. Array biasing
is performed using the WPs and bit-lines (BLs) connected to the
pillar electrodes (y-axis), whereas specific memory cells are selected
via vertical transistors44 controlled by selector-lines (SLs) (con-
nected in the x-axis). Figure 4b, c shows the selected cell
programming and reading scheme. For the ½ bias write operation,
the selected WP and BL are fully biased (VW) and grounded,
respectively, while all other unselected cells are either half-biased
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Fig. 3 The study and modeling of the devices’ responses. a, b Spatial DC curves from randomly selected a Pt-RRAM and b Gr-RRAM devices.
All the measured devices exhibit similar behavior for multiple cycles. c Endurance pulse test of the Gr-RRAM device, where the minimum
detected ON/OFF ratio is greater than 10×. d Retention time results of Gr-RRAM before unintended resistance shift occurs under reading
voltage (0.1 V bias) and various thermal stresses ranging from ~145 to 200 °C. The read noise at different temperatures is retrieved, where the
measurement of the RRAM resistance state showed strong fluctuations in elevated temperature environments. Inset: Resistance distribution
example under 155 °C thermal stress prior to the unintended shift. e, f Experimental mean and simulated Verilog-A model switching
characteristics for e Pt-RRAM with 80 μA switching current (IW), and f Gr-RRAM with IW= 5 μA.
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VW/2 on both sides or not selected by vertical transistors. For the
single device read operation, all WPs and BLs are grounded except
for the selected WP, which is biased to VR. Following such a pattern
of array biasing, we believe, will avert unintentional write and
considerably alleviate the sneak current effect27,30.
Vector-matrix multiplication (VMM) is one of the critical

operations in neuromorphic computing, and a simple cross-point
array is advantageous because it can perform a WS operation
easily, due to Kirchhoff’s law, at the junctions. However, the
stacked 3D VRRAM design requiring only a single pivotal
lithography step is more bit-cost efficient27. To exploit both the
bit-cost efficiency and the WS operation scheme in a vertical
memory structure, several scenarios to conduct the WS operation
in the VRRAM array have been proposed. In one study31, pillar
electrodes were exploited as input neurons, whereas WPs were
utilized as WS output neurons, allowing a 1TkR configuration (k is
the number of layers). However, in this structure, the number of
output neurons will heavily rely on the number of the stacked WPs,
which in turn are dependent on the technology etching aspect
ratio. Alternatively, the WPs and SLs can be combined to perform
the VMM operation23, in which the selected and unselected WPs
are biased to VR and 0 V, respectively, and selected BLs should be
grounded (Fig. 4d). Thus, the output current read in each BL
represents the WS of the input voltages and conductance of
memory cells located along the y-axis of the planar array.
For a large-scale simulation of the VRRAM array in HSPICE with

RRAM models, the 2 × 2 × 2-size 3D sub-circuit with one virtual
node was used as a building block30,45, as shown in Supplemen-
tary Fig. 5. For both computationally accurate and efficient array
simulation, the voltage-dependent VRRAM model was specifically
designed to incorporate the intrinsic behavior of the Pt-RRAM and
Gr-RRAM devices. The main simulation parameters for the VRRAM
array are listed in Table 1.
It is worth noting that the electronic properties of graphene can

