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A B S T R A C T   

Late blight caused by Phytophthora infestans is a serious, worldwide disease on potato (Solanum tuberosum). 
Phytophthora infestans normally reproduces in a clonal manner, but in some areas, as the Nordic Countries, sexual 
reproduction has become the major determinant of the population structure. To improve the late blight fore
casting in Norway, the process-based Nærstad model was developed. The model includes the structure of the 
underlying processes in the disease development, including spore production, spore release, spore survival and 
infection of P. infestans. It needs hourly weather records of air temperature, precipitation, relative humidity, leaf 
wetness and global radiation. The model contained 19 uncertain parameters, and from a sensitivity analysis, 12 
were detected as weakly sensitive to model outputs and fixed to a nominal value within their prior boundaries. 
The remaining seven parameters were detected as more sensitive to model outputs and were parameterized using 
maximum a’posteriori (MAP) estimates, calculated through Bayesian calibration. The model was developed 
based on literature combined with field data of daily observed number of lesions on trap plants of the Bintje 
cultivar (late blight susceptible) at Ås during the seasons 2006-2008 and 2010-2011. It was further tested on 
daily observed number of lesions on trap plants of the cultivars Bintje, Saturna (medium susceptible) and Peik 
(medium resistant) at Ås during the seasons 2012-2015. For all three cultivars, the Nærstad model improved with 
a higher model accuracy compared to the existing HOSPO-model and the Førsund rules that both have shown 
relatively good correlation with blight development in field evaluations in Norway. The best accuracy was found 
for Bintje (0.83) closely followed by Saturna (0.79), whereas a much lower accuracy was detected for Peik (0.66).   

1. INTRODUCTION 

Potato late blight caused by Phytophthora infestans Mont. (de Bary) 
has been and is still the most important disease on potatoes (Solanum 
tuberosum) in Norway, as in other potato producing countries (Fry et al., 
2001). The pathogen is very destructive and can easily be spread by 
airborne sporangia produced under humid conditions (Harrison, 1992). 
Major pathogen population changes have occurred during the last de
cades from a mainly clonal propagating population to a sexual repro
ducing population in some areas, including the Nordic Countries 
(Brurberg et al., 2011). 

Potato production is highly reliant on fungicides despite pressure 
from the governments, supermarkets and consumers to reduce the input 

of pesticides. In average, the potato area in Norway is sprayed 5.6 times 
each year (2000-2005) to protect against late blight (Sæthre et al., 
2006). However, the number of treatments in Norway ranged from 3 to 
8, depending on year and location (Cooke et al., 2011). Later, even more 
treatments were carried out in some seasons and locations (unpub
lished). To optimize the effects of protectant fungicides, it is important 
that they are applied shortly before the infection occurs. 

It has long been recognised that potato late blight epidemics are 
highly dependent on weather conditions (Crosier, 1934) and that fore
casting based on weather can be used to time fungicide treatments. 
Some forecasting models are included in Decision Support Systems 
(DSS) and are made available to farmers in Europe (Hansen et al., 2009; 
Cooke et al., 2011; Hansen et al., 2017) and in other parts of the world 
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(Wharton et al., 2008; Fry, 2010). In Norway, potato late blight fore
casting was initiated by the Førsund rules in 1957 (Førsund and Flaat
ten, 1959). The criterion was later adjusted according to results from 
validation trials (Hermansen and Amundsen, 2003). 

Many late blight forecasting models, as the HOSPO-model (Hansen 
et al., 2006) require several hours with observed relative humidity 
above 90% and often combined with a minimum temperature threshold 
of 10 ◦C to alert risk of infection (Wallin and Hoyman, 1954; Smith, 
1956; Bruhn and Fry, 1981; Winstel, 1993; Ullrich and Schrödter, 1966). 
The Førsund rules differ from most other late blight forecasting models 
in not requiring a long humid period. Still, fungicide treatments both 
according to the HOSPO-model and the Førsund rules has shown rela
tively good results regarding blight control in field evaluations in Nor
way (Hermansen and Nærstad, 2009). 

To further improve the late blight forecasting in Norway, the Nær
stad model was developed as a process-based model. The model de
scribes the underlying processes in the disease development and it was 
developed based on accumulated knowledge from potato late blight 
research (reviewed by Schepers (1998) and Harrison (1992)) and from 
knowledge gained from field experiments. The model requires hourly 
inputs of five weather variables (air temperature, precipitation, relative 
humidity, global radiation and leaf wetness) and it contain 19 uncertain 
parameters. 

Both the HOSPO-model and the Førsund rules are simpler models 
that follow an empirical approach by relying on correlative relationships 
together with a mechanistic understanding. Contrary, the process-based 
Nærstad model is more comprehensive and describes the mechanisms in 
the underlying system. Process-based models are increasingly used to 
simulate the interactions between vegetation and environment. In 
addition to forecast risk, such models can derive a better understanding 
of the underlying system and should work well in all situations through a 
proper parameterization. 

Calibration is the process of finding the best estimates for the un
certain model parameters, using data from the underlying real-world 
system. The Bayesian calibration approach improves on more tradi
tional calibration approaches, such as maximum likelihood, by auto
matically including uncertainty quantification. The method allows for 
prior information about the parameters and conclusions are made con
ditional on the data. Model complexity in combination with high 
dimensional parameter spaces makes the approach computationally 
demanding, and it is therefore still rarely used for such models (Hjelk
rem et al., 2017; Gouache et al., 2013; Minunno et al., 2013; Thorsen 
and Höglind, 2010; van Oijen et al., 2005a, van Oijen et al., 2005b). A 
common strategy that increases the efficiency of model calibration, is to 
reduce the model complexity through a sensitivity analysis (Hjelkrem 
et al., 2017; Oomen et al., 2016). The parameters detected as weakly 
sensitive, can be fixed to a nominal value within their prior boundaries, 
without strongly affecting model output. Hence, only the remaining 
subset of strongly sensitive parameters can be selected for model cali
bration. From Hjelkrem et al. (2017), a higher error term may be ach
ieved when fixing too many of the parameters. Also, such a 
simplification will cause underestimation of parameter uncertainty in 
model output, since the parameter values that are fixed to a nominal 
value are not known for certain (Hjelkrem et al., 2017). 

