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suggested that FXa or its major receptor, PAR2, plays an 
important role in the pathophysiology of inflammatory 
diseases,8–10 including insulin resistance11 and restenosis 
after balloon angioplasty.12 In addition, a previous report 
demonstrated that cardiomyocyte-specific overexpression 
of PAR2 led to pathologic cardiac hypertrophy associated 
with cardiac fibrosis.13 Furthermore, we have recently 
shown that a PAR2 deletion attenuates vascular inflammation 
and atherogenesis in apolipoprotein E-deficient (ApoE−/−) 
mice.14 Direct FXa inhibitor therapy has been reported to 
have both anti-inflammatory and anticoagulant effects.15 
We have recently reported that rivaroxaban attenuates 

A trial fibrillation (AF) is the most common type of 
arrhythmia encountered in clinical practice. It 
impairs quality of life and increases morbidity and 

mortality.1,2 Previous studies have suggested that inflam-
mation contributes to the pathogenesis of AF.3,4

Accumulating evidence suggests that several coagulation 
proteases, including activated factor X (FXa), play an 
important role not only in the coagulation cascade, but 
also in pro-inflammatory responses through protease-acti-
vated receptors (PARs) in many cell types such as endothelial 
cells, platelets, fibroblasts, and smooth muscle cells.5,6 
PARs constitute a family of G protein-coupled, 7 trans-
membrane domain receptors. The PAR family comprises 
4 members (PAR1 to PAR4) that have a proteolytic cleav-
age-based activation mechanism.7 Previous studies have 
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Background:  Activated factor X (FXa), which contributes to chronic inflammation via protease-activated receptor 2 (PAR2), might 
play an important role in atrial fibrillation (AF) arrhythmogenesis. This study aimed to assess whether PAR2 signaling contributes to 
AF arrhythmogenesis and whether rivaroxaban ameliorates atrial inflammation and prevents AF.

Methods and Results:  In Study 1, PAR2 deficient (PAR2−/−) and wild-type mice were infused with angiotensin II (Ang II) or a 
vehicle via an osmotic minipump for 2 weeks. In Study 2, spontaneously hypertensive rats (SHRs) were treated with rivaroxaban, 
warfarin, or vehicle for 2 weeks after 8 h of right atrial rapid pacing. The AF inducibility and atrial remodeling in both studies were 
examined. Ang II-treated PAR2−/− mice had a lower incidence of AF and less mRNA expression of collagen1 and collagen3 in the 
atrium compared to wild-type mice treated with Ang II. Rivaroxaban significantly reduced AF inducibility compared with warfarin or 
vehicle. In SHRs treated with a vehicle, rapid atrial pacing promoted gene expression of inflammatory and fibrosis-related biomark-
ers in the atrium. Rivaroxaban, but not warfarin, significantly reduced expression levels of these genes.

Conclusions:  The FXa–PAR2 signaling pathway might contribute to AF arrhythmogenesis associated with atrial inflammation.  
A direct FXa inhibitor, rivaroxaban, could prevent atrial inflammation and reduce AF inducibility, probably by inhibiting the pro-
inflammatory activation.
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RNA. Quantitative real-time PCR was performed on an 
Mx3000P (Agilent Technologies, CA, USA) using gene-
specific primers and a Power SYBR Green PCR Master 
Mix (Applied Biosystems, CA, USA). Data are expressed 
in arbitrary units normalized by Glyceraldehyde 3-phos-
phate dehydrogenase.

Statistical Analysis
Numerical values are expressed as means ± standard error 
of the mean (SEM). Comparison of parameters between 
the 2 groups was performed with the unpaired Student’s 
t-test. Differences between multiple groups were analyzed 
using 1-way analysis of variance, followed by Dunnett’s 
post-hoc analysis. P<0.05 was considered significant.

Study 2
Animals and Drug Administration    In Study 2, spontane-

ously hypertensive rats (SHRs) were purchased from 
Japan SLC (Hamamatsu, Japan). Rapid atrial stimulation 
at a frequency of 1,200 beats/min with 0.1-ms rectangular 
pulses was applied to the right atrium of 8-week-old male 
SHRs (n=45) for 8 h to induce electrical and histological 
remodeling using a programmable stimulator. Next, the 
rats were divided into 3 groups: a group treated with riva-
roxaban (2,400 mg/kg of diet/day, orally), a group treated 
with warfarin (0.2 mg/kg body weight/day, orally), and a 
group treated with a vehicle. Treatment was given for 2 
weeks. Rivaroxaban was supplied by Bayer HealthCare 
AG (Berlin, Germany). This study was approved by the 
Committee for Animal Experiments of Tokushima University 
(Reference number: T30-137) and the genetic modification 
experiment safety management Committee of Tokushima 
University (Reference number: 27-67).

