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The population decay due to a small opening in an otherwise closed cavity supporting chaotic classical
dynamics displays a quantum correction on top of the classical exponential form, a pure manifestation of
quantum coherence that acquires a universal form and can be explained by path interference. Being coherent,
such enhancement is prone to decoherence effects due to the coupling of the system to an external environment.
We study this interplay between incoherent and coherent quantum corrections to decay by evaluating, within
a Caldeira-Leggett scenario, off-diagonal contributions to the decoherence functional coming from pairs of
correlated classical paths in the time regime where dissipative effects are neglected and decoherence does not
affect the classical dynamics, but quantum interference must be accounted for. We find that the competing effects
of interference and decoherence lead to a universal nonmonotonic form for the survival probability depending
only on the coupling strength and macroscopic parameters of the cavity.
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I. INTRODUCTION

The very discovery of quantum phenomena with the pro-
gressive and unstoppable extension of the corresponding
quantum domain into larger and larger scales is due to the
ability to isolate physical systems from its environment [1].
Pretty much as Galileo was able to understand that despite
daily intuition the natural state of motion is constant velocity
instead of rest and changes are due to external influences [2],
the founding fathers of quantum mechanics recognized that,
at the fundamental level, an isolated system remains coherent
thus displaying a behavior that is classically counterintuitive.

This conceptual realization is the more impressive when
one considers that, actually, the very act of observation un-
avoidably requires the pristine evolution of closed and isolated
quantum systems to account for the interface between the sys-
tem and the observation device [3,4]. In fact, the way we probe
the most fundamental quantum aspects of closed systems, like
the discreetness of the energy spectrum, is through scattering
experiments where the system is coupled with a continuum:
we coherently couple the system to its electromagnetic envi-
ronment, and then couple the latter to a measurement device.
As clarified by several decades of efforts, it is at this last stage
where both the possibility of extracting information from the
system and the corresponding loss of coherence, decoherence,
takes place [5–10].

The interplay between coherent decaying due to the open-
ing of the system to a coherent continuum, as in scattering
systems, and decoherence, usually modeled by coupling to a
large set of uncontrolled degrees of freedom, takes a further
twist if one is interested in studying such interplay in a regime
of large systems or high quantum numbers, the so-called
mesoscopic regime [11]. In this case, the microscopic descrip-
tion takes advantage of the universal quantum signatures of

systems with chaotic classical limit that are explored by means
of asymptotic analysis based on path integrals [12]. In this
way, the interplay between quantum coherence, decoherence
and quantum signatures of chaos is a pillar of modern physics,
with broad applications, from the theory of quantum transport
[13], to the precise understanding of the quantum-classical
transition [5].

In previous works the universal quantum corrections to
classical decay in open chaotic systems were computed [14]
in the spirit of the semiclassical approach to mesoscopic
transport. Our objective here is to extend these ideas in a
way that addresses the key impact of decoherence on such
effects. To account for the emergence of universal quantum
signatures of classically chaotic dynamics the proper tools are
those of semiclassical analysis where quantum phenomena
are described in terms of a highly nontrivial use of classical
information around classical solutions. Specifically, quantum
interference is explained in terms of interfering classical
paths, and, as we show here, its degrading due to decoherence
is explained in terms of decoherence functionals evaluated
themselves along pairs of classical solutions. A key finding of
our analysis is that, in the limit of weak coupling, the leading
classical contribution to the decoherence processes can be
shown to vanish, and therefore all its effects arise from quan-
tum interference, fully captured by the semiclassical theory of
correlated solutions to produce universal results.

The paper is organized as follows. First, Sec. II presents
the general aspects of decoherence due to the coupling of a
particle to a bath reservoir within the Caldeira-Leggett model.
Section III is devoted to review the main features of the
quantum survival probability, which involves a scenario where
the particle is inside a cavity from which it may escape. The
main technical aspects of our work, where we develop the
semiclassical treatment of the particle inside a cavity coupled
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to a bath, and study the first quantum corrections in the semi-
classical limit is the subject of Sec. IV. Finally, we provide
some concluding remarks in Sec. V.