This study gives a detailed presentation of the Nærstad model. The 
model complexity was reduced through a sensitivity analysis, and the 
remaining sensitive parameters were parameterized through Bayesian 
calibration. Finally, the model was tested on individual field data, and 
compared with the existing HOSPO-model and the Førsund rules. 

2. MATERIAL AND METHODS 

2.1. Field experiments 

In 2006 to 2015 (except 2009), potato field plots (12 × 12 meter) 
were established in Ås in Norway, with alternating rows of three potato 

cultivars: the late blight susceptible cv. Astrix, the medium susceptible 
cv. Saturna and the medium resistant cv. Peik (Figure 1). The plot was 
inoculated in the beginning of July with a spore suspension. The spores 
were produced by spray inoculating with a spore suspension produced 
on detached potato leaves of cv. Bintje, grown in pots in the greenhouse. 
The potato leaves were incubated on a grid suspended over wet tissues in 
a tray covered with a plastic bag and put in a growth chamber with 16 
hours light/ 8 hours dark at 15-16 ◦C for one week. Spores from spor
ulating leaflets were rinsed off with distilled water. A mixture of two to 
three P. infestans isolates, A1 mating type, collected in 2003 and char
acterized in Brurberg et al. (2011), Lehtinen et al. (2008) and Lehtinen 
et al. (2009) were used as inoculum. After that, the isolates were kept in 
liquid nitrogen at -196 ◦C and thawed every year before inoculation. 
Sporangia were rinsed from potato leaves (cv. Bintje grown in green
house) in distilled water and density determined using a haemocy
tometer. The potato field plot was inoculated with 500 sporangia/ml 
water and 20 ml spore suspension/plant in the evening and covered with 
thin fleece (Noragryl 17 g/m2), that was removed the day after. A 
Burkard volumetric spore trap (600 L air/h) (Burkard Manufacturing Co 
Ltd, Rickmansworth, Hertfordshire, UK) and trap plants were placed in 
an open space of 3 × 3 meters in the centre of the potato field plot to 
catch P. infestans spores (Figure 1). The open space in the centre of the 
plot was framed with potato plants of a clone with very high level of late 
blight resistance (N-85-13-18) to avoid direct contact between the 
inoculated potato plants and the trap plants. Potato plants of cv. Bintje 
(late blight susceptible) grown in pots in the greenhouse were used as 
trap plants. The trap plants were grown at 15-18 ◦C and 16 hours light 
per day for 4-5 weeks from potting of seed tubers and trimmed down to 
three stems per pot. Seed tubers were produced in the greenhouse and 
potted each week so that all trap plants were approximately at the same 
age and size when exposed in the field. The first trap plants were placed 
in the field approximately 7 days after inoculation when the first late 
blight lesions were visible in the inoculated field plot. 

A set of trap plants (four plants in 2006-2008 and two plants in 2010- 
2015) was put out every day at 3 pm and collected at 3 pm the following 
afternoon, which is normally the driest time of the day, and hence the 
time that interferes least with the infection process. The plants were then 

Figure 1. Field experiment with a Burkard spore trap (B) in the center of the 
field, trap plants (T) of potted potato plants (cv. Bintje) exchanged every day at 
3 pm and with a frame of late blight resistant potato plants, all inside a potato 
field with alternating rows of three cultivars (cv. Astrix, cv. Saturna and 
cv. Peik). 
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incubated under dry conditions for one week in a growth chamber with 
16 hours light (low light intensity)/ 8 hours dark at 15-18 ◦C. The last 
two days of the incubation the plants were sealed with plastic bags to 
promote lesion development and to prevent dispersal of spores. The 
plants were taken out of the incubation room before the plastic bags 
were removed. Late blight infection on the trap plants was recorded as 
number of lesions per plant 7 days after being removed from the field. 
The maximum number of lesions recorded per trap plant was limited to 
50. Number of lesions was used to describe the blight risk during the 24 
h period which the plants were exposed in the field. 

The Burkard spore trap collect spores by sucking air through an 
orifice about 40 cm above ground. Spores and other particles in the 
airstream stuck to an adhesive tape (Melinex-tape coated with a layer of 
a mixture of white Vaseline (9 g), liquid paraffin (1 g) and toluene (100 
ml)). The exposed area of the tape moves 2 millimetres per hour (one 
revolution per week), and the tape was replaced weekly. The exposed 
tape was stained with lactofuchsin, mounted on slides, and hourly spore 
counts were recorded. 

2.2. Weather data 

Weather data was provided by Agrometeorology Norway (2019). 
Hourly weather records of air temperature 2 m above ground (T; ◦C), 
precipitation (P; mm), short wave global radiation (GR; Wh/m2) and leaf 
wetness on a sensor plate facing north with an inclination angle of 30 
degree at 2 m (LW; min/hr) was measured at Ås weather station 
approximately 1 km from the field. Additionally, relative humidity 2 m 
above ground (RH; %) was measured at Åsbakken weather station, sit
uated approximately 4 km from the field. 

Vapour pressure deficit (vpd; Pa) is the difference between the 
amount of moisture in the air and the moisture the air can hold when 
saturated. Saturated vapour pressures were estimated from measured air 
temperature according to (Goff and Gratch, 1946), as recommended by 
the World Meteorological Organisation (2012). The actual vapour 
pressure was derived from the estimated saturated vapour pressure and 
the measured relative humidity (Perry and Green, 1997). 

