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In this paper, we focus on recognizing epileptic seizure from scant EEG signals and propose a novel transfer enhanced
α-expansion move (TrEEM) learning model.*is framework implants transfer learning into the exemplar-based clustering model
to improve the utilization rate of EEG signals. Starting from Bayesian probability theory, by leveraging Kullback-Leibler distance,
we measure the similarity relationship between source and target data. Furthermore, we embed this relationship into the
calculation of similarity matrix involved in the exemplar-based clustering model. *en we sum up a new objective function and
study this new TrEEM scheme earnestly. We optimize the proposed TrEEMmodel by borrowing the mechanism utilized in EEM.
In contrast to other machine learning models, experiments based on synthetic and real-world EEG datasets show that the
performance of the proposed TrEEM is very promising.

1. Introduction

Epilepsy is a kind of chronic disease, which is caused by the
sudden abnormal discharge of brain neurons, resulting in
transient brain dysfunction. Usually patients themselves have
no obvious impression of the epileptic seizure process. For
this reason, doctors can only diagnose the patient’s condition
according to the patient’s family members or other personnel
present during the epileptic seizure in the past. However, the
accuracy of this manual diagnosis method is low. *e
pathogenesis of epilepsy is mainly manifested by abnormal
neural discharge and abnormal brain waves. Although
medical imaging, such as Computed Tomography (CT),
magnetic resonance imaging (MRI), functional magnetic
resonance imaging (FMRI), Single-Photon Emission Com-
puted Tomography (SPECT), Positron Emission Computed
Tomography (PET), has made great progress over the years,
and the major diagnostic method of epilepsy is based on
electroencephalogram (EEG). More specifically, PET and
fMRI cannot be used as common technical means because of
their technical requirements and costs. In addition to the high
cost, MRI cannot judge the nonstructural lesions as well.
Invasive cortical electroencephalogram (ECoG) requires

craniotomy and implantation of electrodes, which has a high
risk; and noninvasive EEG and MEG can provide functional
and structural detection. Taking all these into account, EEG
has been widely concerned in more and more theoretical
researches and clinical practice because of its low cost,
convenient signal acquisition, and noninvasiveness.

*e research on diagnosis of epilepsy through EEG
signals has been a hot topic in related fields, compared with
manual diagnostic method, and machine learning methods
are less time-consuming and more accurate [1–8]. Nu-
merous machine learning models have been used to rec-
ognize epileptic EEG signals, such as support vector learning
[9, 10], fuzzy system [1, 3], naı̈ve Bayes [11], and exemplar-
based clustering model [2, 12, 13]. *e traditional machine
learning process is usually divided into the three following
steps, as shown in Figure 1: (1) EEG signal preprocessing
improves signal to noise ratio and provides high-quality
input signal for spike detection. (2) According to the
characteristics of spikes, artificial design features can reduce
the signal dimension and highlight the difference between
spikes and background signals. (3) According to the ob-
tained features, spike signals are detected by the machine
learning mechanism involved.
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In summary, one of the significant issues in the field of
processing EEG signals by machine learning technique is the
insufficient training data. We briefly introduce some
mechanisms for epileptic diagnosis through EEG signals
here. Jiang [1] integrates transductive transfer learning,
semisupervised learning, and Takagi-Sugeno-Kang (TSK)
fuzzy system to take full advantage of the scant training data.
Zhu [5] proposed dic-mv-fcm, which automatically evalu-
ates the importance and weights of each view and then
performs weighted multiview fuzzy clustering based on
FCM framework to achieve accurate fuzzy partition. Bi [2]
proposed a novel model called FEEM for incomplete EEG
signal, which first compresses the potential exemplar list and
thus reduces the scale of pairwise similarity matrix. How-
ever, to make better use of training data, we still need to do a
lot of work, and we focus on this issue in this paper as well.
Specifically, this paper aims at recognizing epileptic seizure
from scant EEG signals.

Transfer learning is believed to be an effective strategy to
solve problems caused by insufficient training data
[1, 5, 13, 14]. Assume that there are two datasets from similar
source: one has plenty of features and details and is easily to
be learned, while the other one lacks details and is hard to be
learned. Transfer learning offers an idea of leveraging the
description of former data to study the latter data. *e
sufficient well-described data is called source data, while the
insufficient rough data is named as target data. Accordingly,
transfer learning utilizes source data to improve the learning
result of target data. Under this framework, effectively
measuring the relationship between source data and target
data is an important part and has a great influence on the
efficiency of relevant study model. *us, starting from
Bayesian probability theory, this paper first extends the
concept of similarity matrix in the exemplar-based clus-
tering model; and this strategy also broadens the application
range of the algorithm to transfer learning scenario. By
leveraging Kullback–Leibler distance, we propose a new
transfer enhanced α-expansion move learning model called
TrEEM.*e detailed contributions of this paper are listed as
follows:

(i) According to the transfer learning theory
[1, 5, 13, 14], considering the similarity between
source and target data, the proposed model TrEEM
should keep the target data close enough to the

source data. *eoretically supported by the infor-
mation theory, based on the Bayesian probability
framework, TrEEM utilizes KL distance to measure
the similarity between source data and target data
and minimizes this KL distance in the optimization
process.

