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Glioma is one of the most common and deadly malignant brain tumors originating from glial cells. For personalized treatment, an
accurate preoperative prognosis for glioma patients is highly desired. Recently, various machine learning-based approaches have
been developed to predict the prognosis based on preoperative magnetic resonance imaging (MRI) radiomics, which extract
quantitative features from radiographic images. However, major challenges remain for methodologic developments to optimize
feature extraction and provide rapid information flow in clinical settings. 1is study investigates two machine learning-based
prognosis prediction tasks using radiomic features extracted from preoperative multimodal MRI brain data: (i) prediction of
tumor grade (higher-grade vs. lower-grade gliomas) from preoperative MRI scans and (ii) prediction of patient overall survival
(OS) in higher-grade gliomas (<12 months vs.> 12 months) from preoperative MRI scans. Specifically, these two tasks utilize the
conventional machine learning-based models built with various classifiers. Moreover, feature selection methods are applied to
increase model performance and decrease computational costs. In the experiments, models are evaluated in terms of their
predictive performance and stability using a bootstrap approach. Experimental results show that classifier choice and feature
selection technique plays a significant role in model performance and stability for both tasks; a variability analysis indicates that
classification method choice is the most dominant source of performance variation for both tasks.

1. Introduction

Glioma is one of the most common and deadly malignant
brain tumors originating from glial cells. About 50 percent
of nervous system tumors and 80 percent of all malignant
brain tumors are gliomas. Glioblastoma multiforme (GBM)
(also called glioblastoma) is a fast-growing glioma that
develops from star-shaped glial cells (astrocytes and oligo-
dendrocytes) that support the health of the nerve cells within
the brain. In adults, GBM occurs most often in the cerebral
hemispheres, especially in the brain’s frontal and temporal
lobes of the brain. GBM is a devastating brain cancer that
typically results in death in the first 15 months after diag-
nosis. Traditional treatment of GBM is surgical resection
followed by radiation therapy and/or chemotherapy.

However, the median survival time of GBM is still less than
15 months despite surgical resection, radiotherapy, and
chemotherapy. 1erefore, the accurate preoperative prog-
nosis of GBM patients is desired, which can provide essential
information for planning the optimized and personalized
treatment.

Recently, various machine learning-based approaches
have been developed to predict the prognosis based on
preoperative magnetic resonance imaging (MRI) radio-
mics, which is a new cross-field of medical informatics,
aiming to extract quantitative features defined by mathe-
matics from medical images, such as shape, intensity, and
texture [1, 2]. Particularly, they applied the regression
model to predict OS time in days or categorized it into short
or long term based on binary classification using radiomic
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features extracted from various types of preoperative image
data [3]. According to the strategy through which features
are extracted, these studies can be roughly divided into two
categories: (1) methods based on manual features and (2)
methods based on automatically extracted features using
machine learning techniques. 1e basic idea of the method
based on manual features is to extract the artificial designed
features by semiautomatic or full-automatic method and
use the traditional machine learning method to regress or
classify the calculated features [4, 5]. For example, in [6],
brain tumors’ image phenotypic features are calculated
from a public preoperative multimodal MRI brain dataset
and input into the random forest classifier to learn a re-
gression model for OS prediction. In [7], some manually
labeled features are extracted from the BraTS 2017 dataset,
such as the volume and surface irregularity of brain tumors,
are used to train the artificial neural networks for OS
prediction. Although manual feature-based methods have
shown promising results, there is no systematic way to
determine OS-related manual features but mostly depen-
ded on experience. 1erefore, the machine learning-based
methods have been proposed, which can automatically
learn OS-related, deeply embedded MRI image features to
better predict OS without prior knowledge [4]. For ex-
ample, in [8], Nie et al. present a two-stage deep learning-
based OS time prediction method of high-grade gliomas
patient, where a 3D multichannel convolutional neural
network (CNN) is proposed to extract implicit and high-
level features automatically for OS prediction from mul-
timodal preoperative MRI brain tumor data, including the
contrast-enhanced T1 (T1c), diffusion tensor imaging
(DTI), and resting-state functional MRI (rs-fMRI). In [9], a
novel three-dimensional detailed delineation algorithm is
introduced for GBM tumors in MRI, which efficiently
delineates the whole tumor, enhancing core, edema, and
necrosis volumes using fuzzy connectivity and multi-
thresholding, followed by survival prediction of patients
using the concept of habitats.