II. DECOHERENCE IN THE
CALDEIRA-LEGGETT MODEL

Following the standard Feynman-Vernon approach as
made explicit by the Caldeira-Leggett model, we consider a
particle A, with f = 2 degrees of freedom, each coupled to an
environment of N harmonic oscillators. The total Hamiltonian
reads

Ĥ = ĤA + ĤE + ĤAE , (1)

where

ĤA = |P̂|2
2m

+ V̂
(
Q̂

)
(2)

is the Hamiltonian of the central system such that
Q = (Q1, Q2) and P = (P1, P2). Each degree of freedom is
coupled to an environment, whose total bare Hamiltonian is
ĤE = ĤE,1 + ĤE,2, with

ĤE,i =
N∑

k=1

1

2

(
p̂2

k,i/mk,i + mk,iω
2
k,iq̂

2
k,i

)
, (3)

for i = 1, 2, and ĤAE is the interaction energy between A
and E . We choose an interaction which couples linearly each
position operator of the central system Qi, with the position

operator of each environmental mode q̂k,i, which reads

ĤAE = −Q̂1 ⊗
N∑

k=1

gk,1q̂k,1 − Q̂2 ⊗
N∑

k=1

gk,2q̂k,2

+ Q̂2
1

N∑
k=1

g2
k,1

2mk,1ω
2
k,1

+ Q̂2
2

N∑
k=1

g2
k,2

2mk,2ω
2
k,2

. (4)

The last line in Eq. (4) compensates for the coupled-induced
renormalization of the potential [15].

While Eq. (4) will in general produce dissipation as well
as decoherence on A [16], in this paper we consider the
regime of pure decoherence, neglecting dissipative effects, an
approximation that is fully justified due to the vast separation
of timescales between these two mechanisms. That is, we are
only interested in the decoherence effects that E produces on
the central system.

The whole system A + E evolves under Ĥ , with the time
evolution being described by the associated propagator given
by

K (Q f , q f , t ; Qi, qi ) = 〈Q f , q f | e− i
h̄ Ĥt |Qi, qi〉 , (5)

where we have defined the vector q as
q = (q1,1, . . . , qN,1, q1,2, . . . , qN,2). In the Feynman path
integral approach the propagator has the form

K (Q f , q f , t ; Qi, qi ) =
∫

D[Q(s), q(s)]e
i
h̄ R[Q,q], (6)

which is a sum over all paths with boundary conditions: Qi =
Q(0), Q f = Q(t ); qi = q(0), q f = q(t ), and R is the total
action R = RA + RE + RAE . A general initial state ρ̂AE (0)
will evolve as

ρAE (Q f , Q′
f , q f , q′

f , t ) =
∫

dQidQ′
idqidq′

i ρAE (Qi, Q′
i, qi, q′

i )K (Q f , q f , t ; Qi, qi )K
∗(Q′

f , q′
f , t ; Q′

i, q′
i ), (7)

and the reduced dynamics of the central system is obtained after tracing out the degrees of freedom of the environment, ρ̂A(t ) =
TrE [ρ̂AE (t)]. Choosing a factorized initial state ρ̂AE (0) = ρ̂A(0) ⊗ ρ̂E (0), the reduced density matrix gives

ρA(Q f , Q′
f , t ) =

∫
dQidQ′

iρA(Qi, Q′
i )

∫
D[Q(s)]D[Q′(s)]e

i
h̄ (RA[Q]−RA[Q′])F[Q, Q′], (8)

where F[Q, Q′] is the Feynman-Vernon influence functional given by

F[Q, Q′] =
∫

(qi,q′
i )→q f

dq f dqidq′
iρE (qi, q′

i )
∫

D[q]D[q′]e
i
h̄ (RE [q]+RAE [Q,q]−RE [q′]−RAE [Q′,q′]). (9)

If we assume the initial state ρ̂E (0) = ρ̂E,1(0) ⊗ ρ̂E,2(0) to be a thermal state at inverse temperature β = 1/κBT , ρ̂E = e−βĤE
ZE

,
with ZE = ZE,1 × ZE,2, the influence functional has an exact solution [15], and the reduced density matrix is accordingly given
by

ρA(Q f , Q′
f , t ) =

∫
dQidQ′

iρA(Qi, Q′
i )

∫
D[Q]D[Q′]e

i
h̄ (RA[Q]−RA[Q′]−RF [Q,Q′])e−Rd [Q,Q′]/h̄. (10)

The effective action in RF is responsible for dissipation of energy of the particle and thus for the relaxation process. Neglecting
this term in our approximation we only keep the decoherence action Rd which, assuming both baths have an identical spectral
density, reads

Rd [Q, Q′] =
∫ t

0
ds

∫ s

0
du[Q(s) − Q′(s)]T

κ (s − u)[Q(u) − Q′(u)], (11)
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involving a mixture of off-diagonal components of the density matrix, Q − Q′, along paths mediated by the bath kernel

κ (s − u) = 1

π

∫ ∞

0
dωJ (ω) coth (β h̄ω/2) cos ω(s − u). (12)

Here the integral is over a continuum of bath-oscillator frequencies ω. If we choose an Ohmic spectral density associated with
the bath such that J (ω) = �ω in the limit of high temperatures, β → 0, by using coth(β h̄ω/2) ∼ 2/h̄ωβ, the kernel transforms
into

κ (s − u) = 2�

h̄β
δ(s − u), (13)

and the decoherence term in the action takes the form

Rd [Q, Q′] = 2�

h̄β

∫ t

0
ds|Q(s) − Q′(s)|2. (14)

In this way, inserting Eq. (14) into Eq. (10), we see that Rd is responsible for the suppression of quantum coherence between
paths Q and Q′, due to the coupling of the central system to the environment.