be further enhanced by doping with nitrogen, boron, or
FeCl3

33,46,47. In contrast to the pristine graphene sheet, the
resistivity is expected to be reduced by increasing the carrier
concentration during the doping process. Supplementary Fig. 6
summarizes recent studies in obtaining highly conductive
graphene interconnects through doping with various materials.
On the single memory cell level, since the overall proportion of the
change in the switching resistance states in HfOx based VRRAM is
significantly larger than the graphene’s actual sheet resistance, it
was presumed that doping the graphene will not have a
fundamental effect on the individual device response. Never-
theless, in the large 3D array architecture, where interconnect
parasitics have a major impact on signal degradation, doping the
monolithic graphene word plane can be the area for continued
development. Therefore, the reasonable assumption that VRRAM
with doped graphene plane electrode (referred to as DGr-RRAM)
has similar switching characteristics as the pristine one (Gr-RRAM)
but with lower sheet resistance was made. As doped graphene,
owing to its relatively high conductivity, can be operated in favor
of planar size increase, its potentials in the 3D vertical memory
array for neuromorphic computing were also evaluated. Applied
interconnect resistivities of metal and graphene materials for WP
and pillar electrodes were estimated from the International
Technology Roadmap for Semiconductors table48 and reports33,49.
In addition, more detailed information regarding the parameter-
ization of WP and pillar electrodes can be found in Supplementary
Note 2 and Supplementary Fig. 7. For the selector transistors with
a sub-45 nm node, a Predictive Technology Model was used50,51. It
should be noted that graphene formation in the practical
application may be challenging; the difficulties are mostly
associated with graphene (1) synthesis and (2) transfer processes.
For synthesis, although the chemical vapor deposition method
provides large-area high-quality uniform graphene sheet growth,
there are certain thermal limitations (<400–500 °C) imposed by the

back-end-of-line (BEOL) process. Nevertheless, some studies have
made significant advancements in graphene synthesis compatible
with current and next-generation semiconductor technologies52.
Since transfer-free approaches predominantly require deposition
at elevated temperatures opposing BEOL limitations, therefore, in
some synthesis techniques, graphene transfer may appear to be
an inescapable stage. Due to the quality issues of the wet transfer
related to the polymer residues left on the graphene, which
degrade its electronic properties, the dry transfer process offers a
more promising solution. In this regard, there have been several
progressive works that demonstrate the dry transfer potential of
graphene53,54. Such high-quality formation and process integra-
tion challenges are among the fundamental issues for all 2D
materials. Nevertheless, the research interest is increasing
significantly in these areas, mainly because it is believed that
with enough advancement, there is a high possibility that 2D
materials will synchronize with the current electronics paradigm.

The array performance in programming, read, and WS
operations
Figure 5a,b illustrates the simulation results for accessed voltage
drop over the selected furthest cell for various planar array sizes
during the SET/RESET processes of the worst-case scenario. The Pt-
RRAM array can no longer meet the minimum access voltage
requirement beyond the 128 × 128 planar array size since the
voltage range is going down to the probabilistic region (Fig. 2c)
with no guarantee of the resistive switching of the selected cell.
Nevertheless, this does not apply to graphene-based VRRAM
arrays, as selected Gr-RRAM or DGr-RRAM cells can be safely
programmed at all considered array sizes. Various components in

Table 1. VRRAM array simulation parameters.