AF Induction    We examined the effects of rivaroxaban 
on AF inducibility in an intracardiac electrophysiological 
study that included rapid pacing from the right atrium. 
The pacing pulse used for the induction of AF was rectan-
gular in shape and 10 V (approximately 3-fold the diastolic 
threshold voltage) with a 6 ms width. Burst right atrial 
stimulation with a cycle length of 12 ms for 30 s via the 
distal electrode pair of the catheter was performed to 
induce AF using an electrical stimulator. Burst pacing and 
AF measurement were repeated 3-fold, with a 5-min break 
in between. The induced rhythm was defined as AF when 
a fast atrial irregular rhythm was maintained for more 
than 2 s.

Histology and Real-Time PCR    We used the same meth-
ods used in Study 1. However, after 2 weeks of treatment, 
Masson’s trichrome staining of the left atrium showed 
extremely mild fibrosis and differences among groups were 
not significant (data not shown). Therefore, we evaluated 
the degree of fibrosis in each group after 3 months of treat-
ment. We used age-matched male normotensive Sprague-
Dawley (SD) rats as control (n=5 rats per group).

Statistical Analysis
We used the same method used in Study 1.

Results
Study 1

Physiological and Echocardiographic Characteristics of the 
Mice    Table 1 shows the physiological and echocardio-
graphic characteristics of the mice. There were no signifi-
cant differences in body weight, heart-to-body weight 

atherosclerotic plaque progression and destabilization in 
apolipoprotein E–knockout mice.16

However, it remains unknown whether PAR2-related 
inflammation leads to atrial remodeling and subsequent 
AF. In this study, we assessed whether FXa–PAR2 signal-
ing contributes to AF arrhythmogenesis and whether riva-
roxaban ameliorates atrial inflammation and prevents AF.

Methods
Study 1

Animals and Drug Administration    All experimental pro-
cedures were performed according to the guidelines for 
animal experimentation of the University of Tokushima. 
For Study 1, PAR2-deficient mice (PAR2−/−, C57BL/6J 
background) were originally purchased from Jackson  
Laboratory (California, USA). Eight-week-old male CL57/
B6 mice were purchased from Japan SLC (Hamamatsu, 
Japan). Eight-week-old male PAR2−/− mice (n=12) and 
wild-type (WT) mice (n=14) were infused with angiotensin 
II (Ang II) (2 mg/kg/day) or a vehicle via an osmotic mini-
pump (ALZET model 2004; DURECT, Cupertino, CA, 
USA) for 2 weeks. We measured blood pressure with the 
tail-cuff method before and every week after the Ang II or 
a vehicle infusion and performed transthoracic echocar-
diography. Next, we examined the inducibility of AF in an 
intracardiac electrophysiological study and inflammation-
induced atrial remodeling with a biochemical analysis. 
This study was approved by the Committee for Animal 
Experiments of Tokushima University (Reference number: 
T30-137) and the genetic modification experiment safety 
management Committee of Tokushima University (Refer-
ence number: 27-67).

AF Induction    We examined the effects of PAR2 on AF 
inducibility in an intracardiac electrophysiological study 
with rapid pacing from the right atrium. The pacing pulse 
used for the induction of AF was rectangular in shape and 
5 V (approximately 3-fold the diastolic threshold voltage) 
with a 6-ms width. Burst right atrial stimulation with a 
cycle length of 20 ms for 30 s via the distal electrode pair of 
the catheter was performed using an electrical stimulator 
to induce AF. Burst pacing and AF measurement were 
repeated 3-fold, with a 5-min break in between. The 
induced rhythm was defined as AF when a fast atrial irreg-
ular rhythm was maintained for more than 2 s.

Histology and Real-Time Polymerase Chain Reaction (PCR) 
Each heart was cut along a horizontal plane between the 
lower tips of the left and right atria. The upper portion was 
snap-frozen in an optimal cutting temperature compound. 
Next, the atrium was sectioned serially (5-μm intervals). 
The lower portion was used for assessing gene expression 
of markers related to inflammation and fibrosis.

