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Metric Lie groups admitting dilations

Enrico Le Donne and Sebastiano Nicolussi Golo

Abstract. We consider left-invariant distances d on a Lie group G with the property that
there exists a multiplicative one-parameter group of Lie automorphisms (0,∞)→Aut(G), λ �→δλ,
so that d(δλx, δλy)=λd(x, y), for all x, y∈G and all λ>0.

First, we show that all such distances are admissible, that is, they induce the manifold
topology. Second, we characterize multiplicative one-parameter groups of Lie automorphisms that
are dilations for some left-invariant distance in terms of algebraic properties of their infinitesimal
generator.

Third, we show that an admissible left-invariant distance on a Lie group with at least one
nontrivial dilating automorphism is bi-Lipschitz equivalent to one that admits a one-parameter
group of dilating automorphisms. Moreover, the infinitesimal generator can be chosen to have
spectrum in [1,∞). Fourth, we characterize the automorphisms of a Lie group that are a dilating
automorphisms for some admissible distance.

Finally, we characterize metric Lie groups admitting a one-parameter group of dilating au-
tomorphisms as the only locally compact, isometrically homogeneous metric spaces with metric
dilations of all factors. Such metric spaces appear as tangents of doubling metric spaces with
unique tangents.
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1. Introduction

Lie groups endowed with a left-invariant distance that admits a metric dila-
tion or a one-parameter family of metric dilations appear in several mathematical
contexts. Carnot groups offer a non-commutative version of normed vector spaces
and they appear as asymptotic cones of finitely generated groups with polynomial
growth and as tangents of sub-Riemannian manifolds [3], [9], [10], [19], [22] and
[23]. Homogeneous groups are a further generalization. They are simply connected
metric Lie groups whose Lie algebra is graded, and they are endowed with a one-
parameter family of diagonal dilations, that is, dilating automorphisms of the form
δλ(x1, x2, ..., xn)=(λw1x1, λ

w2x2, ..., λ
wnxn), see Example 5.1. Homogeneous groups

appear in the study of PDE and singular integrals [6], [7] and [8].
However, these cases don’t exhaust all metric Lie groups admitting dilations.

There are indeed distances, already on the Abelian R2, that are not quasisymmet-
rically equivalent to any of the homogeneous distances listed above, but they do
admit a one-parameter family of dilations, see [1, Section 6] and [26]. The addi-
tional complication is given by having dilations that can’t be diagonalized, as in
Example 5.3 below. Following [14], these metric Lie groups appear as visual bound-
aries of homogeneous negatively curved manifolds, equipped with parabolic visual
distances as introduced by Hamenstädt, see [11] and [15].

Suppose that G is a Lie group and d is a left-invariant distance on G that admits
a multiplicative one-parameter group of Lie automorphisms (0,∞)→Aut(G), λ �→δλ
so that

(1.1) d(δλx, δλy)=λd(x, y) ∀x, y ∈G, ∀λ> 0.

A multiplicative one-parameter group (0,∞)→Aut(G) is determined by a derivation
A∈Der(g) of the Lie algebra g of G such that

(1.2) (δλ)∗ =λA := e(logλ)A.

Such A is the infinitesimal generator of λ �→δλ and we say that d is A-homogeneous.
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If a left-invariant distance d induces the manifold topology on G, then we say
that d is admissible and that (G, d) is a metric Lie group. We don’t require a priori
that an A-homogeneous distance is admissible nor that G is connected. Instead, we
prove in our first theorem that this is necessarily true. Theorem 1.1 is proven in
Section 3.

Theorem 1.1. Let G be a Lie group. Let λ∈(0,∞) �→δλ∈Aut(G) be a one-

parameter group of Lie group automorphisms. If there exists a left-invariant distance

d on G with d(δλx, δλy)=λd(x, y), for all x, y∈G and λ>0, then d is admissible and

G is connected.

In Lie algebraic terms, Theorem 1.1 can be formulated with the language of
A-homogeneous distances as follows. Since every one-parameter group has an in-
finitesimal generator, let A be the derivation on the Lie algebra of G such that
(δλ)∗=λA. Theorem 1.1 states that if an A-homogeneous distance on G exists,
then it is admissible. The fact that G is connected is a immediate consequence.

A derivation A∈Der(g) of a Lie algebra g induces a real grading of g, i.e.,
a splitting g=

⊕
t∈R

Vt with [Vt, Vs]⊂Vt+s, by means of the generalized eigenspaces
of A. In other words, after choosing a basis of g so that A is in Jordan normal form,
the blocks corresponding to eigenvalues with real part equal to t determine the space
Vt, see Proposition 2.8. Nonetheless, the derivation A carries more structure than
just the grading, since A may not be diagonalizable on R, nor on C.

In our second result we characterize when A-homogeneous distances exist. The-
orem 1.2 is proven in Section 6.

Theorem 1.2. Let A be a derivation on the Lie algebra of a Lie group G with

induced grading
⊕

t∈R
Vt. The following are equivalent:

(i) There exists an A-homogeneous distance on G;

(ii) The Lie group G is connected and simply connected, we have Vt={0} for

all t<1, and the restriction A|V1 is diagonalizable over C.

In particular, if there exists an A-homogeneous distance on G, then G is nilpotent.

The implication from (i) to (ii) is based on known facts about contracting
automorphisms (e.g., from [24]) and an example in R2 that was already present
in [1, Section 6], see also Examples 5.3 and 5.4 in this paper. In the proof of (ii)
implying (i), instead, one needs to construct an A-homogeneous distance. In the
case A is diagonalizable over R, this has been done already by Hebisch and Sikora,
see [12]. Our construction is inspired by theirs.

Following [24], we show that the presence of a single dilating automorphism
already gives strong restrictions on the setting, as we next explain. A dilation of
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factor λ of a metric space (X, d) is a bijection δ :X→X such that

d(δx, δy)=λd(x, y) ∀x, y ∈X.

We say that δ is nontrivial if λ �=1. We recall from [5] that, if (X, d) is a metric Lie
group and δ :(X, d)→(X, d) is a nontrivial dilation, then there is a unique simply
connected nilpotent metric Lie group (G, d) that is isometric to (X, d). Moreover,
in this metric Lie group, and only in this Lie group structure, the dilation δ is a Lie
group automorphism. In this case, we call (G, d, δ, λ) a self-similar metric Lie group.

Our third result explains the connection between homogeneous distances and
self-similar distances. Theorem 1.3 is proven in Section 7.

Theorem 1.3. If (G, d, δ, λ) is a self-similar metric Lie group, then there is

A∈Der(g) with eigenvalues belonging to [1,∞) and an A-homogeneous distance d′

on G such that δ is also a dilation of factor λ for d′. Moreover, for any such A and

d′, the identity map (G, d)→(G, d′) is bi-Lipschitz.

Theorem 1.3 applies also to distances that are already A-homogeneous and
states that, up to a bi-Lipschitz change of the distance, we can assume the spectrum
of A to be real. This bi-Lipschitz change is in fact necessary, see Proposition 7.5.
We remark that one cannot reduce to the case when the derivation A is diagonal-
izable. For instance, the distances presented in Section 5.3 are not bi-Lipschitz or
even quasi-conformally equivalent to any homogeneous distance with diagonalizable
dilating automorphisms (see also [1, Section 6] and [26]).

Since the construction of the derivation A in Theorem 1.3 is done by means of
the Jordan block decomposition of δ, one can reinterpret Theorem 1.2 in terms of
the dilation δ as follows. Theorem 1.4 is proven in Section 7.3.

Theorem 1.4. Let G be a Lie group, δ∈Aut(G) a Lie group automorphism

and λ∈(0,+∞)\{1}. The following statements are equivalent

(i) There is an admissible distance on G for which δ is a dilation of factor λ;

(ii) The Lie group G is connected and simply connected, the eigenvalues of δ∗
have modulus smaller than or equal to λ if λ<1, greater than or equal to λ if λ>1,
and the complexification of δ∗ is diagonalizable on the generalized eigenspaces of the

eigenvalues of modulus equal to λ.

Theorem 1.4 implies that any contracting automorphism of a connected Lie
group is a dilation of a suitable factor 0<λ<1 for some admissible distance.

If a distance admits a dilation of factor λ for every λ>0, then we shall call it
a homothetic distance. We recall from [16] that isometries of nilpotent metric Lie
groups are Lie group isomorphisms up to left translations. It follows that also met-
ric dilations of nilpotent metric Lie groups are Lie group automorphisms up to left
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translations. Consequently, one can show that any homothetic admissible distance
on a nilpotent Lie group G is A-homogeneous for some derivation A, see Proposi-
tion 4.5. Together with Theorem 1.1, this implies that a left-invariant distance on
a nilpotent Lie group is A-homogeneous for some derivation A if and only if it is
admissible and homothetic.

This discussion allows us to prove a characterization in the spirit of the ones
presented in [5] and in [18]. A statement similar in spirit to Theorem 1.5 can be
found in the work of Buliga [4]. Theorem 1.5 is proven in Section 7.4.

Theorem 1.5. If X is a locally compact, isometrically homogeneous and ho-

mothetic metric space, then there are a unique Lie group G, a derivation A on its

Lie algebra and an A-homogeneous distance d on G such that (G, d) is isometric

to X.

We remark that in Theorems 1.3 and 1.5 one cannot require in general that
the spectrum of the derivation A is real without a bi-Lipschitz modification of the
distance. Indeed, we provide an A-homogeneous distance on R2 so that the only
eigenvalue of A is 2+i but d is not A′-homogeneous for any A′ with real spectrum,
see Example 5.2 and Proposition 7.5. Some reduction to the real spectrum are
possible in limited cases, see Proposition 7.4.

We conclude with a theorem that readily follows using known results from [17]
and that is a generalization of [17, Theorem 1.2] to non-geodesic metric spaces.

Theorem 1.6. Let X be a metric space with a doubling measure μ. Assume

that X has unique tangent at μ-a.e. p∈X. Then, for μ-a.e. p∈X, the tangent Gp of

X at p is a Lie group endowed with a A-homogeneous distance, for some derivation

A of the Lie algebra of Gp.

Structure of the paper

Section 2 contains several elementary facts that we need later. Section 3 is
devoted to the proof of Theorem 1.1. Section 4 presents basic properties of self-
similar metric Lie groups and homothetic distances. Section 5 contains examples
of A-homogeneous distances and some pathological cases. Section 6 is devoted to
the proof of Theorem 1.2. Finally, Theorems 1.3, 1.4, 1.5 and 1.6 are proven in
Section 7.

Acknowledgments. This work has been prepared during two organized meet-
ings titled “Summer Holiday at Mum’s Place” in 2015 and 2018. The authors wish
to thank their mothers.
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2. Algebraic preliminaries

2.1. Complexifications and generalized eigenspaces

The complexification of a finite-dimensional real vector space V is the com-
plex vector space VC constructed as follows. Define VC=V ⊕V and J :VC→VC

as J(X,Y ):=(−Y,X). Then VC becomes a complex vector space by defining i·
(X,Y ):=J(X,Y ), where i is the imaginary unit. We identify elements X∈V with
(X, 0)∈VC and consequently (X,Y )=X+JY . We also define the complex conju-
gate as (X+JY )∗ :=X−JY , whenever X,Y ∈V . Notice that v∈VC belongs to V if
and only if v∗=v.