2.3. Model description 

A dynamic process-based model was developed to predict the risk of 
late blight development. The model assumes that inoculum is present 
and describes how weather affects the different biological steps in the 
disease cycle. The model consists of sub-models, describing the steps in 
the disease cycle which are spore production, spore release, spore sur
vival, spore infection and risk of blight development. The model consists 
of 19 uncertain parameters, a priori described by beta distributions with 
boundaries and modal value given in Table 1. Additionally, the model 
requires input of hourly weather data (air temperature, precipitation, 
relative humidity, global radiation and leaf wetness). 

2.3.1. Spore production 
To produce spores, P. infestans needs a long humid period (Crosier, 

1934, Schröter and Ullrich, 1967, Rotem et al., 1978, Harrison and 
Lowe, 1989). Free water is not required for sporangia to be produced, 
but the laminar layer needs to be saturated (Harrison and Lowe, 1989). 
Crosier (1934) observed sporangia formation in the temperature range 
from 3 to 26 ◦C. Accordingly, a spore producing hour (SPH) is here 
present if the temperature sum of humid hours (TSHH) exceeds a 
threshold value (TSHHthres) (Equation 1). 

SPH(t) =
{

1 if TSHH(t) ≥ TSHHthres
0 else (1)  

Where TSHHthres is an uncertain parameter (θ1) and the variable TSHH 
defined in Equation 2. 

TSHH(t) =

⎧
⎨

⎩

TSHH(t − 1) + T(t) if vpd(t)<vpd1 or P(t)>0
r1⋅TSHH(t − 1) if vpd1 ≤ vpd(t) < vpd2

0 else
(2) 

The model output, TSHH, at time t increases hourly with air tem
perature if the required vapour pressure deficit or precipitation is ful
filled. The threshold value to define a humid hour (vpd1) was treated as 
an uncertain parameter (θ2). The calculated TSHH was set to zero and 
the temperature sum accumulation restarted when the air was dry, 
defined by a vapour pressure deficit higher than a threshold parameter 
vpd2 (θ3). With moisture conditions between these two threshold values 
defining a dry and a wet hour, the TSHH was set back with a factor r1 
(θ4). 

The amount of viable attached sporangia (VAS) is the sporangia 
produced the current hour and the proportion of VAS surviving from the 
previous hour. The total amount can be reduced by drought, and addi
tional new spores can be added if the current hour is a spore producing 
hour. Part of the spores can be washed off during rain and some released 
into the air (Equation 3). 

VAS(t) =
VAS(t − 1)⋅r2⋅

(

1 −
vpd(t)− vpd3

vpdmax

)

+ SPH(t)

(1 + r3⋅P(t − 1))⋅(1 + r4⋅RTA(t − 1))
(3) 

The model output VAS at time t is the total amount of viable attached 
sporangia the previous hour (t - 1) reduced linearly by the ratio (r2) 
giving natural survival of viable attached spores from last hour (θ5), and 
by dryer weather conditions than a threshold value vpd3 (θ6). To define 
the relative amount of reduction, vpdmax = 6000 Pa was used. Newly 
produced spores (SPH) was added for each hour. The total number of 
viable attached spores was additionally reduced linearly by the amount 
of precipitation the previous hour by a factor r3 (θ7), and by the number 
of released sporangia to the air (RTA) the previous hour, by a factor r4 
(θ8). 

2.3.2. Spore release 
After a night with high humidity and spore production, Hirst (1958) 

observed dispersal of sporangia during the following morning as the 
temperature was rising and relative humidity dropping. The drop in 
humidity within the laminar layer around the leaf was either caused by 
the sunlight heating the leaves or a reduction in the relative humidity of 

Table 1 
Prior parameter description for the Nærstad model. Beta distributions are used, 
with θmin

i and θmax
i representing the lower and upper boundaries and θmodal

i 
represents the modal value of the parameter number i.  

Parmeter Name Unit Equation θmin
i  θmax

i  θmodal
i  

Spore production 
θ1 TSHHthres 

◦C Equation 1 20 500 87 
θ2 vpd1 Pa Equation 2 100 500 220 
θ3 vpd2 Pa Equation 2 220 800 520 
θ4 r1 - Equation 2 0 1 0.75 
θ5 r2 - Equation 3 0.5 1 0.99 
θ6 vpd3 Pa Equation 3 100 500 220 
θ7 r3 - Equation 3 0 1 1 
θ8 r4 - Equation 3 0 1 0.05 
Spore release 
θ9 ΔGR W/m2 Equation 4 0 300 7 
θ10| Δvpd Pa Equation 4 0 300 15 
θ11 r5 - Equation 5 0 1 0.6 
θ12 r6 - Equation 7 0 1 0.8 
θ13 r7 - Equation 7 0 1 0.1 
θ14 r8 - Equation 7 0 1 0.1 
Infection 
θ15 vpd4 Pa Equation 8 100 500 180 
θ16 LW1 min Equation 8 0 180 150 
θ17 LW2 min Equation 8 0 60 42 
θ18 vpd5 Pa Equation 9 100 500 360 
θ19 TSWHthres 

◦C Equation 13 0 200 40  
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the air. Accordingly, the release of sporangia to air (RTA) is defined by 
Equation 4 

RTA(t)=

⎧
⎨

⎩

2 if GR(t) − GR(t − 1)>ΔGR and vpd(t) − vpd(t − 1)≥Δvpd
1 if GR(t) − GR(t − 1)>ΔGR or vpd(t) − vpd(t − 1)≥Δvpd
0 else

(4)  

Where ΔGR (θ9) and Δvpd (θ10) was uncertain parameters. 
The inhibition of sporangia release to air (IRTA) is defined by 

Equation 5. 

IRTA(t) = 1 − r5
LW(t)

60
(5)  

Where r5 (θ11) is the rate of inhibition of sporangia release by leaf 
wetness. 