(ii) In the scenario of recognizing epileptic seizure, we
aim at diagnosing the actual patient. As TrEEM is
built on graph theory and pairwise similarity matrix
and is an exemplar-based clustering model, this
model selects exemplar from actual data. *is ad-
vantage fits the requirements in the relevant sce-
nario here.

(iii) TrEEM embeds KL distance between target data and
source data into the calculation of similarity matrix.
*us, the optimization mechanism utilized in EEM
can be directly used to solve the new target function
of TrEEM. In detail, we leverage α-expansion move
optimization algorithm which performs better than
LBP [15, 16] algorithm.

*e paper is organized as follows. *e related works are
discussed in Section 2. We illustrate the target function and
optimization mechanism of the proposed TrEEM in Section
3. *e simulation experimental results and analysis are
shown in Section 4. We make a conclusion in Section 5.

2. Related Works

Many researchers are committed to using machine learning
technology to classify EEG signals, including SVM, fuzzy
system, näıve Bayes, and exemplar-based clustering model.
In this section, we illustrate two popular learning frame-
works, namely, Enhanced α− Expansion Move (EEM) and
TSK fuzzy system. EEM is a widely used exemplar-based
learning model, and TSK fuzzy system is a typical fuzzy-rule-
based clustering model.

2.1. Enhanced α− Expansion Move. Consider a dataset
X � x1, x2, . . . , xN􏼈 􏼉 ∈ RN∗D; N is the total number of
D-dimensional data points. E is the output, whereas the
element E(xi) refers to the exemplar for each xi.

*e target function of a typical exemplar-based clus-
tering model is defined as follows [12, 15]:

Feature extraction

EEG signal
process

EEG signal
acquisition

Machine learning
model

Figure 1: General steps of machine learning model processing EEG signals.
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E

􏽘

N

p�1
s xp, xE(p)􏼐 􏼑 − 􏽘

N

p�1
􏽘

N

q>p
θp,q(E(p), E(q)), (1)

where S is the similarity matrix of the dataset, and the el-
ements are defined as S(i, j) � − ‖xi − xj‖

2; θp,q(E(p), E(q))

is shown as follows:

θp,q(E(p), E(q)) �

M, E(p) � q, E(q)≠ q,

orE(q) � p, E(p)≠p,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(2)

In [15], the authors regard the above target function as
the energy function of Markov random field (MRF) and
verifies the below theorem.

Theorem 1. When, for ∀p, q, E(p), E(q), α ∈ 1, 2, . . . N{ },
equation (3) is verified, the graph-theory based framework
can be used to optimize the target function of the exemplar-
based clustering model as shown in equation (1).

θp,q(E(p), E(q)) + θp,q(α, α)≤ θp,q(E(p), α) + θp,q(α, E(q)).

(3)

Enhanced α-Expansion Move (EEM) framework opti-
mizes the above target function by an improved algorithm
[15]. In more detail, theoretically supported by *eorem 1
and graph-cuts [16] algorithm, EEM expands the active
region of candidate exemplar from a single data to the whole
dataset. EEM defines the second optimal candidate exemplar
S(i) for xi as below, which is selected from the whole dataset
as mentioned above.

S(i) � argmax
s∈(E/l)

s xi, xs( 􏼁, ∀xi ∈ Xl, (4)

where Xl � xi|E(i) � l􏼈 􏼉 is the dataset among which the
exemplar is l, and s ∈ (E/l) represent other exemplars in E

expect for l. In this way, the optimization mechanism be-
haves more rapidly and effectively.

EEM algorithm is one of the most popular exemplar-
based clustering models, and it performs effectively and
steadily in numerous simulation experiments involved
[2, 12–15]. Scientists have applied this model for data stream,
constrained supervised learning, and EEG signal processing.

2.2. TSK Fuzzy System. TSK fuzzy system is a rule-based
system and it is widely used as a typical fuzzy system model
for both classification and clustering. Generally, the kth TSK
fuzzy rule for K fuzzy rules can be described as Rk.

IF x1 isA
k
1∧x2 isA

k
2∧ · · ·∧xN isA

k
N,

THENf
k
(x) � p

k
0 + p

k
1x1 + · · · + p

k
NxN,

(5)

where Ak
i is a fuzzy set subscribed by the input xi for the kth

fuzzy rule and ∧ is a fuzzy conjunction operator. Each rule is
premised on the input data X � x1, x2, . . . , xN􏼈 􏼉 ∈ RN∗D

which is mapped to a singleton fk(x). *us, the output of
the TSK fuzzy system is defined as

y
0

� 􏽘
K

k�1
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(x)

􏽐
K
m�1 μ
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(x)

� 􏽘
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(x), (6)

where

μk
(X) � 􏽙

N

i�1
μAk

i
xi( 􏼁,

􏽥μk
(X) �

μk
(X)

􏽐
K
m�1 μ

m
(X)

,

(7)

where μAk
i
(xi) is the membership grade that can be obtained

using Gaussian membership function, and the other in-
volved parameters also could be estimated using clustering
techniques and other partition methods [1, 3–5].