We evaluated the degree of fibrosis using Masson’s tri-
chrome staining. We also evaluated markers for activated 
form fibroblasts using anti-periostin antibody (ab14041; 
Abcam, Cambridge, UK) and indicator for reactive oxygen 
species (ROS) using anti-nicotinamide adenine dinucleo-
tide phosphate oxidase 4 (NOX4) antibody (14347-1-AP; 
Proteintech, Rosemont, IL, USA), followed by immuno-
histochemical staining with the peroxidase–anti-peroxidase 
technique. Total RNA was extracted from tissues and cells 
using NucleoSpin RNA (MACHEREY-NAGEL GmbH 
& Co. KG., Dueren, Germany). Reverse transcription was 
performed using a QuantiTect Reverse Transcription kit 
(QIAGEN, Hilden, Germany) with 1 μg of total extracted 
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histochemistry in the Atrium    Figure 2A shows the repre-
sentative results of Masson’s trichrome staining of the left 
atrium. The quantitative ratio of the area of fibrosis to the 
area of reference tissue is summarized in Figure 2B. Masson’s 
trichrome staining revealed marked heterogeneous fibrosis 
in the left atrium of WT–Ang II mice. There was less inter-
stitial fibrosis in PAR2−/− –Ang II mice compared with 
WT–Ang II mice.

Atrial gene expression is presented in Figure 3. PAR1 
[F2r] mRNA expression, but not PAR2 [F2rl1] expression, 
was detected in PAR2−/− mice. Collagen1 [Col1a1] and 
collagen3 [Col3a1] mRNA expression levels were remark-
ably higher in WT-Ang II mice than in mice that did not 
receive Ang II infusion. Increased mRNA expression of 
Col1a1 and Col3a1 was attenuated in PAR2−/− mice.

We also evaluated the expression of activated form 
fibroblasts using anti-periostin antibody (Supplementary  
Figure 1). Although increased staining of periostin was 
seen in the left atrium of WT–Ang II mice, it was not 
attenuated in PAR2−/− –Ang II mice (Supplementary 
Figure 1A,B). The mRNA level of periostin [Postn] was 

ratio, and heart rate between the 4 groups. Echocardiogra-
phy revealed no significant differences in left ventricular 
end-diastolic diameter (LVDd) and % fractional shorten-
ing (%FS) between the 4 groups (Table 1). Before Ang II 
infusion, there were no significant differences in systolic 
blood pressure between wild type (WT) and PAR2−/− 
mice. A continuous Ang II infusion caused an elevation in 
systolic blood pressure and heart rate in WT-Ang II and 
PAR2−/− –Ang II mice. However, there were no signifi-
cant differences in these parameters between WT and 
PAR2−/− mice with and without Ang II infusion.

Induction of AF With Right Atrial Burst Pacing    Represen-
tative body-surface and intracardiac electrocardiogram 
recordings before and after right atrial burst pacing are 
presented in Figure 1A. In Figure 1A, burst pacing was 
followed by the induction of AF. Burst pacing induced AF 
in 0 of 7 (0%) WT-vehicle mice. Ang II infusion increased 
the induction ratio to 5/7 (71%). Interestingly, AF was not 
induced in PAR2−/− mice with or without Ang II infusion 
(PAR2−/− –vehicle, 0/6; PAR2−/− –Ang II, 0/6) (Figure 1B).

Collagen Volume Fraction, Gene Expression and Immuno-

Table 1.  Physiological and Echocardiographic Characteristics of the Mice (Study 1)

WT–Vehicle  
(n=7)

PAR2−/− –Vehicle  
(n=6)

WT–Ang II  
(n=7)

PAR2−/− –Ang II  
(n=6) P value

Body weight (g) 25±1 29±3 24±1 28±3 NS

Heart/body weight ratio (g/g) 0.004 0.005 0.005 0.006 NS

SBP (mmHg) 121±5　　 112±6　　 154±8*　 　138±8**

Heart rate (beats/min) 568±25 567±49 652±38 659±36 NS

LVDd (mm)   2.7±0.2   3.0±0.3   2.9±0.1   2.8±0.1 NS

FS (%) 47.0±2.6 47.7±2.9 48.8±2.7 49.2±2.0 NS

*P<0.01 vs. WT–Vehicle, PAR2−/− –Vehicle. **P<0.05 vs. PAR2−/− –Vehicle. Values are presented as means ± SEM. 
Ang II, angiotensin II; FS, fractional shortening; PAR, protease-activated receptor; LVDd, left ventricular end-diastolic 
dimension; NS, not significant; SBP, systolic blood pressure; WT, wild type.

