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Abstract
This study compares LSTM neural network and wavelet neural network (WNN) for spatio-temporal prediction of rainfall 
and runoff time-series trends in scarcely gauged hydrologic basins. Using long-term in situ observed data for 30 years 
(1980–2009) from ten rain gauge stations and three discharge measurement stations, the rainfall and runoff trends in the 
Nzoia River basin are predicted through satellite-based meteorological data comprising of: precipitation, mean temperature, 
relative humidity, wind speed and solar radiation. The prediction modelling was carried out in three sub-basins correspond-
ing to the three discharge stations. LSTM and WNN were implemented with the same deep learning topological structure 
consisting of 4 hidden layers, each with 30 neurons. In the prediction of the basin runoff with the five meteorological 
parameters using LSTM and WNN, both models performed well with respective R2 values of 0.8967 and 0.8820. The MAE 
and RMSE measures for LSTM and WNN predictions ranged between 11–13  m3/s for the mean monthly runoff prediction. 
With the satellite-based meteorological data, LSTM predicted the mean monthly rainfall within the basin with R2 = 0.8610 
as compared to R2 = 0.7825 using WNN. The MAE for mean monthly rainfall trend prediction was between 9 and 11 mm, 
while the RMSE varied between 15 and 21 mm. The performance of the models improved with increase in the number of 
input parameters, which corresponded to the size of the sub-basin. In terms of the computational time, both models con-
verged at the lowest RMSE at nearly the same number of epochs, with WNN taking slightly longer to attain the minimum 
RMSE. The study shows that in hydrologic basins with scarce meteorological and hydrological monitoring networks, the 
use satellite-based meteorological data in deep learning neural network models are suitable for spatial and temporal analysis 
of rainfall and runoff trends.

Keywords Rainfall and runoff trend analysis · Deep learning · LSTM neural network · Wavelet neural network (WNN) · 
Satellite-based meteorological data · Nzoia River basin

Introduction

In sustainable water resources management, the accurate 
modelling of hydrological processes at watershed scales is 
a significant contributing factor. In particular, predictions 
of rainfall and runoff trends are important for different 
water resource planning such as in irrigation, flood control, 

structural design, and eco-hydrological services [1]. In most 
countries, catchment basins are sparsely gauged without 
accurate and adequate rainfall and runoff measurements [2]. 
This contributes to higher uncertainty in attempts to predict 
hydrological responses in such areas [3]. Rainfall and runoff 
can be characterized as random stochastic processes related 
to complex physical factors within catchments. Because of 
the spatial and temporal variabilities within watersheds, the 
patterns and number of variables required for the model-
ling of rainfall and runoff presents a complex hydrologic 
problem [4, 5].

Generally, the forecasting of time-series data depends on 
the sequence being modelled and can have different dimen-
sional spatial dependencies. In the prediction of rainfall and 
runoff time-series trends, physical and conceptual models 
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are traditionally utilized [6]. While conceptual models are 
considered to be suitable for daily timescale analysis, physi-
cal models can be used for daily and sub-daily timescale pre-
dictions. Because of the timescale dependencies, the physi-
cal and conceptual models are considered as unsuitable for 
accurate prediction of rainfall and runoff particularly where 
there is lack of high resolution spatial [7, 9]. Furthermore, 
these models require physical parameters which limit their 
application in the prediction of sequence data with unknown 
or limited quasi-periodic dynamics [10–12, 50].

Among the statistical methods, the Autoregressive Mov-
ing Average (ARMA) and its invariants as Autoregressive 
Integrated Moving Average (ARIMA) and nearest-neigh-
bor methods have been used for rainfall and runoff predic-
tions. Nevertheless, the accuracy of the statistical methods 
depends on the quality of the input data and can only satis-
factorily describe time-series data that exhibit non-stationary 
behaviors within and across seasons [45]. To improve on the 
rainfall and runoff prediction results, data-driven approaches 
have been proposed. This is attributed to the ability to 
approximate the inherent patterns and dynamics of series 
data without the knowledge of the parameters, and to take 
into consideration the stochasticity in observation and sys-
tem noise. In particular, ANNs have been explored and pre-
ferred for rainfall and runoff time-series trend analysis [13]. 
To predict rainfall and runoff, [14] proposed to use ANN and 
fuzzy logic, while ANN and ARIMA models were adopted 
in [15]. Other studies, e.g. [16], utilized Radial Basis Func-
tion (RBF) network and empirical model decompositions in 
the prediction of rainfall. The above studies reported that the 
approaches did not adequately capture the seasonal decom-
position and the inherent cyclical fluctuations in rainfall 
and runoff time sequence data. Towards improving ANN 
performance in hydrological predictions for Kentucky River 
catchment, [17] developed an ANN-based training using 
genetic algorithms for streamflow magnitude predictions. 
For the case study of data sparse Malaprabha River Basin in 
India, [18] developed a modular neural network to capture 
variable intensities in rainfall and runoff simulations. The 
results from [18] were superior as compared to the methods 
in [6, 17, 19].

Despite the aforementioned results, the main drawback 
of the conventional feedforward ANNs is their tendency to 
lose significant information on the sequential order of the 
input data during training. This is attributed to the vanish-
ing gradient effect which occurs as the number of layers 
increases [13]. Further, the applicability of a single ANN in 
hydrological phenomena modelling may not reliably cap-
ture the localized temporal and seasonal dynamics of rainfall 
and runoff [18, 20]. Thus, because of the inherent season-
ality and non-linear characteristics of rainfall and runoff 
time-series data, hybrid models such as: wavelets and least 
squares Support Vector Machines [40]; wavelet transform 

and artificial neural network hybrid models [46]; wavelet-
artificial neural network and comparison with adaptive neu-
rofuzzy inference system [48], and singular spectral analysis 
and discrete wavelet transform in hybrid models [55] have 
been recommended in their simulation and prediction.

