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Abstract

In this paper we perform a quantitative analysis, under the IFRS 9 framework,
on the tradeoff of classifying a financial asset at amortized cost versus at fair value.
We define and implement a banking impairment model in order to quantify the
forward-looking expected credit loss. Based on the suggested impairment model
we conduct a backtest on the 10-year Portuguese Government bonds, for the time
period from January 2003 to December 2019. The Portuguese bonds’ history con-
stitutes a very rich data set for our experiment, as these bonds have experienced sig-
nificant downgrades during the 2011-2014 financial crisis. We suggest a quantitative
and systematic approach in order to find efficient allocations, in an income/downside
comprehensive income bi-dimensional space. Resorting to stochastic simulation, we
show a possible approach to mitigate the estimation error ingrained in the proposed
bi-objective stochastic model. Finally, we assess the out-of-sample performance of
some of the suggested efficient allocations.
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1 Introduction

In the portfolio optimization literature it is possible to find several studies on backtesting
and on the out-of-sample performance analysis of portfolios constructed under frameworks
inspired by the seminal work of Markowitz (1952). When in face of a portfolio optimization
model it is well known that special attention should be given to the inputs’ estimation
errors (see, e.g., Chopra and Ziemba 1993). Despite the sophisticated models that have
arisen, over the years, the truth is that simple heuristics often are able to achieve superior
out-of-sample performances (see, e.g., DeMiguel et al. 2009). This happens because a
portfolio optimization model can be seen as a two step model (Michaud, 1989): in one step
the model’s inputs need to be estimated (with error); in the second step the optimization
is performed (the estimation error is optimized!). In turn, a heuristic, free of estimation
error, leads to superior out-of-sample results (notwithstanding that in-sample it is a sub-
optimal strategy). This does not mean that all the portfolio optimization models do not
work in practice; it tell us that when building such portfolio optimization models somehow
the estimation error sensitiveness must be addressed. As Gigerenzer (2015) states, in
situations of risk (where we can generate future scenarios with a certain probability)
optimization models can work just fine, and in situations of uncertainty (where we can not
anticipate anything about the future) heuristics, that incorporate the intuition developed
over the years, tend to produce better results.

Regarding optimization models for the bank balance sheet, the literature is more sparse
than for the case of portfolio optimization, but still substantial. It had its beginning at
least since the sixties with the paper of Kalman and Hammer (1967). In the eighties we
highlight the papers of Koehn and Santomero (1980) and Kusy and Ziemba (1986). More
recently we have, for example, the works of Diamond and Rajan (2000), Halaj (2013) and
Schmaltz et al. (2014). Both the works of Halaj (2013) and Schmaltz et al. (2014) already
address the impact of recent regulatory constraints imposed by Basel III. Nevertheless, at
the present date there is no record of any study that deals with the more recent accounting
rules. Besides that, these studies propose optimization models for the bank balance sheet
but overlook the estimation error and the out-of-sample performance.

Accounting rules are one of the key variables in the optimization of a bank balance
sheet. Motivated by the 2008 financial crisis, the International Accounting Standards
Board (IASB) issued the International Financial Reporting Standard 9 (IFRS 9), on July
24, 2014, and replaced the International Accounting Standard 39 (IAS 39). IFRS 9 has
become mandatory on January 1, 2018. Therefore, in 2018 banks had to adapt to the
new accounting rules. One of the practical pressing aspects issued by IFRS 9 lies on
financial asset classification. The main purpose of this paper is to analyze the way a
bank investment manager can determine, quantitatively, how a given investment should
be allocated between amortized cost versus fair value. Thereby, instead of looking to
the optimization of the whole bank balance sheet, we concentrate our attention to the
investment side.

Motivated by the fact that banks tend to invest in sovereign debt (Gennaioli et al.,
2018), we begin by designing a backtest on the 10-year Portuguese Government bonds
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for the time period between 2003 and 2019. Due to the experienced downgrades during
the 2011-2014 financial crisis, the history of the Portuguese bonds constitutes a very rich
data set. As IFRS 9 leaves the approach to the impairment model open to banks, we
implement one of the possibilities in order to compute the expected credit loss. The idea
is to be able to assess the annual income and the annual comprehensive income of different
allocations to amortized cost and to fair value. From the backtest’s results, we stress that
the higher the allocation of the investment to fair value, the higher the annual income
achieved and the greater the variability of the annual comprehensive income. The results
depend on two important determinants: the time horizon defined by the bank investment
manager and the threshold from which she/he decides to realize gains at fair value.

According to the best of our knowledge, in the literature there is no backtest on
the classification of financial assets at amortized cost versus fair value. Furthermore,
no quantitative model, that gives some insight about this decision, is known. In order to
give a more substantial contribution to the literature, we construct an optimization model
that allows the bank investment manager to directly find efficient allocations (amortized
cost versus fair value) in a risk-return bi-dimensional space. As a return measure we
define the average annual income and as a risk measure we use a downside risk measure
(the semivariance of the annual comprehensive income, which has a direct impact on
the bank’s own funds and regulatory capital ratios). Given the non-smoothness of the
proposed bi-objective model, in order to find the efficient allocations we use a derivative-
free algorithm. We discuss and implement a possible approach to mitigate the estimation
error, present in the model. This approach is based on stochastic simulation and scenario
generation. Finally, based on simulated paths (for a 10-year period), we assess the out-of-
sample performance of efficient allocations, selected according the proposed bi-objective
model. The results suggest a robust performance of the efficient allocations, in both the
considered objectives, including when compared to other benchmark allocations (namely,
the hard to beat equally weighted heuristic that corresponds to allocating the investment
equally to amortized cost and to fair value).

The remainder of this paper proceeds as follows. In Section 2 we make a brief presen-
tation on the IFRS 9 rules around the classification of financial assets. In Section 3 we
perform all the quantitative analysis: we begin by defining the impairment model, needed
to compute the expected credit loss; then, we implement a backtest on the 10-year Por-
tuguese Government bonds and analyze the respective results; the suggested bi-objective
model is motivated, presented and discussed; and finally, we develop the stochastic sim-
ulation (scenario generation) and the out-of-sample performance assessment. In the last
section, Section 4, we present the main conclusions of the paper and discuss some possible
directions for future work.

2 The IFRS 9 Framework

The classification system of IFRS 9 (IFRS Foundation©, 2017) is based on the business
model in which assets are managed and their cash flow characteristics (KPMG, 2016).
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Under the IFRS 9 framework, financial assets are classified into one of the three categories:
amortized cost (AC), fair value through other comprehensive income (FVOCI) and fair
value through profit or loss (FVPL). The categories of held to maturity, loans and re-
ceivables and available for sale, existing in the IAS 39 framework are eliminated (KPMG,
2016).

A financial asset is classified at AC if the financial asset is held to collect contractual
cash flows and if the financial asset give rise to cash flows that are solely payments of
principal and interest on the principal amount outstanding. As examples of financial
assets that can be classified at amortized cost we have trade receivables, loan receivables,
investments in government bonds that are not held for trading and investments in term
deposits at standard interest rates. In turn, a financial asset is classified at FVOCI if it is
held to collect and sell and the financial asset give rise on specified dates to cash flows that
are solely payments of principal and interest on the principal amount outstanding. As
examples we have investments in government or corporate bonds where the investment
period is shorter than maturity. If a financial asset does not fall into any of the two
previous classifications, then it is classified as FVPL. As examples we have held for trading
financial assets.

In this paper we focus on the tradeoff between a financial asset being classified at AC
or at FVOCI (hereafter FV), from the perspective of a banking portfolio construction.
If a financial asset is classified at FV it will allow to realize potencial gains that may
occur since the acquisition date to maturity, whereas if it is classified at AC this will
not be possible. However, a financial asset classified at FV will expose the bank capital
to market fluctuations. Therefore, according to the type of financial asset to include in
the banking investment portfolio, the bank investment manager should carefully consider
what business model to adopt.

Credit risk can be explained as the risk of default on a debt due to a borrower that
has not fulfilled its obligations. According to the IFRS 9 framework, the financial assets
classified as AC or FV are impaired under a single impairment model (Volarević and
Varović, 2018). IFRS 9 replaces the incurred loss model, used under the IAS 39, with a
forward-looking expected credit loss (ECL). In the IAS 39 framework, value adjustments
resulted from objective facts; in turn, the IFRS 9 impairment model focuses on possible
future losses and therefore makes use of a greater amount of information (e.g., macroe-
conomic data). According to the “general approach” (see BDO 2017, for further details)
the ECL impairment model consists of three stages based on changes in credit quality:
stage 1, stage 2 and stage 3.

Following BDO (2017), stage 1 (“Performing”), corresponds to the case where there
is no indication of decline in credit quality since acquisition; for financial assets in this
stage the 12-month ECL must be recognized and the interest income is recognized on a
gross basis (interest will be calculated on the gross carrying amount of the financial asset
before adjusting for ECL). Stage 2 (“underperforming”), corresponds to the case where
there is a significant increase in credit risk (SICR) since acquisition; when a financial
asset is transferred to this stage, lifetime ECL must be recognized; nevertheless, the
interest income is still recognized on a gross basis. Finally, Stage 3 (“non-performing”),
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corresponds to the case where the financial asset is credit impaired; the lifetime ECL
continues to be recognized but the interest income is now recognized on a net basis
(interest income will be calculated based on the gross carrying amount of the financial
asset less the ECL).