All together, in the high-temperature regime, Eq. (10) reads

ρA(Q f , Q′
f , t ) =

∫
dQidQ′

iρA(Qi, Q′
i )

∫
D[Q]D[Q′]e

i
h̄ (RA[Q]−RA[Q′])e−α

∫ t
0 ds|Q(s)−Q′(s)|2 , (15)

where we have defined a new coupling-strength constant α

subduing the whole parameter dependence of the decoherence
action.

To make further progress, since Eq. (15) represents still
a formidable problem, we assume that α is classically small
so that the coupling with the environment does not affect the
classical dynamics of the central system, only the coherence
between pair of paths Q, Q′. This weak-coupling regime,
usually justified even for realistic models, will enable us to
evaluate Eq. (15) semiclassically.

Equation (15) is thus a model for decoherence without dis-
sipation processes. The main assumption is that the coupling
with the bath is classically small such that the central system
only experiences a loss of coherence of the relative states
Q, Q′. This is also justified if we note that, in these models,
the decoherence timescale is much faster than the dissipative
timescales induced by the environment [16,17].

III. PARTICLE IN A CHAOTIC CAVITY AND QUANTUM
SURVIVAL PROBABILITY

In Ref. [18] the authors considered a particle moving in
two dimensions, initially inside a cavity of area A. The cavity
has a hole of size l from which the particle can escape.

At the purely classical level, it is known that the probability
ρcl to find the particle inside the cavity at time t , the so-called
survival probability, has the form [14]

ρcl = e−t/τD , (16)

for cavities supporting classical chaotic dynamics. This result
is valid for times longer than the Lyapunov time 1/λ, with
λ the Lyapunov exponent (assumed uniform). Here, 1/τD

is the escape rate, given in terms of the dwell time τD =
�(E )/(2l p), where p is the momentum of the particle, and
we introduced the phase-space volume of the energy shell E ,
�(E ) = ∫

dQdPδ(E − HA(Q, P)).
In Ref. [18], using semiclassical techniques, quantum cor-

rections to the classical survival probability were studied, and

a universal quantum enhancement for underlying classical
chaotic dynamics was predicted. At first order in h̄, it takes
the form of a correction δρqm,

δρqm = e−t/τD
t2

2THτD
, (17)

where TH = �/(2π h̄) is the Heisenberg time.
This quantum enhancement of the decaying classical sur-

vival probability is a coherent effect coming from interference
between pair of trajectories as shown in Ref. [18].

In the following, we will study the interplay between this
quantum survival probability and the decoherence process
as implied by Eq. (15). That is, we will consider a particle
that is coupled both to a continuum through an opening of
size l of the cavity that produces coherent effects, and to an
environment that suppresses such effects by decoherence.

IV. SEMICLASSICAL TREATMENT

As reported for the first time in Refs. [18,19], in general
coherent corrections to the classical dynamics of observables,
like the survival probability, manifest themselves only when
the observable itself is only defined within a finite region of
an otherwise unbounded system. In this spirit, the state of
the particle A inside the cavity under the influence of E will
evolve using Eq. (15), but projected onto the area of the open
cavity.

We implement the semiclassical approach to Eq. (15)
by taking into account that, in our weak-coupling scenario,
the classical solutions of the saddle-point analysis (SPA) in
Eq. (15) are given by solutions of the classical equations
of motion coming from the stationary condition of the bare
action RA. This leads us to consider the application of SPA
at the level of the amplitudes, the so-called semiclassical
approximation to the quantum-mechanical propagator [20].
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FIG. 1. From the double sum in Eq. (20) we build a pair of
trajectories (γ , γ ′), with small action difference and ending points
ri = (Qi + Q′

i )/2, r f = (Q f + Q′
f )/2. By this the paths rγ (s) and

rγ ′ (s) are constructed, which are involved in the decoherence con-
tribution of Eq. (22). The picture is in configuration space and the
arrows show the direction of momentum.