The amount of viable released spores is strongly inhibited by solar 
radiation. After 1 hour of exposure on sunny days the viability of 
sporangia decreased by 95%, whereas on overcast days, survival was 
reduced only slightly (Mizubuti et al., 2000). The survival factor for 
released spores was set as a function of the short wave global radiation 
compared to the maximum short waved global radiation, which is about 
850 W/m2 in Norway. The survival factor of released spores (SFRS) is 
estimated from Equation 6. 

SFRS(t) = min
(

0, 1 −
GR(t)2

8502

)

(6) 

The viable spore load was calculated as the number of spores 
released this hour in addition to the viable spores from the previous 
hour. A fraction of the viable attached spores the previous hour was 
considered to be unexposed to solar radiation, because they were shaded 
by the leaves above. The fraction exposed to solar radiation the previous 
hour was reduced by SFRS. Additionally, the newly released spores were 
calculated as the VAS multiplied by the factor of RTA and IRTA. This 
spore load that can give rise to new foliar infection is also reduced by 
precipitation and by germination (spores can only germinate once). The 
number of viable released spores (VRS) is defined by Equation 7. 

VRS(t)=
r6⋅VRS(t− 1)⋅SFRS(t)+(1− r6)⋅VRS(t− 1)+VAS(t)⋅RTA(t)⋅IRTA(t)

(1+P(t− 1)⋅r7)⋅(1+WHS(t− 1)⋅r8)

(7)  

Where r6 is the fraction of viable released spores exposed to solar radi
ation (θ12). The total number of VRS was additionally reduced linearly 
by the amount of precipitation the previous hour, by a factor r7 (θ13) and 
linearly when wet period has started (WHS) the previous hour, by a 
factor r8 (θ14). 

2.3.3. Infection 
The P. infestans spores need free water from rain or dew to germinate 

(Crosier and Reddick, 1935), and longer periods of leaf wetness are 
required for germination as the temperature deviates from the optimum 
(Rotem et al., 1978). A short dry period initiated within the first three 
hours after infection substantially reduces the number of lesions that 
develops, but temporary surface dryness occurring later generally has 
less effect, presumably because infection is better established (Hartill 
et al., 1990). Here, the wet period is considered to start (WHS) if the 
vapour pressure deficit the previous and the current hour is low, if there 
is rain the current hour or if a sufficient duration of leaf wetness for the 
current and the next two hours has been fulfilled. 

WHS(t) =

⎧
⎪⎨

⎪⎩

1
if vpd(t − 1) + vpd(t)<vpd4 or P(t)>0

or LW(t) + LW(t + 1) + LW(t + 2) > LW1
or LW(t) > LW2

0 else

(8)  

Where vpd4 (θ15), LW1 (θ16) and LW2 (θ17) were uncertain parameters. 

The wetness will continue if the vapour pressure deficit remains low 
or if there is rain. Wetness continuation (WHC) was calculated as follows 

WHC(t) =
{

1 if vpd(t)<vpd5 or P(t)>0
0 else (9)  

With the threshold parameter vpd5 (θ18). 
From this we can estimate the wetness duration (WD) in the crop, 

accumulating the WHS as long as the wetness continues. 

WD(t) = WHC(t)⋅(WD(t − 1)+WHS(t)) (10) 

Further, wet hours (WH) are defined according to Equation 11. 

WH(t) =
{

1 WD(t) > 0
0 else (11) 

The temperature sum of wet hours (TSWH) was calculated as follows 

TSWH(t)=
{

(WH(t)⋅(T(t)+WH(t+1)⋅(T(t+1)+WH(t+2)⋅(T(t+2)

+WH(t+3)⋅(T(t+3)+WH(t+4)⋅(T(t+4))

+WH(t+5)⋅(T(t+5)))))))if WHS(t)

=10else (12) 

For the spores to be able to infect, the wet period (TSWH) must be 
above a threshold value (TSWHthres), and infection risk (IR) is defined by 
Equation 13. 

IR(t) =
{

1 if TSWH(t) ≥ TSWHthres
0 else (13)  

With the threshold parameter TSWHthres (θ19). 

2.3.4. The blight risk 
The risk of blight development is a function of the amount of viable 

released spores and the duration of the leaf wetness when there is an 
infection risk. 

The estimated hourly risk of late blight infection (RISK) is then 
calculated as: 

RISK(t) =
TSWH(t)
TSWHthres

⋅VRS(t)⋅IR(t) (14)  

2.4. Sensitivity Analysis 

Model outputs will generally be more sensitive to changes in some 
parameters than others. Sensitivity analysis is the study of how the 
variation in model output can be appointed to different sources of 
variation in the parameters (Saltelli et al., 2004). It is a suitable tool for 
model simplification as the parameters that are detected to have minor 
impact on model output can be fixed to a nominal value. 

The sensitivity method introduced by Morris (Morris, 1991) is a 
screening method that is suitable for complex models where the number 
of parameters or the computational cost limits the possibility of nu
merical calculation. Here, the parameter space is defined by a p-level 
grid within the parameter boundaries, and the parameter θi, where i=1, 
…,k, is mapped to [0, 1] (θ∗i ) and assumed to vary across the p selected 
levels. Elementary effects (EEi) of the model output are calculated from 
two consecutive model runs according to Equation 15. 

EEi(θ∗) =

(
y
(
θ∗1,…, θ∗i− 1, θ

∗
i + Δ, θ∗i+1,…, θ∗k

)
− y(θ∗)

Δ

)

(15) 

Here, Δ is in the range of [1/(p-1), 1-1/(p-1)], p is the number of 
levels, θ* is any selected parameter mapped to the [0, 1] space and θ is 
the selected parameter vector in the parameter space. The transformed 
point θ from (θ*+eiΔ) remains within the parameter space for each 
index i=1,2,…,k and ei is a vector of zeros with a unit corresponding to 
its i’th component. 
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The finite distribution of elementary effects, denoted EEi(θ)~Fi, is 
constructed by r elementary effects that are sampled using an efficient 
design that constructs r trajectories of (k+1) points in the parameter 
space. Two sensitivity measures can then be calculated from EE: (1) µ 
(the mean value), which evaluates the overall influence of the param
eters on model output, and (2) σ (the standard deviation), which is used 
to detect parameters involved in interaction with other parameters or 
whose effect is nonlinear. To avoid the problem of effects of opposite 
signs which occur when the model is non-monotonic, we will in this 
study use µ* (the mean of the absolute value of EE) that was introduced 
by Campolongo et al. (2007). 