Metric Design parameters Values

F Feature size 30 nm

tox Oxide thickness 5 nm

tWP WP thickness 5nma, 0.3 nmb,c

tdi Dielectric thickness 6 nm

dp/dox Core/Oxygen reservoir pillar
electrode diameter/thickness

(10/5) nma, (20/0)
nmb,c

AR Etching aspect ratio 30

N Stacked layers number 8

VSET/VRESET SET/RESET voltage applied to
the selected WP

(2/−2.4) Va, (−1.5/0.5)
Vb,c

VR Read voltage applied to the
selected WP

0.1 V

RWP WP interconnect resistance 6.67Ωa,
14.7Ωb,5.56Ωc

Rpillar Pillar electrode interconnect
resistance

3.44Ωa, 1.57Ωb,c

Idrive Saturation current of a vertical
transistor

~150 μA

– Min. accepted access SET write 1.5 Va, 1 Vb,c

– Min. accepted access
RESET write

1.5 Va, 0.4 Vb,c

– Min. accepted read margin 100 nA

dgap/rCF at LRS Tunneling gap / CF radius at
the LRS

(1.8 nm/-)a,
(−/2.5 nm)b,c

dgap/rCF at HRS Tunneling gap / CF radius at
the HRS

(2.3 nm/-)a),
(−/0.3 nm)b,c

aPt-RRAM
bGr-RRAM
cDGr-RRAM
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the circuit, specifically the WP electrode and vertical transistors,
contribute to the IR drop and sneak-path issues of the input
voltage pulse. The evolutions of voltage drop over the WP and
transistor as a function of the array size for all devices are shown in
Supplementary Fig. 8. Due to WP interconnect resistance, limited
saturation current in the vertical transistors, and 1TkR configura-
tion of VRRAM, high switching currents are undesirable during
programming. Fortunately, the low switching currents in Gr-
RRAMs can forcefully reduce the effective resistance of the array.
In this study, the 416 × 224 array size is particularly significant for
further estimation of image recognition performance. Three
investigated types of VRRAM can satisfy the read margin
requirements for sense amplifiers to differentiate HRS and LRS
states (Fig. 5c). Figure 5d,e indicates that energy consumption can
be reduced by an average of ~262X for RESET (sub-pJ levels) and
~8X for SET operations in Gr-RRAM arrays, compared to Pt-RRAM
arrays. Notably, the energy consumption ratio in the array
simulation is reduced by two, in contrast to the experimentally
measured results of the single devices, which can be explained by
the presence of the half-selected cell in the ½ biasing condition.
Along with programming and reading of the selected cells, the WS

is a crucial operation for further implementing VRRAMs in
neuromorphic computing. Similar to the 2D cross-point array42, the
VMM efficiency of specific VRRAM arrays can also be evaluated as a
deviation of WS from the expected ideal value, known as read
inaccuracy (Fig. 5f). Both Gr-RRAM and DGr-RRAM arrays show

superior effectiveness in WS operations, not exceeding a 10%
deviation of accuracy, which does not apply to Pt-RRAM. We have
noticed that a large number of parallel BL readings during the
inference process causes the read inaccuracy to grow (Fig. 5g), related
to the increase in sneak-path current. Therefore, eight BLs for parallel
inference were found to be optimal. Nevertheless, the VRRAM array
with a doped graphene plane electrode can promote more BL
numbers for parallel computing, owing to its low specific resistivity.
Figure 5h demonstrates the Shmoo plot, which indicates the

performance of a 416 × 224 × 8-size 3D array system, according to
various conditions of switching current (IW) and metal WP
thickness. Metal films experience a sharp increase in resistivity,
becoming comparable to insulators, as thickness goes below
5 nm28,49. With the studied Pt-RRAM switching characteristics, the
WP thickness should exceed 30 nm to succeed in all operations,
including WS for in-memory computation. Therefore, fabricating at
this thickness may oppose the known trend of stacking more
layers and obtaining a high-dense memory structure. At sub-3 nm
thickness, a VRRAM array with a conventional metal plane
electrode is expected to fail regardless of the switching current.
On the other hand, Gr-RRAM with only 0.3 nm WP thickness can
pass in all necessary operations, owing to its intrinsic properties
and switching characteristics. A comparison of write voltage drop
on different components as a function of WP thickness is shown in
Fig. 5i. Below 5 nm WP thickness, the voltage drop on a selected
cell declines considerably due to a drastic increase in circuit

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Accepted level
   (Pt-RRAM)

Accepted level
   (Pt-RRAM)

Accepted level
   (Gr-RRAM)

Accepted level
   (Gr-RRAM)

Accepted level

~ 8x less energy 
consumption ~ 262x less energy 

consumption

Fig. 5 Comparison of the Pt-, Gr-, and DGr-RRAM performances in 3D structure with 8-layers at the various planar array sizes. a, b Write
access voltage for a SET and b RESET processes. c Read margin at VR= 0.1 V where the minimum current difference is required to exceed
100 nA to distinguish HRS and LRS states. d, e Array programming energy consumption in d SET and e RESET operations. f Read inaccuracy
during the WS operation at the worst-case weight pattern. g Read inaccuracy as a function of multiple BLs reading, which is important for
parallel inference computing for the 416 × 224 × 8 VRRAM array size, necessary for MNIST data recognition. h Shmoo plot with different
switching currents (IW) and metal WP electrode thicknesses, including the special case of Gr-RRAM. i Comparison of write voltage drop change
as a function of WP thickness on various circuit components at IW= 5 μA (top) and 100 μA (bottom).
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parasitic resistance. Shmoo plot results suggest that the design of
metal-based VRRAMs, including Pt-RRAM, needs to be further
optimized by device engineering to accomplish all procedures by
meeting the requirements for switching current, WP resistivity,
and 3D array density.