If φ:V →V is a R-linear map, then its complexification is the C-linear map
φ:VC→VC, φ(X+JY )=φX+JφY . The spectrum of φ is defined by

σ(φ) := {α∈C : det(φ−αId)= 0}

and the generalized eigenspace of φ corresponding to α∈C by

Eφ
α := {v ∈VC :∃n∈N (φ−αId)nv=0}.

We have that φEφ
0 ⊂Eφ

0 , φEφ
α=Eφ

α if α �=0 and VC=
⊕

α∈σ(φ) E
φ
α. Moreover, if ψ

is another linear map and [φ, ψ]=0, then ψ(Eφ
α)⊂Eφ

α for all α. In particular, one
can split the space VC=

⊕
α∈σ(φ),β∈σ(ψ) E

φ
α∩Eψ

β , where each subspace Eφ
α∩Eψ

β is
preserved by both maps.

Lemma 2.1. If A:VC→VC is a C-linear map on a complex vector space VC,

then EA
α =EeA

eα , for all α∈C.

Proof. Fix α∈C. Since AEA
α ⊂EA

α , then eAEA
α ⊂EA

α . If we show that (eA−
eαId)|EA

α
is nilpotent, then we have EA

α ⊂EeA

eα . Since VC=
⊕

α EA
α =
⊕

α EeA

eα , we can
conclude EA

α =EeA

eα .
So, without loss of generality, we assume VC=EA

α . For all n≥1, define the poly-
nomial pn(x, y)=xn−1+xn−2y+...+xyn−2+yn−1, so that xn−yn=(x−y)pn(x, y).
Let m∈N be such that (A−αId)m=0. Then one can easily show

(eA−eαId)m =
∞∑

k1,...,km=1
(A−αId)m pk1(A,αId)

k1!
...
pkm(A,αId)

km! = 0. �

If g is a real Lie algebra, we define Lie brackets on its complexification gC by

[X1+JY1, X2+JY2]gC
:= [X1, X2]−[Y1, Y2]+J ([X1, Y2]+[Y1, X2]) .

With these Lie brackets, gC is a complex Lie algebra. We denote by AutC(gC) and
DerC(gC) the spaces of complex automorphisms and derivations of gC, respectively.
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The complexification of a Lie algebra automorphism of g is a Lie algebra automor-
phism of gC. Similarly, the complexification of a derivation is a derivation. In other
words, up to canonical identifications, Aut(g)⊂AutC(gC) and Der(g)⊂DerC(gC).

Lemma 2.2. If φ∈AutC(gC) and α, β∈C, then

[Eφ
α, E

φ
β ]⊂Eφ

αβ , ∀α, β ∈C.

Proof. The proof is elementary after one proves by induction on n∈N that

(φ−αβId)n[v, w] =
∑

j+k=n
j,k≥0

(
n

j

)
[αk(φ−αId)jv, φj(φ−βId)kw]

holds for all v, w∈gC, all α, β∈C and all n∈N. See also [2, p. 6, Proposition 12]. �

Lemma 2.3. If A∈DerC(gC) and α, β∈C, then

[EA
α , E

A
β ]⊂EA

α+β .

Proof. The proof is elementary after one proves by induction on n∈N that

(A−(α+β)Id)n[v, w] = [(A−αId)nv, w]

+2
n−1∑
j=1

[(A−αId)jv, (A−βId)n−jw]+[v, (A−βId)nw]

holds for all v, w∈gC, all α, β∈C and all n∈N. �

If VC is a complex vector space, L:VC→VC is a linear map and f :σ(L)→C is
a function, we denote by Lf the linear function such that Lfvα=f(α)vα for every
vα∈EL

α . One easily checks that [L,Lf ]=0 and that, if g :σ(L)→C is another map,
then [Lf , Lg]=0. Moreover, if VC is the complexification of a real vector space V ,
L(V )=V and f(ᾱ)=f(α), then Lf (V )=V again.

We will need the following two statements, whose easy proofs are based on
Lemmas 2.2 and 2.3.

Lemma 2.4. If φ∈AutC(gC) and f :σ(φ)→C is a multiplicative function, i.e.,

f(αβ)=f(α)f(β) for all α, β∈σ(φ), then φf∈AutC(gC).
In particular, if φ∈Aut(g) and f :σ(φ)→C is a multiplicative function with

f(ᾱ)=f(α), then φf∈Aut(g).

Lemma 2.5. If A∈DerC(gC) and f :σ(A)→C is an additive function, i.e.,

f(α+β)=f(α)+f(β) for all α, β∈σ(φ), then Af∈DerC(gC).
In particular, if A∈Der(g) and f :σ(A)→C is an additive function with f(ᾱ)=

f(α), then Af∈Der(g).
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The following result is a straightforward consequence.

Corollary 2.6. If A∈Der(g), then the linear maps AR, AI , AN :gC→gC defined

by

AR(v) = Re(α)v for v ∈Eα, α∈C

AI(v) = iIm(α)v for v ∈Eα, α∈C

AN =A−AI−AR,

all belong to Der(g) and they commute with one another and with A.

If A∈Der(g) and λ>0, we denote by λA the automorphism elog(λ)A∈Aut(g).
Notice that λ �→λA is a group homomorphism R>0→Aut(g). All one-parameter
subgroups of Aut(g) are of this form.

If g is the Lie algebra of the Lie group G, and if A∈Der(g) and λ>0 are such
that λA induces a Lie group automorphism on G, then we will denote this Lie group
automorphism again by λA. This abuse of notation is safe when G is connected
simply connected, because every Lie algebra automorphism induces a unique Lie
group automorphism of G.

2.2. Gradings

In this paper we use the following terminology. A real grading of a Lie algebra
g is a family (Vt)t∈R of linear subspaces of g, where all but finitely many of the Vt’s
are {0}, such that g is their direct sum

g=
⊕
t∈R

Vt

and where
[Vt, Vu]⊂Vt+u, for all t, u> 0.

If there exists a real grading (Vt)t∈R with Vt={0} for all t≤0, then we say that a Lie
algebra is positively graduable and call (Vt)t∈(0,+∞) a positive grading of g. Every
positively graduable Lie algebra is nilpotent.

Both automorphisms and derivations of a Lie algebra define specific gradings,
as we show in the following two propositions.

Proposition 2.7. Let φ∈Aut(g). For all λ∈(0,+∞)\{1} and t∈R, define

Vt :=Vt(λ, φ) := g∩
⊕

|α|=λt

Eφ
α.

Then {Vt}t∈R is a real grading of g. Moreover,

|det(φ)|=λ
∑

t∈R
t·dim(Vt).
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Proof. For α∈C, define Uφ
α :=(Eφ

α⊕Eφ
ᾱ)∩g. We claim that

(2.1) g=
⊕

α∈σ(φ)

Uφ
α ,

where the sum is direct up to the identification Uφ
α =Uφ

ᾱ . Indeed, let v=
∑

α vα∈g
with vα∈Eφ

α for all α. Notice that if w∈Eφ
α, then w∗∈Eφ

ᾱ, because (φ−αId)nw=
((φ−ᾱId)nw∗)∗ for all n∈N. Hence, since v=v∗, then vα+vᾱ=v∗α+v∗ᾱ, where v∗α∈
Eφ

ᾱ and v∗ᾱ∈Eφ
α. Therefore, v∗α=vᾱ, for all α, and thus v= 1

2
∑

α(vα+v∗α), where
vα+v∗α∈Uα. So, we have g=

∑
α∈σ(φ) U

φ
α . Since Uφ

α∩Uφ
β ={0} if α /∈{β, β̄}, the sum

is direct. This proves claim (2.1).
Since φ is injective, then Uφ

0 ={0}. Therefore, by (2.1), we have g=
⊕

t∈R
Vt.

Using Lemma 2.2, we have

(2.2) [Uφ
α , U

φ
β ]⊂Uφ

αβ⊕Uφ
ᾱβ , ∀α, β ∈C.

If X∈Uφ
α and Y ∈Uφ

β with |α|=λt and |β|=λs, then [X,Y ]∈Uφ
αβ⊕Uφ

ᾱβ⊂Vt+s,
because of (2.2) and |αβ|=|ᾱβ|=λs+t. Therefore, [Vs, Vt]⊂Vs+t and {Vt}t∈R is a
real grading of g. Finally, if we set εα=1 if α∈R and εα=1/2 if α∈C\R,

|det(φ)|=

∣∣∣∣∣∣
∏

α∈σ(φ)

αdimC(Eα)

∣∣∣∣∣∣=
∏

α∈σ(φ)

|α|εα dimR(Uα) =
∏
t∈R

λt·dim(Vt). �

In a similar way, using Lemma 2.3 instead of Lemma 2.2, one can show the
following proposition.

Proposition 2.8. Let A∈Der(g) and define, for all t∈R,

Vt(A) := g∩
⊕
s∈R

EA
t+is.

Then {Vt(A)}t∈R is a real grading of g.

We finish this section by recalling a result due to Siebert [24] that we will use
very often. We provide the short proof for completeness.

Proposition 2.9. (Siebert) Let G be a connected Lie group and δ∈Aut(G)
be a contractive automorphism, i.e., limn→∞ δnx=eG uniformly on compact sets.

Then Vt={0} for all t≤0 and λ∈(0, 1), where Vt(λ, δ∗) is as in Proposition 2.7, and

G is nilpotent and simply connected.

Proof. Since δ is contractive, we have σ(δ∗)⊂{|α|<1}. Therefore, Vt={0} for
all t≤0 and λ∈(0, 1). Since {Vt}t>0 is a positive grading and G is connected, G is
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nilpotent. Furthermore, G is simply connected because otherwise, being G nilpo-
tent, there would be a nontrivial compact subgroup(1) K, and therefore {δnK}n∈Z

would contain arbitrarily small subgroups of G. Since G is a Lie group, this cannot
happen and therefore G is simply connected. �

3. The topology of A-homogeneous distances

In the definition of A-homogeneous distance we gave in the Introduction, we
don’t require the distance to be admissible, i.e., to induce the manifold topology.
However, we prove that A-homogeneous distances are in fact admissible, as we
stated in Theorem 1.1.

This section is devoted to the proof of Theorem 1.1, which consists of several
steps. In this section, G is a Lie group with Lie algebra g and neutral element
eG, d is a left-invariant distance on G, A∈Der(g) is a derivation, λ �→δλ∈Aut(G) is
a multiplicative one-parameter group of automorphisms such that (δλ)∗=λA and
each δλ is a metric dilation for d of factor λ, for each λ>0. The topology of the Lie
structure on G and the one induced by d are denoted by τG and τd, respectively. We
denote by G¨ the τG-connected component of G containing eG. If Z⊂G is a set and
τ a topology on G, we use the convention τ∩Z={U∩Z :U∈τ}⊂2Z . If V ∈τ∩Z, we
will conventionally say that “V is τ -open in Z”, even in case V /∈τ . We denote by
Lp the left translation by p on G.

3.1. First step: contractibility

Proposition 3.1. Every eigenvalue of A has strictly positive real part. Con-

sequently, limλ→0 δλ(p)=e, uniformly on τG-compact sets in G¨.

Proof. We choose a basis of g so that A is in real-Jordan form: A is a block
diagonal matrix where each block is in one of the two forms

(3.1) Ja :=

⎛⎜⎜⎜⎜⎝
a 1 0

... ...
a 1

0 a

⎞⎟⎟⎟⎟⎠ or Jab :=

⎛⎜⎜⎜⎜⎝
Zab I 0

... ...
Zab I

0 Zab

⎞⎟⎟⎟⎟⎠ ,

where Zab :=
(

a b
−b a

)
and I :=

(
1 0
0 1
)
, a, b∈R with b �=0.