Within the semiclassical approximation, the propagator
takes the form

Ksc(Q f , t ; Qi, 0) = 1

2π h̄

∑
γ̃ :Qi→Q f

Aγ̃ e
i
h̄ Rγ̃

A , (18)

as a sum over classical paths γ̃ connecting points Qi → Q f ,
during time t . The Van Vleck-Gutzwiller amplitude

Aγ̃ =
∣∣∣∣∣det

(
− ∂2Rγ̃

A
∂Qf∂Qi

)∣∣∣∣∣
1/2

e−iπμγ̃ /2, (19)

contains, besides the stability factor, the number μγ̃ of focal
points of the trajectory.

Substitution of Eq. (18) into the general expression for
evolution of the state in Eq. (15), gives

ρsc
A(Q f , Q′

f , t )

= 1

(2π h̄)2

∫
A

dQidQ′
iρA(Qi, Q′

i )
∑

γ̃ :Qi→Q f

∑
γ̃ ′:Q′

i→Q′
f

× Aγ̃ A∗
γ̃ ′e

i
h̄ (Rγ̃

A−Rγ̃ ′
A )e−α

∫ t
0 ds|Qγ̃ (s)−Qγ̃ ′ (s)|2 , (20)

thus taking the form of a double sum over classical paths.
Since the semiclassical approximation in Eq. (20) is valid

when the bare action of the central system RA is much
greater than h̄, the sum over pairs of trajectories contains
highly oscillatory terms that cancel out each other, unless
the pair difference is at most of order h̄, Rγ̃

A − Rγ̃ ′
A ∼ O(h̄).

Following the usual semiclassical methods [21], from the
double sum in Eq. (20) we construct a pair of trajecto-
ries (γ , γ ′) with small action difference, and ending points
ri = (Qi + Q′

i )/2, r f = (Q f + Q′
f )/2, as shown in Fig. 1.

In a final step we expand the action Rγ̃

A around the
path γ ,

Rγ̃

A(Qi, Q f ) ≈ Rγ

A(ri, r f ) − Pi
γ · yi/2 + P f

γ · y f /2, (21)

and similarly Rγ̃ ′
A around γ ′. Thus, Eq. (20) now reads

ρsc
A(r f + y f /2, r f − y f /2, t ) =

∫
A

dridyiρA(ri + yi/2, ri − yi/2)
1

(2π h̄)2

×
∑

γ :ri→r f

∑
γ ′:ri→r f

Aγ A∗
γ ′e

i
h̄ (Rγ

A−Rγ ′
A )e− i

h̄ (Pi
γ +Pi

γ ′ )·yi/2e
i
h̄ (P f

γ +P f
γ ′ )·y f /2e−α

∫ t
0 ds|rγ (s)−rγ ′ (s)|2 , (22)

where we use the classical identities [2]

∂Rγ

A
∂ri

= −Pi
γ (ri, r f , t ),

∂Rγ

A
∂r f

= P f
γ (ri, r f , t ), (23)

for the initial and final momentum for the path γ , and similarly for the path γ ′. The integral over yi can now be performed to
obtain

WA
(
ri,

(
Pi

γ + Pi
γ ′

)
/2

) = 1

(2π h̄)2

∫
dyiρA(ri + yi/2, ri − yi/2)e− i

h̄ (Pi
γ +Pi

γ ′ )·yi/2
, (24)

where the initial Wigner function [22] of the central system with initial momentum (Pi
γ + Pi

γ ′ )/2 appears to arrive at the
expression

ρsc
A(r f + y f /2, r f − y f /2, t ) =

∫
A

dri

∑
γ :ri→r f

∑
γ ′:ri→r f

Aγ A∗
γ ′WA

(
ri,

(
Pi

γ + Pi
γ ′

)
/2

)
e

i
h̄ (Rγ

A−Rγ ′
A )e

i
h̄ (P f

γ +P f
γ ′ )·y f /2e−α

∫ t
0 ds|rγ (s)−rγ ′ (s)|2 .

(25)

A full phase-space representation is obtained after multiplying Eq. (25) by e− i
h̄ p f ·y f , and integrating over the variable y f . The

left-hand side of Eq. (25) transforms then into the Wigner function of the central system at time t and momentum p f , and the
right-hand side gives just a δ function after the y f integration.

All together then, we obtain the important result for the time evolution of the Wigner function of the particle,

W sc
A(r f , p f , t ) =

∫
A

dri

∑
γ :ri→r f

∑
γ ′:ri→r f

Aγ A∗
γ ′WA(ri, (Pi

γ + Pi
γ ′ )/2)e

i
h̄ (Rγ

A−Rγ ′
A )δ(p f − (P f

γ + P f
γ ′ )/2)e−α

∫ t
0 ds|rγ (s)−rγ ′ (s)|2 , (26)
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involving a sum over pairs of trajectories starting at point ri

and ending at r f with the constraint in their final momentum.
As mentioned before, the integration in Eq. (26) runs over
the area A of the cavity, as appropriate for the calculation
of expectation values of observables Ô, in the form ÔχA(r̂),
where χA(r) is the corresponding characteristic function.