3 Quantitative Analysis

With the aim of helping the bank investment manager in the design of a quantitative
strategy for asset classification, in this section we perform a quantitative analysis of the
tradeoff between a financial asset being classified at AC or at FV.

We begin by setting up a backtest on the 10-year Portuguese Government bonds for
the time period between 2003 and 2019. We have gathered monthly data for the yields1.
As funding rates we have collected monthly data for the interest rate in term deposits
(deposits with agreed maturity, up to 1 year) of individuals2 (resident individuals in the
monetary union and Portuguese emigrants outside the monetary union). Moreover, for
the sample time period, we have also gathered data of the Portuguese Government bonds
credit ratings according to the Moody’s Agency3. All these historical data are reported
in Figure 1.

Figure 1: Historical Data Gathered
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This figure reports the monthly funding rates (interest rate on term deposits of individuals in Portugal), the monthly yields

of the 10-year Portuguese Government bonds and the corresponding ratings changes (according to the Moody’s Agency

notation) within the time period 2003-2019.

1This data is publicly available on https://bpstat.bportugal.pt/. We have collected all the available
data in which the first observation corresponds to January 2003.

2Monthly data, for the funding rates, is publicly available on https://bpstat.bportugal.pt.
3This data is publicly available on https://pt.countryeconomy.com/governo/ratings/portugal.
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We are interested in analyzing the impact of annual decisions (namely, looking to
the annual income and the annual comprehensive income); thus, we have annualized all
the collected data. Thereby, the annual yields and the annual funding rates correspond
to an annual average. Regarding the rating, according to the Moody’s Agency notation
we have sixteen (considering modifiers) different rating levels: B3, B2, B1 !→ highly
speculative grade; Ba3, Ba2, Ba1 !→ non-investment (speculative) grade; Baa3, Baa2,
Baa1 !→ medium-low grade; A3, A2, A1 !→ medium-high grade; Aa3, Aa2, Aa1 !→ high
grade; Aaa !→ prime. By assigning a numerical value to each possible rating level (1 to
16), this allows us to compute the annual average (rounded value) rating for the sample
under analysis4. The three annualized series (yields, funding rates and rating levels) are
reported in Figure 2.

Even though our analysis could be applied to any other financial assets, we decided
to focus on the 10-year Portuguese Government bonds. The evolution of the 10-year
Portuguese Government bonds has been exhibiting very unique dynamics as we can see
in Figure 1. In particular, the data set shows a substantial amount of downgrades which
allows us to assess the impacts of transitioning assets from Stage 1 to Stages 2 and 3.
Moreover, banks make substantial investments in sovereign debt (Gennaioli et al., 2018),
given the low capital requirements and high liquidity. Thereby, we have chosen to carry
out the analysis on the 10-year Portuguese Government bonds, which in itself presents
several challenges (due to its specific dynamics) and, according to our best knowledge,
corresponds to the first time that such an analysis is made.

3.1 Impairment Model Definition

One of the great “freedoms” given to the banks by IFRS 9, in the implementation of the
impairment model, is related to the computation of the ECL. Since IFRS 9 does not
stipulate how to compute the ECL it is not straightforward to implement it. Banks are
expected to develop their internal models making use of past and future information.

In order to quantify the bond credit risk, we begin by defining the lifetime ECL as

ECL(lifetime) =
T!

t=1

ECLt, (1)

where ECLt represents the expected credit loss at time t and T is the bond maturity.
Following KPMG (2017), ECLt depends on four factors: (1) the discount factor; (2) the
survival probability up to time t; (3) the probability of default between time t and time
t+ 1; (4) the loss given default (LGD). Thereby we can model the lifetime ECL as

ECL(lifetime) =
T!

t=1

exp (−rt)× exp (λt)× λ× LGD, (2)

4In the monthly data collected we observe eight different rating levels (see Figure 1): Ba3, Ba2, Ba1,
Baa3, Baa1, A3, A1 and Aa2.
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Figure 2: Annualized Data
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This figure reports the annual average funding rates (interest rate on term deposits of individuals in Portugal), the annual

average yields of the 10-year Portuguese Government bonds and the corresponding annual average rating levels (according

to the Moody’s Agency notation) within the time period 2003-2019.

where r represents the discount rate and λ defines the intensity of the Poisson process
that represents the marginal probability of default. Equation (2) can be approximated
by the following integral

LGD

" T

0

λ exp (−(r + λ)t)dt = LGD × λ

λ+ r
× [1− exp [−(λ+ r)T ]]. (3)

We can observe from Equation (3), that the loss increases with LGD and maturity.
Moreover, it has an asymptote in λ/(λ+ r), i.e., λ/(λ+ r) is an upper bound to the loss.

Regarding the stage allocation, IFRS 9 does not define what an SICR is, which deter-
mines if an asset should change from stage 1 to stage 2. A bank must identify the factors
that indicate an SICR based on the specific nature of the financial asset (PWC, 2017).
Commonly there are three elements taken into account in this identification (see, PWC
2017, for further details): a quantitative element, a qualitative element and the 30 days
past due backstop indicator in IFRS 9 paragraph 5.5.11 (IFRS Foundation©, 2017). Since
great “freedom” is given to banks in defining what constitutes an SICR, several banks
are undecided about which indicators to use (Ernst & Young, 2017). However, a great
number of banks have declared to make use of the low credit risk simplification as their
main indicator for debt securities (Ernst & Young, 2017). In the context of the IFRS 9
framework, a financial asset can be classified as having low credit risk if it has a rating of
“investment grade” or above (BDO, 2018). According to IFRS 9 paragraph 5.5.10 (IFRS
Foundation©, 2017), if a financial asset is classified at a reporting date as having low
credit risk, then it is assumed that an SICR has not occurred since initial recognition.

7



This can be seen as an absolute threshold (PWC, 2017).
In our analysis, we assume the following criteria: stage 1 - investment grade financial

assets or financial assets that have not had a downgrade greater or equal than 3 notches
since origination; Stage 2 - speculative grade financial assets or financial assets that have
had a downgrade of at least 3 notches since origination.

3.2 Backtest

According to the methodology proposed in the previous section, to compute the ECL,
three inputs are needed: the intensity of the Poisson process (λ), the discount rate (r),
and the LGD.

The intensity of the Poisson process can be calibrated using probabilities of default.
Nevertheless, we highlight that probabilities of default inferred from market instruments,
such as credit default swaps, must not be used in the computation of the ECL. Just
as insurers do not use insurance premiums to infer probabilities associated with events
(e.g. mortality tables), credit default swaps should not be used to infer probabilities of
default, given the uncertainties relating to market risk premia, counterparty risks and
market frictions (for further details see, e.g., Jarrow 2012). Thus, to calibrate the Poisson
process intensity, historical data should be used. In this paper we use the sovereign issuer-
weighted cumulative default rates, made public by Moody’s Investors Service (2019). For
general purposes, we consider, without modifiers, six different rating levels (in ascending
order: B, Ba, Baa, A, Aa, Aaa)5. Therefore, each sovereign issuer-weighted cumulative
default rate can be seen as a pk,n element, with k = 1, . . . , 6; n = 1, . . . , 10 (where k
represents each rating level and n the number of years considered in Moody’s Investors
Service 2019). We have calibrated each intensity λ(k) (with k = 1, . . . , 6) through the
minimum squares method. Accordingly, each intensity, λ(k), corresponds to the solution
of the following optimization problem

min
λ(k)∈R

K!

k=1

N!

n=1

[1− exp (λ(k) × n)− pk,n]
2, (4)

where K = 6, N = 10, and 1 − exp (λ(k) × n) represents the model’s n-year probability
of default. Problem (4) has a nonlinear but smooth objective function; thereby it can
be solved straightforwardly by a nonlinear optimization algorithm. We have used the
Broyden-Fletcher-Goldfarb-Shanno algorithm (this algorithm was originally and simulta-
neously published by Broyden 1970, Fletcher 1970, Goldfarb 1970 and Shanno 1970), also
known as the BFGS algorithm. The results are reported in Table 1.

Moody’s Investors Service (2019) also reports the historical average value-weighted
sovereign recovery rate (RR), RR = 0.41. Thereby the corresponding historical average
LGD is equal to 0.59 (LGD = RR− 1). We use this historical value for the computation
of the ECL.

5B - highly speculative grade; Ba - non-investment (speculative) grade ; Baa - medium-low grade ; A
- medium-high grade ; Aa - high grade; Aaa - prime.
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Table 1: Calibrated Intensities

Rating Level Intensity

Aaa 0.000390%
Aa 0.112%
A 0.349%
Baa 0.273%
Ba 1.106%
B 2.477%

This table reports the Poisson process intensities (see Equation (3)) for each rating level. These intensities correspond to

the solution of Problem (4), using as input parameters the sovereign issuer-weighted cumulative default rates (Moody’s

Investors Service, 2019).