Figure 1.    Representative example of atrial fibrillation (AF) induced in a mouse (Study 1). (A) Representative body-surface and 
intracardiac electrocardiogram (ECG) recordings before and after right atrial burst pacing. Burst pacing was followed by the 
induction of AF. (B) Incidence of AF. Burst pacing induced AF in 0 of 7 (0%) wild-type (WT)–vehicle mice and angiotensin II (Ang 
II) infusion increased the induction ratio in 5 of 7 (71%) rats. No AF was induced in protease-activated receptor 2 deficient 
(PAR2−/−) mice with or without Ang II infusion (PAR2−/− –vehicle 0/6, PAR2−/− –Ang II 0/6). #P<0.05 vs. WT–vehicle group, 
PAR2−/− –vehicle group and PAR2−/− –Ang II group.
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weight than the other 2 groups. Echocardiography revealed 
no significant differences in %FS between the 3 groups. 
SHRs treated with rivaroxaban had a smaller LVDd than 
SHRs treated with vehicle. There were no significant dif-
ferences in the heart-to-body weight ratio, systolic blood 
pressure, heart rate, and other echocardiographic charac-
teristics between SHRs treated with vehicle, warfarin, and 
rivaroxaban (Table 2).

Induction of AF With Right Atrial Burst Pacing    Right 
atrial burst pacing induced AF in 14 of 15 (93%) SHRs 

similar to the results of its immunohistochemistry  
(Supplementary Figure 1C). Furthermore, we evaluated the 
expression of the ROS-generating enzyme, NOX4, using 
anti-NOX4 antibody (Supplementary Figure 1D,E). Increased 
staining of NOX4 was seen in the left atrium of WT–Ang 
II mice; it was attenuated in PAR2−/− –Ang II mice.

Study 2
Physiological and Echocardiographic Characteristics of the 

Rats    SHRs treated with rivaroxaban had lower body 

Figure 2.    Histological findings in the 
left atrium (Study 1). (A) Representative 
results of Masson’s trichrome staining 
of the left atrium. Blue staining indi-
cates interstitial fibrosis. Scale bar= 
20 μm. (B) Quantitative ratio of the area 
of fibrosis to the area of reference 
tissue is shown. Masson’s trichrome 
staining revealed remarkable hetero-
geneous fibrosis in the left atrium of 
the wild-type (WT)–angiotensin II 
(Ang II) mice. There was less interstitial 
fibrosis in the protease-activated 
receptor 2 deficient (PAR2−/−) –Ang II 
mice compared to the WT–Ang II mice. 
**P<0.01 vs. WT–vehicle group and 
PAR2−/− –vehicle group. ##P<0.01 vs. 
PAR2−/− –Ang II group, WT–vehicle 
group, and PAR2−/− –vehicle group.

Figure 3.    Gene expression in the atrium (Study 1). (A,B) In protease-activated receptor 2 deficient (PAR2−/−) mice, mRNA 
expression of protease-activated receptor (PAR)1 (F2r), but not PAR2 (F2rl1), was detected. (C,D) Compared to mRNA expression 
in mice who did not receive angiotensin II (Ang II), mRNA expression of collagen1 (Col1a1) and collagen3 (Col3a1) was remarkably 
higher in wildtype (WT)–Ang II mice. The higher levels of Col1a1 and Col3a1 mRNA expression were attenuated in PAR2−/− mice. 
**P<0.01 vs. WT–vehicle group. *P<0.05 vs. WT–vehicle group. ##P<0.01 vs. PAR2−/− –vehicle group. #P<0.05 vs. PAR2−/− –
vehicle group. §P<0.05 vs. WT–Ang II group.
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tionship between the FXa–PAR2 pathway and AF 
arrhythmogenesis. In this study, we found evidence that 
PAR2 deficiency contributes to lower AF inducibility, 
probably via the suppression of atrial fibrosis in PAR2−/− 
mice. The mechanism of AF observed in Ang II-treated 
mice can be postulated to be reentrant because of an atrial 
conduction disturbance; it was associated with Ang II-
induced atrial interstitial fibrosis. Some previous studies 
showing that PAR2 signaling contributes to cardiovascu-
lar fibrosis13,17 support our findings. A previous study dem-
onstrated that PAR2 is involved in Ang II-induced aortic 
adventitial fibroblast activation.17 Another study reported 
that cardiomyocyte-specific overexpression of PAR2 
results in cardiac fibrosis and enhanced expression of fibro-
sis-related genes such as Tgfb2 and Col3a1.13 In addition, 
a previous in vitro study demonstrated that FXa enhances 
fibroblast proliferation and migration, at least partially via 
the activator protein 1 and nuclear factor-κB pathway.18 