The problem of displaying long-term dependencies in 
time-series data implies that the desired output at time t 
depends on input value that occurred at an earlier time 
𝜏 << t . As such, the dynamical neural system for such a task 
should be able to learn to store information for an arbitrary 
duration (memory) for the minimization of noise corruption. 
Because the typical feedforward network is not sufficiently 
powerful to discover contingencies spanning long temporal 
distances, it easily suffers from vanishing gradient effect as 
the number of layers increases. RNNs are most suited to 
store long-term time-series data with different temporal 
scales. However, simple RNNs that depend on the largest 
eigenvalue of the state-update matrix may have gradients 
which either increase or decrease exponentially over time. 
Long short-term memory (LSTM) RNN [25], was developed 
to improve on the conventional RNN models. LSTM-RNN 
uses input, output and forget gates to achieve a network that 
can maintain state and propagate gradients in a stable fash-
ion over long time spans. These networks have been shown 
to outperform deep feedforward neural networks on a variety 
of tasks [57]. Due to such capability, LSTM has been applied 
for rainfall and runoff predictions in [13, 21].

To take into account the non-stationarity in the assimila-
tion of rainfall and runoff time-series data, this study pro-
poses to compare the wavelet neural network (WNN) and the 
LSTM recurrent neural network. The comparison is based 
on the fact that in data showing persistence structure within 
the series, data-driven models can be considered to be more 
appropriate in accounting for their sequence dependency, 
non-stationarity and non-linearity. Recent investigations 
have demonstrated that WNN [23] and LSTM [13, 21] as 
data-driven models, can overcome the constraints of time-
series modelling and are suitable for taking into account the 
quasi-periodicities in rainfall and runoff predictions.

Specifically, wavelet transform (WT) can be used to ana-
lyze the data signal details through signal decomposition 
into time–frequency domains. Adopting discrete wavelet 
transformation (DWT), the rainfall and runoff series data 
can be estimated into independent data with periodicity [24, 
25, 39]. Further, in temporal sequence predictions, DWT 
can infer the normally hidden time–frequency information 
in time-series data. This study thus proposes the wavelets 
coupled ANN towards improving the rainfall and runoff pre-
diction model performance as demonstrated in forecasting 
streamflows with more reliable results [40, 41]. The wavelet-
neural network model is proven to be superior to the conven-
tional ANN and statistical regression models in rainfall and 
runoff prediction in different case studies by [48, 51, 52].
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Compared to WNN, LSTM is capable of dynamically 
incorporating predecessor or past learning experience due 
to internal recurrence. LSTM is also considered to be more 
powerful computationally and topologically more reason-
able as compared to the conventional feedforward neural 
networks without internal states [25]. With this ability, 
LSTM can automatically project the inherent properties in 
time-series data for accurate simulation and approximation 
of the chaotic series. LSTM is also suitable where there is 
a long delay and accounts for time-series signals with low- 
and high-frequencies. Compared to the conventional ANN 
and statistical models such as ARMA and ARIMA, LSTM 
is capable of robustly learning information contained in 
time-series data, and can effectively capture the variability 
of time-series data [23, 42, 43].

To understand the significance of the two neural net-
work models in rainfall and runoff trend analysis, this study 
explores the implementation of WNN and LSTM in rainfall 
and runoff trend characterization and predictions within a 
hydrologic basin with scarce meteorological and hydrologi-
cal monitoring network. From literature, comparisons on the 
advantages of WNN and LSTM have not been carried out 
especially in rainfall and runoff hydrological applications 
in data scarce basins. Because of lack of observed mete-
orological data, this study also evaluates the significance of 
satellite-based meteorological data including rainfall, tem-
perature, relative humidity, wind speed and solar radiation 

as input data in rainfall and runoff trend characterization and 
prediction in the Nzoia River basin in Kenya.

Materials and methods

Study area characterization

The Nzoia River Basin forms part of the larger Lake Vic-
toria basin. The basin is situated within latitudes 1°30′ N 
and 0°30′ S and longitude 34°00′ E and 35°45′ E, with 
an approximate area of 12,700  km2. The elevation ranges 
between 1100 m and 4000 m AMSL (Fig. 1) [44]. The lower 
parts of the basin have a flat terrain with a slope mainly rang-
ing between 2 and 6%, whereas the upper part is hilly with 
more rugged terrain as depicted in Fig. 1. Further details on 
the study area land-use and climatic characteristics can be 
found in [27, 44].

In the prediction modelling, the rainfall and streamflow 
stations are independently modelled with respect to the con-
taining sub-basin as depicted in Fig. 1. Each discharge sta-
tion was treated as a pour point and sub-basins were deline-
ated to include all the streams draining to each discharge 
station. In Fig. 1, the spatial distributions of the discharge 
stations and the ground and satellite meteorological stations 
are shown.

Fig. 1  Location of Nzoia River basin within the Lake Victoria basin and the rainfall and discharge measurement stations. The main pour point is 
station 1EF01 and sub-basin discharge stations are 1BC01 and 1DA02
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Data

The basin was divided into upper (1BC01), middle (1DA02) 
and lower (1EF01) sub-basins according to the locations of 
the discharge measurement stations (Fig. 1). The in situ rain-
fall data and satellite-based meteorological data were aggre-
gated to monthly averages for the 30 years (1980–2009) of 
study.