As discount rate, r (see Equation (3)), we use the 12-month Euribor rate6 for the
period under analysis, 2003-2019.

Once defined the three inputs needed to implement the methodology described in
Section 3.1, the lifetime ECL in year i of a bond acquired in year j, ECL

(lifetime)
i,j , is given

by

ECL
(lifetime)
i,j = LGD ×

#
λ
(k)
i

λ
(k)
i +ri

$
×

%
1− exp [−(λ

(k)
i + ri)[10− (i− j)]]

&

∀i ∈ I = {(j + 1), . . . , (j + 10)} ; j ∈ J = {1, . . . , s} ,
(5)

where s is the number of sample periods (for the data under analysis is equal to 17,
corresponding to the number of years for the time period 2003-2019), ri is the discount

rate for year i, and λ
(k)
i represents the intensity of the Poisson process (see Table 1)

associated to the rating level k (1,2,3,4,5 or 6) observed in year i.

In turn, the one-year (12-month) ECL in year i of a bond acquired in year j, ECL
(one-year)
i,j ,

can be computed by

ECL
(one-year)
i,j = LGD ×

#
λ
(k)
i

λ
(k)
i +ri

$
×

%
1− exp [−(λ

(k)
i + ri)]

&

∀i ∈ I = {(j + 1), . . . , (j + 10)} ; j ∈ J = {1, . . . , s} .
(6)

We know that the price of a bond depends on the coupon rate c, yield y and time to
maturity T . Therefore, the bond price, P (c, y, T ), can be computed as

P (c, y, T ) =
T!

t=1

c

(1 + y)t
+

1

(1 + y)T
. (7)

6This data is publicly available on https://www.euribor-rates.eu/.
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Given the sum of the first n terms of a geometric progression, Equation (7) can be
expressed as

P (c, y, T ) = c

T!

t=1

1

(1 + y)t
+

1

(1 + y)T

= c

#
1

1 + y

$
'

()
1−

*
1

1+y

+T

1− (1 + y)

,

-.+
1

(1 + y)T

=
c

y

/
1− 1

(1 + y)T

0
+

1

(1 + y)T

=
c

y
− c

y

1

(1 + y)T
+

1

(1 + y)T

=
c

y
+

1

(1 + y)T

#
1− c

y

$
.

(8)

Following the accounting dynamics (double-entry bookkeeping, T-accounts) that a
bank investment portfolio must obey (see, e.g., Horngren et al. 1998; Weygandt et al.
2012, for further details), at AC, we measure the originated income (diference between
the margin impact and the impairment flow), in year i by the bonds’ investment made in

year j, x
(ac)
i,j , as

x
(AC)
i,j = MI

(AC)
i,j − IF

(AC)
i,j = (yj − fi)× w(AC) − (IS

(AC)
i,j − IS

(AC)
i−1,j)

∀i ∈ I = {(j + 1), . . . , (j + 10)} ; j ∈ J = {1, . . . , s− 1} ,
(9)

where yj represents the 10-year Portuguese Government bond yield in year i, fi is the
funding rate in year i, w(AC) is the proportion of the bonds’ investment allocated to AC
and IS

(AC)
i,j is the impairment’s stock in year i, of the proportion of the bonds’ investment

(in year j) allocated to AC. In case of the existence of an SICR (see Section 3.1), IS
(AC)
i,j ,

is computed as

IS
(AC)
i,j = ECL

(lifetime)
i,j × w(AC)

∀i ∈ I = {(j + 1), . . . , (j + 10)} ; j ∈ J = {1, . . . , s− 1} .
(10)

If an SICR did not occur, then IS
(AC)
i,j , is computed as

IS
(AC)
i,j = ECL

(one-year)
i,j × w(AC). (11)

In turn, at FV, we measure the originated income (diference between the margin im-
pact and the impairment flow plus the gains if realized), in year i by the bonds’ investment

made in year j, x
(FV )
i,j , as

10



x
(FV )
i,j = MI

(FV )
i,j − IF

(FV )
i,j + 11A(x) ∗ [P (yj, yi, (j + 10)− i)− 1] ∗ w(FV )

= (yj − fi)× w(FV ) − (IS
(FV )
i,j − IS

(FV )
i−1,j )+

+ 11A(x) ∗ [P (yj, yi, (j + 10)− i)− 1] ∗ w(FV )

∀i ∈ I = {(j + 1), . . . , (j + 10)} ; j ∈ J = {1, . . . , s− 1} ,

(12)

where P (·, ·, ·) is defined in Equation (7), IS
(FV )
i,j is the impairment’s stock in year i,

of the proportion of the bonds’ investment (in year j) allocated to FV (it is computed
in an analogous way as described in Equation (10) and Equation (11)), w(FV ) is the
proportion of the bonds’ investment allocated to FV, and 11(·) represents the indicator
function, A = {yj − yi >= τ}. τ defines a threshold from which the bank investment
manager decides to realize the gains or not. A careful choice of this decision variable is
determinant in deciding what proportion of the investment should be allocated to FV.
Note that the decision to realize gains, in a given time period, may lead to a sacrifice of
future gains through the margin impact.

The comprehensive income, at AC, in year i by the bonds’ investment made in year
j, z

(AC)
i,j , is equal to the income, x

(AC)
i,j . At FV, the comprehensive income (income plus

other comprehensive income), in year i by the bonds’ investment made in year j, z
(FV )
i,j ,

is computed as

z
(FV )
i,j = I

(FV )
i,j +OCI

(FV )
i,j = MI

(FV )
i,j +MV

(FV )
i,j

= (yj − yi)× w(FV )+
+ [P (yj, yi, (j + 10)− i)− 1] ∗ w(FV )

− [P (yj, yi−1, (j + 10)− (i− 1))− 1] ∗ w(FV )

∀i ∈ I = {(j + 1), . . . , (j + 10)} ; j ∈ J = {1, . . . , s− 1} ,

(13)

where OCI
(FV )
i,j and MV

(FV )
i,j represent, respectively, the other comprehensive income and

the market fluctuations, in year i by the bonds’ investment made in year j.
In what follows we consider that the bank investment manager invests a fixed amount,

M , each year7 on the 10-year Portuguese Government bonds. Since the annual income
and the annual comprehensive income are the result of different invested amounts (for
example, the income in 2005 results from the investments made in 2003 and 2004; in turn,
the income of 2006 results from the investments made in 2003, 2004 and 2005; and so on),
the results will be presented in percentage of the annual fixed amount invested (M). The
bank investment manager faces, each year, the tradeoff between what proportion of the
investment must be allocated to AC and what proportion must be allocated to FV. The
proportion of the investment allocated to AC must obey the rule that a bond acquired in
year j will be in the bank investment portfolio until maturity, i.e., until the year j + 10.
In turn, the proportion of the investment allocated to FV should follow the rule that a
bond acquired in year j will be sold in year i with j ≤ i ≤ j + 9 if yj − yi ≥ τ , otherwise

7In practice, each investment decision is made in the end of the corresponding year, the first one made
in the end of 2003 and the last one made in the end of 2018.
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it will be in the bank investment portfolio until maturity, i.e., the year j + 10. We begin
by realistically assuming that τ = 0.05 (500 basis points). All the gains are reinvested in
the next period at FV. We consider four different settings:

• Setting #1 - the case where the bank investment manager allocates the investment
totally to AC (w(AC) = 1 in Equation (9)) or to FV (w(FV ) = 1 in Equation (12)
and Equation (13));

• Setting #2 - the case where the bank investment manager allocates 50% of the
investment to AC (w(AC) = 0.5 in Equation (9)) and 50% to FV (w(FV ) = 0.5 in
Equation (12) and Equation (13));

• Setting #3 - the case where the bank investment manager allocates 25% of the
investment to AC (w(AC) = 0.25 in Equation (9)) and 75% to FV (w(FV ) = 0.75 in
Equation (12) and Equation (13));

• Setting #4 - the case where the bank investment manager allocates 75% of the
investment to AC (w(AC) = 0.75 in Equation (9)) and 25% to FV (w(FV ) = 0.25 in
Equation (12) and Equation (13)).