(1) Indeed, if G is not simply connected, then G= ˜G/H, where ˜G is simply connected
and H is a discrete central subgroup of ˜G. If h∈H\{e}, then h=exp(x) for some x∈g, and
exp(Rx)/(exp(Rx)∩H) is a torus in G.
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We claim that in each block (3.1) the value a is strictly positive. We need to
consider five cases.

(1) Consider Ja with a=0. Then let v∈g be the vector that in each coordinate
is zero except in the first one for Ja, where it is not zero. Hence Av=av=0. Thus
λAv=

∑∞
k=0

(log(λ)A)k
k! v=v. Up to a scalar multiplication of v, we may suppose that

exp(v) �=eG. We reach a contradiction: for all λ>0 we have

λd(e, exp(v))= d(eG, δλ exp(v))= d(eG, exp(λAv))= d(eG, exp(v)),

but the last term is a nonzero number independent on λ.
(2) Consider Ja with a<0. Taking v∈g as in case (1), we have λAv=∑∞

k=0
(log(λ)a)k

k! v=λav and exp(v) �=eG. Then we reach a contradiction: On the
one hand, we have(2)

0 �= d(eG, exp(v))≤ d(eG, exp(λAv))+d(exp(λAv), exp(v))
= d(eG, exp(λav))+d(exp((λa−1)v), eG)

=λd(eG, exp(v))+|λa−1| 1
a d(eG, exp(v)),

that is λ−1+|λa−1| 1
a ≥0 for all λ>0. On the other hand, if a<0, then limλ→0+ λ−

1+|λa−1| 1
a =−1.

(3) Consider the block Jab with a=0. Let v1 (resp. v2) in g be the vector that
in each coordinate is zero except in the first one (resp. the second one) for Jab.
Hence, for all λ>0,

λAv1 =λa(cos(log(λ)b)v1−sin(log(λ)b)v2)
λAv2 =λa(sin(log(λ)b)v1+cos(log(λ)b)v2).

One may assume exp(v1) �=eG. Taking λ0=exp(2π
b ) we reach a contradiction:

λ0d(e, exp(v1))= d(e, exp(λA
0 v1))= d(e, exp(v1)),

since the last term is non zero, but λ0 �=1.
(4) Consider the block Jab with a<0 and assume that, for v1 and v2 as in

case (3), span{v1, v2} is not a commutative Lie algebra. Hence v3 :=[v1, v2]∈g\{0}.
Then, since λA is a Lie algebra automorphism, we get

λAv3 = [λAv1, λ
Av2] =λ2a(cos2(log(λ)b)+sin2(log(λ)b))[v1, v2] =λ2av3.

By the argument in case (2), we have a contradiction.

(2) Justification of the last equality: setting μ=(λa−1)1/a, we have

d(exp((λa−1)v), eG) = d(exp(μav), e) = d(exp(μAv), e)=μd(exp(v), e).
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(5) Consider a block Jab with a<0 and assume that, for v1, v2∈g as in case (3),
span{v1, v2} is a commutative Lie algebra. Since a<0, the curve λ �→λa+ib∈C is a
spiral in the complex plane going to ∞ as λ→0+. Therefore, for all N∈N there are
λN , μN∈(0, 1/N) such that

(3.2) λa+ib
N +1 =μa+ib

N .

One can geometrically prove the existence of such λN , μN by taking a point in
the spiral at small parameter λ with horizontal tangent and then translating the
horizontal line until the intersecting points differ by (1, 0).

Notice that (3.2) implies
λA
N +Id =μA

N

in span{v1, v2}. Moreover, since span{v1, v2} is an Abelian subalgebra, exp:
span{v1, v2}→G is a group morphism.

Then we reach a contradiction:

0 �= d(eG, exp(v1))≤ d(eG, exp(μA
Nv1))+d(exp(μA

Nv1), exp(v1))
≤ d(eG, exp(μA

Nv1))+d(eG, exp((μA
N−Id)v1))

= d(eG, exp(μA
Nv1))+d(eG, exp(λA

Nv1))
= (μN +λN )d(e, v1),

because the last term tends to zero as N→∞.
This completes the proof of our claim, i.e., that a>0 in each block (3.1).
Recall that if

J :=

⎛⎜⎜⎜⎜⎝
z 1 0

... ...
z 1

0 z

⎞⎟⎟⎟⎟⎠
is a k×k Jordan block with z∈C, then

etJ =

⎛⎜⎜⎝
etz ... tk

k! e
tz

... ...
0 etz

⎞⎟⎟⎠ , that is, λJ =

⎛⎜⎜⎝
λz ... log(λ)k

k! λz

... ...
0 λz

⎞⎟⎟⎠ .

Hence, if Re(z)>0, then λJ→0 as λ→0+. We deduce that for all p∈exp(g)

lim
λ→0+

δλ(p)= eG.

Let p be in the connected component G¨ of the identity. Then there exist p1, ..., pm∈
exp(g) such that p=p1...pm. Therefore,

lim
λ→0+

δλ(p)= lim
λ→0+

δλ(p1)...δλ(pm)= eG. �
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3.2. Second step: proof of τd∩G¨⊂τG∩G¨

Lemma 3.2. There is Ω⊂G¨ τG-open such that eG∈Ω and Ω⊂B(eG, 1).

Proof. Let v1, ..., vn∈g be a basis of g. Define φ:Rn→G¨ by

φ(t1, ..., tn)=
n⊙

j=1
(exp(vj)·δetj exp(vj)−1).

Set t̄=(0, ..., 0) and notice that φ(t̄)=eG. Moreover,

∂φ

∂tj
(t̄)= d

dt

∣∣∣∣
t=0

(exp(vj)·δet exp(vj)−1)

= dLexp(vj)|exp(vj)−1

(
d
dt

∣∣∣∣
t=0

δet exp(vj)−1
)
.

Recall (see for instance [25, Theorem 2.14.3]) that the differential of the exponential
map is

d exp |x(y)= dLexp(x)|eG

( ∞∑
k=0

(−1)k

(k+1)!adk
x(y)

)
, ∀x, y ∈ g.

For w∈g, we have

d
dt

∣∣∣∣
t=0

δet exp(w) = d
dt

∣∣∣∣
t=0

exp((δet)∗w)= d exp |w
d
dt

∣∣∣∣
t=0

etAw

= dLexp(w)|eG

( ∞∑
k=0

(−1)k

(k+1)!adk
w(Aw)

)
.

Recall that exp(vj)−1=exp(−vj). Using the latter formula with w=−vj , we obtain

∂φ

∂tj
(t̄) = dLexp(vj)|exp(−vj)

(
−dLexp(−vj)|eG

( ∞∑
k=0

1
(k+1)!adk

vj (Avj)
))

=−
( ∞∑

k=0

1
(k+1)!adk

vj (Avj)
)
.

Since the real part of the eigenvalues of A are strictly positive by Proposi-
tion 3.1, we have that ker(A)={0}, i.e., that (Av1, ..., Avn) is a basis for g.

We claim that ( ∂φ
∂tj

(t̄))nj=1 is a basis for g. Without loss of generality, we
may assume that v1, ..., vn∈g is a basis that is adapted to the grading induced by
A as in Proposition 2.8, which is positive because of Proposition 3.1. We write
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this grading as g=
⊕s

�=1 Vt� with 0<t1<t2<...<ts. Notice that, if vj∈Vr� , then
adk

vj (Avj)∈V(k+1)r� , and thus we have

∂φ

∂tj
(t̄)=−Avj mod (Vr�+1⊕...⊕Vrs).

One easily concludes that ( ∂φ
∂tj

(t̄))nj=1 are linearly independent.
We have obtained that Dφ(t̄) is surjective. Hence, there is Ω̃⊂G¨ open with

eG∈Ω̃ and
Ω̃⊂φ{(tj)j :−1<tj < 1}.

So, if p∈Ω̃, then p=φ(t1, ..., tn) with tj∈(−1, 1). Therefore,

d(eG, p)≤
n∑

j=1
d(eG, exp(vj))+d(eG, δetj exp(−vj))

≤
n∑

j=1
d(eG, exp(vj))+ed(eG, exp(−vj))<∞

Let ε=(2
∑n

j=1[d(eG, exp(vj))+ed(eG, exp(−vj))])−1 and define Ω=δεΩ̃. The proof
is concluded because Ω is τG-open, eG∈Ω and Ω⊂B(eG, 1). �

Proposition 3.3.
τd∩G¨ ⊂ τG∩G¨.

Proof. Let U∈τd∩G¨ and p∈U . Then there is r>0 such that B(p, r)∩G¨⊂
U . Therefore, if Ω is like in Lemma 3.2, pδrΩ⊂pδrB(eG, 1)∩G¨=B(p, r)∩G¨⊂U .
Since Ω is τG-open in G¨, then p∈intτG∩G¨(U). Since this holds for all p∈U , then
U∈τG∩G¨. �

Corollary 3.4. d:G¨×G¨→[0,+∞) is τG-continuous.

Proof. First, we prove that p �→d(eG, p) is continuous in eG. Indeed, if pk
τG→

eG in G¨ and ε>0, then, by Proposition 3.3, {p∈G¨ :d(eG, p)<ε}∈τd∩G¨⊂τG∩G¨.
Hence there is N∈N such that d(eG, pk)<ε for all k>N .

Second, we prove that d:G¨×G¨→[0,+∞) is continuous. Let pk
τG→p in G¨ and

qk
τG→q in G¨. Then

|d(pk, qk)−d(p, q)| ≤ d(eG, p−1
k p)+d(eG, q−1

k q)−→ 0. �
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3.3. Third step: proof of τG∩G¨⊂τd∩G¨

Lemma 3.5. There is Ω⊂G¨ τG-precompact such that B(eG, 1)∩G¨⊂Ω.

Proof. Let Ω2⊂G¨ be a τG-open set in G¨ such that eG∈Ω2 and ˙Ω2 is τG-com-
pact. Since, by Proposition 3.1, limt→−∞ δetΩ2={eG} uniformly in τG, there is a
τG-open set Ω1⊂Ω2 with eG∈Ω1 such that δet˙Ω1⊂Ω2 for all t≤0.

Since ∂Ω1 is τG-compact and does not contain eG, and since d is τG-continuous
on G¨, then m=min{d(eG, p):p∈∂Ω1}>0. We claim that B(eG, 1)∩G¨⊂δ1/mΩ2∪
Ω2. Let p∈B(eG, 1)∩G¨. If p∈Ω2, then we are done. If p /∈Ω2, then there is t<0
such that δetp∈∂Ω1, because limt→−∞ δetp=eG by Proposition 3.1 and because the
curve t �→δetp is τG-continuous. We have m≤d(eG, δetp)=etd(eG, p)≤et. Therefore,
δmp=δme−tδetp∈δme−t˙Ω1⊂Ω2, because me−t≤1. We conclude that p∈δ1/mΩ2∪Ω2.

The proof of the lemma is concluded, because Ω=δ1/mΩ2∪Ω2 is τG-precom-
pact. �

Proposition 3.6.
τG∩G¨ ⊂ τd∩G¨.