The XNOR operation-based architecture of 3D VRRAM arrays
The recognition performance of the VRRAM array can be assessed
using handwritten digits from the Modified National Institute of
Standards and Technology (MNIST) database55. In this work, a 2-
layer perceptron (MLP) topology, shown in Fig. 6a, with 400 input,
200 hidden, and 10 output neurons is used to estimate the
productivity of Pt and graphene-based 3D VRRAMs. To reduce the
WP planar size and implement the ternary XNOR operation, the
original image is cropped and binarized (Fig. 6b). For the training
process1, the required weight update can be determined using
the gradient descent method shown in Eq. (1).

ΔWij ¼ α � δbj lð ÞVb
i lð Þ for b ¼ 1; :::; B (1)

where α is the learning rate, B is the batch size within which the
samples are computed for the sequential weight update, and Vi, δj
are the specific neuron input value and output error, respectively,
for the lth layer with mxn synapse size. The detailed information
about the training flow is shown in Supplementary Fig. 9. Due to
the inexpensive stacking properties of the 3D VRRAM arrays, the
in situ training itself can be performed in 6-bit or higher weight
precisions, and further, can be optimized to 1-bit ternary precision
by following the instructions shown in Fig. 6c and Supplementary
Table 3, Note 3. For optimal online learning, it is expected to have
6-bit precision for binary RRAM devices56 or 64 distinct
conductance levels for analog ones. Alternatively, for the ex-situ
training, VRRAM can be directly quantized to ternary levels for
further image classifications.
Furthermore, with the use of the XNOR operation for ternary

weights (Fig. 6b), the computational and energy resources can be
reduced, provided the reduction is made by bit-count operations
and natural weight pruning. Figure 6d shows the XNOR
architecture implemented in 3D VRRAM, where the synaptic
weight matrix is achieved with two vertical layers. The output
current flowing in the specific BL depends primarily on input and
weight logic values. For instance, input logic value “1” can be
represented by applying positive and negative read pulses to the

top and bottom layers, respectively. Thus, given that the top
VRRAM is in LRS and the bottom one is in HRS, the expected
current flowing in the pillar electrode is ILRS–IHRS, which can be
represented as “1”, following the XNOR logic. In addition, natural
synaptic pruning can be obtained by programming both VRRAMs
to HRS states, leading to the extremely small current output
considered as a logic “0”. Although a monolithic WP pattern limits
the input vector range used for different RRAMs along the BL (Fig.
6d), the input “0” can be achieved by turning off the correspond-
ing vertical transistor23. However, due to the 1TkR configuration,
the whole pillar will be in an idle state. This may restrain multiple-
layer parallel computing for large datasets with diverse input
values. Alternatively, provided with adequate compensation,
XNOR architecture can be a possible solution for layer-based
partial WS of the large datasets that can be integrated with the
high-stackable characteristics of the 2D graphene. It is worth
noting that this work focuses on evaluating the impact of
graphene in the XNOR operation-focused 3D VRRAM architecture
for neuromorphic computing applications despite the graphene
process integration challenges. Therefore, as an alternative, the
device-circuit-architecture/algorithm levels holistic approach was
applied, which also included the simulation of the programming
and in-memory computing potential of the large-scale array using
the graphene-based RRAM model, which was verified by extensive
experimental measurements (Supplementary Note 4).