In Figure 3 and Figure 4 we report, respectively, the annual income and the annual
comprehensive income, for each of the four considered settings. There is one year that
stands out immediately in all these figures, the 2011 year. In May 2011, the Portuguese
Government signed the e78 billion bailout program (European Comission, 2011) with the
European Commission (Eurogroup), the European Central Bank and the International
Monetary Fund. In this year the 10-year Portuguese Government bonds’ yield climbed
to 10.24% (see Figure 2) and as the result we observe a considerable drop in the income
(see Figure 3) and comprehensive income (see Figure 4). In setting #1, regardless of the
allocation type (AC or FV), there is a drop of 0.16% of M (e0.16 for each e100 of the
fixed amount, M , invested each year from 2003 until 2011) in the income and a drop of
exactly the same magnitude in the comprehensive income if the allocation is done at AC;
if the allocation is done at FV a huge drop, equal to 134.14% of M (e134.14 for each
e100 of the fixed amount, M , invested each year from 2003 until 2011), is observed in
the comprehensive income. In settings #2, #3 and #4 the drop in the income is the
same observed in setting #1 but has different origins: in setting #2 a drop of 0.08% of
M results from the allocation to AC and the other 0.08% of M from the allocation to
FV; in setting #3 we observe a drop of 0.04% of M from the allocation to AC and a drop
of 0.12% of M from the allocation to FV; in setting #4 a drop of 0.12% of M results
from the allocation to AC and a drop of 0.04% of M results from the allocation to FV.
Regarding the comprehensive income: in setting #2 it drops 67.15% of M (0.08% of M
from the allocation to AC and 67.07% of M from the allocation to FV); in setting #3 it
drops 100.65% of M (0.04% of M from the allocation to AC and 100.61% of M from the
allocation to FV); finally, in setting #4, the comprehensive income drops 33.66% of M
(0.12% of M from the allocation to AC and 33.54% of M from the allocation to FV). It
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Figure 3: Annual Income
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This figure reports the annual income (in % of the annual fixed investment, M) for each setting: the case where the

bank investment manager allocates the investment totally to AC or totally to FV (setting #1); the case where the bank

investment manager allocates 50% of the investment to AC and 50% to FV (setting #2); the case where the bank investment

manager decides to allocate 25% of the investment to AC and 75% to FV (setting #3); and, finally the case where the bank

investment manager allocates 75% of the investment to AC and 25% to FV (setting #4).
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Figure 4: Annual Comprehensive Income
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This figure reports the annual comprehensive income (in % of the annual fixed investment, M) for each setting: the case

where the bank investment manager allocates the investment totally to AC or totally to FV (setting #1); the case where

the bank investment manager allocates 50% of the investment to AC and 50% to FV (setting #2); the case where the bank

investment manager decides to allocate 25% of the investment to AC and 75% to FV (setting #3); and, finally the case

where the bank investment manager allocates 75% of the investment to AC and 25% to FV (setting #4).
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should be noted that the biggest drop is observed in the case that the bank investment
manager decides to allocate the investment totally to FV (setting #1 when the allocation
is all to FV a drop of 134.14% of M is observed), and the lowest drop is observed when
the bank investment manager decides to allocate the investment totally to AC (setting
#1 when the allocation is done all to AC and we observe a drop of 0.16% of M).

Looking just to the income (see Figure 3), in setting #1, between 2004 and 2013, the
income, originated each year, is always the same independently of the allocation type.
In 2014 we observe a superior income originated at FV in comparison with the income
originated at AC (see Figure 3). This results from realized gains, since the bonds acquired
in 2010 and 2011 at the yields of 10.24% and 10.55%, respectively, are sold in 2014 because
the defined threshold is exceeded (the bond yield of 2014 is equal to 3.75%). However,
in 2015 (despite the gains, realized in 2004, having been reinvested at FV) we observe
a decline (compared to the case where the investment is totally allocated to AC) in the
income. This decline results from the margin drop due to the liquidation carried out in the
previous year of 2014. We can also note that if the investment is totally allocated to FV
we have more volatility than if the investment is totally allocated to AC: in the case that
the investment is allocated totally to FV we observe an annual income standard deviation
equal to 32.39% and a standard deviation equal to 22.67% in the case that the investment
is made totally in AC. Still in setting #1 and now regarding the comprehensive income
(see Figure 4) we also found that the investment allocated to FV is much more volatile
than the investment to AC. In fact, if the investment is totally made to FV the standard
deviation of the annual comprehensive income is equal to 74.35% and, in turn, if the
investment is allocated totally to AC this number falls to 22.67% (more than three times
lower). Even if we look to the income we observe a similar pattern. This was somehow
expected, since an asset classified at FV is subject to market variations.

The annual income and the annual comprehensive income (see Figure 3 and Figure 4,
respectively) in settings #2, #3 and #4 exhibit a similar behavior as observed in setting
#1 (differing only in the percentage that is allocated to AC and to FV). The higher the
percentage allocated to FV the more volatile will be the annual income and the annual
comprehensive income of the investment.

In order to understand the most advantageous allocation, from the point of view of the
bank investment manager, in addition to observing the annual variations of the income
and the comprehensive income, it is important to compute (for the defined time horizon)
the annual average value of the income and the comprehensive income. These results are
presented in Figure 5 and Figure 6, respectively.

On the one hand, the maximum annual average income (23.40% of M) and the maxi-
mum annual average comprehensive income (29.02% of M) are obtained in the case where
the bank investment manager decides to allocate the investment totally to FV (see set-
ting #1, allocation at FV, in Figure 5 and Figure 6, respectively). On the other hand,
the minimum annual average income (22.81% of M) and the minimum annual average
comprehensive income (22.81% of M) are observed in the case where the bank invest-
ment manager allocates the investment totally to AC (see setting #1, allocation to AC,
in Figure 5 and Figure 6, respectively).

15



Figure 5: Average Results - Income
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This figure reports the average results, for the time period 2003-2019, of the income (in % of the annual fixed investment,

M) for each setting: the case where the bank investment manager allocates the investment totally to AC or totally to FV

(setting #1); the case where the bank investment manager allocates 50% of the investment to AC and 50% to FV (setting

#2); the case where the bank investment manager decides to allocate 25% of the investment to AC and 75% to FV (setting

#3); and, finally the case where the bank investment manager allocates 75% of the investment to AC and 25% to FV

(setting #4).

Figure 6: Average Results - Comprehensive Income
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This figure reports the average results, for the time period 2003-2019, of the comprehensive income (in % of the annual

fixed investment, M) for each setting: the case where the bank investment manager allocates the investment totally to AC

or totally to FV (setting #1); the case where the bank investment manager allocates 50% of the investment to AC and 50%

to FV (setting #2); the case where the bank investment manager decides to allocate 25% of the investment to AC and 75%

to FV (setting #3); and, finally the case where the bank investment manager allocates 75% of the investment to AC and

25% to FV (setting #4).
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These numbers contrast with the settings where the investment manager decides to
implement mixed allocations (settings #2, #3 and #4, see Figure 5 and Figure 6): the
annual average income in settings #2, #3 and #4 is equal to 23.11% of M , 23.25% of
M and 22.96% of M , respectively; in turn, the annual average comprehensive income in
settings #2, #3 and #4 is equal to 25.92% of M , 27.47% of M , 24.37% of M , respectively.
According to these data we infer that the higher the allocation to FV the higher the annual
average income and the annual average comprehensive income.

So given the assumptions under which this backtest was performed, clearly the best
choice for the bank investment manager would be to allocate the investment totally to
FV. Nevertheless, these results are dependent of two very important assumptions: the
investment time horizon (in the backtest case seventeen years - from 2003 to 2019) and
the value assigned to the threshold (τ) that defines when gains at FV should be realized
(in the backtest τ = 0.05). Let us analyze more deeply the importance of these assump-
tions, focusing on setting #1 (this without losing generality), where the bank investment
manager decides to allocate the investment totally to AC or totally to FV.

Regarding the investment time horizon, in practice we know that the bank investment
manager has incentives to choose shorter time horizons. Instead of the seventeen-year
investment period, let us consider three different time horizons: 3, 5 and 10 years. Con-
sidering a rolling-window approach (for further details see, e.g., DeMiguel et al. 2009), we
compute the annual average income and the annual average comprehensive income, for
the cases where the investment is allocated totally to AC or totally to FV. The results
are reported in tables 2 to 4, for 3-year, 5-year and 10-year time horizons, respectively.
Contrasting these results with the seventeen year’s investment period (see setting #1 in
Figure 5 and Figure 6), we observe that the bank investment manager has a greater gain
in deciding to allocate the investment totally to FV instead of to allocate the investment
totally to AC: in the case of a 3-year time horizon (see Table 2) and considering the entire
sample time period (2003-2019), the annual average income/comprehensive income, for
the investment totally allocated to AC, is equal to 7.69%/7.69%, and for the investment
totally allocated to FV, is equal to 10.57%/14.19%; for the case of a 5-year time hori-
zon (see Table 3), the investment totally allocated to AC originates an annual average
income/comprehensive income equal to 24.21%/24.21%, and the investment totally allo-
cated to FV originates an annual income/comprehensive income equal to 35.37%/31.02%,
this considering the entire sample time period (2003-2019); finally, in the case of a 10-year
time horizon (see Table 4) and considering the entire sample time period (2003-2019), the
annual average income/comprehensive income, for the investment totally allocated to AC,
is equal to 67.88%/67.88%, and for the investment totally allocated to FV, is equal to
83.66%/106.1%.

Thereby, when the bank investment manager considers, as investment time horizon,
the entire sample period, 2003-2019 (see setting #1 in Figure 5 and Figure 6), she/he has
an upside (from allocating the investment totally to FV in contrast with totally to AC)
of 0.58% in the annual average income, and 6.21% in the annual average comprehensive
income. In turn, this upside is clearly greater in the cases that the investment time
horizon is shorter: in the 3-year case (see Table 2), 2.89% in the annual average income,
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and 6.50% in the annual average comprehensive income; for the 5-year case (see Table 3),
11.17% in the annual average income, and 6.82% in annual average comprehensive income;
in the 10-year case (see Table 4), 15.79% in the annual average income, and 38.20% in
the annual average comprehensive income. We highlight that these results, obviously, are
dependent on the yields’ trajectory. In hindsight, we know that, in the data set under
analysis, there was a great downward trajectory for the bond yields from 2012 to 2015
(see Figure 2), which allows to the realization of gains at FV.