Although all the studies mentioned above have indicated
an essential value of brain imaging phenotype for OS pre-
diction, tumors are often heterogeneous in space and time.
1ere are differences in the cell, gene, and microenviron-
ment for different tumor regions at the same time point or at
other time points in the same tumor region, which usually
requires multiple biopsies to capture the tumor’s molecular
heterogeneity, bringing inconvenience and risk to patients.
Radiomics can provide a noninvasive way to explore the
heterogeneity of tumors [10]. Gliomas are the most common
primary malignant brain tumors with high intrinsic het-
erogeneity.1is heterogeneity is evident in radiomic features
and morphology, making classification and prognosis more
difficult [11]. Radiomics analysis of gliomas can provide
additional information about the patient’s classification,
prognosis, and possible survival outcomes [12, 13].

However, although researchers at home and abroad
have done a lot of research on the application of machine
learning algorithm in radiomic feature classification and
prognosis prediction [14–19], due to the lack of a unified
standard, there are still many unknowns about which is the

best model in the field. Many studies also use proprietary or
in-house software in their radiomic feature extraction/
analysis pipeline, severely limiting the community from
making advances. Coupled with the fact that patients’
medical images are protected by the confidentiality laws, it
is incredibly challenging, if not impossible, to reproduce
the results. 1erefore, it is crucial to utilize publically
available datasets and open-source tools to expand the
radiomics field.

In our study, two machine learning classification tasks
using radiomic features are investigated, which predict tu-
mor grade and patient OS from preoperative MRI scans,
respectively. 1ese two tasks utilize the conventional ma-
chine learning techniques constructed with various classifier
methods. Feature reduction methods also are applied to
increase model performance and decrease computational
costs. Models are assessed in terms of their predictive
performance and stability using a bootstrap approach based
on the 2017 BraTS Challenge’s MRI data. Experimental
results show that the classifier choice and dimensionality
reduction technique plays a significant role in model per-
formance and stability for both tasks. Figure 1 shows an
outline of the radiomic workflow for the grade classification
task, and we utilized a similar scheme for the overall survival
classification task.

2. Material and Method

2.1. Dataset and Preprocessing. We utilized the 2017 BraTS
Challenge’s Training Dataset [20], which comprises 210
higher-grade gliomas (HGG) and 75 lower-grade gliomas
(LGG) preoperative multimodal MRI scans collected from
multiple centers. Each patient’s multimodal scans include T1,
postcontrast T1-weighted (T1c), T2-weighted (T2), and T2
Fluid Attenuated Inversion Recovery (FLAIR). All the MRI
scans have been segmented manually by one to four raters,
following the same annotation protocol, and experienced
neuroradiologists approved their annotations. Annotations
comprise the GD-enhancing tumor (ET-label 4), the peri-
tumoral edema (ED-label 2), and the necrotic and non-
enhancing tumor (NCR/NET-label 1). Each sequence was
skull-stripped and was resampled to 1mm∗ 1mm∗ 1mm
(isotropic resolution). For the overall survival challenge, age
and prognosis of the patient posttreatment were supplied by
the organizers.1e overall survival data also were available for
a subset of the GBM scans. In this study, all samples used for
the grade prediction task are referred to as the Tumor Grade
Dataset; all samples used for the overall survival prediction
classification task are referred to as the Overall Survival
Dataset. For the Tumor Grade Dataset, glioblastoma multi-
forme (GBM) was considered the negative type (n� 210)
while LGG was considered the positive type (n� 75). 1e
Overall Survival Dataset was stratified into binary classes
based on median survival rates for GBM; patients who died
before 12 months from diagnosis were considered negative
(n� 81), while patients who died after 12 months were
considered positive (n� 82). Examples of the four modalities
and the corresponding tumor masks from two GBM patients
are shown in Figure 2.
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2.2. Multitask VNet for Glioma MRI Data Segmentation.
1is study uses a multitask VNet framework to segment
glioma and its different subregions from the multimodal MR
image, shown in Figure 3. 1e network has two decoder
modules with similar structures, and different decoders are
assigned different tasks. 1e mask decoder module performs
training-mask segmentation according to pixel classification
tasks, and the distance transform decoder module performs