treated with vehicle. The administration of warfarin did 
not significantly change the AF induction ratio (12/15, 
80%) compared to the ratio with vehicle. However, rivaroxa-
ban was associated with significantly lower AF inducibility 
(5/15, 33%) compared with warfarin or vehicle (Figure 4).

Atrial Gene Expression and Immunohistochemistry    Figure 5 
shows atrial gene expression. In SHRs treated with vehicle, 
rapid pacing promoted the gene expression of tumor 
necrosis factor-α [Tnf], monocyte chemoattractant pro-
tein-1 [Ccl2], and transforming growth factor β [Tgfb2] in 
the atrium. Rivaroxaban, but not warfarin, significantly 
reduced expression levels of these genes. Rapid pacing also 
promoted the gene expression of Col1a1 and Col3a1 in the 
atrium. Rivaroxaban significantly reduced expression of 
these genes. In addition, rivaroxaban also significantly 
reduced gene expression of F2r and F2rl1, the major recep-
tors for thrombin and factor Xa.

Increased staining of periostin, a marker for activated 
fibroblasts, was seen in the left atrium of SHR-vehicle and 
SHR-warfarin groups; that was remarkably attenuated in 
the SHR-rivaroxaban group (Supplementary Figure 2A,B). 
In addition, the mRNA level of periostin [Postn] was similar 
to the results of its immunohistochemistry (Supplementary 
Figure 2C). Increased staining of NOX4, ROS-generating 
enzyme, was seen in the left atrium of SHR-vehicle and 
SHR-warfarin groups; that was attenuated in the SHR-
rivaroxaban group (Supplementary Figure 2D,E).

Collagen Volume Fraction in the Atrium    The quantita-
tive ratio of the area of fibrosis to the area of reference 
tissue after 3 months of treatment is summarized in 
Figure 6. Masson’s trichrome staining revealed heteroge-
neous fibrosis in the left atrium of the SHR-vehicle and 
SHR-warfarin groups. Interstitial fibrosis was attenuated 
in the SHR-rivaroxaban group. A few fibrotic foci were 
observed in the age-matched male control rat group.

Discussion
This study demonstrated that Ang II-treated PAR2−/− 
mice had a lower incidence of AF, less fibrotic change, and 
lower mRNA expression of Col1a1 and Col3a1 in the 
atrium compared with WT mice treated with Ang II. It also 
showed that the administration of rivaroxaban signifi-
cantly reduces AF inducibility and gene expression of 
inflammatory and fibrosis-related biomarkers in the atrium 
compared with administration of warfarin or vehicle.

Accumulating evidence suggests that the FXa–PARs 
pathway promotes pro-inflammatory responses in many 
cell types, contributing to the pathogenesis of inflamma-
tory diseases.8–12 However, little is known about the rela-

Table 2.  Physiological and Echocardiographic Characteristics of the Rats (Study 2)

Vehicle  
(n=15)

Warfarin  
(n=15)

Rivaroxaban  
(n=15) P value

Body weight (g) 231±8*　 226±8*　 214±11

Heart-to-body weight ratio (g/g) 0.004 0.004 0.004 NS

SBP (mmHg) 154±17 155±12 153±16 NS

Heart rate (beats/min) 405±46 395±35 391±30 NS

LVDd (mm)   6.85±0.60   6.76±0.45 　　　　　6.43±0.51**

FS (%) 49.12±2.36 49.08±1.38 48.13±2.91 NS

*P<0.01 vs. rivaroxaban. **P<0.01 vs. vehicle. Values are presented as means ± SEM. FS, fractional shortening; 
LVDd, left ventricular end-diastolic dimension.