In Table 5 we report the annual average (for the seventeen years’ sample) income
and annual average comprehensive income, for different values of τ (the threshold that
determines if the bank investment manager realizes gains and reinvests them, at FV, in
the following period). Of course the τ value does not have any influence in the annual
income and the annual comprehensive income when the investment is totally allocated
to AC. Thus, the annual average income and the annual average comprehensive income
are always equal to 22.81% (see Figure 5 and Figure 6, respectively) independently of the
chosen τ value. From the results presented in Table 5, we observe that for τ equal to
0.01, 0.02, 0.03, 0.04 and 0.06, the annual average income is always lower in the case that
the investment is totally allocated to FV (in contrast with the case where the investment
is allocated totally to AC).

Analyzing the variations in the comprehensive income, only with τ equal to 100 basis
points the annual average comprehensive income at FV is lower than the annual average
comprehensive income at AC. Note that with values of τ equal or greater than 700 basis
points, the bank investment manager reaches the higher values of annual average compre-
hensive income (higher than the initial case considered of τ = 0.05, see Table 5). With
τ equal to 900 basis points the bank manager obtains the best values of annual average
income (25.79% of M) and annual average comprehensive income (31.95% of M). Some-
how, these are expected results. The lower the τ value then the lower are the possible
gains that a bond classified at FV can originate which, in turn, is an incentive to allocate
the bond to AC instead of allocate it to FV. An analogous reasoning can be applied to
the case of higher τ values but with an upper bound (note that with τ equal to 1000 basis
points the annual average income obtained with the allocation totally made to FV is the
same as if the allocation is totally made to AC).

The analysis of the tradeoff between classifying a bond at AC or at FV constitutes,
as we can see from the backtest’s results, a crucial decision for the bank investment
manager. It is therefore important to have a quantitative model that allows the bank
investment manager to systematically identify efficient allocations (AC or FV) according
to a risk-return target. The income originated by the investment presents itself as a good
return target. As a risk target we suggest to consider the downside of the comprehensive
income, which effectively impacts the bank’s own funds and regulatory capital ratios. In
the next section we propose to build and analyze a model, over the space of all feasible
allocations to AC or FV, in which, on the one hand, the bank investment manager intends
to maximize the income and, on the other hand, she/he intends to minimize the downside
of the comprehensive income.
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Table 2: Annual Average Income and Comprehensive Income for a 3-year investment time
horizon

Investment Time Horizon Allocation Type Income Comprehensive Income

2003-2005
AC 3.407% 3.407%

FV 3.407% 8.723%

2004-2006
AC 2.367% 2.367%

FV 2.367% 1.427%

2005-2007
AC 0.414% 0.414%

FV 0.414% -4.642%

2006-2008
AC 0.014% 0.014%

FV 0.014% -2.263%

2007-2009
AC 2.526% 2.526%

FV 2.526% 4.446%

2008-2010
AC 3.854% 3.854%

FV 3.854% -3.011%

2009-2011
AC 2.375% 2.375%

FV 2.375% -27.22%

2010-2012
AC 5.108% 5.108%

FV 5.108% -8.584%

2011-2013
AC 11.23% 11.23%

FV 11.23% 38.27%

2012-2014
AC 10.39% 10.39%

FV 33.48% 43.68%

2013-2015
AC 5.953% 5.953%

FV 5.953% 25.84%

2014-2016
AC 3.530% 3.530%

FV 3.530% 3.318%

2015-2017
AC 2.916% 2.916%

FV 2.916% 1.824%

2016-2018
AC 3.776% 3.776%

FV 3.776% 14.33%

2017-2019
AC 3.630% 3.630%

FV 3.630% 17.35%

This table reports the annual average income and the annual average comprehensive income (in % of the annual fixed

investment, M), for both cases where the bank investment manager decides to allocate the bonds’ investment totally to AC

or totally to FV (setting #1). The results are reported to a 3-year investment time horizon.

19



Table 3: Annual Average Income and Comprehensive Income for a 5-year investment time
horizon

Investment Time Horizon Allocation Type Income Comprehensive Income

2003-2007
AC 2.991% 2.991%

FV 2.991% -0.2343%

2004-2008
AC 1.041% 1.041%

FV 1.041% -2.143%

2005-2009
AC 2.046% 2.046%

FV 2.046% 1.594%

2006-2010
AC 4.254% 4.254%

FV 4.254% -2.389%

2007-2011
AC 4.260% 4.260%

FV 4.260% -23.65%

2008-2012
AC 5.295% 5.295%

FV 5.295% -15.26%

2009-2013
AC 8.794% 8.794%

FV 8.794% 18.86%

2010-2014
AC 13.70% 13.70%

FV 35.07% 42.66%

2011-2015
AC 17.80% 17.80%

FV 34.36% 44.63%

2012-2016
AC 14.79% 14.79%

FV 21.52% 25.98%

2013-2017
AC 9.135% 9.135%

FV 9.135% 14.39%

2014-2018
AC 6.544% 6.544%

FV 6.544% 15.79%

2015-2019
AC 6.187% 6.187%

FV 6.187% 19.66%

This table reports the annual average income and the annual average comprehensive income (in % of the annual fixed

investment, M), for both cases where the bank investment manager decides to allocate the bonds’ investment totally to AC

or totally to FV (setting #1). The results are reported to a 5-year investment time horizon.
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Table 4: Annual Average Income and Comprehensive Income for a 10-year investment
time horizon

Investment Time Horizon Allocation Type Income Comprehensive Income

2003-2012
AC 4.174% 4.174%

FV 4.174% -10.94%

2004-2013
AC 6.081% 6.081%

FV 6.081% 10.32%

2005-2014
AC 8.967% 8.967%

FV 18.46% 25.39%

2006-2015
AC 13.35% 13.35%

FV 20.60% 31.66%

2007-2016
AC 17.29% 17.29%

FV 22.72% 28.83%

2008-2017
AC 20.37% 20.37%

FV 23.67% 29.58%

2009-2018
AC 22.85% 22.85%

FV 24.01% 34.80%

2010-2019
AC 27.59% 27.59%

FV 29.02% 38.95%

This table reports the annual average income and the annual average comprehensive income (in % of the annual fixed

investment, M), for both cases where the bank investment manager decides to allocate the bonds’ investment totally to AC

or totally to FV (setting #1). The results are reported to a 10-year investment time horizon.
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Table 5: Annual Average Income and Comprehensive Income for Different τ values

Threshold Income Comprehensive Income

τ = 0.01 18.63% 19.45%

τ = 0.02 21.52% 23.46%

τ = 0.03 19.34% 25.06%

τ = 0.04 21.62% 26.96%

τ = 0.05 23.40% 29.02%

τ = 0.06 22.04% 29.02%

τ = 0.07 23.93% 31.33%

τ = 0.08 24.50% 31.33%

τ = 0.09 25.79% 31.95%

τ = 0.10 22.81% 31.95%

This table reports the annual average income and the annual average comprehensive income (in % of the annual fixed

investment, M), for the case where the bank investment manager decides to allocate the bonds’ investment totally to FV

(setting #1), for 10 different thresholds (τ) that determine when gains should or should not be realized.

3.3 A Bi-Objective Model and the Pareto Front

In this section we propose a bi-objective model designed over the feasible space of all pos-
sible allocations (to AC or to FV), in which the bank investment manager maximizes the
annual income and minimizes the annual downside of the comprehensive income. Such
a framework allows the bank investment manager to directly identify efficient allocations
according to two defined objectives. As the risk target we suggest to make use of a down-
side risk measure, since downside risk measures realistically only account for the negative
part of the deviations from a certain predefined level (for a detailed survey on downside
risk measures, see Nawrocki 1999 and Estrada 2006). Roy (1952) was one of the earliest
contributors (with the Roy’s safety first principle) for further development of downside
risk measures. Posteriorly, Bawa (1975) and Fishburn (1977) introduced the lower partial
moments. Interestingly, the lower partial moments are no more than a generalization of
the semivariance, proposed previously by Markowitz (1959). In fact, Markowitz (1959)
stated that the semivariance is a much more plausible risk measure than the variance.
However, for computational reasons, the semivariance is often neglected (Estrada, 2008).