Accordingly, based on the relevant theory of TSK fuzzy
system, the target model above in equation (6) converts to a
parameter learning process of the corresponding linear
regression model. In line with recent achievements, TSK
fuzzy model has strong interpretability and robustness. For
this reason, this TSK fuzzy model is widely used among
numerous intelligent medical diagnosis systems, including
recognizing epileptic seizure from EEG signals.

In this section, we briefly introduce two popular machine
learning clustering frameworks used in the recognition of
EEG signals, namely, EEM and TSK fuzzy system. *e
detailed descriptions are shown in Table 1. Considering the
scenario of diagnosing epileptic patients from some healthy
patients based on their EEG signals, we focus on EEM
clustering model in the rest of this paper.

3. Transfer Enhanced α-Expansion Move
Learning Model

In this section, we first analyze the theoretical basis of
TrEEM from Bayesian probabilistic framework. Second, we
induce the novel algorithm TrEEM in detail. *en, con-
sidering the optimization algorithm utilized in EEM algo-
rithm, we optimize target function as well. Generally, the
structure of this novel model is shown in Figure 2. See
Figure 2; on the basis of source-data-based exemplar set,
starting from Bayesian probability framework, TrEEM first
imbeds the distance between source data and target data in
the calculation of similarity matrix. *is distance is mea-
sured by Kullback-Leibler distance. *en we induce the
novel target function for TrEEM. Finally, TrEEM directly
calls the optimization algorithm in EEM to solve this model
and obtain the target-data-based exemplar set.

Besides, we list the frequently used notations in Table 2.

3.1. +eoretical Preliminary of TrEEM Scheme. As mentioned
before, transfer learning considers two datasets from similar
source, namely, source data and target data; and the rela-
tionship between source data and target data is considered as
a significant factor in this model (see Table 2); in the following
part, we define the sufficient well-described source data as 􏽥X.
After study, we obtain the source-data-based exemplar set
denoted as Ls in the above table. *en the insufficient target
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data is defined asX above. Moreover, probabilistic framework
contributes to measuring this relationship as well. *erefore,
supported by Gaussian probability hypothesis and exemplar-
based cluster mechanism, we built the pairwise probabilistic
relationship of target data by leveraging the corresponding
similarity as follows:

p xi, xE(i)􏼐 􏼑 �
1

σ
���
2π

√ exp
s xi, xE(i)􏼐 􏼑

2σ2
⎛⎝ ⎞⎠, (8)

where s(xi, xE(i)) is the similarity between xi and its current
exemplar xE(i) and parameter σ is a standard deviation from
Gaussian probability hypothesis.

As to the exemplar set, we should exclude the situation
when an exemplar appoints other exemplars among current
exemplar set except for itself as its own exemplar. Conse-
quently, Bayesian posterior probability of an exemplar set is
defined as follows:

p(E) �
1

σ
���
2π

√ · exp − 􏽘
N

m�1
􏽘

N

n�1

θm,n(E(m), E(n))

2σ2
⎛⎝ ⎞⎠, (9)

and θm,n(E(m), E(n)) here is the same as the definition
shown in equation (2).

Accordingly, under Bayesian probabilistic framework
and the discussion of EEM algorithm in Section 2, the
objective function in equation (1) is equal to the following
function:

max
E

Q(E) � 􏽙
N

i�1
ln p xi, xE(i)􏼐 􏼑ln p(E)

� 􏽘
N

i�1
ln p xi, xE(i)􏼐 􏼑 + ln p(E).

(10)

In conclusion, equation (10) defines another form of the
target function of EEM by introducing Bayesian probabi-
listic framework and Gaussian probability hypothesis.
Starting from this target function, we would be able to design
TrEEM for recognition of epileptic EEG signals in the next
subsections.

3.2. Design of TrEEM Scheme. According to information
theory, the Kullback-Leibler distance (KL distance) is a
natural distance between two real probability distributions
and it has been widely applied to solve numerous issues
[17–19]. *e definition of KL distance is shown below.

Definition 1. Consider two probability distributions as P
and Q; the KL distance from P to Q is as follows:

DKL(‖PQ) � 􏽘
x∈X

P(x)ln
P(x)

Q(x)
, (11)

where X � x1, x2, . . . , xN􏼈 􏼉 is the input data.

Table 1: Descriptions of two popular machine learning algorithms used in recognition of EEG signals.