The learning performance of 1-bit ternary VRRAM arrays
Figure 7a demonstrates the evolution of neural network training
accuracy based on the ideal neuromorphic devices with floating, 6-
bit, and 1-bit ternary synaptic precisions. The MLP accuracy with
floating weights is ~98%, reaching the baseline software bench-
mark. Given that the error-free VRRAM array with seven stacked
layers acts as an artificial synapse network, the 2% accuracy
degradation is expected. Furthermore, in comparison with floating-
weight precision there is only a 3% decline at the 1-bit ternary
neural network. Such a network requires only two stacked layers in
the VRRAM array, as shown in Fig. 6d. Nevertheless, fluctuations in
learning evolution increase considerably as weight precision is
being compressed. It is worth noting that the learning outcomes
are highly likely to be downgraded in a real VRRAM array,
depending on the device properties, circuit parasitics, array
dimensions, etc. Particularly, due to the deviations (read inaccuracy)
in the WS, which is a crucial operation in neuro-inspired computing,
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the recognition performance may deteriorate noticeably. Figure 7b
presents the learning outcomes, considering the worst-case
scenario of the read inaccuracy values corresponding to the Pt-,
Gr-, and DGr-RRAM 3D arrays in the inference process. The learning
accuracy for Pt-RRAM is significantly decreased, followed by
substantial stochasticity; this outcome can be explained by the
high read inaccuracy values shown in Fig. 5f. However, the accuracy
of graphene-based VRRAMs is comparable to that of an artificial
neural network based on an error-free VRRAM array, owing to the
intrinsic properties of graphene, its interface with the active
memory layer, and 1-bit ternary synaptic architecture with XNOR
operation. Such architecture shows little susceptibility to minor
deviations in the read accuracy. In addition, for precise analysis of
the WS effect on classification accuracy, a Monte Carlo simulation
was conducted, as shown in Fig. 7c. Read inaccuracy values were
selected in a uniformly random manner, ranging from minimum to
maximum values according to the VRRAM type. Under the
competent performance of graphene-based VRRAMs in the WS
operation, the accuracy range is higher and more concise than the
Pt-RRAM array, approximately following the Gaussian probability.
Figure 7d–f shows the MLP simulation results projected on Pt

and graphene-based 3D VRRAM arrays, considering the intrinsic
read and write noises. As a result of the intrinsic properties of the
device and its characteristics on the circuit level described
previously, the accuracy downgrade rate of the Pt-RRAM is
relatively higher than that of graphene-based RRAM devices.
Consequently, integrating graphene does not only affect the
interconnect characteristics and dimensions of the 3D VRRAM
array, but also the unconventional switching mechanisms have a
favorable impact on both circuit and architecture levels. In
addition, by quantizing the neural network to 1-bit ternary
precision and implementing the XNOR operation in the 3D VRRAM

array for inference computation, the effect of read and write
noises is less forceful than it is in analog synapses with floating
precision (Supplementary Fig. 10). Here, the write noise combines
both cycle-to-cycle and device-to-device variations. Consequently,
based on the experimentally obtained read and write noises of the
device (Fig. 3d and Supplementary Fig. 2), one can expect a
recognition accuracy of ~83.5% in the Pt-RRAM and ~94.1% in the
Gr-RRAM arrays. Since the holistic approach was applied in this
study to evaluate the graphene impact in the 3D array
architecture for neuromorphic computing applications, it is
important to compare with other studies. Therefore, the bench-
mark comparison with related studies in the field of 2D materials
integration into memory technology, circuit analysis of the large-
scale memristor arrays, and neuromorphic computing using
resistive switching devices is provided in Supplementary Note 4,
Figure 11, and Table 4 in the Supplementary Information.