As the Nærstad model simulates hourly risk of blight infection, the 
sensitivity of model parameters may change depending on the timing of 
the risk considered. It would be most appropriate to consider the hourly 
outputs over the whole season (Lamboni et al., 2009), but the large 
number of responses that need to be evaluated makes this approach 
impossible. Therefore, the summed risk of late blight infection over the 
whole season was selected as the response in this study. 

The screening method of Morris was applied using weather data from 
Ås in Norway, during the seasons 2006-2008 and 2010-2011. The 
analysis was performed using weather data from one year at a time. The 
ranking order of the parameters with respect to sensitivity was deter
mined by considering the results for all years together, as means and 
standard deviations over the years. 

2.5. Bayesian calibration 

The Bayesian framework is based on Bayes theorem (Berger, 1985) 
and is given in Equation 16. 

π(θ|D) =
π(θ)⋅f (D|θ)

f (D)
∝π(θ)⋅f (D|θ) (16) 

Here, θ is the vector of the model parameters and D is the observed 
data. The resulting posterior parameter distribution (π(θ|D)) is the 
probability distribution for the parameters conditional on the data, 
determined as a combination of our prior knowledge of the parameters 
before new data are included (π(θ), the prior parameter distribution) 
and the distribution of the new data conditional on model parameteri
zation (f(D|θ), likelihood function). The integrated likelihood (f(D)) is 
the marginal probability of the data, which is a constant. With only few 
experimental data, the prior parameter distribution will highly affect the 
posterior probability distribution, but more data added to the calibra
tion will reduce the impact of the prior parameter distribution. 

Integration problems make exact calculations impossible when the 
parameter space is highly dimensional. In this study, calculations were 
done using the Markov chain Monte Carlo (MCMC) algorithm Random 
walk Metropolis (Liu, 2001). The prior probability distributions were 
described by beta distributions with minimum, maximum and nominal 
value given in Table 1. Prior independence was assumed, and the joint 
distribution was thus determined as the product of the marginal 
parameter distributions. The likelihood function was determined by the 
distribution of measurement error (see Equation S2 in the eXtra), 
following van Oijen et al. (2005b). As specific information about the 
precision of the measurements was not available, the standard deviation 
of each measurement was set to 5% of its observed value. 

The model was calibrated using field data of number of lesions on 
trap plants at Ås in Norway during the seasons 2006-2008 and 2010- 
2011. Only the parameters regarded as strongly sensitive in the sensi
tivity analysis was calibrated, whereas the remaining parameters were 
fixed to its modal value (Table 1). 

2.6. Model fit and validation 

The collected field data on daily number of lesions per trap plant was 
divided into three categories: (1) no blight infections (no lesions on trap 
plants), (2) low blight infection (up to 1.5 lesions per trap plant) and (3) 

high blight infection (more than 1.5 lesions per trap plant). Daily model 
outputs of blight risk were found as the maximum estimated hourly 
blight risk for that day. By calculating the receiver operating charac
teristic (ROC) curves (Hastie et al. 2009) on the training data (Ås, 
2006-2008 and 2010-2011), the ability of the system to binary classify 
the results with the discrimination thresholds were adjusted. Threshold 
values to group the predicted blight risk into: (1) low blight risk, (2) 
moderate blight risk and (3) high blight risk were calculated as the value 
for which sensitivity equals specificity from the ROC curves. Two ROC 
curves were created to distinguish between no blight risk and moderate 
blight risk, and between moderate and high blight risk. The accuracy of 
the classifiers (AUC) was estimated by the area under the ROC curve. 
AUC estimates the accuracy of the model into the classes: excellent 
(0.9-1), good (0.8-0.9), fair (0.7-0.8), poor (0.6-0.7) and fail (0.5-0.6). 

Following Agresti (2002), 3 times 3 and 2 times 2 confusion matrixes 
(Table 2) were created and summary statistics of sensitivity (Equation 
17, represents the ratio of infected trap plants being correctly identified 
with moderate to high blight risk), specificity (Equation 18, the ratio of 
non-infected trap plants being correctly identified with no blight risk), 
false positive (ratio of non-infected trap plants being incorrectly iden
tified with moderate or high blight risk) and false negatives (the ratio of 
infected trap plants being incorrectly identified with no blight risk) 
estimated. At last, the accuracy rate was calculated as the ratio of 
correctly classified observations (Equation 19). 

Sensitivity = (A+B+D+E)/(A+B+D+E+G+H) (17)  

Specificity = (I)/(C+F+ I) (18)  

Accuracy = (A+B+D+E+ I)/(A+B+C+D+E+F+G+H+ I)
(19)  

2.7. Model comparison 

The HOSPO90 model and the Førsund rules have been tested in 
several fungicide field trials in Norway. They performed on the same 
level measured as control of blight infection in the field, except that they 
did not always predict blight risk on the same days (Hermansen et al. 
2007). The idea behind making the new late blight model was to 
improve the late blight forecasting in Norway. To evaluate if the new 
model could better predict blight risk than the Førsund rules or the 
HOSPO90 model, the predictions from the three models were compared 
to field observations of daily number of lesions per trap plant. 