Algorithms *eoretical
basis Descriptions Optimization frameworks

EEM Graph theory Select exemplar from actual data, do not need to
preset the cluster number

Enhanced graph-cuts optimization algorithm,
expand the candidate region

TSK Fuzzy system Rule-based learning model, strong interpretability
and robustness

Parameter learning process of corresponding linear
regression model

Similarity matrix

Exemplar-based clustering
technique

Euclidean distanceTarget data

Source data

Source-data-based
exemplar set

Bayesian probabilistic
framework

Target-data-based
exemplar set

Optimization
algorithm

Transfer similarity
matrix

Figure 2: Structure of TrEEM algorithm.

Table 2: Involved notations and descriptions.

Notations Descriptions
X � x1, x2, . . . , xN􏼈 􏼉 ∈ RN∗D Target data
􏽥X � 􏽥x1, 􏽥x2, . . . , 􏽥xNs

􏽮 􏽯 ∈ RNs∗D Source data
S � (s(xi, xj)) Pairwise similarity matrix
Ls Source-data-based exemplar set

Ls(i)
Source exemplar for target sample

xi

E Target-data-based exemplar set
E(i) Exemplar for target sample xi
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What is worth mentioning is the fact that KL distance is
an asymmetric measurement, namely, DKL(P‖Q)≠DKL

(Q‖P), according to Definition 1.
Furthermore, given Ls as a possible exemplar set, Ls(i) is

the best exemplar for xi among current exemplar set Ls. As
discussed above, we also define Ls(xi) under Bayesian
probabilistic framework as follows:

Ls(i) � argmax
l∈Ls

p xi, 􏽥xl( 􏼁, (12)

where p(xi, 􏽥xl) is obtained from equation (8). In transfer
learning, actually two datasets are involved, that is, source
data and target data. In equation (12), note that the first xi is
from the target data, and the second 􏽥xl is from the possible
exemplar set, namely, from the source data. *us, see Ta-
ble 2; to make the distinction clear, the symbol 􏽥xi represents
the source data, while xi stands for the target data in the rest
of this paper.

Although the target data is not exactly same as source
data, according to those theoretical analyses of transfer
learning, the source-data-based learning model and results
should contribute to the learning of new target data as well
[3, 4, 20–22]. Otherwise, it will become negative transfer

learning, which is not under discussion in this paper. Ac-
cordingly, we believe the target-data-based exemplar that is
set to be evaluated is supposed to be similar to the source-
data-based exemplar set. In this section, we measure the
difference between target-data-based exemplar set and
source-data-based exemplar set by the aforementioned KL
distance with the definition shown in Definition 1. To be
specific, in the process of designing the TrEEM learning
model, we minimize the difference of target exemplar E and
source exemplar set Ls by controlling the KL distance be-
tween them. *e structure of TrEEM is shown is Figure 2 in
detail. In view of this goal, on the basis of the probabilistic
target function in equation (10) of EEM, we build the novel
target function for the proposed TrEEM model as follows:

maxQ(E) �
􏽑

N
i�1 ln p xi, xE(i)􏼐 􏼑ln p(E)

λDKL Ls

���� E􏼐 􏼑,
(13)

where E is the target-data-based exemplar set to be obtained
and Ls represents the source-data-based exemplar set, as
shown in Table 2. λ is the regularization parameter. In terms
of maximum a priori (MAP) principle and combining
Definition 1 and equation (12), (13) becomes

maxQ(E) � 􏽘
N

i�1
ln p xi, xE(i)􏼐 􏼑 + ln p(E) − λ􏽘

N

i�1
p xi, 􏽥xLs(i)􏼐 􏼑 ln p xi, 􏽥xLs(i)􏼐 􏼑 − ln p xi, xE(i)􏼐 􏼑􏽨 􏽩. (14)

Observing equation (14), we can find that the values of
the second and third terms belong to the same magnitudes;
hence, the value of λ will not be large and the specific de-
termination strategy will be discussed in Section 4.

Introducing the definitions of p(xi, xE(i)), p(xi, 􏽥xLs(i)),
and p(E) in equations (8) and (9) and discarding the
constant terms, equation (14) can be simplified into the
following equation:

maxQ(E) � ln p(E) + 􏽘
N

i�1
1 + λp xp, 􏽥xLs(p)􏼐 􏼑􏽨 􏽩ln p xi, xE(i)􏼐 􏼑.

(15)

Comparing equations (15) and (10), we conclude that
they are similar in structure. According to *eorem 1 in
Section 2, TrEEM’s target function also can be solved by
graph-cuts mechanism. Consequently, we will discuss the
optimization mechanism step by step in the next subsection.

3.3. Optimization Mechanism of the TrEEM Scheme. As
mentioned before, the novel target function in equation (15)
is similar to that of EEM algorithm under Bayesian prob-
abilistic framework, so the optimization mechanism utilized
in the EEM algorithm is supposed to be helpful in solving the
novel target function. However, we need to deal with the
difference between these two models firstly.

In detail, we redefine the similarity relationship of target
data by imbedding source-data-based exemplar set Ls.