Proof. Let Ω∈τG∩G¨ as in Lemma 3.5. Since limt→0 δtΩ={eG} by Proposi-
tion 3.1, the family of open sets {δtΩ}t>0 is a system of τG-neighborhoods of eG
in G¨. If U∈τG∩G¨ and p∈U , then there is r>0 such that pδrΩ⊂U . Therefore,
B(p, r)∩G¨=pδrB(eG, 1)∩G¨⊂pδrΩ⊂U , i.e., p∈intτd∩G¨(U). Since this holds for
all p∈U , we obtain U∈τd∩G¨. �

3.4. Fourth step: G is connected

Lemma 3.7. G is connected.

Proof. Notice that, since both τd and τG are left-invariant and by Proposi-
tions 3.3 and 3.6, we have for every p∈G

τG∩pG¨ = p(τG∩G¨)= p(τd∩G¨)= τd∩pG¨.

Let p∈G. Since the curve t �→δetp is τG-continuous, we have δetp∈pG¨ for all
t∈R. Moreover, d(p, δet(p))≤d(eG, p)+etd(eG, p)<2d(eG, p) for all t<0. Therefore,
if t<0 then

δet(p)∈Bd(p, 2d(eG, p))∩pG¨.

We know from Lemma 3.5 that B(p, r)∩pG¨ is τG-precompact for every r>0.
Therefore, there are tk→−∞ and q∈p·G¨ such that δetk (p)τG→q. Since
limt→−∞ d(e, δet(p))=limt→−∞ etd(e, p)=0 and since d is τG-continuous on pG¨ by
Corollary 3.4, we obtain d(eG, q)=0, i.e., p∈G¨. �
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3.5. Conclusion of the proof of Theorem 1.1

By Lemma 3.7 we have that G is connected, i.e., G¨=G. Hence, Proposition 3.3
and Proposition 3.6 give τd=τG.

4. Homogeneous distances

4.1. Self-similar Lie groups

Definition 4.1. A self-similar metric Lie group is a quadruple (G, d, δ, λ) where
G is a Lie group, d an admissible left-invariant distance on G, δ∈Aut(G) and λ∈
(0,∞)\{1} so that

d(δx, δy)=λd(x, y), ∀x, y ∈G.

In Section 5 we present examples of (G, d, δ, λ) where d is not admissible or δ is
not a group automorphism. In [5] it has been given a characterization of self-similar
metric Lie groups:

Theorem 4.2. (Cowling et al., [5]) If a metric space is locally compact, con-

nected, isometrically homogeneous, and it admits a metric dilation, then it is isomet-

ric to self-similar metric Lie group. Moreover, all metric dilations of a self-similar

metric Lie group are automorphisms.

After a technical lemma about quotients of self-similar metric Lie groups, we
show basic properties of self-similar metric Lie groups.

Lemma 4.3. Let (G, d, δ, λ) be a connected self-similar metric Lie group and

H�G a closed normal subgroup with δ(H)=H. Then there are a left-invariant

distance d̂ on Ĝ:=G/H and an automorphism δ̂∈Aut(Ĝ) such that (Ĝ, d̂, δ̂, λ) is a

self-similar metric Lie group and the quotient map (G, d)→(Ĝ, d̂) is a submetry.

Proof. Even if the statement of this lemma is not present in the literature,
the argument of the proof can be found in [21, Proposition 2.10], for example.
Since δ(H)=H, then there is δ̂∈Aut(Ĝ) with δ̂(xH)=(δx)H for all x∈G. Define
d̂:Ĝ×Ĝ→[0,+∞) as

d̂(xH, yH) := inf{d(xh, yk) :h, k ∈H}.

The function d̂ is clearly symmetric, G-invariant and δ̂ rescales it by λ. Using the
facts that d is left-invariant, H is a closed normal subgroup, and balls in (G, d)
are compact, one can show that d̂(xH, yH)=min{d(xh, y):h∈H}. It follows that
d̂(xH, yH)=0 if and only if xH=yH. Moreover, if x, z∈G, then for all k∈H there
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exists h∈H for which d̂(xH, zH)=d(xk, zh). Therefore, if we take three points
x, y, z∈G then first there is h1∈H such that d̂(xH, yH)=d(x, yh1); second there is
h2∈H such that d̂(yH, zH)=d(yh1, zh2); hence, by triangle inequality of d we get

d̂(xH, zH)≤ d(x, zh2)≤ d(x, yh1)+d(yh1, zh2)= d̂(xH, yH)+d̂(yH, zH).

This shows that d̂ is a distance on Ĝ. Finally, since the quotient map G→Ĝ is a
submetry, d̂ induces the manifold topology. �

Theorem 4.4. (Structure of self-similar metric Lie groups) Let (G, d, δ, λ) be

a self-similar metric Lie group. Let Vt :=Vt(λ, δ∗) be as in Proposition 2.7. The

following facts hold:

(i) G is connected, simply connected, and nilpotent;

(ii) Vt={0} for all t<1. In particular, (Vt)t≥1 is a positive grading of g;

(iii) (G, d) is a Q-Ahlfors regular metric space with

Q :=
∑
t≥1

t·dim(Vt).

Suppose in addition that δ∗=λA for some A∈Der(g). Then the following holds:

(iv) Eδ∗
λα =EA

α , for all α∈C;
(v) The eigenvalues of A have all real part larger or equal than 1;

(vi) For Vt as above and Vt(A) as in Proposition 2.8, we have Vt=Vt(A).

Proof. Since G is locally connected and d is admissible, there are a connected
neighborhood U of eG and a radius r>0 such that Bd(eG, r)⊂U . Since Bd(eg, λnr)=
δnBd(eG, r)⊂δnU for all n∈Z and since G=

⋃
n∈Z

Bd(eg, λnr), then G=
⋃

n∈Z
δnU .

Since eG∈
⋂

n∈Z
δnU , then G is connected.

Since d is admissible and λ �=1, either δ or δ−1 is a contractive automorphism of
G. More precisely, if λ<1, then δ is contractive; if λ>1, then δ−1 is contractive and
Vt(λ, δ∗)=Vt(1/λ, δ−1

∗ ). Using Proposition 2.9, we’ve got in both cases that Vt={0}
for all t≤0, and that G is simply connected and nilpotent. Item (i) is thus proven.

Set Q:=
∑

t>0 t·dim(Vt). Notice that we have not proved yet that the elements
in the last sum are zero for t<1. If μ is a Haar measure on G, then, for all n∈Z,

μ(B(eG, λn))=μ(δn(B(eG, 1)))= |det δ∗|n ·μ(B(eG, 1))=λnQ ·μ(B(eG, 1)),

using Proposition 2.7 in the last identity. It follows that (G, d) is Ahlfors regular
with Hausdorff dimension Q, see [13, §8.7]. Therefore, the point (iii) is proven
(without item (ii)).

We want to show that tm :=min{t∈R:Vt �={0}} is larger or equal than 1. Define
h=
⊕

t>tm
Vt. We claim that [g, g]⊂h. Indeed, if X∈Vt and Y ∈Vs with s, t≥tm,

then [X,Y ]∈Vt+s, since t+s≥2tm>tm, because tm>0.
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Let H=exp(h)<G be the connected Lie subgroup associated to h and define
Ĝ=G/H. Notice that H is a closed normal subgroup and that δ(H)=H, because
G is simply connected and nilpotent, [g, h]⊂[g, g]⊂h and δ∗(h)=h. By Lemma 4.3,
there is a distance d̂ on Ĝ so that the quotient map (G, d) �→(Ĝ, d̂) is a submetry
and (Ĝ, d̂, δ̂, λ) is a self-similar metric Lie group. By the item (iii), which we proved
above, we have

dim(Vtm)=dimtop Ĝ≤dimHaus(Ĝ, d̂)= tm dim(Vtm),

and therefore tm≥1. This completes the proofs of item (ii).
We consider now the last items of the theorem: assume that δ∗=λA, for

some A∈Der(g). Notice that for all β, k∈C we have EkA
kβ =EA

β , because (kA−
kβId)n=kn(A−βId)n. Therefore, using Lemma 2.1, we have Eδ∗

λα =E
(logλ)A
(logλ)α =EA

α .
Items (iv), (v) and (vi) readily follow. �

4.2. Homothetic self-similar metric Lie groups

A distance d on a Lie group G is said homothetic if it is left-invariant, admissible
and it admits a metric dilation of factor λ for every λ>0.

Any A-homogeneous distance on G is clearly homothetic. Since homothetic
distances are assumed to be admissible, from Theorems 4.2 and 4.4 we obtain that,
up to possibly changing the group structure, we may assume G to be nilpotent. In
this case, one easily shows that homothetic distances are A-homogeneous, for some
derivation A:

Proposition 4.5. Let d be a homothetic distance on a nilpotent Lie group G.

Denote by P the group of dilations of (G, d) and by I the subgroup of P consisting

of isometries, i.e., dilations of factor 1.

Then P=I�R>0 and it is a closed subgroup of G�Aut(G). In particular, there

is A∈Der(g) so that d is an A-homogeneous distance.

Proof. Notice that a dilation (G, d)→(G, d) of factor λ is an isometry (G,λd)→
(G, d). Since isometries of nilpotent Lie groups are affine maps, see [16], then
P⊂G�Aut(G).

Now, we claim that in fact P is a closed subgroup: indeed, if {δn}n∈N is a
sequence of dilations, each of factor λn>0, converging to δ in G�Aut(G), then it
converges pointwise. Therefore, if x, y∈G are such that d(x, y) �=0, then

lim
n→∞

λn = lim
n→∞

d(δnx, δny)
d(x, y) = d(δx, δy)

d(x, y) .
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Since δ is still bijective, it being in G�Aut(G), then λ:= d(δx,δy)
d(x,y) >0. Since the limit

limn λn does not depend on the choice of x and y, δ is a dilation of factor λ.
Since P is a closed subgroup of G�Aut(G), then it is a Lie group. Notice

that the map f :P→R>0 that associates to each dilation its dilation factor is a
continuous surjective group morphism. Notice that if δ is a nontrivial dilation of
(G, d), then (δeG)−1δ is a dilation fixing eG, thus an automorphism of G, and
with the same factor as δ. Therefore, the restriction f :P∩Aut(G)→R>0 is still
surjective. In particular, there is a one-parameter subgroup S⊂P∩Aut(G) such
that the restriction f |S :S→R>0 is an isomorphism. Since I=ker(f), then I is a
closed normal subgroup of P and P=I�S. Finally, d is A-homogeneous for some
infinitesimal generator A∈Der(g) of S. �

Notice that, if there exists an admissible A-homogeneous distance on G, then
Theorem 4.4 applies. In particular, G is a connected, simply connected, nilpotent
Lie group. In the rest of this section we will only prove some technical results that
we will need later in Sections 6 and 7.

Lemma 4.6. Suppose that G is a connected, simply connected, nilpotent Lie

group with Lie algebra g. Let A∈Der(g). A set B⊂G is the closed unit ball of an

A-homogeneous distance if and only if

(i) eG∈int(B) and B is compact;

(ii) B−1=B;

(iii) B is A-convex, i.e., for all x, y∈B and all λ∈[0, 1]

(λAx) ((1−λ)Ay)∈B,

where we use the convention 0A≡eG.

Proof. The fact that (i)–(iii) follow from B being the unit ball of an A-homoge-
neous distance is straightforward. We shall prove the converse implication.

Define d(p, q):=N(p−1q), with N(p):=inf{μ>0 : μ−Ap∈B}. We shall prove
that d is an A-homogeneous distance and B={p : d(eG, p)≤1}.

Clearly d≥0, d is symmetric and left-invariant, and d(λAx, λAy)=λd(x, y).
By the continuity of the action λ �→λA and by the compactness of B, we have
B={p : d(eG, p)≤1}.