In this paper, as a measure of the downside of the comprehensive income, we make use
of the semivariance (also known as the lower partial measure of degree 2; see Bawa 1975
and Fishburn 1977). Before we show how the semivariance of the annual comprehensive
income can be computed, let us introduce some more notation. Let c(w(AC), w(FV )) =
[c1(w

(AC), w(FV )), . . . , cs−1(w
(AC), w(FV ))]⊤ represent the (s − 1) × 1 vector of the annual

comprehensive incomes. Thereby each annual comprehensive income is given by
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ci−1(w
(AC), w(FV )) =

!

j∈{1,...,i−1}

z
(AC)
i,j + z

(FV )
i,j , ∀i = 2, . . . , s. (14)

Accordingly, we can compute the semivariance of the annual comprehensive income,
SMV (c(w(AC), w(FV ))), as

SMV (c(w(AC), w(FV ))) =
1

s− 1

!

i∈{1,...,s−1}

min
1
ci(w

(AC), w(FV ))− B, 0
22

, (15)

where B represents a benchmark target. In this paper we establish B as the sample mean
of the annual comprehensive income distribution. Therefore,

B =
1

s− 1

!

i∈{1,...,s−1}

ci(w
(AC), w(FV )). (16)

Defining the semivariance of the annual comprehensive income as in Equation (15)
leads to an endogenous definition, i.e., a change in the bonds’ investment allocation (w(AC)

and w(FV )) changes the years when the annual comprehensive income underperforms
its mean (the mean is also affected), which in turn changes the elements of the annual
comprehensive income semivariance.

Defining the annual average income, AV I(w(AC), w(FV )), as

AV I(w(AC), w(FV )) =
1

s− 1

!

i∈I

!

j∈J

x
(AC)
i,j + x

(FV )
i,j , (17)

the bank investment manager can decide the efficient allocation (to AC or to FV) by
finding the solution of the following bi-objective problem

max
(w(AC),w(FV ))∈R2

AV I(w(AC), w(FV ))

min
(w(AC),w(FV ))∈R2

SMV (c(w(AC), w(FV )))

subject to w(AC) + w(FV ) = 1.

(18)

The solution of Problem (18) is given in the form of a Pareto front. (w
(AC)
∗ , w

(FV )
∗ ) ∈ R2

belongs to the Pareto frontier if it corresponds to a nondominated point, i.e., there is no
other feasible point (w(AC), w(FV )) ∈ R2 such that

AV I(w(AC), w(FV )) > AV I(w
(AC)
∗ , w

(FV )
∗ )

3

SMV (c(w(AC), w(FV ))) < SMV (c(w
(AC)
∗ , w

(FV )
∗ )).

(19)
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We have no access to the derivatives of both the objective functions of Problem (18),
since both functions are endogenous. Therefore, we solve Problem (18) using a derivative-
free algorithm. Among the derivative-free algorithms available for multi-objective opti-
mization, direct multisearch8 performs the best in a robust numerical exercise (test set of
more than 100 problems) reported in Custódio et al. (2011). Moreover, direct multisearch
has even outperformed the popular non-dominated sorting genetic algorithm (Deb et al.,
2002), in the same numerical experiment (Custódio et al., 2011). Thus, we have chosen
this algorithm to find the Pareto front solution of Problem (18).

Using the entire available time window (2003-2019) to estimate the inputs’ parameters,
the solution of Problem (18) is presented in Figure 7. Now, the bank investment manager
has a way to find efficient allocations (to AC or to FV) according her/his own risk-return

preferences. Thereby, e.g., w10 = [w
(AC)
10 , w

(FV )
10 ]⊤, where w

(AC)
10 = 0.0441 and w

(FV )
10 =

0.9559, is the allocation corresponding to the top9 10% of the SMV (see Figure 7), w50 =

[w
(AC)
50 , w

(FV )
50 ]⊤, where w

(AC)
50 = 0.2667 and w

(FV )
50 = 0.7333, is the allocation corresponding

to the top 50% of the SMV (see Figure 7), and finally w90 = [w
(AC)
90 , w

(FV )
90 ]⊤, where

w
(AC)
90 = 0.7062 and w

(FV )
90 = 0.2938, is the allocation corresponding to the top 90% of the

SMV (see Figure 7). We observe that the proposed framework incorporates the intuition
that the greater the allocation to FV, the greater the expected risk and in turn the greater
the expected return.

Corresponding this framework to a stochastic optimization framework, it is important
to take into account the results’ sensitivity to the estimation error present in both the ob-
jectives. Particularly, we know that the semivariance, being an asymmetric risk measure,
is many times more sensitive to estimation error, than symmetric risk measures that make
use of more information (Satchell, 2010). One possible way to mitigate this estimation
error is through a resampling methodology as proposed by Michaud and Michaud (1998).
The idea is straightforward. The bank investment manager generates different scenarios
for which a solution of the proposed model is found. The average of the obtained solutions
corresponds to the optimal efficient solution. But how to simulate the different scenarios
for the complex problem that we have in hands? In the next section we address this issue
by presenting and exemplifying a possible approach.

3.4 Stochastic Simulation and Out-of-Sample Performance

Simulating future scenarios is an arduous task which mainly requires a significant amount
of modeling. In this section we will consider just a possible way to simulate future scenarios
in our framework. We assume only one general premise: that the future resembles the
past. Of course this premise is quite debatable, but our aim here it is just to have a
systematic way of simulating scenarios instead of predicting the future. We are interested
in simulating different possible “futures” that are generated according to the historical

8A derivative-free solver based on direct multisearch, dms, is publicly available under request at
http://www.mat.uc.pt/dms/.

9Let cdf be the normalized cumulative distribution function of SMV (w(AC), w(FV )). Then, the top
x% of risk is defined by the allocation (w(AC), w(FV )) such that cdf(w(AC), w(FV )) >= x%.
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Figure 7: Pareto Front

This figure reports the Pareto front, solution of Problem (18), using all the sample time period (2003-2019) for the input

parameters’ estimation. The threshold, τ , used for the computation of the annual income at FV (see Equation (12)), was

equal to 500 basis points. In this figure are also plotted the allocations that correspond to the top 10%, 50% and 90% of

risk.
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available information. On one side, we need to simulate the yields and funding rates
(incorporating the observed historical correlation between these two rates) and on the
other side we need to simulate the ratings dynamics.

Regarding the simulation of the yields and funding rates, in this paper, we make use
of a correlated mean-reverting process. Since our aim is to simulate (not to predict)
different possible future states that somehow are a mirror of the past information, we
will not allow negative rates and thereby we decided to make use of a squared Bessel
stochastic process (Chou and Lin, 2006). The squared Bessel stochastic process is the
basis of the Cox-Ingersoll-Ross model (Cox et al., 1985) and it is well-known in the
financial literature as the CIR process. Given an interest rate, rt, a CIR process can be
defined by the following stochastic differential equation

drt = α(µ− rt)dt+ σ
√
rtdWt, (20)

where α is the mean reverting speed, µ is the mean reverting level and {Wt, t ≥ 0}
represents a standard Brownian motion. The interest rate, rt, thus follows a diffusion
process with drift α(µ − rt) (it is linear and ensures the mean reverting property) and
diffusion rtσ

2 (it is proportional to the interest rate and ensures the positiveness of rt).
If 2αµ ≥ σ2 (with α, µ, σ ≥ 0), the CIR process defined by Equation (20) has a marginal
density that is gamma distributed (Cox et al., 1985). Following Cox et al. (1985) and
Kladivko (2007), given rt (at time t) the density of rt+∆t (at time t+∆t) is given by

p(rt+∆t|rt;α, µ, σ,∆t) = ce−u−v
*u
v

+(q/2)

Iq(2
√
uv), (21)

with c = 2α
α2(1−eα∆t)

, u = crte
α∆t, v = crt+∆t, q = 2αµ

σ2 − 1, and Iq(2
√
uv) is the mod-

ified Bessel function of the first kind and order q (for further details see, e.g., Arfken
and Weber 2012). The transition density given by Equation (21) was for the first time
derived by Feller (1951). Given this closed-form expression for the transition density it
is straightforward to estimate the parameters α, µ and σ by maximum likelihood. A
detailed implementation, in MATLAB®, of how to proceed can be found in Kladivko (2007).

Assuming that the yields and the funding rates follow

dyt = αy(µy − yt)dt+ σy√ytdW
y
t , (22)

and

dft = αf (µf − ft)dt+ σy
4

ftdW
f
t , (23)

respectively, and following Kladivko (2007), we have calibrated through maximum like-
lihood (using as initial estimates for the optimizing procedure, the estimates obtained
through ordinary least squares) Equation (22) and Equation (23). Using all the avail-
able historical information, monthly data from 2003 to 2019, the monthly parameters
estimated were: αy = 1.614, αf = 1.588, µy = 0.03023, µf = 0.01023, σy = 0.2735,

σf = 0.2033 and E[dW y
t dW

f
t ] = ρdt = 0.6539dt.
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Now we can use Equation (22) and Equation (23) to simulate different future states
for the yields and funding rates. As we want to take into account the historical correlation
between the yields and the funding rates, instead of simulating, separately, each one of the
equations (Equation (22) and Equation (23)), we consider a vector-valued CIR process of
the form

dRt = α [µ−Rt] dt+ Σ
√
RtdWt ⇐⇒

/
dyt
dft

0
=

/
αy 0
0 αf

0#/
µy

µf

0
−

/
yt
ft

0$
dt+

/
σy
√
yt 0

0 σf

√
ft

0 /
dW y

t

dW f
t

0
,

(24)

where E[dW y
t dW

f
t ] = ρdt. Therefore, future yields and funding rates can be simulated,

according to Equation (24), following discretization in time by a forward Euler approach
(see Deelstra and Delbaen 1998, for further details). Through discretization negative
values can occur. One possible way to handle the negative values is by means of the
Higham-Mao method (Higham and Mao, 2005). Assuming that t = 0 is the time period
corresponding to the last sample observation (December 2019), Figure 8 presents one
simulated path (for 10 years) of the yields and funding rates.