The satellite meteorological data were downloaded from 
the National Centers for Environmental Prediction Climate 
Forecast System Reanalysis (NCEP-CFSR) website (https:// 
clima tedat aguide. ucar. edu/ clima te- data/ clima te- forec ast- 
system- reana lysis- cfsr). The graphical variability of the 
mean monthly satellite-based and measured meteorological 
parameters and streamflow are presented in Fig. 2. Notably, 
from the meteorological data, a linear trend analysis shows 
increase in temperature and solar radiation, with correspond-
ing decrease in relative humidity, wind speed and received 
precipitation within the basin (Fig. 2a–d). The trends in the 
precipitation from the in-situ measurements and from satel-
lite data have a marginal difference with the satellite data 
overestimating the observed precipitation (Fig. 2e).

Table 1 presents a summary of the mean monthly statisti-
cal descriptions of the satellite-based meteorological data 
and the observed rainfall and streamflow data. Comparing 
the observed and satellite-based meteorological data, it 
is noted that the satellite-based rainfall overestimated the 
measured mean monthly rainfall by approximately 36 mm, 
and with twice the standard deviation. The streamflow vol-
ume is seen to vary according to the location of the pour 
point and size of the sub-basin.

Methods

This section introduces the neural network models structure, 
implementation and validation approach. Figure 3 presents 
a summary of the implementation strategy and processing 
flow for the prediction of rainfall and runoff trends with the 
proposed WNN and LSTM models. In Fig. 3, the missing 
rainfall data (RF) were interpolated using Inverse Distance 
Weighting (IDW) method. The deterministic IDW was used 
to interpolate the rainfall points since the missing data was 
less than 5%.

In general, time-series data forecasting can be represented 
as a 2D problem, for example as a P × Q, phenomenon tensor 
Y ∈ RP×Q×k with k measurements. The spatial observations 
can be represented in a time-dimension with T-time steps as 
Y1∶T . In the forecasting modelling, with Y1∶T as the previous 
observations, the future ΔT  sequence is defined by the time 

interval T(1 + ΔT) which is estimated as 
⌢

YT+1∶T+ΔT . The 
forecast ing task in  th is  case  is  def ined as 
⌢

YT+1∶T+ΔT =
arg max

YT+1∶T+ΔT
p
(
YT+1∶T+ΔT

||Y1∶T
)
 , which is the 

mostly likely predicted sequence.

LSTM recurrent neural networks

RNNs are a special neural network designed for under-
standing the temporal and dynamic sequences in series data 
[28–31]. As compared to feedforward networks that pass 
the data forward from input to output, RNNs have feedback 
loops where output data can feedback into the input at some 
point before feedforward again for further processing and 
final output. The advantage of the RNN model is in the abil-
ity to model sequence time-series data such that each sample 
can be assumed to be dependent on previous ones. The feed-
back connections in RNNs provide the memory of previous 
activations, thus allowing the model to iteratively learn the 
dynamics of the sequential data in time-steps [42].

Though RNNs exhibit powerful capability for modelling 
of complex and non-linear time-series data [32], the con-
ventional RNNs suffers from diminishing gradient, espe-
cially in the backpropagation iterative learning process. 
Thus, conventional RNNs may not adequately learn from 
longer time-lag data with dependencies [32]. To solve this 
problem, [25] proposed the LSTM algorithm (Fig. 3). The 
LSTM have been proven to be more suitable in the simula-
tion of sequence-based problems with long-term dependen-
cies [34, 41].

In the LSTM-RNN model, the memory blocks contain the 
input gate, output gate and forget gate that replace the hidden 
units. The gates are responsible for the control the internal 
operations on the network. Despite different LSTM vari-
ants being proposed, a comparative analysis shows that the 
standard LSTM is still the most significant [35, 42], and thus 
adopted and evaluated in this study. Figure 4 shows a sample 
representation of a single LSTM architecture as adopted in 
the current study. In addition to the memory gates, the fun-
damental components of the LSTM network comprise of 
the cell state, sigmoid and the tanh activation functions as 
depicted in Fig. 4. The inclusion and removal of informa-
tion to the cell state are regulated by the gates. The sigmoid 
activation functions in the gates multiplies inputs by values 
of [1], and determines the data to be included or removed.

Let ct be the input sum at time step t , the LSTM updates 
for time step i at given inputs xt , ht−1 , and ct−1 are given as 
in Eqs. 1–5 [25], that describe the algorithms of a typical 
LSTM layers.

(1)ft = �
(
Wxf ⋅ xt +Whf ⋅ ht−1 +Wcf ⋅ ct−1 + bf

)

Fig. 2  Mean monthly satellite-based: a–d temperature, humidity, 
wind speed and solar radiation; e ground-observed and satellite meas-
ured rainfall, and f streamflow for stations 1EF01, 1DA02 and 1BC01

◂

https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
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Table 1  Descriptive statistics of 
the mean monthly observed and 
satellite-based meteorological 
data and streamflow

SD standard deviation, CV coefficient of variation, SE standard error

Parameters Min Max Median Mean SD CV (%) SE

Satellite-based parameters (1980–2009)
 Precipitation (mm) 0.1 379.3 127.2 142.9 102.7 69 5.30
 Max. Temperature (°C) 25.5 37.1 31.6 31.4 2.3 7 0.12
 Min. Temperature (°C) 12.1 17.7 15.8 15.6 0.9 6 0.05
 Relative Humidity (%) 0.3 0.9 0.6 0.6 0.1 19 0.01
 Wind Speed (m/s) 1.6 3.9 2.4 2.5 0.5 19 0.02
 Solar Radiation (W/m2) 14.0 27.2 18.6 19.1 2.7 14 0.13

Observed rainfall data (1980–2009)
 Precipitation (mm) 0 303.0 110.4 106.6 61.0 60 3.20

Observed discharge data per station (1980–2009)
 1BC01 0.5 30.4 5.4 6.1 4.6 80 0.34
 1DA01 9.0 836.1 59.7 82.2 82.4 100 4.30
 1EF01 20.13 900.3 192.1 214.7 152.1 71 7.90

Fig. 3  Processing flow for the prediction of rainfall and runoff using LSTM and WNN
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where: � = non-linearity sigmoid function, it = input gate, 
W  = weight matrix, xt = time t input, ct = cell state, ht = time 
t  output, ft = forget gate [1], ot = output gate, ht−1 = hidden 
state vector of the previous time step, and bi = input bias 
vector [25].