In the following sections we assume that we have intro-
duced a local time average in Eq. (26) in order to neglect
highly oscillatory terms in the double sum.

A. Diagonal approximation

Equation (26) represents the Wigner function, projected
in a cavity of area A, of the central system at time t in
the semiclassical approximation, evolving from the initial
Wigner function at time t = 0. From the pairs of trajectories
in Eq. (26), which have small action difference, those which
are identical, γ = γ ′, correspond to the leading-order contri-
bution. This is the so-called diagonal approximation. In this
case Eq. (26) reads

Wdg
A (r f , p f , t ) =

∫
A

dri

∑
γ :ri→r f

|Aγ |2WA
(
ri, Pi

γ

)
δ
(
p f − P f

γ

)
,

(27)

where naturally the decoherence contribution has disappeared
since it would involve off-diagonal terms.

It is important to note that, for a system constrained to be

in a closed area, we can use the amplitude |Aγ |2 = det| ∂Pf
γ

∂ri
|

as a Jacobian transformation from initial position to final
momentum, to get

Wdg
A (r f , p f , t ) =

∫
dP f δ(p f − P f )

×WA(ri(r f , P f , t ), pi(r f , P f , t ))

= WA(ri(r f , p f , t ), pi(r f , p f , t )), (28)

which says that the Wigner function at time t is simply ob-
tained in terms of the initial Wigner function by rigidly trans-
porting backwards its values along the solution of the classical
equations of motion (r f , p f ) = (r f (ri, pi, t ), p f (ri, pi, t )).
This is the so-called truncated Wigner approximation [23–26],
expressing in the semiclassical limit the evolution of quantum-
mechanical states by means of classical evolution of the
corresponding Wigner function.

In the case of interest here, however, we project the Wigner
function in a cavity and thus Eq. (27) gives the diagonal
approximation of the projected Wigner function, which allows
us to calculate local observables inside the cavity.

Using the sum rule for open systems [27], and assuming a
state with a well-defined mean energy E0, we get

Wdg
A (r f , p f , t ) =

∫
A

dP f δ(p f − P f )e−t/τD

×WA(ri(r f , P f , t ), pi(r f , P f , t ))

= e−t/τDWA(ri(r f , p f , t ), pi(r f , p f , t )),

(29)

where 1/τD is the classical escape rate at energy E0. Equation
(29) results in an exponential decay of the projected Wigner

FIG. 2. A typical pair of correlated trajectories γ , γ ′ inside the
cavity. The trajectories differ from each other inside the encounter
region where they change partners, but remain close, and after leav-
ing the encounter they form a loop, one trajectory following the
time-reversed path of the other. The draw is in configuration space
and the arrows show the direction of momentum. This is an example
of a 2-leg diagram where the encounter is fully developed between
the endpoints.

function inside the cavity. In particular, the probability to find
the particle inside the cavity at time t can be obtained as∫

A dr f dp f Wdg
A (r f , p f , t ), and gives the result for the classical

survival probability in Ref. [18].
While in the diagonal approximation the decoherence fac-

tor in Eq. (26), −α
∫ t

0 ds|rγ (s) − rγ ′ (s)|2, cancels out, the
leading-order quantum correction to Eq. (26) for a chaotic
system, the so-called loop contributions, involves pairs of
correlated trajectories which are not identical all the time and
thus could reveal interference effects between the involved
paths. This is the topic of the next section.

B. Loop corrections

The leading-order quantum correction to the time evolution
of the projected Wigner function in Eq. (26) comes from pairs
γ , γ ′ of trajectories which are identical to each other except
in a so-called self-encounter region [28], where they remain
close to each other but shift partners, as shown in Fig. 2 (for a
system with time-reversal symmetry).

In this scenario there are three diagrams whose con-
tributions have to be added within the leading-order loop
correction: when the encounter takes place at the beginning
(or at the end) of the trajectory, called 1-leg loops, and when
the encounter is fully developed in the region between the
endpoints of the trajectory, called 2-leg loops.

Let us sketch the calculation for the contribution of the
2-leg diagram. As usual [12], we place a Poincaré surface
of section P at any point inside the encounter, as shown in
Fig. 3. The trajectory γ first reaches P at time t ′ and then,
after leaving the encounter, forms a loop and returns back to
the encounter, reaching again P a second time at t ′′.