Specifically, we single out the suitable exemplar from Ls for
target sample xi by equation (12) and build the new pairwise
transfer similarity matrix St � (st(xi, xj)) according to the
new measurement in the following equation:

st xi, xj􏼐 􏼑 � − 1 + λp xi, 􏽥xLs xi( )􏼒 􏼓􏼔 􏼕d xi, xj􏼐 􏼑, (16)

where d(xi, xj) � ‖xi − xj‖
2 is the Euclidean distance be-

tween samples xi and xj, λ is the regularization parameter,
􏽥xLs(xi)

refers to the exemplar singled out from source data. By
introducing this new definition of similarity relationship, the
target function equation (15) of TrEEM is equal to equation
(10) in structure. Meanwhile, the constraint condition in
*eorem 1 is true for TrEEM model as well. *erefore, the
optimization mechanism of EEM algorithm is also suitable
for the proposed TrEEMmodel; and the novel model TrEEM
is described in detail in Algorithm 1.

EEM utilizes α-expansion move to optimize its learning
model. As discussed above, the mechanism is also suitable
for the proposed TrEEM model. We analyze this Enhanced
α-Expansion Move optimization mechanism step by step
here. Firstly, as the target functions shown in both equations
(15) and (10) also can be defined as the energy function of
MRF, we consider this optimization process as an energy
reduction process of the MRF. In general, we start from the
change values of energy to decide whether to accept new
exemplar for a sample. Secondly, the improved optimization
mechanism is designed to broaden the effective field when
changing the sample’s exemplar.*at is to say, assume that a
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sample’s current exemplar is abandoned; it will search all the
rest exemplars for a new exemplar. *is new alternative
exemplar is defined as follows:

A(i) � argmax
a∈(E/l)

s xi, xa( 􏼁, ∀xi ∈ Xl, (17)

where l is the original exemplar for xi, E is current exemplar
set, and a ∈ (E/l) is the obtained alternative exemplar. By
introducing this alternative exemplarA(i) for xi, we enhance
the optimization efficiency.

Note that TrEEMmodel redefines the similarity matrix
as equation (16). So, the following discussion is based on
the similarity matrix St � (st(xi, xj)). Apparently, the
optimization mechanism would consider two cases;
namely, xl is among current exemplar set or is not among

current exemplar set. We analyze these two cases step by
step in the next subsections.

3.3.1. Case I. xl is a current exemplar.
Obviously, in the process of optimization, this current

exemplar xl may be abandoned. As previously analyzed,
whether to keep xl in the ultimate exemplar set is decided by
the reduction values of energy function calculated by the
target function in equation (15).

Specifically, if xl is accepted as an exemplar, the energy of
themodel remains unchanged, and the reduction value is equal
to 0. Otherwise, if xl is not accepted, all samples whose ex-
emplars are l would redetermine their exemplars; these samples
are defined as Xl � xi|E(i) � l􏼈 􏼉. *eoretically supported by
the related analysis in [2, 12, 14, 15], new exemplar for xi ∈ Xl

Input: Target dataset X � x1, x2, . . . , xN􏼈 􏼉 ∈ RN∗D, source data 􏽥X � 􏽥x1, 􏽥x2, . . . , 􏽥xNs
􏽮 􏽯 ∈ RNs ∗D, source-data-based exemplar set Ls,

self similarity d(xi, xj), regularization factor λ, σ.
Output: Valid target-data-based exemplar set E(N).

(1) for xi ∈ X do
(2) single out the nearest exemplar Ls(i) for xi from source-data-based exemplar set Ls based on equation (12).
(3) compute probabilistic Euclidean similarity p(xi, 􏽥xLs(i)) between xi and Ls(i).
(4) end
(5) for xi ∈ X do
(6) calculate transfer similarity matrix St � (st(xi, xj)) by new probabilistic similarity p(xi, 􏽥xLs(i)) according to equation (16).
(7) end
(8) call the optimization process of EEM as shown in Algorithm 2.

ALGORITHM 1: Transfer Enhanced α-Expansion Move learning model.

Input: similarity matrix S, dataset X � x1, x2, . . . , xN􏼈 􏼉 ∈ RN∗D, maximum number of iteration M

Output: valid exemplar set E(N).
(1) Randomly generate expansion order o.
(2) Let t � 1;
(3) for e ∈ o do
(4) if e ∈ E then
(5) compute Rin, Rl

in by equations (18), (19)
(6) if Rl

in > 0 then
(7) for ∀xi ∈ Xe, set E(xi) � A(i)

(8) end
(9) else
(10) compute Rout, Re

out, Rl
out by equations (20), (21), (22)

(11) if Rl
out >Re

out then
(12) for ∀xi ∈ X/e

e,l, set E(xi) � l

(13) else
(14) for ∀xi ∈ Xe, set E(xi) � A(i)

(15) end
(16) if Rout > 0 then
(17) Accept the new exemplar l

(18) end
(19) end
(20) t� t + 1
(21) end
(22) Until convergence

ALGORITHM 2: Optimization model of Enhanced α-Expansion Move algorithm.
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would be A(i) as shown in equation (17). *us, the energy
reduction Rl

in should be computed by the following equation:

R
l
in � 􏽘

xi∈Xl

s xi, xA(i)􏼐 􏼑 − s xi, xl( 􏼁􏼐 􏼑. (18)

*en, we take the greater value of 0 and Rl
in as the ul-

timate energy reduction for this case, as defined in the
following equation:

Rin � max 0, R
l
in􏽮 􏽯. (19)

Namely, if Rl
in is the ultimate energy reduction, xi ∈ Xl

change their exemplars to A(i). Otherwise, the current
exemplar set is convincing and remains unchanged.