From (iii) and the facts that eG∈B and λAeG=eG, we have:

(4.1) for all n∈N, x1, ..., xn∈B and λ1, ..., λn∈[0, 1] with
∑

j λj≤1,
(λA

1 x1)...(λA
nxn)∈B.

The proof of (4.1) proceeds by induction on n. If n=1, then it follows from (iii)
with y=eG. If (4.1) holds up to n, one can prove it for n+1 using the fact
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that

(λA
1 x1)...(λA

n−1xn−1)(λA
nxn)(λA

n+1xn+1)

= (λA
1 x1)...(λA

n−1xn−1)(λn+λn+1)A
[((

λn

λn+λn+1

)A
xn

)((
λn+1

λn+λn+1

)A
xn+1

)]
.

We claim that d<∞, that is, for every p∈G there is λ>0 such that λAp∈
B. Fix p∈G. Since B is an open neighborhood of eG and G is connected, then
there is n∈N and x1, ..., xn∈B such that p=x1...xn. By (4.1), we have (1/n)Ap=
(1/n)Ax1...(1/n)Axn∈B. The claim is proven.

We claim that N(p)=0 implies p=eG. Indeed, if N(p)=0 then there is
a sequence μn→0 with ( 1

μn
)Ap∈B. We can suppose that μn≤1/n. Therefore,

from (4.1) we deduce that, for all n∈N,

pn =
(
μA
n (μ−A

n p)
)n ∈B.

Similarly, since B=B−1, then N(p−1)=0 and so p−n∈B for all n∈N. It follows
that the closed group {pn :n∈Z} is contained in B and thus is a compact subgroup
of G. Since G is simply connected and nilpotent, the only compact subgroup is
{eG} and thus p=eG.

The triangle inequality N(xy)≤N(x)+N(y) follows from the A-convexity of B:
If we set a=N(x) and b=N(y) and they are both nonzero, then A-convexity of B
implies

N(xy)
a+b

=N

((
a

a+b

)A

a−Ax ∗
(

b

a+b

)A

b−Ay

)
≤ 1.

We conclude that d is an A-homogeneous distance on G. �

For the proof of the following lemma, see [5].(3)

Lemma 4.7. Let d be an admissible distance of a Lie group G and K ⊂Aut(G)
a compact group of automorphisms. Then the distance

d′(x, y) :=max{d(kx, ky) : k ∈K }

is an admissible distance on G and it is K -invariant. Moreover, if δ is a metric

dilation of factor λ for d that commutes with K , i.e., δK δ−1=K , then it is also

a dilation of factor λ for d′.

Lemma 4.8. If d1 and d2 are two admissible distances on a Lie group G and

δ∈Aut(G) is a dilation of factor λ �=1 for both distances, then the identity map

(G, d1)→(G, d2) is bi-Lipschitz.

(3) In the first arXiv version of [5] it was Lemma 3.3.
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Proof. We need to show that there are L1, L2>0 such that, for all x∈G,

L1d1(eG, x)≤ d2(eG, x)≤L2d1(eG, x).

We will show only the second one, because then the first one follows by exchanging
the roles of d1 and d2. Without loss of generality, we can assume λ>1. Let Bj

be the ball centered at eG of radius 1 with respect to dj . Then there is k∈Z such
that δkB1⊂B2. Let x∈G\{0}. There is �∈Z such that x∈δ�+1B1 but x /∈δ�B1, i.e.,
λ�≤d1(eG, x)≤λ�+1. Therefore,

d2(eG, x)=λ�+1−kd2(eG, δkδ−(�+1)x)≤λ1−kλ� ≤λ1−kd1(eG, x). �

5. Examples

For the first three examples, we consider R2 as Abelian Lie group.

5.1. Some trivial examples

If α, β≥1, the (diagonalizable) matrix A=
(
α 0
0 β

)
gives rise to automorphisms

δλ :=λA=
(
λα 0
0 λβ

)
. These maps are one-parameter groups of dilating automorphisms

for several distances such as d((x, y), (x′, y′))=max{|x−x′|1/α, |y−y′|1/β} or, if α=
β, d(x, y)=‖x−y‖1/α where ‖·‖ is any norm on R2. It has been shown in [20,
Proposition 5.1] that, for α=β=2, there exists an A-homogeneous distance d in R2

whose spheres are fractals.
If α≥1, the maps

δλ :=λα

(
cos(log λ) − sin(log λ)
sin(log λ) cos(log λ)

)
=exp

(
log(λ)

(
α −1
1 α

))
are a one-parameter group of dilating automorphisms for the distance d(x, y)=
‖x−y‖ 1

α , where ‖·‖ is the Euclidean norm.
If α=1, one can show that the only homogeneous distances are multiples of

the Euclidean distance. This is a particular instance of a more general fact, see
Proposition 7.4.

However, if α=2, there are examples of pathological distances, see next exam-
ple.

5.2. Dilations with non-real spectrum

Let
A=

(
2 −1
1 2

)
.
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We claim that the set B :={(x, y)∈R2 :‖(x, y)‖∞≤1} is the unit ball of an A-homoge-
neous distance d on R2, where ‖(x, y)‖∞=max{|x|, |y|}. By Lemma 4.6, we need to
show that B is A-convex for the claim to be true. Let (x, y), (x̄, ȳ)∈B and t∈(0, 1).
Then

‖tA(x, y)+(1−t)A(x̄, ȳ)‖∞

=
∥∥∥∥(t2(cos(log t)x−sin(log t)y)+(1−t)2(cos(log(1−t))x̄−sin(log(1−t))ȳ)

t2(sin(log t)x+cos(log t)y)+(1−t)2(sin(log(1−t))x̄+cos(log(1−t))ȳ)

)∥∥∥∥
∞

≤ t2(| cos(log(t))|+| sin(log(t))|)+(1−t)2(| cos(log(1−t))|+| sin(log(1−t))|).
Set f(t) to be the last expression: we need to show that f(t)≤1 for all t∈(0, 1).
Since f(t)=f(1−t), we only need to show that f(t)≤1 for t∈[1/2, 1). Notice that

f(t)≤h(t) := t2(| cos(log(t))|+| sin(log(t))|)+2(1−t)2.

Moreover, for t∈[1/2, 1), we have log(t)∈[− log(2), 0]⊂[−π/4, 0] and thus
| cos(log(t))|+| sin(log(t))|=cos(log(t))−sin(log(t)). Now, h(t)≤1 for t∈[1/2, 1) be-
cause h(1/2)≤1, h(1)≤1 and h is convex. Indeed, one can compute on the interval
[1/2, 1)

h′(t)= (cos((log(t))−3 sin((log(t)))t+4(t−1),
h′′(t)=−2 cos((log(t))−4 sin((log(t))+4,

where h′′(t)≥−2+4>0. The proof is complete.

5.3. A distance with non-diagonalizable dilations

It is known, see [1, Section 6] and [26], that for all α>1 the maps

δλ =
(
λα λα log(λ)
0 λα

)
=exp

(
log(λ)

(
α 1
0 α

))
form a one-parameter group of dilating automorphisms for some admissible distance
dα on R2 that is invariant under translations. Such distances have the property that
their conformal dimension is not realized. Consequently, these distances cannot
be bi-Lipschitz equivalent to homogeneous distance with diagonalizable dilating
automorphisms.

5.4. Automorphisms without distances

We shall now show that for no λ>0 there is an admissible translation-invariant
distance d on R2 such that

d(δx, δy)=λd(x, y), ∀x, y ∈R2,
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where
δ := δλ :=

(
λ λ log(λ)
0 λ

)
=exp

(
log(λ)

(
1 1
0 1

))
Notice that this statement can be deduced (by snowflaking a candidate d) from the
fact that the conformal dimension of the distances in Example 5.3 is not attained.
However, the argument below is elementary enough to be worth showing it.

Let y �=0 be such that d((0, 0), (0, y))≤1. For all n,m∈N, we have

d (0, nλm(m log(λ)y, y)) = d(0, nδmλ (0, y))≤
n∑

k=1
d(0, (δλ)m(0, y))

=nλmd(0, (0, y))≤nλm.

Without loss of generality, we can assume λ<1. For each m∈N we take nm :=�λ−m�
and look at the points pm :=nmλm(m log(λ)y, y). On the one hand, the sequence
(pm)m diverges to infinity. On the other hand, from the calculation above it stays
in the unit ball with respect to the distance d. This contradicts the fact that closed
balls with respect to d are compact (see Lemma 4.6).

5.5. Dilations that are not continuous

If φ:R→R2 is a Q-linear group isomorphism (which exists, using the Axiom
of Choice, because R and R2 are vector spaces over the rationals with the same
dimension), then d(x, y)=‖φ(x)−φ(y)‖ is a left-invariant distance on the set R such
that, for each q∈Q, the map x �→q ·x is a dilating automorphism of factor q, but
this distance is not admissible because (R, d) is isometric (and thus homeomorphic)
to the standard R2.

Notice also that this distance on R is homothetic and that all its dilations fixing
0 are group automorphisms, but some of them are not continuous on R.

5.6. Dilations that are not group automorphisms

Let G be the Lie group given by R3 with the group operation⎛⎝a

b

c

⎞⎠∗

⎛⎝x

y

z

⎞⎠=

⎛⎝a

b

c

⎞⎠+

⎛⎝cos(c) − sin(c) 0
sin(c) cos(c) 0

0 0 1

⎞⎠⎛⎝x

y

z

⎞⎠ .

The group G is the universal covering space of the rototranslation group R2�S1. It
is evident that the Euclidean distance dE on R3 is a left-invariant admissible distance
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on G. The maps δλp:=λp, λ>0, form a one-parameter group of diffeomorphisms
of G and δλ is a dilation of factor λ for dE . So, dE is an admissible left-invariant
homothetic distance on G. But the dilations δλ are not group automorphisms of G
and G is not nilpotent.

5.7. Self-similar Lie group that is not homothetic

Let ρ:[0,∞)→[0,∞) be the function whose upper graph is the convex hull of
the points (22m, 2m) as m∈Z. Define the translation-invariant distance on R such
that d(0, t)=ρ(t), as t>0. Then the map t→4t is a metric dilation of factor 2.
However, this distance is not isometric to the Euclidean distance and it does not
admit dilations of every factor.

6. When A-homogeneous distances exist

This section is devoted to the proof of Theorem 1.2. We start with two lemmas
that allow us to modify homogeneous distances. We will then prove (i)⇒(ii) in
Proposition 6.3, while in Proposition 6.8 we shall prove (ii)⇒(i). Finally, notice
that in the conditions of Theorem 1.2. (ii), the presence of a positive grading implies
that G is nilpotent.

6.1. New homogeneous distances from old ones

The following lemma allows us to consider only derivations with real spectrum.
Recall that by σ(K) we denote the spectrum of an endomorphism K. We shall
denote by g the Lie algebra of a Lie group G.

Lemma 6.1. Let A∈Der(g) and d be an A-homogeneous distance on G. Let

K∈Der(g) be such that σ(K)⊂iR, K is diagonalizable over C, and [A,K]=0. Then
there is a distance d′ that is (A+K)-homogeneous, λK-invariant, and bi-Lipschitz

equivalent to d.

Proof. Since σ(K)⊂iR and K is diagonalizable, then K :={λK}λ>0 is a com-
pact subgroup of Aut(g). Since [A,K]=0, then λAμK=μKλA, for all λ, μ>0. There-
fore, by Lemma 4.7, there is a distance d′ on G that is both A-homogeneous and
K -invariant.