Inside the encounter the two trajectories γ , γ ′ are different
form each other, but remain close. In this region, we can
describe one trajectory in terms of a local coordinate system
localized on the other trajectory. As shown in Fig. 3, we select
a reference point in phase space xγ at time t ′ and construct a
local coordinate system (s, u) based on the stable and unstable
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FIG. 3. A Poincaré surface of section P is placed inside the
encounter, and there we select a reference point in phase space xγ (t ′)
of the trajectory γ , when it first reaches P at time t ′. A local reference
frame is constructed at this point with (s, u) being the local stable
and unstable manifold. Using this frame, the trajectory γ ′ can be
described within the linearized regime inside the encounter.

local manifold, where tu is the time trajectory γ ′ needs to leave
the encounter (to escape the linearized regime) in the unstable
direction, and in a similar way is defined ts along the stable
direction. In this way the whole trajectory is divided into four
parts: three links and the encounter region.

In the initial and final link γ and γ ′ are identical and then
the action difference and the decoherence term from Eq. (26)
vanish. In the second link, there is a loop in which γ and γ ′,
after leaving the encounter region, have shifted partners and
then one trajectory follows the time-reversed path of the other.
The time the first stretch needs to travel the encounter is tenc =
tu + ts, the duration of the loop is called tloop, and thus the
second time γ reaches P is t ′′ = t ′ + 2tu + tloop.

The key observation is that the decoherence term inside
the loop is no longer zero. Moreover, since being γ the time
reversed of γ ′, the paths rγ (s) and rγ ′ (s) can be treated as
uncorrelated through the loop. The important role of this type
of nondiagonal suppression has been studied in the framework
of closed systems by calculating its effect on the loss of purity
[29].

With this division of the trajectory the decoherence term
itself splits into

∫ t

0
|rγ (τ ) − rγ ′ (τ )|2 =

∫ t ′−ts

0
|rγ (τ ) − rγ ′ (τ )|2

+
∫ t ′+tu

t ′−ts

|rγ (τ ) − rγ ′ (τ )|2

+
∫ t ′+tu+tloop

t ′+tu

|rγ (τ ) − rγ ′ (τ )|2

+
∫ t ′+2tu+ts+tloop

t ′+tu+tloop

|rγ (τ ) − rγ ′ (τ )|2

+
∫ t

t ′+2tu+ts+tloop

|rγ (τ ) − rγ ′ (τ )|2,

(30)

where the first and last integrals represent the first and third
link, respectively. There γ and γ ′ are identical and thus the
integrals vanish.

Inside the loop. The important contribution to decoherence
comes from pairs of trajectories inside the loop. To calcu-
late this contribution we apply ergodic arguments: due to the
chaotic nature of the system we transform the time integral of
the squared difference in Eq. (30) into a variance of position
σ 2. To this end we add to the integrand the phase-space aver-
age position value 〈r〉Eγ

, where Eγ denotes the energy of the
trajectory γ , which is the same energy of γ ′, and write

∫ t ′+tu+tloop

t ′+tu

dτ
∣∣rγ (τ ) − 〈r〉Eγ

+ 〈r〉Eγ
− rγ ′ (τ )

∣∣2

=
∫ t ′+tu+tloop

t ′+tu

dτ
[∣∣rγ (τ ) − 〈r〉Eγ

∣∣2 + ∣∣rγ ′ (τ ) − 〈r〉Eγ

∣∣2

+ 2
(
rγ (τ ) − 〈r〉Eγ

)T · (
rγ ′ (τ ) − 〈r〉Eγ

)]
= 2tloop

〈(
r − 〈r〉Eγ

)2〉
:= 2tloopσ

2. (31)

To obtain the last line we use the relation

1

T

∫ T

0
dτ f (rγ (τ ), pγ (τ )) = 〈 f (r, p)〉Eγ

, (32)

to change the time integral into phase-space average 〈 f 〉Eγ
,

with 〈r − 〈r〉Eγ
〉 = 0, and the fact that (γ , γ ′) are uncorrelated

inside the loop.
Inside the encounter. When the pair (γ , γ ′) traverses the

encounter for the first time, that is, in the time interval
[t ′ − ts, t ′ + tu], the difference rγ (τ ) − rγ ′ (τ ) at any time
τ within the interval, calculated from the reference point
xγ , is given in the linearized regime by rγ (τ ) − rγ ′ (τ ) =
−ueλ(τ−t ′ )ẽu(xγ (τ )). Where u (s) is the coordinate in the un-
stable (stable) manifold, λ is the Lyapunov exponent (assumed
uniform), and ẽu(xγ (τ )) is a local unit vector pointing in the
unstable direction at time τ . With these considerations the
decoherence term inside the encounter during the first time
interval can be evaluated to give