Figure 8: Simulated Path of the Yields and Funding rates

This figure reports one simulated path of the yields and funding rates. We assume that the yields and funding rates follow

the dynamics described by Equation (24). The first time period, t = 0, corresponds to the last historical sample observation

(December 2019).
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In order to simulate the ratings dynamics, we constructed an ordered response model
(Mckelvey and Zavoina, 1975). Ordered response models (also known as ordinal cu-
mulative link models) to modeling the ratings dynamics have been widely employed and
analyzed in the credit rating literature (see, e.g., Afonso 2003, Bissondoyal-Bheenick et al.
2006, Afonso et al. 2009 and Erdem and Yusuf 2014). As our focus is in simulation and
not in prediction, in this paper we are not interested in studying or analyzing the deter-
minants of sovereign bond ratings (as done, e.g., in Cosset and Roy 1991 and Cantor and
Packer 1996). Our focus is also not the search for the best prediction methodology (as
done, e.g., in Ozturk et al. 2016). Our aim is to construct a simple (but not simplistic)
model that allows us to simulate the 10-year Portuguese Government bonds ratings using
as risk factor only the 10-year Portuguese Government bonds’ yield.

In the gathered historical sample (monthly data from January 2003 to December 2019)
we observe eight different rating levels (see Figure 9): Ba3, Ba2, Ba1, Baa3, Baa1, A3,
A1 and Aa2.

Figure 9: Historical Rating Levels
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This figure reports the distribution of the rating levels as function of the 10-year Portuguese Government bonds’ yield,

observed during the sample time period (January 2003 to December 2019).

These rating levels can be represented in ordinal form as
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j =

5
66666666667

66666666668

8, if the rating is Aa2,
7, if the rating is A1,
6, if the rating is A3,
5, if the rating is Baa1,
4, if the rating is Baa3,
3, if the rating is Ba1,
2, if the rating is Ba2,
1, if the rating is Ba3.

(25)

Now we can define an ordinal response model by letting r∗t be a latent variable such
that

r∗t = γyt + εt, ∀t ∈ {1, . . . , s}, (26)

where yt represents the bond yield and εt is the stochastic disturbance term with cdf given
by F (·). Accordingly, the rating level at time t, rt, is defined by

rt = j if cj−1 ≤ r∗t ≤ cj for j = 1, . . . , 8, (27)

where −∞ ≡ c0, c1, . . . , c7, c8 ≡ +∞ are the strictly ordered cutoffs determined by the
model. The cumulative probabilities are given by

Prob(rt ≤ j) = Prob(r∗t ≤ cj) = Prob (εt ≤ cj − γyt) = F (cj − γyt). (28)

Now assuming that εt follows a standard logistic distribution, we have

Prob(rt ≤ j) =
e(cj−γyt)

1 + e(cj−γyt)
=

1

1 + e−(cj−γyt)
. (29)

Thereby, by choosing the logistic function as the link function, it follows that

logit(Prob(rt ≤ j)) = cj − γyt, (30)

where logit(·) it is no more than the odds’ logarithm, i.e.,

logit(p) = log

#
p

1− p

$
. (31)

The described model can be estimated by maximum likelihood. Typically, ordinal
response models can be estimated using a regularized Newton-Raphson algorithm with
step-halving (line search) and analytical expressions for the gradient and Hessian of the
negative log-likelihood function (Christensen, 2018). A detailed implementation in R

through the ordinal package can be found in Christensen (2018). We present the esti-
mation results of the ordinal regression in Table 6.

The results presented in Table 6 can be interpreted as follows: with a 1% increase in
the bond yield the likelihood of 8 versus 1-7 (or analogously, 7 versus 1-6, or 6 versus 1-5,
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Table 6: Estimation Results of the Ordinal Regression

Coefficient Estimate

c1 −2.888∗∗∗ (0.3366)

c2 −2.487∗∗∗ (0.3068)

c3 −1.103∗∗∗ (0.2432)

c4 −0.8158∗∗∗ (0.2429)

c5 −0.7603∗∗∗ (0.2434)

c6 −0.7414∗∗∗ (0.2435)

c7 −0.5867∗∗∗ (0.2441)

γ −20.04∗∗∗ (4.717)

Log-Likelihood −301.22

Observations 204

This table reports the estimation parameters of the ordinal response model defined by Equation (26), Equation (27),

Equation (28) and Equation (29). The corresponding standard error is presented in parenthesis. *** means that the result

is statistically significant at the 1% level.

or 5 versus 1-4, or 4 versus 1-3 or 3 versus 1-2 or 2 versus 1) decreases approximately
20%, this in the log odds scale.

Thus we have a methodology to simulate the funding rates, the yields and the cor-
responding rating levels. Proceeding accordingly, we started by simulating 100 paths
(according the vector-valued CIR process defined by Equation (24)). Then we have com-
puted the rating levels (according to the ordinal response model defined by Equation (26),
Equation (27), Equation (28) and Equation (29)). In Figure 10 we report the distribution
of the simulated rating levels as a function of the simulated 10-year Portuguese Govern-
ment bonds’ yield.

Since our interest lies in analyzing the impact of annual decisions (on annual income
and annual comprehensive income), and similarly to what we did in the previous sec-
tions, we have annualized the simulated 100 paths’ data. The annual simulated bond
yield and funding rate correspond to an annual average. Following the correspondence
defined by Equation (25), the annual simulated rating level also corresponds to an annual
average (rounded value). An annualized simulated path (yield, funding and rating level)
is presented in Figure 11.

Following the framework proposed in Section 3.3, we exemplify now how the bank
investment manager can implement a methodology that intends to mitigate the estimation
error, based in the work of Michaud and Michaud (1998), for determining optimal efficient
allocations (AC or FV) to the 10-year Government bonds.

Firstly, for each one of the 100 simulated paths (yield, funding and rating level), the
efficient Pareto front (solution of Problem (18)) is computed. Secondly, on each obtained
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Figure 10: Simulated Rating Levels
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This figure reports the distribution of the simulated rating levels as a function of the simulated 10-year Portuguese Gov-

ernment bonds’ yield. These results are reported to a simulation of 100 yields paths.
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Figure 11: Annualized Simulated Path
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This figure reports one of the 100 simulated paths. The yields and funding rates are simulated according to the vector-

valued CIR process defined by Equation (24) and the rating levels according to the ordinal response model defined by

Equation (26), Equation (27), Equation (28) and Equation (29).
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Pareto front an efficient allocation (AC and FV) is chosen according to the defined risk-
return objectives. This choice can be made based on any decision rule adopted by the
bank investment manager. In this paper we decided to choose three different efficient
allocations (also defined in the previous section): the allocations corresponding to the top

10%, 50% and 90% of risk, w
∗(AC)
10 , w

∗(AC)
50 and w

∗(AC)
90 , respectively10. Thus, for each one

of the 100 generated paths, we have three efficient allocations: w
(AC)
i,10 , w

(AC)
i,50 and w

(AC)
i,90 ,

with i = 1, . . . , 100. Finally, the corresponding optimal efficient allocations are given
by the average allocations, i.e., the optimal efficient allocations corresponding to the top
10%, top 50% and top 90% of risk are given, respectively, by w

∗(AC)
10 = 1

100

9100
i=1 w

(AC)
i,10 ,

w
∗(AC)
50 = 1

100

9100
i=1 w

(AC)
i,50 , w

∗(AC)
90 = 1

100

9100
i=1 w

(AC)
i,90 . The main distributional values of

these efficient allocations are reported in tables 7 to 9.

Table 7: Efficient Allocation — Top 10% of Risk

min value max value average value (w
∗(AC)
10 )

w
(AC)
i,10 0.0348 1 0.6293

AVI -0.004626% 39.43% 10.54%

SMV 0.03704% 84.746% 12.34%

This table reports the main distributional values of the efficient allocation corresponding to the top 10% of risk, along the

computed 100 Pareto fronts (one for each simulated path). We report the minimum, maximum and average value of the

allocation to AC and the risk-return metrics (SMV-AVI).

Table 8: Efficient Allocation — Top 50% of Risk

min value max value average value (w
∗(AC)
50 )

w
(AC)
i,50 0.2086 1 0.6999

AVI -0.004626% 37.17% 10.23%

SMV 0.03704% 57.18% 8.326%

This table reports the main distributional values of the efficient allocation corresponding to the top 50% of risk, along the

computed 100 Pareto fronts (one for each simulated path). We report the minimum, maximum and average value of the

allocation to AC and the risk-return metrics (SMV-AVI).