From [A,K]=0, we also get λA+K=λAλK . Since λA+K is the composition of
a dilation with an isometry of d′, then d′ is also (A+K)-homogeneous. Since both
d and d′ share a nontrivial dilation, then the identity (G, d)→(G, d′) is bi-Lipschitz
by Lemma 4.8 �
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The following lemma is a variation of Lemma 4.3. The proof is left to the
reader.

Lemma 6.2. Let A∈Der(g). If there is an A-homogeneous distance on G and

if h�g is an ideal with A(h)⊂h, then there is an Â-homogeneous distance on G/H,

where Â∈Der(g/h) is induced by A and H=exp(h).

6.2. Necessary condition for A-homogeneous distances

Here we prove that (i) implies (ii) in Theorem 1.2.
Let A be a derivation on the Lie algebra g of a Lie group G. Let g=

⊕
t∈R

Vt

be the real grading defined by A as in Proposition 2.8. Suppose that there is an
A-homogeneous distance on G. Then G is connected simply connected, Vt={0} for
all t<1, and g is nilpotent by Theorem 4.4.

Proposition 6.3. Let G be a Lie group equipped with an A-homogeneous dis-

tance, for some derivation A. Then A|V1 is diagonalizable over C.

Proof. By Corollary 2.6 and Lemma 6.1, we can assume that the eigenvalues of
A are all real, because (A−AI)|V1 is diagonalizable if and only if A|V1 is. By Theo-
rems 1.1 and 4.4, we have g=V1⊕

⊕
s>1 Vs, with V1 �={0}. Arguing by contradiction,

suppose that A|V1 is not diagonalizable.
Let b1, ..., br∈V1 be a basis so that the matrix representation of A|V1 with

respect to this basis is in Jordan normal form. Since A|V1 is not diagonalizable, we
can assume A(br)=br+br−1 and A(spanR{b1, ..., br−2})⊂spanR{b1, ..., br−2}. Let
h=spanR{b1, ..., br−2}⊕

⊕
s>1 Vs. Then h is an ideal of g and A(h)⊂h. Therefore,

by Lemma 6.2, there is a Â-homogeneous distance on the quotient group Ĝ:=
G/ exp(h)�spanR(br−1, br) where Â=

(
1 1
0 1
)

in the basis (br−1, br). However, we
showed in Example 5.4 that such a distance does not exist. �

6.3. Construction of an A-homogeneous distance

Here we prove that (ii) implies (i) in Theorem 1.2.
Let G be a connected simply connected nilpotent Lie group with Lie algebra g

and let A be a derivation on g. Let g=
⊕

t≥1 Vt be the real grading defined by A as
in Proposition 2.8. Since G is simply connected and nilpotent, the exponential map
g→G is a diffeomorphism. For simplicity in the exposition, we will identify g and
G via the exponential map. Via this identification, the Lie algebra automorphism
λA of g is a Lie group automorphism of G, for all λ>0.
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Lemma 6.4. Let A∈Der(g). For t>0, define

Wt :=
⊕
s∈R

EA
t+is ⊂ gC,

so that Vt=g∩Wt. For every θ∈(0, 1) there is a norm ‖·‖ on gC such that the

following holds: For all t>0, if W⊂Wt is such that AW⊂W , then for all λ∈[0, 1]

‖λA|W ‖≤λt−θ or(6.1)
‖λA|W ‖≤λt if A|W is diagonalizable over C,(6.2)

where ‖λA|W ‖ is the operator norm of the linear operator λA|W :(W, ‖·‖)→(W, ‖·‖).
Moreover, the norm ‖·‖ can be defined by an Hermitian product on gC for which

the spaces Wt are orthogonal to each other.

Proof. Let (b1, ..., bn) be a basis of gC such that the matrix representation of
A is in Jordan normal form. In other words, the matrix M of A in this basis has
the eigenvalues of A on the diagonal, some 1 on the upper diagonal and 0 in all the
other entries. For every ε>0, define a new basis bε1, ..., b

ε
n with bεj :=εjbj . Then, the

matrix Mε of A in this new basis is the same as M , but the 1 in the upper diagonal
are replaced with ε. Indeed, on the one hand, if Abj=Mjjbj , then Abεj=Mjjb

ε
j ; On

the other hand, if Abj=Mjjbj+bj−1, then

Abεj = εj(Mjjbj+bj−1)=Mjjb
ε
j+εbεj−1.

Notice that the nilpotent part of A, i.e., the linear map AN∈Der(gC) defined in
Corollary 2.6, is represented by the matrix Mε

N that is Mε with the diagonal entries
replaced by 0.

Let 〈, 〉ε be the Hermitian form on gC such that bε1, ..., b
ε
n are orthonormal and

let ‖·‖ε be the corresponding norm. Then the operator norm ‖AN‖ε=‖Mε
N‖ is

arbitrarily small as ε→0+.
For reasons that will appear evident shortly, we need the following fact: there

is ε>0 such that

fε(λ) :=λθ+
m∑
j=1

(−1)j λ
θ log(λ)j

j! ‖AN‖jε ≤ 1, for all λ∈ [0, 1],

where m∈N is such that Am
N =0. Indeed, first of all notice that fε(0)=0 and fε(1)=

1. Next, if λ∈[0, 1/2], then fε(λ)≤1 if ‖AN‖ε is small enough. Finally, if λ∈[1/2, 1],
then fε is smooth with first derivative as close as wished to θλθ−1, as ε→0+. Since
θλθ−1≥θ2−|θ−1|>0, then, if ε>0 is small enough, f ′

ε(λ)>0 for all λ∈[1/2, 1]. Thus
fε(λ)≤1 for λ∈[1/2, 1], because fε(1)=1.
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The claim is proven: we fix such an ε>0. Fix a subspace W⊂Wt such that
AW=W . Let AR, AI , AN∈Der(gC) be as in Corollary 2.6. Then ‖λAI |W ‖ε=1,
because the matrix representation of AI |W is diagonal with purely imaginary entries.
Since AR|W =tId, then ‖λAR |W ‖ε=λt. For all λ∈[0, 1], we have

‖λA|W ‖ε ≤‖λAR |W ‖ε ·‖λAI |W ‖ε ·‖λAN |W ‖ε =λt

∥∥∥∥∥∥Id|W +
m∑
j=1

log(λ)j

j! (AN |W )j
∥∥∥∥∥∥
ε

≤λt−θ

⎛⎝λθ+
m∑
j=1

λθ| log(λ)|j
j! ‖AN‖jε

⎞⎠=λt−θfε(λ)≤λt−θ,

where the first inequality uses the sub-multiplicity of operator norms. The esti-
mate (6.1) is thus proven.

If A|W is diagonalizable over C, i.e., AN |W =0, then ‖λA|W ‖ε=λt and thus
estimate (6.2) is also proven. �

Lemma 6.5. In the hypothesis of Theorem 1.2. (ii), assume that g is Abelian.

Then there is an A-homogeneous distance.

Proof. Notice that, after the identification G=g, the group operation of G is
just the vector sum in g. Let ‖·‖ be a norm given by Lemma 6.4 with θ>0 such
that t−θ>1 for all t>1 with V A

t �={0}, or, equivalently, Wt �={0}. Define B={v∈
g:‖v‖≤1}. Since B trivially satisfies both conditions (i) and (ii) of Lemma 4.6, we
only need to show that B is A-convex.

First, we claim that for all λ∈(0, 1) and x∈g,

(6.3) ‖λAx‖≤λ‖x‖.

Indeed, because the decomposition g=
⊕

t≥1 Vt is orthogonal with respect to the
scalar product that defines ‖·‖, we obtain from Lemma 6.4

‖λAx‖2 =
∑
t≥1

‖λAxt‖2 ≤λ2‖x1‖2+
∑
t>1

λ2(t−θ)‖xt‖2 ≤λ2
∑
t≥1

‖xt‖2 =λ2‖x‖2,

where x=
∑

t≥1 xt∈g, xt∈Vt and λ∈(0, 1). So, we have obtained (6.3).
Next, if x, y∈B and λ∈(0, 1), then we get from (6.3)

‖(λAx)((1−λ)Ay)‖= ‖λAx+(1−λ)Ay‖
≤‖λAx‖+‖(1−λ)Ay‖≤λ‖x‖+(1−λ)‖y‖≤ 1.

Therefore, B is A-convex and so it is the unit ball of an A-homogeneous distance
on G by Lemma 4.6. �



152 Enrico Le Donne and Sebastiano Nicolussi Golo

Lemma 6.6. Let χC :[0, 1]→R be the function

χC(t) = t2 max{| log(t)|, | log(t)|n}
+(1−t)2 max{| log(1−t)|, | log(1−t)|n}

−Ct(1−t),

where n∈N. Then there is C>0 such that χC(t)≤0 for all t∈[0, 1].

Proof. Notice that, if t∈(0, 1), | log(t)|n=max{| log(t)|, | log(t)|n} if and only
if | log(t)|≥1, i.e., if and only if t∈(0, e−1]; Similarly, | log(1−t)|n=max{| log(1−
t)|, | log(1−t)|n} if and only if | log(1−t)|≥1, i.e., if and only if t∈[1−e−1, 1). There-
fore

χC(t)=

⎧⎪⎨⎪⎩
χ1
C(t) if t∈(0, e−1],

χ2
C(t) if t∈[e−1, 1−e−1],

χ3
C(t) if t∈[1−e−1, 1),

where

χ1
C(t) = t2 log

(
1
t

)n

+(1−t)2 log
(

1
1−t

)
−Ct(1−t),

χ2
C(t) = t2 log

(
1
t

)
+(1−t)2 log

(
1

1−t

)
−Ct(1−t),

χ3
C(t) = t2 log

(
1
t

)
+(1−t)2 log

(
1

1−t

)n

−Ct(1−t).

We prove the lemma in each of the three intervals.
Case 1: χ1

C(t)≤0 for t∈(0, e−1] and C large enough. Notice that limt→0+χ1
C(t)=

0 and that

(χ1
C)′(t)= f(t)+C(2t−1), where

f(t)= t log
(

1
t

)n−1(
2 log

(
1
t

)
−n

)
+(1−t)

(
−2 log

(
1

1−t

)
+1
)
.

Since e−1<1/2 (e=2.719...), then (2t−1)<−ε for some ε>0. Since, f is a smooth
function on (0, e−1] with limt→0+ f(t)=1, then f is bounded on (0, e−1], say
sup(0,e−1] f(t)≤M . Therefore, there is C>0 large so that (χ1

C)′(t)≤M−εC≤0 for
all t∈(0, e−1]. Hence, χ1

C is a decreasing function with χ1
C(0)=0, and thus χ1

C(t)≤0
for all t∈(0, e−1].

Case 2: χ2
C(t)≤0 for t∈[e−1, 1−e−1] and C large enough. In this case we have

χ2
C(e−1)=χ2

C(1−e−1)= e−2−(1−e−1)2 log(1−e−1)−Ce−1(1−e−1)
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and
(χ2

C)′′(t)= 2C−2(log(1−t)+log(t)+3).