∫ t ′+tu

t ′−ts

dτ |rγ (s) − rγ ′ (τ )|2

= u2
∫ t ′+tu

t ′−ts

dτ e2λ(τ−t ′ )|ẽu(xγ (τ ))|2, (33)

where, in the semiclassical limit, the precise time dependence
of ẽu(xγ (τ )) is effectively averaged over the phase space in
order to take it out of the time integral as a constant η, whose
exact value will not play any role in the final result. In this
way the last equation gives

∫ t ′+tu

t ′−ts

dτ |rγ (s) − rγ ′ (τ )|2 = η
c2

2λ

[
1 −

(
su

c2

)2]
, (34)

where the factor c is a classical scale constant characterizing
the linearized regime. A similar calculation is carried out for
the second time interval inside the encounter, and we obtain
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finally the total contribution of the decoherence term,∫ t

0
dτ |rγ (s) − rγ ′ (τ )|2 = η

c2

λ

[
1 −

(
su

c2

)2]
+ 2tloopσ

2,

(35)

while it can be shown [12] that the action difference results
in Rγ

A − Rγ ′
A = su. The final ingredient to calculate the loop

correction to Eq. (26) is the density of trajectories with a
self-encounter, ωγ (s, u, t ′, tloop), with action difference su and
loop duration tloop. Using the mixing property of chaotic sys-
tems, this density can be approximated by ωγ (s, u, t ′, tloop) =
1/[�γ tenc(s, u)], with �γ being the phase-space volume [14].
In this way, we have characterized all the partner orbits γ ′ for
a given γ trajectory, and we can perform the sum over γ by
taking |Aγ |2 in Eq. (26) as a Jacobian transformation, using
the sum rule as in Sec. IV A.

Finally, as shown in Ref. [18], we take into account that
the quantum survival probability is augmented by the factor
etenc/τD and, using Eq. (35), the first quantum correction to
Eq. (26) is given by

W loop
A (r f , p f , t )2-legs

= WA(ri(r f , p f , t ), pi(r f , p f , t ))

×
∫ c2

−c2
dsdu

∫ t−2tu−ts

ts

dt ′
∫ t−t ′−2tu−ts

0
dtloop

× e−[t−tenc(s,u)]

�tenc(s, u)
e−αη c2

λ [1−( su
c2 )2]e−α2tloopσ

2
, (36)

where the limits of the integration reflect the fact that we need
a minimum time tu + ts to form an encounter region, and the
variables (s, u) cannot grow beyond the limit c. The encounter
time reads tenc = λ−1 ln(c2/|su|).

An integral similar to Eq. (36) is obtained for the contribu-
tion of the 1-leg diagrams, but the time intervals for t ′ and tloop

have to be adjusted to account for the fact that encounters at
the beginning or at the end of the trajectory do not have time
to fully develop. We evaluate the integral in Eq. (36) and the
one coming from 1-leg diagrams in the semiclassical regime
where λτD, c2/h̄ → ∞, while α/λ → 0, to get

W loop
A (r f , p f , t )

= WA(ri(r f , p f , t ), pi(r f , p f , t ))

×
[

τ 2
d

THτD
e−t/τD (e−t/τd − 1) + τd

THτD
te−t/τD

]
, (37)

where we have defined the decoherence time,

τd = (2ασ 2)−1, (38)

with the variance σ 2 giving an estimate of the average sepa-
ration in position of two correlated trajectories. Equation (37)
is our main result. As shown in Fig. 4, it gives an analytical
result for the interplay between the quantum enhancement
due to coherent interference effects coming from correlated
trajectories inside the encounter region [18], illustrated as a
red (dashed) line and, on the other hand, the detriment of the
quantum survival probability, compared with the vanishing
coupling result, due to decoherence effects depending on the
temperature and the coupling strength, coming from uncor-

FIG. 4. Plot of the first quantum correction W loop
A /WA to the

survival probability, as a function of the ratio t/TH , for a dwell time
τD/TH = 0.3, and different decoherence characteristic time τd/TH .
The graphic shows a diminishing of the first quantum correction
to the survival probability, compared with the vanishing coupling
result, due to the coupling of the system to the environment. The
red (dashed) line, τd → ∞, represents the correction for vanishing
coupling.

related trajectories inside the loop, which give rise to the
term e−2ασ 2t . In the short-time regime, obtained by expanding
e−t/τd for small t/τd , Eq. (37) reads

W loop
A (r f , p f , t )

= WA(ri(r f , p f , t ), pi(r f , p f , t ))

×e−t/τD

[
t2

2THτD
− t3

6THτDτd
+ O

(
t4/

(
τ 2

d THτD
))]

,

(39)

and we identify in the quadratic time dependence the well-
known result for the first quantum correction to the survival
probability found in Ref. [18] [see Eq. (17)].