During model training, the LSTM network is optimized 
using the backpropagation algorithm, and the structure of 
the LSTM hidden layer unit comprises of addition and mul-
tiplication operations, and several active layers. This mini-
mizes the RNN drawback of gradient vanishing problems. 
The implementation of the LSTM is detailed in [13, 21].

Wavelet neural networks

Wavelet transform (WT) WT of a signal is the representation 
of the data in terms of the time–frequency domain. Through 
the transformation, the noise components are removed and 

(2)it = �
(
Wxi ⋅ xt +Whi ⋅ ht−1 +Wci ⋅ ct−1 + bi

)

(3)ct = it ⋅ tanh
(
Wxc ⋅ xt +Whc ⋅ ht−1 + bc

)
+ ft ⋅ ct−1

(4)ot = �
(
Wxo ⋅ xt +Who ⋅ ht−1 +Wco ⋅ ct + bo

)
,

(5)ht = ot ⋅ tanh
(
ct
)
,

the signals are decomposed into high- and low-frequency 
through the high-pass and low-pass operations. In the trend 
analysis of time-series data, wavelet transform is useful for 
the effective capture of the inherent and hidden character-
istics and trends, as well as in detecting localized and non-
stationary of the events. It is proposed in this study that WT 
is capable of detecting the non-stationarity phenomena in 
rainfall and runoff data by representing the original signal in 
low- and high-frequency data components.

As detailed in [25, 36], a mother wavelet function is 
constructed for the wavelet function. If �(t) is an integrable 
square function, with �(t) = L2(R) , and if its Fourier trans-
form Ψ(�) satisfies the compatibility condition (Eq. 6):

then �(t) is the mother wavelet. Translation ( � ) and scale 
( a ) factors of WT are made so that we get function �a,�(t) 
as in Eq. 7:

Ψa,�(�) = continuous wavelet, and the inner product of the 
input signal x(t) and �(t) is calculated as in Eq. 8, and its 
Fourier transform time-domain in Eq. 9.

(6)∫R

|Ψ(𝜔)|2

𝜔
d𝜔 < ∞,

(7)𝜑a,𝜏(t) = a1∕2Ψ
(
t − 𝜏

a

)
, a > 0, 𝜏 ∈ R,

Fig. 4  RNN layer structure for 
LSTM implementation memory 
cell at the time step t 
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In the implementation of WT, the success is based on 
the selected mother wavelet. In hydrological time-series 
modelling, the Daubechies (DAUB-N) wavelets have 
proven to be more effective due to the orthonormality 
properties and balance between information quality con-
servation and abundance [37, 38, 46]. DWT was used in 
this study to decompose the rainfall and runoff data using 
the Daubechies level 4 (DB4), since DB4 is able to mini-
mize the noise but does not oversmoothen the signal [37]. 
More details on the development and implementation of 
DWT are in presented our previous studies [25, 36, 47].

To accomplish the characterization and detection 
of localized phenomena of non-stationary time-series 
data, the first step is the decomposition of the measured 
discharge {Dd1(t),  Dd2(t), …,  Ddi(t),  Da(t)} and rainfall 
{Rd1(t),  Rd2(t), …,  Rdi(t),  Ra(t)} to multi-frequent data, 
where  Ddi(t) and  Rdi(t) are the resulting DWT details and 
 Dai(t) and  Rai(t) represent the approximation of time-series 
discharge (D) and rainfall (R). The detail i defines the ith 
approximation level of the decomposed data.

WT‑neural network (WNN) model Inheriting the proper-
ties of wavelets and ANN, the topology of WNN is based 
on feedforward backpropagation (multilayer perceptron) 
network, with the mother wavelet acting as the hidden-
layers transfer function. The WNN network topology 
is shown in Fig.  5a and the implementation strategy in 
Fig. 5b. The feedforward multilayer perceptron with input 
layer, hidden layers and output layer was adopted for the 
rainfall and runoff signals decomposed by the wavelet 
transform into approximation  [Dai(t) and  Rai(t)] and detail 
 [Ddi(t) and  Rdi(t)] coefficients.

Before selecting the DB4, levels 1–10 were compared 
by trial-and-error and level 4 was adopted on the basis of 
the size of the validation data [53–55]. From the wavelet 
decomposition, several sub-series from the original data 
were obtained as input variables to the feedforward MLP 
(Fig. 5a). Figure 5c, d shows sample inputs following DB4 
decomposition of the original max temperature and rainfall 
for station 8,934,023. Sample station 8,934,023 is chosen 
as it represents the middle elevation of the catchments 
area. The input includes the level 4 approximation of the 
original signal and the 4-level details (D1–D4).

From the input vector, hidden layer output is deter-
mined as in Eq. 10:

(8)fx(a, �) =
1
√
a ∫

∞

−∞

x(t)�∗
�
t − �

a

�
dt,

(9)fx(a, �) =

√
a

2� ∫
∞

−∞

X(�)Ψ∗(a�)ej��d�.

where h(j) = node; j = hidden layer nodes; hj = mother wave-
let; wij = input and hidden layer connecting weight; bj = trans-
lation factor, and aj = scaling factor for hj.