In Table 7 we report the results for the efficient allocation corresponding to the top 10%
of risk, i.e., the efficient allocation, corresponding to the top 10% of the SMV, chosen on
each of the 100 Pareto fronts (one for each simulated path). We observe that the minimum
allocation to AC is equal to 0.0348 (which means that the maximum allocation to FV is
equal to 0.9652) and the maximum allocation to AC is equal to 1 (the minimum allocation
to FV is equal to 0). We also report the minimum values of -0.004626%/0.03704% in the

10Note that an efficient allocation (AC and FV) is completely determined solely by the proportion of
the investment that is allocated at AC.
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Table 9: Efficient Allocation — Top 90% of Risk

min value max value average value (w
∗(AC)
90 )

w
(AC)
i,90 0.5450 1 0.8425

AVI -0.004626% 32.70% 9.623%

SMV 0.03703% 19.38% 2.843%

This table reports the main distributional values of the efficient allocation corresponding to the top 90% of risk, along the

computed 100 Pareto fronts (one for each simulated path). We report the minimum, maximum and average value of the

allocation to AC and the risk-return metrics (SMV-AVI).

AVI/SMV space. In turn, the maximum values in the AVI/SMV space are given by
39.43%/84.746%. The average allocation that we were looking for is equal to 0.6293 to
AC (0.3707 to FV), which corresponds to a 10.54%/12.34% value in the AVI/SMV space.

Analogously, in Table 8 and Table 9 we find the results for the efficient allocations
corresponding to the top 50% and top 90% of risk, respectively. The average efficient
allocation corresponding to the top 50% of risk is equal to 0.6999 to AC (0.3001 to FV),
which attains a 10.23%/8.326% value in the AVI/SMV bi-dimensional space. In turn, the
average efficient allocation corresponding to the top 90% of risk is equal to 0.8425 to AC
(0.1575 to FV), which attains a 9.623%/2.843% value in the AVI/SMV bi-dimensional
space.

In the remainder of this section we provide some insight about the out-of-sample per-
formance of the efficient allocations according the bi-objective model (see Problem (18)).
Thus, we use each of the 100 simulated paths as an out-of-sample path. Given the in-
sample (2003-2019 is the in-sample time window) efficient allocations computed in the pre-
vious section (w10 = [0.0441, 0.9559]⊤, w50 = [0.2667, 0.7333]⊤ and w90[0.7062, 0.2938]

⊤),
we assess the performance of these efficient allocations in each of the out-of-sample paths.
It is interesting to contrast these results with other three different allocations: the al-
location where the bank investment manager decides to allocate the investment totally
to AC (wAC = [1, 0]⊤), totally to FV (wFV = [0, 1]⊤) and 50%/50% of the investment
distributed equally between AC and FV (wEW = [0.5, 0.5]⊤). The results are presented
in Table 10.

Based on the results presented in Table 10, the efficient allocations computed according
to the suggested model (solutions of Problem (18)) seem to be robust in terms of out-
of-sample performance. In fact, the considered in-sample efficient allocations are very
consistent in both of the two objectives (AVI and SMV): note that w10, w50 and w90

represent the ex-ante allocations corresponding to the top 10%, 50% and 90% of the risk,
respectively (see Figure 7) and thereby w10 leads to the ex-ante highest values of AVI and
SMV, followed by the w50 allocation and finally the w90 allocation; this pattern remains
untouchable ex-post (see Table 10). Moreover, the w10 and w50 allocations outperform
the wAC and wEW allocations in terms of ex-post average annual income (for the 10-
year out-of-sample period). This result is even more noteworthy taking into account

34



Table 10: Out-of-Sample Performance

Allocation Type
AVI SMV

min max average min max average

w10 -0.004626% 39.33% 10.52% 1.383% 83.34% 22.35%

w50 -0.004626% 36.58% 10.15% 0.903% 50.07% 13.54%

w90 -0.004626% 31.15% 9.43% 0.2426% 9.257% 2.735%

wAC -0.004626% 29.26% 8.950% 0.03703% 1.741% 0.3098%

wFV -0.004626% 39.88% 10.59% 1.495% 90.93% 24.36%

wEW -0.004626% 33.70% 9.770% 0.5449% 24.29% 6.722%

This table reports the performance, on the 100 simulated paths (corresponding to a 10-year out-of-sample period), of six

different allocations: three in-sample efficient allocations (w10, w50 and w90) computed on the Pareto front solution of

Problem (18), the allocation where the bank investment manager decides to allocate the investment 100% to AC (wAC),

100% to FV (wFV ) and 50%/50% of the investment distributed equally between AC and FV (wEW ).

two aspects: 1) it is achieved without using any explicit methodology to deal with the
parameter estimation error (as the one presented in the beginning of this section); 2) it is
well known that an equally weighted allocation (here represented by the wEW allocation)
is a hard to beat (in terms of out-of-sample performance) benchmark (for more details
see the provocative paper of DeMiguel et al. 2009) and even if we consider an ex-post
return/risk type measure (in this case AVI/SMV) the w90 allocation outperforms the
equally weighted allocation.

From the results presented in Table 10 it also stands out that the best ex-post perfor-
mance in terms of average annual income (10.59%) is attained by the case where the bank
investment manager decides to allocate the investment totally to FV (wFV ). Nevertheless,
this allocation also corresponds to the highest ex-post risk (the annual semivariance of
the comprehensive income equals 24.36%).

4 Conclusions and Future Research

IFRS 9 intends to harmonize accounting with risk management. From the perspective of
a banking investment portfolio construction this is not an easy task, due to the inherent
complexities. The bank investment manager faces the critical decision on the allocation
of securities to fair value and amortized cost. We have addressed this important issue.

Since IFRS 9 does not give an explicit definition for the impairment model, in this
paper we have suggested a banking impairment model in order to compute a bonds’
expected credit loss. We assume that the marginal probability of default is given by a
Poisson process. From the suggested impairment model results an expected credit loss
that increases with the loss given default, as with the bond’s maturity. We define what
a significant increase in credit risk consists of: we consider the existence of a significant
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increase in credit risk if a bond has a rating level classified as “speculative grade” or if a
bond has had a downgrade of at least 3 notches since origination.

A backtest on the 10-year Portuguese Government bonds was performed, for the time
period between 2003 and 2019. The backtest was constructed using only three inputs:
yields, funding rates and the corresponding rating levels. The results suggest that the
higher the proportion of the investment allocated to fair value, the higher the variability of
the annual income and the annual comprehensive income. Moreover, for the full sample
period (2003-2019) if the bank investment manager decides to allocate the investment
totally to fair value she/he obtains a higher value of annual average income and annual
average comprehensive income than if she/he decides to allocate the investment totally to
amortized cost. Nevertheless, we have shown that these results are sensitive to the choice
of the threshold from which the bank investment decides to realize gains at fair value. We
also have shown that these results rely on the investment time horizon which in turn can
affect the bank investment manager decisions.

Based on risk-return objectives, a bi-objective optimization model was proposed in
order to allow the bank investment manager to directly find efficient allocations, i.e.,
which proportion of the investment should be allocated to amortized cost and which
proportion should be allocated to fair value. As a return measure we have defined the
average annual income. In turn, as a risk measure we have defined the semivariance of
the annual comprehensive income. Our proposed model generates a Pareto front. The
solution of the defined non-smooth bi-objective problem, using the data related to the 10-
year Portuguese Government bonds for the time period from January 2003 to December
2019, was computed by means of a derivative-free algorithm based on direct multisearch.
Given the experienced significant downgrades, as a result of the 2011-2014 financial crisis,
the Portuguese Bond yields constitutes a very unique data set.

Simple optimization, in uncertain environments, has often proven inefficient and non-
optimal. This is due to estimation error. Thereby, we have suggested and implemented a
methodology to mitigate the bi-objective optimization model estimation error. Based on
the resampling methodology proposed in Michaud and Michaud (1998), we suggested an
idealization of different possible future paths that can be used to compute different Pareto
fronts. The optimal solution corresponds to the average efficient allocations found in each
of the Pareto fronts. As inputs of the bi-objective model we have the yield, funding and
rating levels, so we needed to simulate these variables. The yields and funding rates were
simulated by a correlated vector-valued Cox-Ingersoll-Ross process. In turn, the rating
levels were simulated using an ordinal response model. We have exemplified this approach
for a 10-year period.

Finally, we have also used the simulated paths to perform an out-of-sample analysis.
The results suggest that the efficient allocations given by the proposed approach are robust
and very competitive in terms of the both defined optimization objectives (the average
annual income and the semivariance of the annual comprehensive income).

Overall, the performed quantitative analysis seems to suggest that, for the long run,
the higher the proportion of the investment allocated to fair value the higher the average
annual income achieved but also the higher the semivariance of the annual comprehensive
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income. In this paper we have looked to the bank investment portfolio in terms of recent
accounting rules, namely under the IFRS 9 framework. We could observe the several
complexities that arise when we try to develop quantitative analyses that incorporate
accounting rules. However, we are convinced that the bank investment manager needs to
have this type of analysis at her/his disposal, in order to be able to make more informed
decisions. Therefore, as future work we want to extend this analysis to other asset classes
and to the incorporation of recent regulatory rules inherent to the Basel III framework.
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