regression tasks to realize distance map estimation. 1e
structure of the encoder module and decoder module of the
network is similar to the VNet. Its encoder module alter-
nately stacks convolutional layers and downsampling layers
to achieve feature extraction of the input signal under dif-
ferent receptive fields.

In contrast, the decoder module alternately stacks
deconvolutional layers and convolutional layers in the joint
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Figure 1: Proposed workflow for grade/survival classification task.
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Figure 2: Examples of the four MRI modalities and the corresponding tumor masks from two randomly selected GBM patients.
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encoder restore image resolution stage by stage based on the
features extracted by the module. 1e model’s loss function
is the weighted sum of the categorical focal loss of the mask
decoder block and the MSE loss of the distance transform
decoder block. Its essence is that the distance map prediction
regularizes the template prediction.

2.3. Quantitative Feature Extraction. Medical images con-
tain a lot of information that can reflect the relationship
between human macro performance and microenviron-
ment. Up to now, the analysis and diagnosis of medical
images are mainly based on human judgment. 1e disad-
vantage of this method is that it can only be qualitative but
not quantitative. Compared with the qualitative description
of human experience, quantitative features can reflect more
potential information in the image. Medical imaging has
developed from traditional morphological diagnosis to
quantitative tumor analysis. 1e main difference is that the
latter needs to extract and analyze more high-order quan-
titative image features.

Quantitative feature extraction refers to the process of
extracting information from images by computer. 1e
performance of a classification model largely depends on the
features used. We extracted 16 shapes, 19 first-order sta-
tistics, 27 gray-level cooccurrence matrix (GLCM), 16 gray-
level size zonematrix (GLSZM), and 16 gray-level run length
matrix (GLRLM) features from each phenotype region of
interest (ROI). 1e coiflet wavelet transform filter was also
applied to each image to extract eight decompositions; for
each phenotype, each decomposition’s intensity-based fea-
tures were calculated. 1e combination of shape features,
first-order features, texture features, and wavelet features
extracts 718 features for each image phenotype and 2154

features for each sample. Before extracting these features,
voxel intensity values were normalized using the Z-score
normalization in the whole brain, discretized with a bin
width of 0.1, and constrained to an intensity value range of 3
standard deviations from the mean. For the Tumor Grade
Dataset, some LGG samples do not contain ET segmenta-
tions. 1erefore, regardless of tumor grade, these samples
were removed from the analysis to keep the features equal. In
addition, several mask combinations suffered from geometry
mismatches and were likewise discarded. 1e removal of
these samples from the Tumor Grade Dataset led to 44 LGG
samples and 191 GBM samples remaining for the analysis.
Similarly, after the removal of inappropriate samples, the
Overall Survival Dataset was left with a total of 73 GBM
samples with survival <12months and 77 GBM samples with
survival >12 months.

2.4. Feature Selection Methods. Radiomics leads to the
creation of several informative features for use in predictive
modeling. However, when the number of samples is far less
than the number of features, direct classification prediction
has a high computational cost and a poor effect. It may even
lead to the classification prediction algorithm’s failure.
Hence, feature selection is needed to obtain the feature set
with good performance after image feature extraction.