2.7.1. The Førsund rules 
The Førsund rules were developed in 1957 (Førsund and Flaatten, 

1959) and later adjusted according to results from validation trials 
(Hermansen and Amundsen, 2003). The current Førsund rules consist of 
the following four daily criteria: 1) maximum air temperature between 
16 ◦C (15 ◦C) and 24 ◦C, 2) minimum temperature above 8 ◦C, 3) relative 
humidity of at least 75% at noon, and 4) rainfall of at least 0.1 mm. The 
model predicts risk of blight at days when all four criteria are fulfilled. 

2.7.2. The HOSPO model 
The HOSPO90-model is given by a simple equation, and it predicts 

risk of blight at days when a minimum of 10 hours of relative humidity 
above 90% combined with a temperature of at least 10 ◦C occurs 

Table 2 
Example of a 3 times 3 confusion matrix, describing the performance of a 
classification.   

High 
blight risk 

Moderate 
blight risk 

Low 
blight risk 

High blight infection A B C 
Low blight infection D E F 
No blight infection G H I  
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between 16:00 yesterday and 15:00 today (Hansen et al. 2006). 

2.8. Implementations 

All calculations were performed using MATLAB (R2019a). 

3. RESULTS 

The training data (2006-2008 and 2010-2011) included a total of 
147 days with trap plants of cv. Bintje (susceptible to blight infection) 
and 62 (only 2010-2011) days with trap plants of cv. Saturna (medium 
susceptible to blight infection) and cv. Peik (medium resistant to blight 
infection). This resulted in 39, 12 and 22 days with no blight infections, 
19, 2 and 6 days with low blight infection (up to 1.5 lesions per trap 
plant) and 89, 48 and 34 days with high blight infection (more than 1.5 
blight lesions per trap plant). The validation data (2012-2015) included 
145 days with trap plants of each of the cultivars Bintje, Saturna and 
Peik. This resulted in 34, 44 and 72 days with no blight infections on the 
trap plants, 20, 28 and 22 days with low blight infections and 91, 73 and 
51 days with high infection for cv. Bintje, cv. Saturna and cv. Peik, 
respectively. 

3.1. Sensitivity Analysis 

The Morris method was used with 200.000 trajectories and six levels 
(p). Five years of weather data from Ås (2006-2008 and 2010-2011) was 
used for cv. Bintje and two years (2010-2011) for cv. Saturna and cv. 
Peik, and the total summarized risk of late blight for all years used as 
model output. This resulted in unstable results. Therefore, the sensitivity 
analysis was rerun using one year of weather data at a time and with 
yearly summarized risk of late blight as model output. Results of the 
mean (µ*) and the standard deviation (σ) of the absolute value of the 
elementary effects were estimated for each year and normalized. The 
sensitivity of each parameter to model output varied highly between 
years (Figure S1 and S2 in the eXtra). Still, some parameters clearly 
stood out as weakly sensitive independent of year of weather data used. 
Figure 2 gives the results for cv. Bintje as a mean over the five years 
considered. Seven parameters stood out as more sensitive according to 
µ* and σ. These parameters are θ19 (TSWHthres, threshold value defining a 

wet period for spores to be able to infect), θ1 (TSHHthres, threshold value 
defining a humid period for spore production), θ8 (r4, factor controlling 
the reduction of viable attached sporangia caused by the number of 
released sporangia to air), θ5 (r2, fraction of natural surviving viable 
attached spores from last hour), θ6 (vpd3, threshold value controlling the 
reduction in survival attached spores caused by dry conditions), θ7 (r3, 
fraction controlling the reduction of viable attached sporangia caused by 
precipitation) and θ14 (r8, fraction controlling the reduction of viable 
released spores caused by WHS (wet period considered to start infec
tion)). The remaining 12 parameters were considered as less sensitive to 
model output. 

For Saturna and Peik, only two years of data were considered in the 
sensitivity analysis. Roughly, the same parameters were considered as 
more sensitive, but the order of importance were not consistent 
(Figure 2). All seven parameters considered as more sensitive according 
to Bintje, were among the eight parameters considered as more sensitive 
according to Peik. For saturna, θ19 (TSWHthres, threshold value defining a 
wet period for spores to be able to infect) was not considered to be 
sensitive, whereas θ2 (vpd1, lower threshold value defining a humid hour 
for spore production) was considered sensitive to model outputs. 

3.2. Bayesian calibration 

The seven highly sensitive parameters from the sensitivity analysis of 
Bintje was parameterized by Bayesian calibration. Two Markov chains 
were run in parallel for 160.000 iterations and burn-in was detected 
within the first 100.000 iterations. Maximum a’posteriori estimates 
(MAP) were calculated from the Markov chains of the posterior proba
bility distributions. All these seven sensitive parameters were found to 
have been overestimated in their priors, given the lower MAP estimates 
for all parameters compared to their modal values. The most sensitive 
parameter was the threshold value defining a wet period for spores to be 
able to infect (θ19 = 33) and the second most sensitive parameter which 
was the threshold value defining a humid period for spore production 
(θ1 = 72) were both reduced by 17% compared to their modal values. 
For the fraction of natural surviving viable attached spores from last 
hour (θ5 = 0.74) and the threshold value controlling the reduction in 
survival of attached spores caused by dry conditions (θ6 = 164), a 
reduction of 25% compared to their modal values was found. A higher 

Figure 2. Results from sensitivity analysis of the Nærstad model, using the Morris method. Only the seven or eight most important parameters according to the 
sensitivity analysis are named for the varieties Bintje, Saturna and Peik separately. 
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reduction of 46% was found for the fraction controlling the reduction of 
viable released spores caused by WHS (wet period considered to start 
infection) (θ14 = 0.05) compared to its modal value. The absolute 
highest reduction of 79%, was found for the factor controlling the 
reduction of viable attached sporangia caused by the number of released 
sporangia to air (θ8 = 0.01) followed by the fraction controlling the 
reduction of viable attached sporangia caused by precipitation (θ7 =

0.35). 