3.3.2. Case II. xl is not a current exemplar.
In this case, we define the current exemplar of xl as xe.

When optimizing this situation, we firstly pretend to con-
sider xl as a new alternative exemplar; namely,
E′ � E, E′(xl) � l. *en, similar to the analysis in case I,
whether to accept xl as ultimate exemplar is decided by the
reduction values of energy function. In detail, if xl is ac-
cepted as a feasible exemplar, some samples would change
their exemplar from xe to xl. *ese samples are defined as
X/e,l

e � xi|s(xi, xl)> s(xi, xe)􏼈 􏼉. *us, the corresponding en-
ergy reduction is defined as follows:

R
l
out � 􏽘

xi∈X/e,l
e

s xi, xl( 􏼁 − s xi, xe( 􏼁( 􏼁.
(20)

On the other hand, may be current exemplar set E′ is not
convincing, so all samples would be certain to redetermine
their exemplars including xl. As discussed before, the new
exemplars for these samples are defined by equation (17),
and the resulting energy reduction is listed as follows:

R
e
out � 􏽘

xi∈Xe

s xi, xA(i)􏼐 􏼑 − s xi, xe( 􏼁􏼐 􏼑. (21)

Remember that equations (20) and (21) are based on the
assumption that E′ � E, E′(xl) � l. Considering this, the
energy reduction caused by xl which is not a current ex-
emplar should be

Rout � s xl, xl( 􏼁 − s xl, xe( 􏼁 + max􏽘
l∈E

R
e
out, R

l
out􏽮 􏽯. (22)

To sum up, the optimization mechanism is shown below
in detail.

3.4. Model Complexity. *e similarity matrix is calculated
according to the Euclidean distance; s(xi, xj) � − ‖xi − xj‖

2.
So, the scale of the similarity matrix is N2; note that the
amount of target data is not big. In the optimization process,
we directly utilize the α-expansion move, which has O(N2)

time complexity. For the proposed TrEEM, source-data-
based exemplar set is actually one of the inputs and is out of
the scope of the time complexity analysis of TrEEM here.
Although we adopt EEM to obtain the source-data-based
exemplar set L(s), many other clustering models could be

helpful. TrEEM needs to select Ls(i) from the source-data-
based exemplar set in the first step, and this procedure has
the time complexity of O(N). In summary, the time com-
plexity of TrEEM is O(N2) overall. Compared with other
state-of-the-art transfer learning frameworks, it is very
acceptable.

4. Experimental Results

To comprehensively evaluate the TrEEM model, we have
conducted several experiments based on both synthetic and
real-world datasets. For comparison, we also perform
comparison with other different machine learning mecha-
nisms, namely, EEM [15], multiclass SVM [23], TSK fuzzy
system [24], and TSC [25] in the experiments. In this section,
we will carefully analyze these experimental results.

4.1. Preparation. Before inputting the TrEEM model, we
need to preprocess the original nonstationary EEG sig-
nals [1–3]. Usually, the features of EEG signals include
time-domain features, frequency-domain features, and
time-frequency features. In short, in time-domain
analysis, statistics component features of the original
EEG signals will be analyzed [26]. In frequency-domain
analysis, power spectrum analysis and Short-Time
Fourier Transforms (STFT) [27, 28] are commonly used.
In time-frequency analysis, time domain and frequency
domain are simultaneously extracted from high-dimen-
sional and nonlinear EEG signals.

Various methods have been commonly used to extract
EEG signals’ features, including wavelet [29, 30], KPCA
(Kernel Principal Component Analysis) [1, 2], and LDA
(Linear Discriminant Analysis). In line with the experiments
setting in [1–3], we use two feature extraction methods in
this section, that is, KPCA and wavelet.

Besides, we use both synthetic and real-world datasets in
this section. Firstly, we randomly generate 300 two-di-
mensional data points as 3 classes, shown in Figure 3. *en,
we also choose Bonn EEG dataset [1, 2] as real-world data.
*e Bonn dataset is from the University of Bonn, Germany
(http://epileptologie-bonn.de/cms/upload/workgroup/leh-
nertz/eegdata.html), and has five classes. Each class (A to E)
contains 100 signal channel EEG segments of 23.6 s dura-
tion. *e sampling rate of all the datasets was 173.6Hz. Each
sample has 6 attributes. Table 3 lists a brief description of this
dataset.