For machine learning models, there are many methods
to reduce the feature space. Common categories of feature
selection methods include filter, wrapper, and embedded
methods. In addition, compared with the wrapper and
embedded methods, the filter methods have the advantages
of classifier independence and high computational efficiency
[21]. Surprisingly, previous studies have found univariate
filter methods that ignore interactions between variables can
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Figure 3: 1e overall architecture of the proposed multitask VNet.
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be just as effective as multivariate methods that consider
these interactions [22]. A possible alternative way for feature
selection is dimensionality reduction. 1e complex inter-
action between variables is often considered by linear or
nonlinear mapping, and the high-dimensional space is
transformed into space with lower dimension [23]. It has
been recently proposed that unsupervised dimensionality
reduction techniques could have better prediction perfor-
mance than filter methods in radiomic studies [24].

We utilized four unsupervised dimensionality reduction
methods to build machine learning models, that is, principal
component analysis (PCA), kernel PCA (KPCA), inde-
pendent component analysis (ICA), and factor analysis (FA).
We chose these methods due to their simplicity, compu-
tational efficiency, and easily available implementation.
Moreover, these methods were compared with a univariate
filter technique, ANOVA F-score with the top 30 features
selected (FILT), and maximum 2D diameter features from
each phenotype (DIAM). DIAM was chosen to investigate
how our radiomic methods would compare against a
commonly utilized prognostic radiological metric [25].

2.5. Models’ Building. 1e prediction of tumor grade or
overall survival in this paper is a small sample binary
classification problem. To solve this problem, supervised
learning in machine learning is more targeted. Supervised
learning uses the training data to find rules through training
to predict new samples. Training data consists of examples
represented by a set of input features (radiomic features) and
an output value (tumor grade or overall survival class). Once
an intelligent prediction model is built from labeled data
using a classifier and feature selection method, it can predict
an unlabeled sample class.

We selected nine conventional machine learning tech-
niques constructed with various classifier methods and two
deep learning-based models for comparison, that is, decision
trees (DT), random forest (RF), bagging (BAG), boosting
(BST), Gaussian naı̈ve Bayes (NB), multilayer perceptron
(MLP), support vector machines (SVM), logistic regression
(LR), k-nearest neighbors (KNN), convolutional neural
networks (CNN), and deep neural networks (DNN). 1ese
models were chosen for their widespread use in radiomic
studies and simple implementation. Models built with
conventional machine learning and deep learning-based
techniques are displayed in Table 1. Although the hyper-
parameter of classifiers can be tuned by cross-validation to
improve the model performance, in our study, the classifiers
were used together with the default hyperparameter settings
to maintain simplicity and reduce the computational cost.
Intelligent prediction models were built from combinations
of feature reduction methods and classifier methods.

3. Experiment

3.1. Experimental Details. To analyze our results, a split was
made by the patient. For each dataset (Tumor Grade Dataset
n� 245 and Overall Survival Dataset n� 150), data were
randomly split into training and testing sets with a test

size� 0.2, yielding training sets containing 196/120 samples
and testing sets containing 49/30 samples, respectively. To
prevent the class imbalances from affecting the models’
performance, we applied the synthetic minority over-
sampling (SMOTE) [26] technique to the tumor grade
training dataset due to the existing radiomics studies that
have shown SMOTE can effectively improve the classifica-
tion predictive performance when the classes are imbal-
anced. However, SMOTE was not applied to the Overall
Survival Dataset since classes were already balanced.
Moreover, multicenter data and magnetic field inhomoge-
neities often contribute to the intensity inhomogeneities in
the MR images. 1erefore, we use the Z-score normalization
as a necessary preprocessing step in dimensionality reduc-
tion to standardize features concerning the training set.

To investigate and compare the performance of different
dimensionality reduction and classification approaches, a
three-dimensional parameter grid for analysis was con-
structed in this study. For any of the four dimensionality
reduction approaches, we took two as the step size (n� 1, 3,
5, 15) incrementally selected the number of dimensions from
1 to 15 (e.g., principal component). 1e training data and 11
machine learning models evaluate these dimension subsets
to build the machine learning prediction model. 1e area
under the receiver operating curve (AUC) score was cal-
culated to evaluate the model quantitatively on the test set,
which was repeated 100 times for each combination with
different random splits through a bootstrap approach. 1e
mean of the AUC values (μAUC) over all iterations was
calculated to determine the given model’s final AUC value.
By calculating the mean over 100 iterations, we can ensure a
more representative value for each model. Similarly, an
empirical metric for stability, relative standard deviation
(RSD) was previously defined as follows [22]:

RSD �
σAUC
μAUC

, (1)

where σAUC and μAUC were the standard deviation andmean
of the 100 AUC values, respectively. It should be noted that
higher stability corresponds to lower RSD values.