3.3. Model fit and risk categorization 

Two ROC-curves were created from the training data to separate 
between low and moderate blight risk and between moderate and high 
blight risk, respectively, using the MAP parameter estimates (eXtra, 
Figure S3a, b). To distinguish between low and moderate blight risk, a 
low AUC of 0.57, corresponding to fail was detected, while a high AUC 
of 0.87, corresponding to good fit, was detected when distinguishing 
between high and moderate blight risk. From the ROC curve, a threshold 
value based on Pythagoras (minimizing the sum of squares of 1-sensi
tivity and 1-specificity) were found at 0.91 when distinguishing be
tween low and moderate blight risk and at 2.63 when distinguishing 
between moderate and high blight risk. 

3.4. Model validation 

Performance of the Nærstad model was evaluated through inde
pendent test data. From the model, blight risk was calculated using both 
the original modal parameter values and the estimated MAP parameter 
values for the seven most sensitive parameters detected for Bintje 
through sensitivity analysis. Mean square error between observed (daily 
number of lesions per trap plant) and estimated (daily risk, defined as 
maximum hourly risk for that day) value were calculated and decom
posed into bias, variance error and the phase shift component (Figure 3). 
The total MSE was reduced by 11% when using the MAP parameter 
estimates compared to the original modal values. From the decompo
sition, phase shift totally dominated MSE, and totaled in 99% of the 
error term using the modal parameter values and 67% using the MAP 
estimates. When the MAP estimates were used, the bias accounted for 
12% and the variance error for 21% of the total MSE 

The observed daily number of lesions per trap plant for cv. Bintje is 
given in Figure 4, with high difference between days and years. Also, the 
hourly number of spores recorded in the spore traps within the field is 
plotted for the same time interval, with high hourly, daily and yearly 
variations. The figure did not show any clear correlations between the 
number of lesions and the number of spores. 

Finally, the estimated risk category detected as low, moderate and 

high is showed with colored dots in green, orange and red, respectively, 
with a good match to the observed number of lesions. A confusion ma
trix was developed for all test years combined (Table 3). The accuracy of 
the model was 0.83, with a sensitivity of 0.89 and specificity of 0.62. 
Consequently, a false positive rate of 0.38 and a false negative rate of 
0.11 was found (Table 4). 

For cv. Saturna and cv. Peik, the model was tested using both the 
Bintje threshold values and the cultivar specific threshold values 
(Table 4). For the cultivars Saturna and Peik, the model accuracy 
decreased to 0.79 and 0.66, respectively when the Bintje threshold was 
used. For Saturna, the use of a cultivar specific threshold increased the 
accuracy to 0.81, with a corresponding increase in sensitivity from 0.90 
to 0.94. Use of the cultivar specific threshold for Peik reduced the ac
curacy from 0.66 to 0.63, and the sensitivity decreased from 0.93 to 
0.58. For both Saturna and Peik, the specificity was lower (0.52 and 
0.39, respectively) compared to the specificity for Bintje. The cultivar 
specific thresholds gave a slightly reduced specificity for Saturna (0.50) 
and increased for Peik (0.69). 

4. Model comparison 

The two late blight forecasting models, HOSPO90 and the Førsund 
rules were tested on the validation data. Both models require daily 
weather inputs, but since the trap plants were exposed from 3 pm one 
day to 3 pm the following day, daily inputs from the same time period 
were generated from the hourly recorded weather data. 

The accuracy of the Nærstad model was higher compared to both the 
Førsund rules and the HOSPO90 model. The sensitivity of the Nærstad 
model was much higher compared to the two other models, while the 
specificity was lower. 

5. DISCUSSION 

Potato late blight epidemics highly depend on weather conditions 
(Crosier, 1934), but the weather affects differently in the different parts 
of the epidemic cycle. Temperature affects the physiology of both the 
pathogen and the host and it has an increasing influence in most stages 
of the disease development, with possible exception of spore dispersal 
(Harrison, 1992). Other weather variables have a more compound ef
fect, as sunlight for example that promotes spore release (Hirst, 1958) 
while it inhibits spore survival (Mizubuti et al., 2000) or leaf wetness 
that is known to inhibit spore release while it promotes spore germi
nation and infection (Rotem et al., 1978). To better understand and to be 
able to more precisely simulate the effect of inter-related weather con
ditions on blight development, these processes were described mathe
matically into a process-based simulation model, the Nærstad model. 
With an hourly time-step, the dynamic model describes the structure of 
the underlying processes in the disease development, including spore 
production, spore release, spore survival and infection of P. infestans. 
Realistic relationships between these processes are then given through 
the mathematical descriptions, and blight will for example not develop 
despite good weather conditions for infection when no spores are pro
duced or if the produced spores are not viable. Only process-based 
models provide this flexibility to realistically predict the impact of the 
different weather conditions through the simulation period. The draw
back is the complexity in respect to high computational cost, generally 
with a high number of input variables and uncertain parameters. 

While model complexity with an increased number of parameters 
improves the model fit to a particular dataset, it may lead to over-fitting 
and poor predictive performance when the model is applied to new 
situations. Parameter-rich models with high dimensional parameter 
spaces are also related to a high computational cost, leading to cali
bration challenges. Satisfactory simplifications of process-based models 
by fixing the weakly sensitive parameters detected through a sensitivity 
analysis have been shown (Hjelkrem et al., 2017; Oomen et al., 2016; 
Raj et al., 2016). From Hjelkrem et al. (2017), a higher error term may 

Figure 3. The percentage decomposition of mean square error (MSE) into bias, 
variance error and phase shift using the individual test data, using both the 
original modal parameter values and their maximum a’posteriori (MAP) 
parameter estimates. 
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be achieved when fixing too many of the parameters and model testing 
on independent data is thus important to justify. A sensitivity analysis in 
form of the Morris method was carried out for the Nærstad model to 
assess the importance of the 19 uncertain parameters. The sensitivity 
analysis was performed using weather data from five years separately. In 
line with previous studies (Hjelkrem et al., 2017; Confalonieri et al., 
2010), the range of parameter importance was not homogenous across 
years. Still, the same group of parameters stood out as weakly sensitive 
independent of the year of weather data used. The most sensitive 
parameter overall was θ19, which is the threshold value defining a wet 
period for spores to be able to infect (TSWHthres), being part of the 
infection sub-model. Spore production sub-model turned out to be very 
important for blight development, with as many as five out of totally 
eight parameters detected as highly sensitive. Additionally, one 
parameter from the spore release sub-model was detected as important 
for disease development across the different sets of weather data used. 