Adopting the DB4 [25, 36], the output layer is deter-
mined as in Eq. 11:

The updating of the WNN weights and the wavelet 
function parameters is as the following steps:

Step 1: WNN prediction error E(W) computation:

where y(k) = prediction output value and yt(k) = target output.
Step 2: WNN weights update and variation of wavelet 

according to the prediction e:

where Δ�(i+1)

n.k
 , Δa(i+1)

k
 and Δb(i+1)

k
 are calculated by predic-

tion error of the network:

with � as the network learning rate.
The training of the network comprises of the following 

steps [48]:

1. Data pre-processing: normalized data division into train-
ing (70%), testing (15%) and validation (15%) datasets. 
The validation is part of training the model and updating 
the parameters. It utilizes part of datasets to validate and 
update the model parameters after each training epoch.

2. Network initialization: random initialization of weights, 
translation, translation and scale factor, and the learning 
rate { �ij and �jk , bk , ak , �}.

3. Network training: training, prediction and prediction 
error e estimation between output and expected value.

(10)h(j) = hj

�∑n

i=1
�ijxi − bj

aj

�
,

(11)

y(k) =
�k

i=1
�jk × hj

�∑n

i=1
�ijxi − bj

aj

�
=
�k

i=1
�jkh(j).

(12)E(W) = e =

k∑

1

[
yt(k) − y(k)

]2
,

(13)

�
(i+1)

n⋅k
= �

(i)

n⋅k
+ Δ�

(i+1)

n⋅k

a
(i+1)

k
= a

(i)

k
+ Δa

(i+1)

k

b
(i+1)

k
= b

(i)

k
+ Δb

(i+1)

k

(14)

Δ�
(i+1)

n⋅k
= −�

�e

��
(i)

n,k

Δa
(i+1)

k
= −�

�e

�a
(i)

k

Δb
(i+1)

k
= −�

�e

�b
(i)

k

,
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4. Weights updating: parameter and network weights 
update depending on magnitude of e.

5. Network testing: use test dataset for network reliability 
testing, else iterate to Step 3.

Input data quantification and normalization

The [1] normalization based on min–max predefined 
boundary method (Eq. 15), was used to linearly transform 

the original data and to maintain the inherent relationships 
within the respective datasets [56]. After the test output, 
denormalization is carried out to be able to relate the pre-
diction output with the observed data.

(15)f ∶ x → y

(
x − xmin

xmax − xmin

)
,

(a)

(b)

Fig. 5  a Wavelet-based feedforward multilayer perceptron (MLP) 
neural network layer structure. n is the input vector data which com-
prise of the wavelet details (D) and approximation (A) as: x1 = Di,N−j , 
….xn = AI,N−J . b Model development for wavelet coupled artificial 

neural network (WNN). [xi] and [yi] are respectively the input and 
output predicted vector. c, d Original and DB4 approximation (low-
frequency) and detail coefficients (high-frequency), respectively, for 
mean monthly temperature and precipitation at station 8,934,023
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Fig. 5  (continued)
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Fig. 5  (continued)
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where x, y ∈ Rn , xmin = min(x) , xmax = max(x) and x = input 
data. The values are converted into the range [1] through the 
normalization, that is xmax ∈ [0, 1] , i = 1, 2,...,n.

Metrics for model performance evaluation

To compare and evaluate the models, the following statisti-
cal measures were used R2 , RMSE and MAE (Eqs. 16–18):

where Pi = observed data P′
i
 = simulated data; P = mean 

observed data; P
′ = mean simulated data and e = model 

errors.

Results and discussions

Neural network optimum architecture for rainfall 
and runoff prediction

The construction of LSTM and WNN model architectures 
comprises of the creation of the topology of the deep learn-
ing network which is significantly determined by the hid-
den layer neurons and the selection of the optimal training 
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�∑n

i=1

�
Pi − P

��
P�
i
− P

�
��2

∑n

i=1

�
Pi − P

�2 ∑n

i=1

�
P�
i
− P

�
�2

,

(17)RMSE =

�∑n

i=1

�
P − P�

i

�2

n
=

����1

n

n�

i=1

e2
i
,
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i
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=
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n

n�
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parameters. Through trial-and-error input parameter com-
binations, the output performance of hidden layers is deter-
mined using R2, MAE and RMSE (Table 2). To determine 
the optimal architecture in rainfall and runoff predictions, 
the hidden layers were varied from 1 to 5 layers, with 30 
neurons in each layer and for each sub-basin. The training 
and validation results from LSTM and WNN models are 
summarized in Table 2, and are based on all the five input 
parameters in the entire basin.

The prediction results in Table 2 using R2 evaluation 
shows that the performance of the LSTM and WNN models 
improved with increase in the number hidden layers and cor-
responding neurons. Notably, after the fourth hidden layer, 
there was observed to be a consistent decrease in the predic-
tion performance for the models. The LSTM prediction of 
rainfall as measured with R2 increased from 0.6448 with 1 
hidden layer of 30 neurons, to a maximum of 0.8610 with 
a topology of 4 hidden layers with 30 neurons each. At one 
hidden layer, WNN marginally outperformed the LSTM by 
about 6%, however with four hidden layers LSTM performed 
better than the WNN by 8% as measured in terms of  R2. 
Similar patterns in the results were also observed for runoff 
prediction with the tested network topological structures 
as in Table 2. The MAE and RMSE performance metrics 
showed that with increase in neurons, WNN tended to mar-
ginally minimize the prediction errors in comparison with 
the LSTM neural network model. It is considered that both 
WNN and LSTM are capable of predicting the rainfall and 
runoff trends, however with deep learning structure, LSTM 
marginally outperformed the WNN.