In addition, we examine the involved experimental re-
sults from two performance indices, namely,
RandIndex(RI)[2, 31] andPurity. Assume that N is the total
number of data points; we give the definitions of them below.
*at is, RI is shown in the following equation:

RI �
f00 + f11

(N(N − 1)/2)
, (23)

where f00 is the amount of data whose cluster is in line with
their class, while f11 is the amount of those data whose
cluster is inconsistent with their class. Also Purity is defined
in the following equation:
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Purity(E, C) �
1
N

􏽘
k

maxj ek ∩ cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (24)

where E � e1, . . . , eN􏼈 􏼉 is the cluster result obtained by the
learning model, while C � c1, . . . , cN􏼈 􏼉 is the real data label
set.

In all, the experiments are implemented in 2010a Matlab
on a PC with 64-bit Microsoft Window 10, an Intel (R) Core
(TM) i7-4712MQ, and 8GB memory.

4.2. Results Analysis. As mentioned before, four machine
learning methods are involved in this section, namely, EEM,
multiclass SVM, TSK-FS, and the proposed TrEEM algo-
rithm. *ere is no need to preset the cluster number in
advance for EEM and TrEEM. In fact, it is a huge advantage
for all exemplar-based clustering frameworks, whereas
cluster number is an important parameter for TSK-FS.
Multiclass SVM and TSC are two typical classification
methods. Both EEM and TrEEM need parameter self-sim-
ilarity d(xi, xi). For multiclass SVM, in line with [23, 32], we
choose Gaussian kernel function. In TSK-FS, usually the
number of clusters is set to be equal to the number of fuzzy
rules. Also, TSC need to preset the number of clusters. We
follow the parameter setting strategy in relevant papers here.
Besides, 5-fold cross validation is used to search the optimal
parameters; and Table 4 lists brief introductions of these
involved methods and the parameter searching range.

To construct the transfer learning scenario, for both
synthetic and real-world EEG signal datasets, we randomly
choose 80% data as source data and the remaining 20% as
target data. For statistical analysis, in the experiment pro-
cedure, each algorithm is repeatedly executed 10 times; and
we record the average performance and the corresponding
standard deviation of RI and Purity. Furthermore, to deeply
observe different extraction methods of EEG signals, we use
both KPCA and wavelet here. *e detailed comparison in
terms of RI and Purity of the proposed TrEEM model and
other benchmark approaches is shown in Table 5.

Observing Table 5, in this experimental setting, espe-
cially considering the fact that Bonn EEG signal dataset has 6
attributes and 5 classes, the performance of TrEEM model is
very promising. TrEEM model is capable of recognizing
useful information from both synthetic and real-world EEG
signal datasets. Moreover, compared with other benchmark
machine learning models, the proposed approach TrEEM
performs better in terms of RI and Purity in this scenario.

In the experiment procedure, we also find that parameter
self-similarity d(xi, xi) has important influence on the ex-
perimental results, especially on the obtained number of
clusters. *e finding is identified with other exemplar-based
clustering models [2, 12–15], and the parameter selection
method is also in line with these models. See Table 4; we
multiply d(xi, xi) with η, and the value of η is decided from
0.01, 0.1, 1, 10, 50, 100{ }. In detail, with large value of η, the
TrEEM model would obtain a smaller number of clusters,

15 20 25 30 35 4010
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Figure 3: Synthetic dataset.

Table 3: Description of Bonn EEG dataset.

Subjects Groups Descriptions

Healthy A Signals captured from volunteers with eyes open
B Signals captured from volunteers with eyes closed

Epileptic
C Signals captured from volunteers during seizure silence intervals
D Signals captured from volunteers during seizure silence intervals
E Signals captured from volunteers during seizure activity

8 Scientific Programming



while small η will bring in big cluster numbers. To fit with
real data labels, in our experiments here, we set η � 1.

*e regularization factor λ has a big effect as well. As
analyzed before, λ determines how the source data affects the
clustering result, and the value should not be too large.
Obviously, if λ is too large, the clustering result based on the
target data will be very close to that based on the source data,
which is not what we want. When λ � 0, it means that
TrEEM does not take the source data into account and
TrEEM degrades to the typical EEM framework. In par-
ticular, Figures 4–6 show the dependence of model results on
the value of λ. When λ> 0, in terms of RI and Purity, source
data improves the performance of TrEEM. Index Purity is
more sensitive to λ, while RI changes slowly.

Table 6 shows the average running time of 10 times for
each approach. Yet the time consumption of the proposed
TrEEMmodel is a bit more than those of EEM and TSK-FS; it
is still in the same magnitude. Considering the improvements
in RI and Purity, we think that the time complexity is ac-
ceptable. *e results also fit the discussion in Section 3.4.

*erefore, from experimental results in Tables 5 and 6
and the above analysis, we can conclude the following:

(1) For both synthetic and real-world EEG signal
datasets, TrEEM performs great. *us, we believe
that TrEEM can effectively absorb knowledge from
scant target data when similar source data exists.