It is important to observe that, when we close the opening
of the cavity, τD → ∞, the loop contribution W loop

A (r f , p f , t )
in Eq. (37) vanishes. So in the closed-cavity scenario, and
when the system is only coupled to a bath which produces
decoherence in position, all quantum loop corrections cancel
out in the semiclassical limit.

This cancellation of quantum loop corrections for a closed
system with classical chaotic dynamics points to an extremely
robust character of the diagonal approximation (and of the
truncated Wigner method), and can be understood as a gen-
eralization of the very nontrivial loop cancellation order by
order in h̄ shown in Ref. [19] for the integrated probability,
where it simply accounts for unitarity of quantum evolution.
The fact that loop corrections to the more fundamental (nonin-
tegrated) Wigner function as we obtained manifest only when
the system is open is indeed a fascinating observation for
which a clear physical mechanism is still not at hand.

Ehrenfest-time effects. As a final stage we calculate ex-
plicitly the dependence of our result with the Ehrenfest time,
defined as the timescale above which quantum interference
becomes important in chaotic systems. Following Ref. [18]
we distinguish between the Ehrenfest time of the closed
system, t c

E = λ−1 ln(L/λB), and the open Ehrenfest time,
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FIG. 5. In the case of nonvanishing Ehrenfest time, when the
stretches escape the encounter they need to be separated a distance
of the order of the cavity opening size l for them to leave the
encounter region in an uncorrelated manner. And to form a loop the
stretches have to be separated a distance of the order of the size of the
cavity L.

t o
E = λ−1 ln(l2/LλB), where λB is the de Broglie wavelength

and L is the size of the system. This choice implies c2 =
l2h̄/LλB [14]. As shown in Ref. [30], for a cavity with open-
ing size l we require the encounter stretches to escape the
encounter when their separation is of the order l , for them
to leave the encounter in an uncorrelated manner. Moreover,
as shown in Fig. 5, on the right-hand side of the encounter
the stretches should be separated a distance of the order of
the size L of the cavity in order to close themselves forming a
loop. This imposes a minimum time of the loop, which is 2tlL,
where tlL = λ−1 ln(L/l ). Indeed, with this consideration it is
clear that the variance in position should be of the order of the
size of the cavity, giving τd = (2αL2)−1.

With these restrictions, and redefining appropriately the
time limits, we solve the integrals in Eq. (36), introducing a
step function θ (t − 2(tenc + tlL)), establishing a minimal time
of the trajectory. By doing similar calculation for the 1-leg
diagrams, we finally obtain

W loop
A (r f , p f , t )

= WA(ri(r f , p f , t ), pi(r f , p f , t ))

×
[

τ 2
d

THτD
e−(t−t o

E )/τD
(
e−(t−2t o

E )/τd − e−2tlL/τd
)

+
(
t − 2t e

E

)
τd

THτD
e−(t−t o

E )/τD e−2tlL/τd

]
θ
(
t − 2t e

E

)
, (40)

with 2t e
E = t o

E + t c
E . This completes the full semiclassical anal-

ysis. Notice that, in the limit τd → ∞ and using tlL = t e
E − t o

E ,
Eq. (40) becomes the Ehrenfest-time-dependent result ob-
tained in Ref. [18].

V. CONCLUSIONS

In this paper, we provide a complete picture of the effect
of decoherence on the coherent quantum corrections to clas-
sical population decay in chaotic cavities. It begins with the
construction of the semiclassical Wigner representation of a
chaotic particle weakly coupled to an environment within the
Caldeira-Leggett model. The representation (26) consists of a
double sum of classical trajectories, and we show that it is the
difference between these pairs of trajectories that generates
an exponential decay in the Wigner function due to positional
decoherence. Coherent effects due to path interference are
made explicit when projecting this Wigner function in an open
cavity of area A, appropriate to calculate local observables
inside the cavity. We find the first-order quantum correction
due to path interference to the time evolution, which leads to
a universal nonmonotonic form depending on the properties
of the cavity and the bath-coupling parameters. In particular,
the interplay between a coherent enhancement of the sur-
vival probability, coming from correlated trajectories inside
an encounter region and, on the other hand, the decoherence
effect coming from uncorrelated trajectories inside a loop
produces a diminishing of the quantum survival probability
compared with the scenario of vanishing coupling. Our anal-
ysis is completed by calculating the explicit dependence of
this first-order quantum correction with the Ehrenfest-time.
Finally, we emphasize that the results obtained here are valid
for systems with time-reversal symmetry. However, going
beyond one-loop corrections the analysis can be extended to
systems with broken time-reversal symmetry. Future investi-
gations will deal with this scenario.
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