Notably in Table 2, MAE for rainfall prediction using 
LSTM with three hidden layers received the lowest error, 
while the opposite observations are obtained when using 
RMSE evaluation and when using WNN with two hidden 
layers. Similarly for runoff predictions using LSTM with 
four hidden layers and WNN with three hidden layers, the 
inverse variabilities in MAE and RMSE with increase in 

Table 2  Performance statistics 
of LSTM and WNN hidden 
layer architectures for rainfall 
and runoff simulations

ANN model Number 
of hidden 
layers

Rainfall Runoff

R2 MAE (mm) RMSE (mm) R2 MAE  (m3 
 s−1)

RMSE  (m3  s−1)

LSTM 1 0.6448 13.3589 29.1334 0.6321 18.2446 15.7903
2 0.7561 11.4248 26.3519 0.7468 12.0772 15.2249
3 0.8534 8.3901 25.0677 0.8900 10.5237 14.5134
4 0.8610 13.5769 20.5492 0.9249 10. 2213 13.0459
5 0.8577 13.9505 20.5833 0.8981 11.7404 13.0520

WNN 1 0.7219 33.4401 27.6993 0.8209 12.5991 16.4821
2 0.7404 21.0580 26.4530 0.8243 13.1103 17.5491
3 0.7187 28.2397 26.5166 0.8561 11.4854 17.1507
4 0.7825 24.4877 25.4206 0.8579 12.3735 15.2128
5 0.7812 25.9110 26.0488 0.8447 12.9546 15.2312
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hidden layers are observed. These observations could be 
attributed in part to the fact that for the same data, the differ-
ences in the observed RMSE and MAE may arise when the 
error distributions in the data are biased or non-Gaussian. 
Further, while the MAE gives the same weight to all errors, 
the RMSE penalizes variance as it gives errors with larger 
absolute values more weight than errors with smaller abso-
lute values. This could be the cause of the varied prediction 
results in Table 2 for rainfall and runoff using LSTM and 
WNN.

To further assess the difference in performance between 
LSTM and WNN in rainfall and runoff trend prediction 
in terms of computing time, the variations of the epochs 
and the RMSE as the standard deviation of the prediction 
residuals is presented in Fig. 6. In the prediction of rain-
fall, RMSE converged to a minimum of 14.55 mm in 31st 
epochs for LSTM and at 15.17 mm in 37th epochs using 

WNN (Fig. 6a). Further training of the networks towards 
loss minimization and to obtain possible higher accuracy 
resulted in an increase in RMSE and reaches a saturation 
point after 43 epochs with WNN.

In the prediction of runoff, WNN is observed to consist-
ently overestimate the mean runoff within the basin with a 
minimum RMSE of 15.17  m3/s at 34th epochs (Fig. 6b). 
Using LSTM, the minimum RMSE is at approximately 
13.12  m3/s was achieved between the 25th–35th epochs. 
The results further confirm that both models are suitable for 
the prediction of rainfall and runoff trends with reasonable 
computing time.

Figure 6c, d shows the accuracy performance the LSTM 
and WNN models calculated for 50 iteration epochs using 
training and validation datasets for prediction of rainfall and 
runoff for the entire basins. In general, the model accuracies 
on the training and validation datasets increases after each 

(a) (b)

(c) (d)

Fig. 6  a, b RMSE vs epoch for model learning with LSTM and WNN models in predicting the mean monthly rainfall and runoff. c, d Accuracy 
performance for the prediction of rainfall and runoff using LSTM and WNN models
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iteration with fluctuations, which could be attributed to some 
randomnesses in the network. As the model trains during 
the first pass through the data, both training and validation 
accuracy increases indicating that the model is learning the 
structure of the rainfall and runoff prediction data as well 
as the temporal correlations of the time-series. In the first 
and consecutive iterations, the validation accuracy did not 
increase significantly and always higher than the training 
accuracy. This indicates that the network did not overfit the 
training data and accurately generalized to the unseen vali-
dation data. The optimal accuracy was obtained between 30 
and 40 epochs with LSTM being higher WNN in predict-
ing rainfall and runoff respectively by approximately 10% 
and 5%. The prediction of runoff was consistently recorded 
with a higher  R2 accuracy as compared to rainfall using both 
WNN and LSTM (Fig. 6c, d).

Runoff prediction with LSTM and WNN

Runoff prediction results using the LSTM and WNN models

Adopting the optimal four hidden-layer configuration, the 
runoff prediction results at the three discharge stations 
(1BC01, 1DA02 and 1EF01) using the LSTM model is 
presented in Fig. 7. Similarly, the runoff prediction results 
using WNN for the three discharge measurement stations 
are shown in Fig. 8. For both models, the input consisted of 
the mean monthly satellite-based meteorological datasets.

A statistical comparison of the runoff prediction results 
from LSTM and WNN are presented in Table 3 in terms of 
R2, MAE and RMSE. Except for station IBC01 where WNN 
predicted the runoff with the R2 of 0.7820, both models pre-
dicted the runoff at the three stations with R2 greater than 
0.80 using the five input parameters as input (Fig. 9). This is 
evidenced in the 30-year prediction accuracy with the MAE 
and RMSE of less than 13  m3/s for both models. In overall 
for the entire basin, it is observed that LSTM marginally out-
performed the WNN model, with MAE = 11.1452  m3/s and 
RMSE = 12.1933  m3/s at the basin outlet 1EF01. In practical 
applications, it is conclusive that both models can be used in 
the prediction of runoff in data scarce basins.