Figure 4.    Atrial fibrillation (AF) inducibility (Study 2). Right 
atrial burst pacing induced AF in 14 of 15 (93%) spontane-
ously hypertensive rats (SHRs) that received vehicle. Warfarin 
did not significantly change the proportion of SHRs with 
induced AF (12/15, 80%) compared to vehicle, but rivaroxaban 
significantly reduced AF inducibility (5/15, 33%) compared 
with warfarin or vehicle. **P<0.01 vs. vehicle group. #P<0.05 
vs. warfarin group.
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plasma concentrations of pentraxin 3 decreased and those 
of TM increased after the initiation of oral anticoagulant 
therapy with FXa inhibitors in patients with non-valvular 
AF.20 In an in vitro study, FXa and tachyarrhythmias 
acted synergistically to increase the expression of PARs, 
the inflammatory mediators, interleukin-8 and intercellular 
adhesion molecule-1, and endothelial factors such as pro-
oxidative lectin-like oxidized LDL receptor-1 and pro-
thrombotic plasminogen activator inhibitor-1 in human 
atrial tissue. Rivaroxaban effectively prevented FXa-
induced molecular effects in human atrial tissue, particu-
larly during rapid pacing.21 Kondo et al reported that 
rivaroxaban attenuates atrial inflammatory fibrosis by 
inhibiting the activation and upregulation of PAR2 and 
reduced AF inducibility in pressure-overloaded hearts. 
They pointed out the possibility that rivaroxaban has the 
potential to prevent AF.22 Those results are compatible 
with our results. Differences in the 2 studies included: (1) 
we had a warfarin group in addition to a rivaroxaban 
group; (2) we examined AF inducibility in an in vivo AF 
model; (3) we used a model of spontaneous hypertension, 
which differs from the transverse aortic constriction (TAC) 
model; and (4) we examined the contribution of PAR2 
signaling to AF in PAR2−/− mice. Therefore, we believe 
that the AF model in this study was more physiologic and 

These previous findings and this study support our hypoth-
esis that FXa–PAR2 signaling contributes to AF arrhyth-
mogenesis, at least in part via accelerated atrial fibrosis.

In this study, we also showed that the administration of 
rivaroxaban significantly reduces AF inducibility com-
pared with administration of warfarin or vehicle in SHRs. 
In addition, rivaroxaban, but not warfarin, significantly 
reduced gene expression of inflammatory and fibrosis-
related biomarkers. There was a similar degree of extremely 
mild left atrial interstitial fibrosis among the 3 groups after 
2 weeks of treatment. Thus, we evaluated the degree of left 
atrial interstitial fibrosis after 3 months of treatment. We 
found that interstitial fibrosis after 3 months of treatment 
was attenuated in SHRs treated with rivaroxaban when 
compared to that in SHRs treated with warfarin or vehicle. 
As the progression of fibrosis in SHRs is thought to be 
slower than in Ang II-treated mice, a treatment period of 2 
weeks might be too short for assessing histologic changes. 
There are few reports about whether rivaroxaban amelio-
rates atrial inflammation and prevents AF. A recent study 
reported that in patients with chronic non-valvular AF, 
compared with warfarin, rivaroxaban was associated with 
a greater increase in thrombomodulin (TM) levels and a 
trend towards a reduction in matrix metalloproteinase 9 
levels over 24 weeks.19 Another study also reported that 

Figure 5.    Gene expression in the atrium (Study 2). (A–C) In spontaneously hypertensive rats (SHRs) treated with vehicle, rapid 
pacing promoted gene expression of tumor necrosis factor-α (Tnf), monocyte chemoattractant protein-1 (Ccl2), and transforming 
growth factor-β (Tgfb2) in the atrium. Rivaroxaban, but not warfarin, significantly reduced the expression levels of these genes. 
(D,E) Rapid pacing also promoted the gene expression of collagen1 (Col1a1) and collagen3 (Col3a1) in the atrium. Rivaroxaban 
significantly reduced expression levels of these 2 genes. (F,G) Rivaroxaban also significantly reduced the gene expression of 
protease-activated receptor (PAR)1 (F2r) and PAR2 (F2rl1). **P<0.01 and *P<0.05 vs. vehicle group. ##P<0.01 and #P<0.05 vs. 
warfarin group.
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7Role of Protease-Activated Receptor 2 in AF

models causing inflammatory atrial remodeling. Although 
the TAC model and the Ang infusion model were reported 
as mice models of hypertension, we selected the latter for 
Study 1 because we think the latter model is more physio-
logical and close to the clinical situation of hypertension. 
In Study 2, we used SHRs as a more clinically physiological 
hypertension model in rats. It is reported that the renin-
angiotensin-aldosterone system (RAAS) has been impli-
cated in the pathogenesis of hypertension in SHRs.30 In 
addition, a previous study reported that the level of 
expressed mRNA of the cardiac RAAS in SHRs was 
higher than that in normotensive controls.31 Furthermore, 
it is reported that an angiotensin II antagonist prevents 
electrical and structural remodeling in a rapid atrial pacing 
dog model.32,33 These reports suggest that the renin-angio-
tensin system is activated in a rapid atrial pacing model. 
Thus, we believe that RAAS activation is at least one of 
the common mechanisms for 2 different types of hyper-
tension associated with atrial inflammatory remodeling in 
Study 1 and Study 2.