The sensitivity analysis was additionally carried out using data of cv. 
Saturna and cv. Peik (2010 and 2011). This showed the same group of 
sensitive parameters, whereas the order differed. This indicates that it is 
the same factors in disease development that trigger or inhibit disease 
development for the different cultivars. 

Bayesian calibration was performed to parameterize the seven most 
important parameters, that was detected through the sensitivity analysis 

Figure 4. For the test data of cv. Bintje (Ås, 2012 to 2015), subplots are given with observed number of lesions per trap plant, estimated risk level (low, moderate or 
high) and the observed number of spores per m3. 

Table 3 
Number of days in the different categories of infection risk on trap plants 
exposed from 3 pm to 3 pm the following day versus predicted risk with the new 
late blight model in trap plant trials 2012-2015.   

High 
blight risk 

Moderate 
blight risk 

Low 
blight risk 

Total 

High blight infection 76 10 5 91 
Low blight infection 9 4 7 20 
No blight infection 11 2 21 34 
Total 96 16 33 145  

Table 4 
Model accuracy, sensitivity and specificity calculated when testing the Nærstad 
model, the Førsund rules and the HOSPO90 model on trap data on the potato 
cultivars Bintje, Saturna and Peik collected between 2012 and 2015 at Ås.   

Accuracy Sensitivity Specificity  
Bintje 

Nærstad model* 0.83 0.89 0.62 
Førsund rules 0.61 0.57 0.76 
HOSPO90 0.57 0.46 0.91  

Saturna 
Nærstad model* 0.79 0.90 0.52 
Nærstad model** 0.81 0.94 0.50 
Førsund rules 0.64 0.59 0.75 
HOSPO90 0.61 0.49 0.89  

Peik 
Nærstad model* 0.66 0.93 0.39 
Nærstad model** 0.63 0.58 0.69 
Førsund rules 0.59 0.58 0.60 
HOSPO90 0.61 0.48 0.74  

* Bintje threshold 
** Cultivar specific threshold 
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of cv. Bintje. In the calibration, the parameter providing the best 
simulation of blight risk (reflected by observed number of lesions per 
trap plant) was detected. Maximum a’posteriori estimates was calcu
lated for these parameters within their prior boundaries. All parameters 
were identified with lower parameter values compared to their modal 
value. 

The Nærstad model was developed to improve the potato late blight 
forecasts in Norway. The model was developed as a process-based model 
based on literature and field data of the potato cultivar Bintje (suscep
tible to blight infection). Test results on this cultivar showed that the 
error term between risk of late blight and the observed number of lesions 
per trap plant was characterized by timing (phase shift). Still, a high 
accuracy (83%) with few exceptions improperly classified as low risk 
(11%) were detected. Reduced accuracy was detected for the cultivars 
Saturna (medium susceptible) and Peik (medium resistant), with 
respectively accuracy of 79 and 66%. For these cultivars, the percentage 
improperly classified as low risk decreased to 10 and 7%. The percent
age improperly classified as high risk was higher all over and increased 
from 38% for Bintje to 48% and 61% respectively for Saturna and Peik. 
Cultivar specific thresholds to distinguish between low, moderate and 
high infection was additionally calculated and tested for Saturna and 
Peik, with no clear effect (slightly improved accuracy for Saturna and 
slighty reduced for Peik). Partial resistance of potato cultivars to 
P. infestans consists of four components, which are infection efficiency, 
lesion growth rate, generation time and sporulation capacity (Colon 
et al., 1995). This shows that the model should be parameterized spe
cifically for the cultivar in order to achieve better accuracy. 

The model is based on infections on trap plants from five different 
seasons, but from only one location. Even though the model gives a good 
prediction of the infections on the trap plants, the model only takes into 
account the factors that were limiting to blight development during 
these five years. The trap plant tests should also be carried out at 
different locations to explore how robust the model is in predicting late 
blight infections under varying climatic conditions. 

The improved potato late blight forecasting model is based on hourly 
weather data and predicts the risk of spore production, with subsequent 
spore release, spore survival and infection, when there is inoculum in 
the field. The model is programmed on VIPS (www.vips-landbruk.no) a 
Norwegian web site with forecasting models for prediction of diseases 
and pests in crop plants. 

6. CONCLUSIONS 

The Nærstad model was developed to improve the potato late blight 
forecasts in Norway. The model was developed as a process-based model 
based on literature and field data of observed number of lesions per trap 
plant of the potato cultivar Bintje (susceptible to blight infection). The 
structure of the underlying processes in the disease development is 
described, including spore production, spore release, spore survival and 
infection of P. infestans. It is a dynamic model with an hourly time step, 
based on air temperature, precipitation, relative humidity, global radi
ation and leaf wetness. 

For all three cultivars tested (Bintje, Saturna and Peik), the Nærstad 
model improved with a higher model accuracy compared to the existing 
HOSPO-model and the Førsund rules that both have shown relatively 
good correlation with blight development in previous field evaluations 
in Norway. Still, the results of Saturna and Peik were not as good, and 
cultivar specific models would be preferred. Also, further testing at other 
sites should be preferred, to approve use of the model in other parts of 
the country. 
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