A comparison of the goodness-of-fit for the prediction of 
streamflow runoff with the two models as presented in Fig. 9 
shows that for the three stations, the use of satellite data to 
predict streamflow is acceptable as the R values were more 
than 85%. The accuracy of streamflow prediction is observed 
to increases with increase in the number of prediction sta-
tions within the sub-basins.

Performance of individual meteorological factors in runoff 
prediction

To determine the significance and accuracy of the contribu-
tions of the satellite-based meteorological parameters in the 
prediction of runoff, each of the five parameters were used as 
independent inputs with runoff as output. The comparative 
output results are presented in Fig. 10 representing the runoff 
predictions for the three discharge stations.

The results in Fig. 10 show that rainfall is the highest con-
tributing indicator variable in runoff prediction with R2 > 0.8 
for the three discharge stations. This confirms the fact that 
the amount of rainfall that remains after storage, infiltra-
tion, interception, evaporation and transpiration contributes 
to runoff. The least contributing meteorological factor is the 
relative humidity with R2 ranging between 0.6 and 0.65 for 
the three discharge stations using LSTM and WNN. The rest 
of the parameters, average temperature, wind speed and solar 
radiation estimated the runoff in the three stations with R2 
ranging between 0.675 and 0.80, with temperature perform-
ing better than wind speed and solar radiation. Conclusively, 
as the input increases from rainfall to all the datasets (1–5) 
and the hidden layers increased from 1 and 4, the accuracy 
of runoff prediction is observed to increase for the model 
training, testing and validation by up to 10%. Further inves-
tigations on the explanation of the basis of the individual 
predictions by comparing the contribution of each feature 
to each prediction using a unified approach such as SHapley 
Additive exPlanations (SHAP) [57] is recommended.

Rainfall prediction using LSTM and WNN

Performance of individual meteorological parameters 
for rainfall prediction

In evaluating the significance of the satellite-based mete-
orological parameters in rainfall trend prediction, Table 4 
presents the performance results of basin mean monthly 
rainfall prediction using the different meteorological param-
eters. Satellite-based precipitation is observed to be the most 
significant predictor in estimating the measured rainfall with 
R2 > 0.8 and the least MAE and RMSE errors measures. This 
is contributed to by the fact that for medium sized and cli-
matically homogenous basins like the Nzoia Basin, the cli-
mate factors tend to be replicated throughout the catchment 
area with minimal variabilities. As such the occurrence of 
rainfall at one station is generally an indication of rainfall 
also being recorded at a near distant station within the basin.

Temperature is the second best predictor for rainfall 
prediction, and the effect of temperature on rainfall arises 
from the fact that increased temperature leads to increased 
evaporation, an accelerated rate of the hydrological cycle 
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and more precipitation especially during the wet season. 
Humidity, wind speed and solar radiation are consecu-
tively ranked as in Table 4 with nearly the same contri-
bution effects on rainfall prediction, implying that they 
are highly correlated within the basin in terms of their 
contribution in rainfall prediction. This is also attributed 

to the size of the basin and the fact that the climate factors 
are nearly similar within the basin.

Rainfall prediction with combined satellite‑based 
meteorological data

Results of the mean monthly predicted rainfall for the 
four stations using the five meteorological datasets are 

(a)

(b)

(c)

Fig. 7  Observed and LSTM predicted discharge at stations: a 1BC01, b 1DA02 and c 1EF01
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(a)

(b)

(c)

Fig. 8  Observed and predicted discharge at stations: a 1BC01, b 1DA02, and c 1EF01 using the WNN model

Table 3  Performance evaluation 
for runoff prediction with 
LSTM and WNN using the 
meteorological parameters

Station ID LSTM model WNN model

R2 MAE  (m3  s−1) RMSE  (m3  s−1) R2 MAE  (m3  s−1) RMSE  (m3  s−1)

1BC01 0.8017 12.0890 12.1450 0.7820 12.6490 12.8793
1DA02 0.8330 12.0971 13.1318 0.8812 12.5637 12.7465
1EF01 0.8967 11.1452 12.1933 0.8053 12.4917 12.3040
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respectively presented in Figs. 11 and 12 for LSTM and 
WNN. The results are samples of distributed gauge sta-
tions representing high (station 8,835,034), mid (stations 
8,934,071 and 8,934,023) and low (stations 8,934,059) 
elevation areas.

The coefficients of determination for the four representa-
tive stations 8,835,034, 8,934,071, 8,934,023 and 8,934,059 
are presented in Fig. 13. The comparative performance 
between the two models imply that the LSTM predicted 
the basin mean rainfall with higher  R2 = 0.8610 for the ten 
stations, while WNN’s prediction was at R2 = 0.7825. The 
higher accuracy prediction results at individual rainfall 

stations could be attributed to continuous and accurate gauge 
data.

In addition to the statistical performance evaluations, 
graphical comparisons of the observed and modelled runoff 
and rainfall with LSTM and WNN in Figs. 7, 8 and 11, 12, 
respectively, shows that the LSTM results matched closely 
in spatial position and trend with the observed data as com-
pared to the WNN results. Further, the regression lines for 
runoff and rainfall in Figs. 9 and 13, respectively, shows that 
LSTM modelled the parameters closer to the 45° line of fit 
as compared to the WNN. The slightly lower performance 
from WNN results could be attributed to the feedforward 
ANN used in the training the input signals.