We apply the popular open-source machine learning
python library scikit-learn formodel building and analysis in
Python 3.6. 1e training and testing experiments are per-
formed on an NVIDIA GeForce Titan RTX 24G GPU with
Intel Xeon Silver 4210 2.2G GPU. 1e presented figures are
generated using the plotting library Matplotlib. An open-
source radiomics toolbox, Pyradiomics, was used for
radiomic feature extraction.

3.2. Performance Measurements. 1ere are three main ex-
perimental factors in our study which can affect the radio-
mics-based prediction, that is, prediction model (RF, NB, DT,
BAG, BST, SVM, LR, MLP, KNN, CNN, and DNN), feature
selection method (PCA, KPCA, ICA, and FA), and the
number of dimensions selected (1, 3, 5, . . ., 15). Multivariate
analysis of variance (ANOVA) was used to quantify these
factors’ impacts on AUC scores and their interactions in each
classification task. To compare the variability contributed by
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each factor, the variance (sum of squares) calculated for each
factor was divided by total variance and multiplied by 100 to
yield the percent variance for each factor.

In our study, a total of 2154 features were extracted from
the segmented tumor regions of the preoperative MRI scans
from the BraTS 2017 glioma dataset. For the Tumor Grade
Dataset, the output classes were LGG or HGG, while for the
Overall Survival Dataset, the output classes were <12-month
or >12-month survival. For both classification tasks, feature
selection and classification training were made using the
training set, whereas the testing set was used to assess
performance and stability.

3.2.1. Predictive Performance. Figure 4 depicts the perfor-
mance of dimensionality reduction and classification methods
using 11 dimensions for both tasks. Performance from models
constructed using ANOVA F-score univariate filter method
(FILT) and diameter features (DIAM) are also displayed. For
the grade classification task, the best results among the four
dimensionality reduction techniques are achieved by FA, while
ICA usually performs the worst effects. Moreover, FA has
comparable results to FILT, which generally has the highest
predictive performance. Additionally, using diameter features
alone scores much lower than any dimensionality reduction
techniques. In terms of classifiers, most classifiermethods show
similar results except DT, which is noticeably lower. For the
survival classification task, the best results among the four
dimensionality reduction techniques are also often achieved by
FA. Otherwise, performance results are more similar than in
the grade classification task. Worthy of note is that using di-
ameter features alone often scores comparable or higher than
any dimensionality reduction techniques. Again, most classifier
methods show similar results except decision trees and support
vector machines (for PCA, KPCA, and ICA), which are no-
ticeably lower. Additionally, AUC scores for the survival
classification task are much lower (<0.65) than for the grade
classification task (>0.80).

In addition, we repeated the above experiment by
varying the number of dimensions. Figures 5 and 6 show the
predictive performance corresponding to 1, 3, 5, 7, 9, 11, 13,
and 15 dimensions for each feature selection method for
both tasks, respectively.

3.2.2. Stability and Predictive Performance. Four AUC/RSD
values corresponding to different dimensionality reduction
techniques (PCA, KPCA, ICA, and FA) are generated for

each prediction method. We took the median of all four
AUC/RSD values for each prediction task as the repre-
sentative AUC/RSD of a model. Figure 7 shows the eval-
uation of models’ representative stability and predictive
performance in each classification task. In addition, as deep
learning models show significantly performance in these
tasks. Hence, the performance of both the conventional
machine learning techniques and two deep learning-based
models (DNN and CNN) is also evaluated. Figure 7(a)
shows MLP, LR, KNN, and BSTshould be preferred as their
stability and predictive performance were higher than the
corresponding median values across all classifiers. Simi-
larly, in Figure 7(b), MLP, LR, and KNN should be pre-
ferred, with BST on the borderline of top performance and
stability.