Since e−1(1−e−1)>0 and since −2(log(1−t)+log(t)+3) is a smooth function on
[e−1, 1−e−1], then there is C>0 such that χ2

C(e−1)=χ2
C(1−e−1)<0 and (χ2

C)′′≥0
on [e−1, 1−e−1]. We conclude that χ2

C(t)≤0 for all t∈[e−1, 1−e−1].
Case 3: χ3

C(t)≤0 for t∈[e−1, 1−e−1] and C large enough. Since χ3
C(t)=χ1

C(1−
t), this case follows from Case 1. �

Lemma 6.7. In the hypothesis of Theorem 1.2. (ii), assume that Vt={0} for

t>2. Then there is an A-homogeneous distance.

Proof. By Corollary 2.6 and Lemma 6.1, we can assume that the spectrum
of A is real. In particular, A|V1 =Id|V1 . If V2={0}, then the thesis follows from
Lemma 6.5. So, we assume that V2 is nontrivial.

Let {bj,k :k=1, ...,m, j=0, ..., nk} be a basis of V2 such that the matrix rep-
resentation of A in this basis is in Jordan normal form and such that, for each
k∈{1, ...,m} the vectors b0,k, ..., bnk,k form a basis for one Jordan block. Define

W := spanR{b0,k : k=1, ...,m}⊂V2.

The vector space W is the largest subspace of V2 on which A is R-diagonalizable
and Aw=2w for all w∈W . Moreover, since A is R-diagonalizable on V1 and Lie
brackets of eigenvectors are eigenvectors, then

(6.4) [g, g] = [V1, V1]⊂W.

Let 〈·, ·〉 be a scalar product on g such that the spaces Vt are orthogonal to each
other and such that {bj,k}j,k is an orthonormal basis of V2. We denote by πW the
orthogonal projection g→W . If x∈g, we denote by x1, x2 and xW the orthogonal
projections of x in V1, V2 and W , respectively.

We claim that there is C>0 such that the following holds: If x, y∈g are such
that ‖x−xW ‖≤1, ‖y−yW ‖≤1, ‖xW ‖≤C and ‖yW ‖≤C, then, for all λ∈(0, 1),

(6.5) ‖πW (λAx(1−λ)Ay)‖≤C.

First, if x2=
∑m

k=1
∑nk

j=0 x
j,k
2 bj,k and λ>0, then

πW (λAx2)=λ2
m∑

k=1

⎛⎝ nk∑
j=0

log(λ)j

j! xj,k
2

⎞⎠ b0,k

=λ2πW (x2)+λ2
m∑

k=1

⎛⎝ nk∑
j=1

log(λ)j

j! xj,k
2

⎞⎠ b0,k.
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Therefore, if ‖x2−πW (x2)‖≤1, i.e., |xj,k
2 |≤1 for j �=0, then

(6.6) ‖πW (λAx2)‖≤λ2‖πW (x2)‖+λ2nmax{| log(λ)|, | log(λ)|n},

where n=dimV2.
Second, if x, y∈g and λ∈(0, 1), then

(λAx)((1−λ)Ay) =λAx+(1−λ)Ay+ 1
2[λAx1, (1−λ)Ay1]

=λAx+(1−λ)Ay+ λ(1−λ)
2 [x1, y1],

because of the Baker–Campbell–Hausdorff formula, the fact that [g, g]=[V1, V1],
being Vt={0} for t>2, and the hypothesis that A is diagonal on V1.

Third, let C be such that ‖[x1, y1]‖≤C‖x1‖ ‖y1‖ for all x1, y1∈V1, which exists
because [·, ·] is a bilinear map. Suppose x, y∈g and λ∈(0, 1) are such that ‖x−xW ‖≤
1, ‖y−yW ‖≤1, ‖xW ‖≤C and ‖yW ‖≤C. Then ‖x1‖≤1, ‖y1‖≤1 and

‖πW (λAx(1−λ)Ay)‖=
∥∥∥∥πW

(
λAx2

)
+πW

(
(1−λ)Ay2

)
+λ(1−λ)

2 [x1, y1]
∥∥∥∥

≤‖πW

(
λAx2

)
‖+‖πW

(
(1−λ)Ay2

)
‖+λ(1−λ)

2 C‖x1‖‖y1‖

≤λ2‖xW ‖+λ2nmax{| log(λ)|, | log(λ)|n}
+(1−λ)2‖yW ‖

+(1−λ)2nmax{| log((1−λ))|, | log((1−λ))|n}

+λ(1−λ)
2 C

≤C+n

(
λ2 max{| log(λ)|, | log(λ)|n}

+(1−λ)2 max{| log((1−λ))|, | log((1−λ))|n}

−λ(1−λ)3C
2n

)
,

where we used (6.6) in the second last inequality. Finally, by Lemma 6.6, if C is
large enough, then the second term of the upper bound is non-positive and thus we
obtain the claim (6.5).

We are now in the position to conclude the proof. Since [g, g]⊂W , then ĝ=
g/W is an Abelian Lie algebra. Since ĝ is nilpotent and the corresponding group
quotient Ĝ:=G/ exp(W ) is simply connected, we will identify Ĝ with ĝ. Denote
by π :g→ĝ the quotient map. Since A(W )⊂W , the derivation A induces Â∈Der(ĝ)
with Âπ=πA.
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By Lemma 6.5, there is B̂⊂ĝ that is the unit ball of a Â-homogeneous distance.
Let W⊥ be the orthogonal complement of W in g. Define B̂′=π−1(B̂)∩W⊥. Since
any Â-homogeneous distance induces the manifold topology by Theorem 1.1 and
since π :W⊥→ĝ is a linear isomorphism, we may assume that

B̂′ ⊂{x∈W⊥ : ‖x‖≤ 1}⊂{x∈ g : ‖x−xW ‖≤ 1}.

Define

B = {x∈ g :π(x)∈ B̂, ‖xW ‖≤C}
= {x∈ g :x−xW ∈ B̂′, ‖xW ‖≤C}.

We shall prove that B is the unit ball of an A-homogeneous distance. We do this by
means of Lemma 4.6: The only non-trivial property we need to check is A-convexity.
Let x, y∈B and λ∈(0, 1). On the one hand,

π(λAx(1−λ)Ay)=λÂπ(x)(1−λ)Âπ(y)∈ B̂,

because B̂ is Â-convex. On the other hand, by (6.5),

‖πW (λAx(1−λ)Ay)‖≤C.

So we constructed an A-homogeneous distance on G. �

Proposition 6.8. In the hypothesis of Theorem 1.2. (ii), there is an A-homo-

geneous distance on G.

Proof. We shall prove the proposition by induction on the number of non-trivial
layers N=#{t≥1:Vt �={0}}. If N=1, then g is Abelian, so we have the thesis from
Lemma 6.5.

Assume that the thesis holds for graded Lie algebras with N layers and let
g=
⊕N+1

j=1 Vtj have N+1 layers, where 1≤t1<t2<...<tN+1. If tN+1≤2, then the
thesis holds by Lemma 6.7.

Suppose that tN+1>2. If x∈g, we denote by xj the component in Vtj of x,
and x̄=x−xN+1=

∑N
j=1 xj . Let θ∈(0, 1) be such that tN+1−θ>2 and tj−θ>1 for

all tj>1. Let ‖·‖ be a norm on g given by Lemma 6.4 with this θ.
Since VtN+1 is an ideal of g, then ĝ=g/VtN+1 is a Lie algebra. Since ĝ is nilpotent

and the corresponding group quotient Ĝ:=G/ exp(VtN+1) is simply connected, we
will identify Ĝ with ĝ. Denote by π :g→ĝ the quotient map. Since A(VtN+1)⊂VtN+1 ,
the derivation A induces Â∈Der(ĝ) with Âπ=πA.
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By the inductive hypothesis, there is B̂⊂ĝ that is the unit ball of a Â-homoge-
neous distance. Let B̂′=π−1(B̂)∩

⊕N
j=1 Vtj . Since the restriction π :

⊕N
j=1 Vtj→ĝ is

a linear isomorphism, we can assume that

(6.7) B̂′ ⊂

⎧⎨⎩x∈ g :
N∑
j=1

‖xj‖≤ 1

⎫⎬⎭ .

If x̄∈B̂′ and λ∈(0, 1), then

(6.8) ‖λAx̄‖≤
N∑
j=1

‖λAxj‖≤λ
N∑
j=1

‖xj‖≤λ,

because of (6.2) and the fact that A is R-diagonal on V1, because of (6.1) together
with tj−θ>1 for tj>1, and also by (6.7).

Notice that if x, y∈g, then

(xy)N+1 =xN+1+yN+1+PN+1(x̄, ȳ),

where PN+1 has polynomial components in any system of linear coordinates. Since
PN+1(0, ȳ)=PN+1(x̄, 0)=0 and B̂′ is compact, there is C>0 such that

(6.9) ‖PN+1(x̄, ȳ)‖≤ 2C‖x̄‖ ‖ȳ‖ ∀x̄ȳ ∈ B̂′.

We claim that, if C>0 is given by (6.9), then

B := {x∈ g :π(x)∈ B̂, ‖xN+1‖≤C}
= {x∈ g : x̄∈ B̂′, ‖xN+1‖≤C}

is the unit ball of an A-homogeneous distance. We prove our claim by means of
Lemma 4.6: The only non-trivial condition we need to prove is A-convexity of B.

Let x, y∈B and λ∈(0, 1). On the one hand,

π(λAx(1−λ)Ay)=λÂπ(x)(1−λ)Âπ(y)∈ B̂,

because B̂ is Â-convex. On the other hand

‖(λAx(1−λ)Ay)N+1‖=
∥∥λAxN+1+(1−λ)AyN+1+PN+1(λAx̄, (1−λ)Aȳ)

∥∥
≤λ2‖xN+1‖+(1−λ)2‖yN+1‖+2C‖λAx̄‖ ‖(1−λ)Aȳ‖
≤C(λ2+(1−λ)2+2λ(1−λ))=C,

where we used in the first inequality the facts (6.1) and tN+1−θ>2, and (6.8) in
the second inequality. This completes the proof. �
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7. bi-Lipschitz reduction to real A-homogeneous distances

This section is devoted to Theorems 1.3 and 1.4. Before diving into the proofs,
we prove two preliminary lemmas in Section 7.1. The proofs of the theorems will
be in the subsequent subsections.

7.1. Algebraic preliminaries on the image of the exponential map

Lemma 7.1. Fix K∈{R,C}. Let g be a Lie algebra over K and A:g→g a

K-linear map such that eA∈AutK(g). If A is nilpotent, then A∈DerK(g).

Proof. Let N∈N be such that AN+1=0. For every m∈Z, we have emA∈
AutK(g). Therefore, expanding the exponential series in the identity emA[x, y]=
[emAx, emAy], one can show that, for every x, y∈g and all m∈Z

(7.1)
N∑

n=0

mn

n! A
n[x, y] =

2N∑
n=0

mn

n!

n∑
k=0

(
n

k

)
[Akx,An−ky].

Since these are polynomials in m that coincide on Z, then they have the same
coefficients. In particular, the terms of order n=1 are

A[x, y] = [Ax, y]+[x,Ay]. �

Lemma 7.2. Let g be a real Lie algebra, φ∈Aut(g) and λ∈(0,∞)\{1}. Then
there are A∈Der(g) and K∈Aut(g) such that,

1. φ=KλA;

2. K is C-diagonalizable and σ(K)⊂S1;

3. σ(A)⊂R;

4. [K,A]=0.

Proof. Without loss of generality, we assume λ=e. Define k, r, n:C∗→C∗ as

k(α)= α

|α| , r(α)= |α|, n(α)= 1
α
.