Fig. 9  Comparative regression models for the prediction of runoff with LSTM and WNN at the discharge stations 1BC01, 1DA02 and 1EF01
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The study results on the prediction of rainfall and runoff 
trends show that LSTM and wavelet-based neural networks 
are able to overcome the timescale conversion problems in 
time-series data analysis for accurate forecasting [8, 9], as 
they are capable of capturing the quasi-periodic signals in 
long-term rainfall and runoff data which are also character-
ized by cyclical fluctuations with inherent noise [10–12]. 
The LSTM and WNN are considered to be superior to the 
conventional ANN models since they appear conserve the 
crucial information input data sequence order because of the 
deep learning process in the hidden layers [13, 21–23, 45].

According to [24], WNN as a data-driven model is able 
to take into account the non-stationarity in the assimilation 
of rainfall and runoff time-series data as they account for 
sequence dependency, periodicity and non-linearity in such 
data [24, 25, 39–41]. LSTM on the other hand can dynami-
cally incorporate past learning experience due to internal 

recurrence, thus presenting a powerful internal state for 
accurate learning and predictions in data with long delay 
and mixed frequencies [23, 26, 42, 43].

The distribution of the measured and predicted rainfall from 
the results in Figs. 11 and 12 for the year 1999 were spatially 
interpolated using ordinary Kriging [33], and the results pre-
sented in Fig. 14. The year 1999 is chosen because it had the 
most continuous measured precipitation in all the gauge sta-
tions within the basin, thus suitable for comparative analysis. 
Figure 14a presents the observed mean monthly precipitation 
in 1999 and the results from LSTM and WNN are respec-
tively presented in Fig. 14b, c. It is observed that LSTM has 
the ability to accurately infer the long-term patterns in the 
30-year rainfall data in most parts of the basin. As compared 
to the LSTM, WNN tended to overestimate the higher pre-
cipitation values and underestimate the lower precipitations. 
The results in Fig. 14 also illustrates that despite the good 
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Fig. 10  Significance of individual meteorological factors in runoff predictions for discharge stations 1BC01, 1DA02 and 1EF01 using LSTM 
and WNN

Table 4  Performance of 
individual meteorological 
parameters for rainfall 
prediction

ANN model Meteorological input parameter Predicted rainfall

R2 MAE (mm) RMSE (mm)

LSTM Rainfall 0.7824 9.0264 17.2264
Average temperature 0.6938 10.9790 20.1791
Relative humidity 0.6729 10.1826 20.2338
Wind speeds 0.6551 9.2838 18.2254
Solar radiation 0.6604 11.2005 21.2700

WNN Rainfall 0.7013 11.9301 14.6411
Average temperature 0.6490 10.0717 15.3029
Relative humidity 0.6136 12.4593 15.6574
Wind speeds 0.6050 11.8406 14.9878
Solarradiation 0.6038 12.4955 16.1606
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statistical evaluation results, the spatial representation of the 
phenomenon gives a more insightful area-based comparison 
of the results.

In the prediction of rainfall and runoff in hydrologic 
basins with scarce data, the LSTM model performed 
marginally better than the wavelet-based neural network 
model. Both the models displayed the capability to learn 

the inherent temporal dynamics in the time-series data, and 
also to capture the seasonality in the quasi-periodic rainfall 
and runoff data. The results show that optimized effectively, 
LSTM and WNN can resolve the non-stationarity and non-
linearity problems associated with trend analysis of rainfall 
and runoff data.
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Fig. 11  Observed and LSTM predicted rainfall for four gauge stations within the basin
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Fig. 12  Observed and predicted rainfall with WNN for four stations within the basin
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Fig. 13  Regressions between 
the observed and predicted rain-
fall with WNN for four stations 
within the basin
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Conclusions

This study presented a performance evaluation of recur-
rent neural network implementation based on LSTM archi-
tecture and wavelet neural network for rainfall and runoff 
trend analysis in sparsely gauged river basin. With 30 years 
(1980–2009) of measured rainfall and streamflow data, and 
satellite-based meteorological data comprising of precipi-
tation, average temperature, relative humidity, wind speed 
and solar radiation from 10 satellite stations, the two neural 
network models were compared for rainfall and runoff pre-
diction in the Nzoia hydrologic river basin in Kenya.

With the same optimal neural network topological struc-
ture of 4 hidden layers each consisting of 30 neurons, both 
LSTM and WNN models predicted runoff with average R2 
value of 0.8 for all the 3 stations, except station 1BC01 using 
WNN. The RMSE and MAE metrics from both models in 

runoff prediction was achieved at less than 13  m3/s for the 
30-year study period. The evaluation of the significance of 
each meteorological parameter in the prediction of runoff 
showed rainfall as the most significant input parameter, fol-
lowed by temperature, and solar radiation as the least contrib-
uting factor. Best results were obtained by including all the 
parameters in the prediction model. In the forecasting of rain-
fall, LSTM gave the best predictive results with R2 = 0.8610 for 
the average monthly basin rainfall from the ten stations, with 
satellite-based precipitation being the best rainfall predictor. 
WNN estimated the mean basin rainfall with R2 = 0.7825 using 
the five satellite data. At the sub-basins scale, it was observed 
that the performance of the models improved with increase in 
the number if input parameters and number of data stations.

The study results shows that for catchments with scarce 
and low quality hydrological and meteorological data obser-
vations, use of satellite data in optimized LSTM and wavelet 

Fig. 14  Spatial distribution of a observed mean monthly rainfall in 1999, and the corresponding predicted rainfall from LSTM b and WNN ) 
models



235Complex & Intelligent Systems (2022) 8:213–236 

1 3

neural network models can be relied upon for the prediction 
of rainfall and runoff trends. It is recommended that similar 
studies be carried out with the inclusion of basin physical 
characteristics such as elevation, slope and flow accumula-
tion as training inputs to determine the significance of the 
physical watershed characteristics in rainfall and runoff 
predictions.
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