3.2.3. Experimental Factor Effect. To quantify the effect of
classification methods, dimensionality reduction methods,
and the number of selected dimensions, multivariate
ANOVA was performed on AUC scores in this study. In
Figure 8, we observed that all three experimental factors and
their interactions affect both classification tasks’ prediction
performance. 1e classification method was the most
dominant source of variability as it explained 36% and 37%
of the total variance in AUC scores for tumor grade and
survival classification tasks, respectively. 1e number of
dimensions used was the second most dominant source of
variability for both tasks as it explained 28% and 20% of the
total variance in AUC scores for tumor grade and survival
classification tasks, respectively. 1e dimensionality reduc-
tion method was the least dominant source of variability for
both tasks as it explained 3% and 2% of the total variance in
AUC scores for tumor grade and survival classification tasks,
respectively. Interaction terms between the experimental
factors followed similar trends.

3.3. Discussion. Several studies have built radiomics-based
predictive models for various clinical factors such as tumor
grade, prognostic outcome, treatment response, and more.
However, to expand the radiomics community, studies
utilizing open-source data, tools, and machine learning
models, such as those used in our current investigation, are
necessary. In a series of papers by Parmar et al., they
evaluated the predictive performance and stability of
computed tomography (CT) radiomic machine learning
models constructed with various feature selection filter

Table 1: Models built with various machine learning techniques.

Classifier methods Dimensionality reduction methods Feature selection methods
Decision trees (DT) Principal component analysis (PCA) ANOVA F-score (FILT)
Random forest (RF) Kernel PCA (KPCA) Max 2D diameter (DIAM)
Bagging (BAG) Independent component analysis (ICA) —
Boosting (BST) Factor analysis (FA) —
Naı̈ve bayes (NB) — —
Multilayer perceptron (MLP) — —
Support vector machine (SVM) — —
Logistic regression (LR) — —
k-Nearest neighbor (KNN) — —
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methods and classifier methods [22]. Results show that
specific machine learning models perform differently
depending on the cancer type, e.g., head and neck vs. lung.
1erefore, it is vital to test these methods in different cancer
types and various imaging modalities.

Additionally, Zhang et al. performed a similar study on
lung CT with unsupervised dimensionality reduction
methods and proposed dimensionality reduction methods
have the potential to be superior to filter methods [27]. 1is

study further demonstrates the variability of machine
learning models constructed from different classifiers and
dimensionality reduction techniques in a different cancer
type (glioma) and imagingmodality (MRI).We demonstrate
that dimensionality reduction techniques are often lower
than or comparable to filtering methods for both tasks.
Specifically, we show that FA can be an improvement over
PCA, which was suggested by Zhang et al. to be the best
method for dimensionality reduction in radiomic studies.
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method for grade classification task.
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Figure 4: Predictive performance of feature reduction and classification methods. (a) Grade classification task and (b) survival classification
task.
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Figure 6: Predictive performance corresponding to classification methods and the number of dimensions for each dimensionality
reduction method for survival classification task.
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Figure 7: Scatterplots between representative stability and predictive performance of classification methods. (a) Grade classification task
and (b) survival classification task.
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ET in T1c MRI scans often used as a distinctive marker
when attempting to distinguish LGG from HGG. However,
since we have only used LGG samples that contain ET
components, we suggest radiomics provides novel infor-
mation about underlying phenotype, usually not possible in
the radiological setting. Glioma grade is histopathologically
diagnosed; i.e., a biopsy must be taken for classification [28].
With our radiomics approach, we suggest that imaging data
may be a useful supplement to histological data. In this
study, we have only classified LGG from HGG, but more
grade subclasses can be assessed using these radiomics
methods, e.g., grade 1 vs. grade 2 vs. grade 3 vs. grade 4.
Previous studies have attempted to build machine learning
models for glioma grade classification with dimensionality
reduction techniques [29] or other feature selection methods
[30]. Still, our results show higher predictive performance,
possibly due to a more extensive training set and class
balancing with SMOTE.