(2) For time consumption, TrEEM takes source data into
account, which will inevitably increase the time
complexity. Remember that the scale of target data
will not be big, and the time consumption is very
acceptable especially when combined with the per-
formance in Table 5.

(3) Although TrEEM requires the most parameters
shown in Table 6, λ and η have big effects. Observing
Figures 4–6, the performance of RI and Purity de-
pends more on the value of λ. Note that we can
narrow the optimization range according to the
discussion in Section 3. *us, we believe that pa-
rameter setting would be easy.

Table 4: Parameters settings of involved algorithms.

Algorithms Parameter setting
EEM: a typical exemplar-based clustering
model Self-similarity d(xi, xi) �median value of similarities ×ηη ∈ 0.01, 0.1, 1, 10, 50, 100{ }.

Multiclass SVM: a typical classification
learning model

Kernel function K(xi, xj) � exp(− (|xi − xj|
2/2σ2)), where

σ ∈ 2− 5, 2− 4, 2− 3, 2− 2, 2− 1, 20, 21, 22, 23, 24, 25􏼈 􏼉. Penalty parameter
C ∈ 10− 3, 10− 2, 10− 1, 100, 101, 102, 103􏼈 􏼉.

TSK-FS: a widely used fuzzy-rule-based
learning model

FCM [1] involved, the cluster number equals the number of fuzzy rules. Number of fuzzy rules
K ∈ 5, 10, 15, 20, 25, 30{ }. Gaussian membership function

σ ∈ 2− 5, 2− 4, 2− 3, 2− 2, 2− 1, 20, 21, 22, 23, 24, 25􏼈 􏼉.

TSC : transfer spectral clustering model Preset the cluster number n ∈ 5, 10, 15, 20, 25, 30{ }; for other parameter setting strategies, see
[25].

TrEEM: the proposed transfer exemplar-
based learning model

Self-similarity d(xi, xi) �median value of similarities ×ηη ∈ 0.01, 0.1, 1, 10, 50, 100{ }.
Regularization factor λ ∈ 0.01, 0.05, 0.1, 0.5, 0, 5, 10, 15, 20, 25, 30{ }.

σ ∈ 2− 5, 2− 4, 2− 3, 2− 2, 2− 1, 20, 21, 22, 23, 24, 25􏼈 􏼉.

TSC : transfer spectral clustering model Preset the cluster number n ∈ 5, 10, 15, 20, 25, 30{ }; for other parameter setting strategies, see
[25].

Table 5: Comparison results of both synthetic and Bonn EEG datasets (the number in parentheses is the standard deviation).

Datasets (source data, target data, attributes, and classes) Algorithms
Performance indices

RI Purity

Synthetic dataset (240, 60, 2, 3)

EEM 0.8316 (0.0258) 0.7150 (0.1131)
Multiclass SVM 0.8513 (0.0214) 0.8523 (0.0812)

TSK-FS 0.8712 (0.0145) 0.8816 (0.0914)
TSC 0.88230.0313 0.92360.0158

TrEEM 0.8957 (0.0264) 0.9856 (0.0000)

Bonn EEG dataset (400, 100, 6, 5) (use KPCA to extract feature)

EEM 0.7754 (0.2146) 0.9800 (0.0000)
Multiclass SVM 0.7827 (0.1834) 0.9643 (0.0023)

TSK-FS 0.6819 (0.1579) 0.9623 (0.0000)
TSC 0.72170.1241 0.9636 (0.0002)

TrEEM 0.8323 (0.1652) 0.9600 (0.0012)

Bonn EEG dataset (400, 100, 6, 5) (use wavelet to extract feature)

EEM 0.7925 (0.0091) 0.7530 (0.0514)
Multiclass SVM 0.7815 (0.0165) 0.9034 (0.0135)

TSK-FS 0.7303 (0.0251) 0.9800 (0.0000)
TSC 0.75010.1252 0.9600 (0.0021)

TrEEM 0.8071 (0.0078) 0.9800 (0.0000)
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Figure 6: Effects of parameter λ on Bonn dataset with wavelet extract method.
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Figure 5: Effects of parameter λ on Bonn dataset with KPCA extract method.
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5. Conclusion

In conclusion, the contribution of this paper is providing a
novel TrEEM framework to learn from few EEG signals
when recognizing epileptic seizure. Starting from infor-
mation theory, the proposed TrEEM method implants the
similarity relationship between source and target data into
the exemplar-based clustering model to improve the utili-
zation rate of EEG signals, whereas this structure keeps all
merits of the original optimization scheme. *erefore,
without increasing the complexity of the model, TrEEM
utilizes transfer learning method to learn from scant EEG
signals. Yet our experimental results have shown promising
performance of TrEEM, and several other perspectives
should be considered as well. For instance, when each class
contains unbalanced data, will this TrEEM method still
work? And if we can provide multiple source data, what
should we do to make them collaborate instead of bringing a
negative effect? *ese are the problems that we should
discuss in the future.
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