One clinical implication of this study is that direct oral 
anticoagulant therapy might be effective in preventing 
both AF and thrombotic events in patients at high risk for 
AF who do not have evidence of AF. Several studies have 
reported that CHADS2 (congestive heart failure, hyperten-
sion, age >75 years, diabetes mellitus, and previous stroke/
transient ischemic attack [doubled]) and CHA2DS2-VASc 
(congestive heart failure, hypertension, age ≥75 [doubled], 
diabetes mellitus, prior stroke or transient ischemic attack 
[doubled], vascular disease, age 65–74, female) scores may 
predict the risk of stroke or thromboembolic events in the 
absence of AF.34–36 Furthermore, those scores have also 
been reported to predict new-onset AF.37,38 Taking the results 
of this study and previous findings into consideration, 

closer to practical clinical conditions than the previous 
study’s model.22 Based on the results of our study and 
previous studies, we speculate that rivaroxaban might 
attenuate atrial remodeling, at least in part by inhibiting 
pro-inflammatory activation via PAR2.

Previous studies reported that PAR2 antagonists might 
be useful for treating various inflammatory diseases. They 
might also be effective in reducing AF. Chung et al 
reported that GB83, an antagonist of PAR2, significantly 
decreased migratory capability of atrial fibroblasts, pro-
collagen type I production, and rate of human atrial fibro-
blast proliferation.23 Imano et al suggested that FSLLRY, 
another PAR2 antagonist, and rivaroxaban are able to 
suppress the generation of reactive oxygen species induced 
by intermittent hypoxia through the inhibition of PAR2 
in a mouse model and consequently attenuate cardiac 
remodeling.24 However, there are no data about whether 
PAR2 antagonists prevent AF; thus, a more detailed inves-
tigation needs to be conducted. In contrast, many studies 
have reported that the activation of PAR2 provokes arterial 
and venous dilation in humans.25–27 PAR2 is highly 
expressed in endothelial cells and its activation causes 
endothelium-dependent and endothelium-independent 
relaxation of human vessels in pathological conditions in 
which inflammatory cytokines are released.28,29 Those data 
suggest that PAR2 plays a role in regulating systemic and 
local hemodynamics. In other words, PAR2 may help 
preserve blood supply to organs and blood pressure. PAR2 
may also be protective against ischemic injury to multiple 
organs in diseases related to inflammatory cytokines. 
Therefore, we need more research about whether particular 
types of ischemia-related diseases can be aggravated by the 
use of strong PAR2 antagonists before their clinical use.

In the present study, we used 2 types of hypertension 

Figure 6.    Collagen volume fraction 
in the atrium (Study 2). (A) Represen-
tative results of Masson’s trichrome 
staining of the left atrium of rats that 
received each drug for 3 months (n=5 
rats per group). Scale bar=20 μm. (B) 
The quantitative ratio of the area of 
fibrosis to the area of the reference 
tissue is summarized. Masson’s tri-
chrome staining revealed heteroge-
neous fibrosis in the left atrium of the 
spontaneously hypertensive rats 
(SHR)-vehicle and SHR-warfarin 
groups. Interstitial fibrosis was atten-
uated in the SHR-rivaroxaban group. 
A few fibrotic foci were observed in 
the age-matched male control rat 
group. **P<0.01 vs. control group. 
##P<0.01 vs. rivaroxaban group.
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of Tokushima University (Reference number: 27-67).
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direct FXa inhibitors may be effective in preventing 
new-onset AF and subsequent thromboembolic events in 
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who do not have AF. Furthermore, in our preliminary 
study, plasma concentration of rivaroxaban was slightly 
lower than the level of anticoagulant action in SHRs 
treated with the same dose of rivaroxaban used in the present 
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Study Limitations
There were several limitations to this study. First, we did 
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Conclusions
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