DISCUSSION
In summary, this study investigated the potential performance of
the Pt and graphene-based 3D VRRAM arrays as on-chip
computing platforms. Replacing the conventional metal word-
plane with sub-nm thin graphene increases the possible number
of vertical stacks and reduces the effective parasitic resistance
allowing safe read and write procedures in larger planar array
sizes. Due to the low switching currents and voltages of individual
devices, programming of the furthest cell consumed much lower
energy on the circuit level than a conventional system. The Gr-
RRAM array can successfully conduct a VMM operation resulting in
a tolerable read accuracy deviation at >90k planar array size.
Furthermore, the design of the XNOR algorithm-inspired archi-
tecture for the 3D VRRAM array allows the implementation of 1-bit

(a) (b) (c)

(d) (e) (f)

Fig. 7 The training accuracy of VRRAM array-based neural network estimated through simulation. a Evolution of the training accuracy
according to the epoch for neural network (NN) models, including weights with original 32-bit floating-point precision, 6-bit precision (for 64
distinctive conductance states in a multilevel cell), and 1-bit ternary precision. b Evolution of the accuracy in the NN model with ternary
synaptic precision with an injected worst-case scenario of the read inaccuracy values corresponding to the Pt-, Gr- and DGr-RRAM arrays in the
inference process. c Accuracy distribution from 100,000 MC simulation runs. Inset: magnified plot for Gr- and DGr-RRAM arrays. Due to high
read inaccuracy in Pt-RRAM, the overall accuracy levels degrade significantly. Comparing Gr- and DGr-RRAM, some random inaccuracies can,
to a certain extent, be favorable during the inference operation. The effect of read and write noise (including cycle-to-cycle and device-to-
device variations) on the recognition accuracy for d Gr-RRAM, e Pt-RRAM, and f DGr-RRAM arrays.
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ternary synaptic weights for the image recognition tasks. In
particular, XNOR architecture has the potential to supplement the
highly stackable nature of the graphene-based VRRAM arrays for
parallel processing of multiple layers. This study highlights the
importance of a holistic approach to correlating the material and
device engineering, circuit structuring, and algorithm building to
design a memory-centric, next-generation computing system.

METHODS
Fabrication summary
Two-layer VRRAM devices with graphene WPs were prepared sequentially
following the highlighted stages, including graphene transfer, trench
forming, and deposition of metal oxide and pillar electrodes. Initially, 5 nm
thin Al2O3 dielectric was deposited by atomic layer deposition (ALD) on a
SiO2 (100 nm)/Si substrate for adhesion promotion, followed by graphene
sheet transfer (monolayer sandwiched by copper foil, Graphene super-
market). Ti(3 nm)/Pt(30 nm) metal pads for probing were deposited by
evaporation. A SiO2 (60 nm) passivation layer was deposited using LPCVD.
To form the second and higher layers of the WP, the described process
must be repeated34,37. Next, one pivotal lithography process was
conducted to form the trench by dry etching; subsequently, HfO2 (5 nm)
and TiN were deposited by ALD and sputtering, respectively.

Device characterization
High-resolution TEM images were obtained using a Tecnai TF-20 Field
Emission Gun/TEM@200 kV (FEI company, UK). Electrical characterization
was obtained using an Agilent Parameter Analyzer 4155C (Agilent, CA,
USA) with an 81150A arbitrary signal function generator (Keysight, CA,
USA) and Switch Matrix 707B (Keithley, OH, USA) for pulse measurement
(retention, endurance tests).

Circuit analysis
3D VRRAM arrays with conventional Pt and graphene WPs were modeled as
a matrix of 2 × 2 × 2-size subcircuits with one virtual node. Gr-RRAM and Pt-
RRAM were designed as voltage-dependent models based on the
experimentally verified individual device response. As a result, XNOR
operation-inspired VRRAM arrays with 8 vertical layers and various planar
sizes for individual cell programming, read, and network WS procedures for
the worst-case scenario were simulated in HSPICE software (Synopsys, CA,
USA). The detailed information regarding the characteristics of WP and pillar
electrodes is shown in Supplementary Figs. 5,7 and Supplementary Note 2.

Neural Network simulation
The ANN, with 400 input, 200 hidden, and 10 output neurons, was
simulated in MATLAB software (MathWorks, MA, USA); 60,000 and 10,000
cropped and binarized MNIST data were used for training and testing
operations. The considered cycle-to-cycle, device-to-device variations, and
read noise at elevated environment temperatures were derived from
experimental results (Supplementary Fig. 9).
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