Predictive performance for grade classification is much
higher when compared to survival classification, which is not
surprising as each classification task has its own set of
optimal radiomic biomarkers linked to underlying biological
significance. For example, the combination of shape, first-
order statistics, texture, and wavelet features utilized
through dimensionality reduction leads to higher predictive
performance than diameter features alone for the grade
classification task. However, this is not the case for the
survival classification task. Moreover, using diameter fea-
tures alone in survival prediction leads to higher predictive
performance than dimensionality reduction or filter tech-
niques with all radiomic features. Previous studies have
shown that texture features are challenging to gain predictive
power from in GBM, with AUC values routinely falling <0.6
[17, 31]. It may be the case that current intensity-based
features are not strongly linked to survival outcome in GBM,
but further studies are necessary before coming to these

conclusions. 1is study has taken a coarse approach to build
machine learning models, so it may very well be the case that
more refinedmodels for survival prediction can create useful
texture-based radiomics signatures for GBM survival pre-
diction with high AUC values.

For both classification tasks, the classifier method was the
most significant contribution to variability in predictive
performance. A trend has commonly been observed in
radiomic studies investigating machine learning models using
different classifiers and feature selection methods [22]. Op-
positely, Wang et al. observed that the dimensionality re-
duction method plays a larger role in predictive performance
variability [24]. Our study has also investigated the role the
number of dimensions has in variability, and it was found that
it has a larger role than the dimensionality reduction method
used. To our knowledge, no other studies have investigated
this factor’s effect on predictive performance.

Some limitations of our study are as follows. Regarding
image preprocessing, we have only utilized a simple method
of intensity normalization (Z-score) due to its availability in
Pyradiomics. Unlike CT imaging, MRI intensity is expressed
in arbitrary units, necessitating intensity standardization
before radiomic analysis. More sophisticated intensity
normalization methods, such as histogram-based method
[32], should be explored in future studies. In addition, we
have not taken advantage of classifier hyperparameter
tuning and instead relied on default hyperparameter settings
to save on computational costs. Future studies should
employ hyperparameter tuning to increase predictive per-
formance and stability. While our research explores our
classifiers’ stability, it should be noted that RSD is only an
empirical method that should not be directly compared with
other studies but only as a relative reference between
classifiers in a given study. Additionally, our definition of a
top classifier is relative to other classifiers studied, so it
should not be taken as all-encompassing.
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Figure 8: Variation of AUC explained by experimental factors and their interactions. (a) Grade classification task and (b) survival
classification task.
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4. Conclusion

In this study, we investigate two machine learning classi-
fication tasks using radiomic features: (i) prediction of tu-
mor grade (higher-grade vs. lower-grade gliomas) and (ii)
prediction of overall survival in higher-grade gliomas (<12
months vs.> 12 months). 1ese tasks are attempted using
machine learning models constructed with various classifier
methods and dimensionality reduction techniques. Models
are assessed in terms of their predictive performance and
stability using a bootstrap approach. Our results demon-
strate that for both classification tasks, among dimension-
ality reduction methods, FA yielded the highest predictive
performance. Similarly, MLP, LR, and KNN produced the
highest predictive performance and stability among classifier
methods. In addition, DT tended to perform poorly for both
classification tasks. 1is possibly points to an underlying
radiomic structure in the BraTS dataset that is preferentially
fit by specific machine learning models. Where results start
to diverge significantly is in the implementation of the SVM
classifier. For the grade classification task, SVMs tend to
perform relatively well with all feature selection methods
except ICA. For the survival classification task, SVMs tend to
perform poorly with all feature selection methods except FA.
Interestingly, previous studies in different cancer types have
suggested RF to be the best classifier method for radiomics
studies. Still, it does not score among the best classifier
methods for either task in our research.
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