Consequently, with the terminology introduced just before Lemma 2.4, define the
linear maps K=φk, R=φr and N=φn¨φ on gC. By Lemma 2.4, since the function
k, r and n are multiplicative and they commute with the complex conjugation,
then K,R,N∈AutC(gC)∩Aut(g) and they commute with each other and with φ.
Moreover, K is diagonalizable and σ(K)⊂S1.

Since r is a positive function, then we consider

Ã :=φlog¨r, so that R= eÃ.
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We claim that Ã∈Der(g). First, since log(r(ᾱ))=log(r(α)), for all α∈C, then Ã(g)⊂
g. Second, if v=

∑
α vα and w=

∑
α wα, where vα, wα∈Eφ

α, then [vα, wβ ]∈Eφ
αβ by

Lemma 2.2 and thus

Ã[v, w] =
∑

α,β∈σ(φ)

log(|αβ|)[vα, wβ ]

=
∑

α,β∈σ(φ)

[log(|α|)vα, wβ ]+[vα, log(|β|)wβ ]

= [Ãv, w]+[v, Ãw].

Therefore Ã∈Der(g), as claimed.
Notice that N=Id+ψ with ψ nilpotent linear map on gC. Indeed, if vα∈Eφ

α,
then there is m∈N such that

αm(N−Id)mvα =αm(φn ¨φ−Id)mvα =(φ−αId)mvα =0.

Since α �=0 because φ is injective, then (φn¨φ−Id)mvα=0. Since the number of
non-trivial generalized eigenspaces of φ is finite, there is m∈N with (N−Id)m=0.

Since ψ is nilpotent, then

D := log(N)= log(Id+ψ)=
m∑

k=1

(−1)k+1

k
ψk

is well defined and nilpotent, with eD=N∈AutC(gC). By Lemma 7.1, D∈DerC(gC).
Since N(g)=g, then ψ(g)⊂g and thus D(g)⊂g. Therefore, D∈Der(g). Since

N(Eφ
α)⊂Eφ

α, then ψ(Eφ
α)⊂Eφ

α and therefore D(Eφ
α)⊂Eφ

α. Since Ã is diagonal on
each generalized eigenspace, then [Ã,D]=0.

Finally, notice that φ=KRN and that

RN = eÃeD = eÃ+D.

Since D is nilpotent, Ã is diagonalizable, and [Ã,D]=0, then σ(Ã+D)=σ(Ã)⊂R.
Finally, on the one hand [Ã,K]=[Ã, φk]=0; On the other hand, [D,K]=0 because
of 0=[N,K]=[Id+ψ,K]=[ψ,K] and the formula defining D. So, the lemma is
proven with A=Ã+D. �

7.2. Proof of Theorem 1.3

Theorem 1.3 follows from Lemma 4.8 and the following Lemma 7.3.
Lemma 7.3. Let (G, d, δ, λ) be a self-similar metric Lie group. Then there are

K∈Aut(g) diagonalizable with σ(K)⊂S1, A∈Der(g) with σ(A)⊂[1,∞) such that

[K,A]=0, δ=KλA and there is an A-homogeneous distance on G for which δ is

still a dilation of factor λ.
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Proof. After Theorem 4.4, we can identify G and g via the exponential map.
With this identification, δ=δ∗. Let A∈Der(g) and K∈Aut(g) as in Lemma 7.2 with
φ=δ. Since K is diagonalizable, σ(K)⊂S1 and [A,K]=0, then the closure K of
the group generated by K is a compact subgroup of Aut(g) and δK δ−1=K . By
Lemma 4.7, there is an admissible distance d′ on G such that δ is a dilation of factor
λ and K is an isometry of d′. It follows that λA is a dilation of factor λ (remember
that λ is fixed).

Define d′′ :G×G→[0,+∞] as

d′′(x, y)= sup
{
d′(μAx, μAy)

μ
: μ> 0

}
.

We claim that, in fact,

(7.2) d′′(x, y)=max
{
d′(μAx, μAy)

μ
: μ∈ [1, λ]

}
.

Indeed, if μ>0 then there are k∈Z and r∈[0, 1] such that μ=λkλr. Hence
d(μAx,μAy)

μ = d′((λr)Ax,(λr)Ay)
λr , where λr∈[1, λ]. Moreover, since [1, λ] is compact and

μ �→ d′(μAx,μAy)
μ is continuous, the supremum is a maximum.

We now claim that d′′ is an A-homogeneous distance on G. It is clear that d′′ is
left-invariant and that, for every ρ>0 and x, y∈G, we have d′′(ρAx, ρAy)=ρd′′(x, y).
Moreover, from (7.2) we get that d′′(x, y)<∞ and that d′′(x, y)>0 whenever x �=y.
So, we are left to show the triangular inequality. Let x, y, z∈G. Then there is
μ∈[1, λ] such that d′′(x, z)= d′(μAx,μAz)

μ . We conclude that

d′′(x, z)= d′(μAx, μAz)
μ

≤ d′(μAx, μAy)
μ

+ d′(μAy, μAz)
μ

≤ d′′(x, y)+d′′(y, z).

Therefore, d′′ is an A-homogeneous distance on G. Finally, since [K,A]=0, then
[K,μA]=0 for all μ>0. Thus K is still an isometry for d′′, and δ=KλA is also a
dilation of factor λ for d′′. �

7.3. Proof of Theorem 1.4

In the hypothesis of Theorem 1.4. (i), (G, d, δ, λ) is a self-similar metric Lie
group. From Theorem 4.4 we get that G is connected simply connected and the
eigenvalues of δ∗ have modulus smaller than or equal to λ if λ<1, or greater than
or equal to λ if λ>1.

Let A and K as in Lemma 7.3 with δ∗=KλA. From Theorem 1.2 we get that
A is C-diagonalizable on V1(A). From Theorem 4.4. ((vi)) we also get that V1(A)=
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V1(λ, δ∗), and thus λA is diagonalizable on V1(λ, δ∗). Since also K is diagonalizable
and [K, eA]=0, then δ is also diagonalizable on V1(λ, δ∗).

This shows that (i) implies (ii) in Theorem 1.4.
Suppose now we are in the hypothesis of Theorem 1.4. (ii). Let K and A as

in Lemma 7.2 so that δ∗=KλA, i.e., λA=K−1δ∗. Since [K,A]=0, then [K, δ∗]=0.
Therefore, since K is diagonalizable and δ∗ is diagonalizable on V A

1 , then A is also
diagonalizable on V A

1 . From Theorem 1.2 we get that there is an A-homogeneous
distance d on G. Since K is diagonalizable, σ(K)⊂S1 and [A,K]=0, then the closure
K of the group generated by K is a compact subgroup of Aut(g) and δK δ−1=K .
Hence, by Lemma 4.7, we can assume that K is an isometry for d and thus δ is also
a dilation of factor λ for d.

7.4. Proof of Theorem 1.5

If (X, d) is a locally compact, isometrically homogeneous and homothetic met-
ric space, then it is connected by [17, Proposition 3.7]. We apply [5], see also
Theorem 4.2, to obtain that (X, d) is isometric to a self-similar metric Lie group
(G, d, δ, λ). In particular, the space (G, d) is a homothetic nilpotent metric Lie
group, by Theorem 4.4. Then Proposition 4.5 completes the existence statement of
Theorem 1.5. The uniqueness of the group structure G follows from [16], where it
is proven that isometries of nilpotent Lie groups are Lie group isomorphisms.

7.5. Reductions to real spectrum cases

We finish off with two results that are one complementary to the other. We first
show that, when the spectrum of A is in the line 1+iR, the only A-homogeneous
metric spaces are Banach spaces. In other words, any A-homogeneous distance is
also Id-homogeneous, where Id is the real diagonal of A. We then show that, beyond
this case, it is possible to find examples where such a reduction to the real spectrum
is not possible.

Proposition 7.4. Let A be a derivation on the Lie algebra of a Lie group G

such that V A
1 =g. Then A-homogeneous distances are vector norms.

Proof. Let d be a A-homogeneous distance on G. Then, G is Abelian and
simply connected by Theorem 1.2, hence the exponential map exp:g→G is a Lie
group isomorphism. We need to show that

(7.3) d(0, λp)=λd(0, p) ∀λ> 0, p∈G.

We fix a norm ‖·‖ on g and the corresponding operator norm on linear operators.
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By Theorem 1.2 again, A is diagonalizable on the complex numbers. Hence,
with the notation of Corollary 2.6, AR=Id and AN =0. Hence, K ={λ−1λA}λ>0 is
a compact subgroup of Aut(g). It follows that there is a sequence λk→0+ such that

lim
k→∞

λ−1
k λA

k =Id.

Fix p∈G and λ>0. Since λk is an infinitesimal positive sequence, for every
ε>0 there is a function

ρε :N−→ {λk : ‖λ−1
k λA

k −Id‖<ε}

such that λ=
∑

j∈N
ρε(j). Define pε :=

∑
j∈N

ρε(j)Ap. Notice the following two facts:
First,

d(0, pε)≤
∑
j∈N

d(0, ρε(j)Ap)=
∑
j∈N

ρε(j)d(0, p)=λd(0, p).

Second,

‖pε−λp‖=

∥∥∥∥∥∥
∑
j∈N

ρε(j)Ap−
∑
j∈N

ρε(j)p

∥∥∥∥∥∥≤
∑
j∈N

∥∥ρε(j)A−ρε(j)Id
∥∥ ‖p‖

=
∑
j∈N

ρε(j)
∥∥ρε(j)−1ρε(j)A−Id

∥∥ ‖p‖≤λε‖p‖.

Therefore, qε→λp as ε→0 and, by the continuity of d,

(7.4) d(0, λp)≤λd(0, p).

Finally, since (7.4) holds for arbitrary λ>0 and p∈Rn, we have also

d(0, λp)≤λd(0, p)=λd(0, λ−1(λp))≤ d(0, λp).

This shows (7.3) and thus completes the proof. �

Proposition 7.5. There is a locally compact, isometrically homogeneous and

homothetic metric space that is not isometric to any A-homogeneous distance for A

with real spectrum.

Proof. Let (X, d) be the metric space described in Example 5.2. Recall that d

is an admissible left-invariant distance on X=R2.
Let P0 and I0 be the Lie groups of dilations and isometries, respectively, of

(R2, d) fixing (0, 0), and let p0 and i0 be their Lie algebras. Since R2 is nilpotent,
we have i0⊂p0⊂gl(2).

Recall that d is A-homogeneous with A:=
( 2 −1

1 2
)
, that is A∈p0. The spectrum

of A is {2+i}. Suppose that d were also A′-homogeneous for some A′ with real
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spectrum, i.e., A′∈p0. Therefore, since A and A′ would be linearly independent
and since, by Proposition 4.5, we have dim(p0)=dim(i0)+1, then dim(i0)>0, i.e.,
there would be J∈gl(R2)\{0} such that t �→etJ were a one-parameter group of
isometries of (R2, d) fixing the origin (0, 0).

Now, if B is the unit ball of d with center (0, 0), as we defined it in Example 5.2,
then etJB=B for all t∈R. However, the only one-parameter subgroup of GL(R2)
that fixes B is the trivial group {Id}. Thus J=0, which is a contradiction. �

7.6. Proof of Theorem 1.6

Let X be a metric space with a doubling measure μ such that for μ-a.e. p∈
X there is a unique tangent Gp to X at p. As it has been proved in [17] (see
especially Section 3.4 therein), for μ-a.e. p∈X, the space Gp is a locally compact,
isometrically homogeneous, and homothetic metric space. The conclusion follows
from Theorem 1.5.
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