
Computational Visual Media
https://doi.org/10.1007/s41095-021-0214-z Vol. 7, No. 3, September 2021, 335–347

Research Article

EfficientPose: Efficient human pose estimation with neural
architecture search

Wenqiang Zhang1,∗, Jiemin Fang2,1,∗, Xinggang Wang1 (�), and Wenyu Liu1

c© The Author(s) 2021.

Abstract Human pose estimation from image and
video is a key task in many multimedia applications.
Previous methods achieve great performance but rarely
take efficiency into consideration, which makes it
difficult to implement the networks on lightweight
devices. Nowadays, real-time multimedia applications
call for more efficient models for better interaction.
Moreover, most deep neural networks for pose
estimation directly reuse networks designed for image
classification as the backbone, which are not optimized
for the pose estimation task. In this paper, we propose
an efficient framework for human pose estimation with
two parts, an efficient backbone and an efficient head.
By implementing a differentiable neural architecture
search method, we customize the backbone network
design for pose estimation, and reduce computational
cost with negligible accuracy degradation. For the
efficient head, we slim the transposed convolutions and
propose a spatial information correction module to
promote the performance of the final prediction. In
experiments, we evaluate our networks on the MPII
and COCO datasets. Our smallest model requires only
0.65 GFLOPs with 88.1% PCKh@0.5 on MPII and our
large model needs only 2 GFLOPs while its accuracy
is competitive with the state-of-the-art large model,
HRNet, which takes 9.5 GFLOPs.

Keywords pose estimation; neural architecture search;
efficient deep learning

∗ Wenqian Zhang and Jiemin Fang contributed equally to
this work.

1 School of EIC, Huazhong University of Science and
Technology, Wuhan 430074, China. E-mail: W. Zhang,
wq zhang@hust.edu.cn; X. Wang, xgwang@hust.edu.cn
(�); W. Liu, liuwy@hust.edu.cn.

2 Institute of Artificial Intelligence, Huazhong University of
Science and Technology, Wuhan 430074, China. E-mail:
jaminfong@hust.edu.cn.

Manuscript received: 2020-12-11; accepted: 2021-02-16

1 Introduction
Human pose estimation has a wide range of multimedia
applications in the real world, e.g., in virtual reality,
game interaction, and assisted living. Human
pose estimation aims to determine the locations of
human keypoints or parts in images. Traditional
methods [1, 2] are based on a probabilistic graphical
model or pictorial structures. Deep convolutional
neural networks boosted the development of this
field by directly regressing keypoint positions [3]
or predicting heatmap locations [4], solving this
problem in an end-to-end manner. Later top–down
methods [5, 6] achieved high accuracies on both
MPII [7] and COCO [8] benchmarks. However, the
backbone networks in previous methods [5, 9, 10]
often directly reuse networks designed for image
classification, e.g., ResNet [11], which results in
sub-optimality for human pose estimation tasks.
Moreover, existing human pose estimation methods
over-pursue accuracy but ignore the efficiency of the
model, making it difficult to deploy the model on
resource-constrained computing devices commonly
used in real-life scenarios. Recent multimedia
applications require more efficient human pose
estimation to bring a better interactive experience for
users. However, current pose estimation algorithms
cannot meet this requirement.

In recent years, the emergence of neural
architecture search (NAS) methods has greatly
accelerated the development of neural network design.
Some pioneering works [13, 14] required a huge search
cost to obtain an architecture with high accuracy
on image classification tasks. Later one-shot and
differentiable NAS methods [15, 16] greatly decreased
the search cost while keeping the high performance of
the architectures found. NAS has also been applied

335



336 W. Zhang, J. Fang, X. Wang, et al.

to cut down the required number of FLOPs or latency
of the architecture while guaranteeing high accuracy
[17, 18]. Furthermore, some methods directly search
for customized architecture designs or performance
improvements in, e.g., semantic segmentation [19, 20]
and object detection [21, 22]. However, searching for
backbone networks for segmentation, detection, and
pose estimation is very computationally expensive.
In previous pose estimation methods, customized
and automatic backbone design is rarely explored.
To optimize networks, searching for a backbone is
important as it forms a large part of the whole
network, and performs feature extraction.

To directly search for a backbone for pose
estimation, we propose to design an efficient human
pose estimation network search framework, which
we call EfficientPose. As shown in Fig. 1, our
efficient network includes two main parts, an efficient
backbone and an efficient head. To tackle the
backbone performance bottleneck in terms of both
accuracy and efficiency, the differentiable NAS
method [16] is designed to lighten the computational
cost of the backbone network and to adapt the
backbone architecture to pose estimation tasks. We
further design an efficient pose estimation head
which enables not only fast inferencing but also
fast architecture search. In the head network, the
transposed convolutions are slimmed according to
the width of the backbone. A spatial information

correction (SIC) module is proposed to promote
the quality of the feature maps used for generating
the heatmaps. Overall, we promote the efficiency
of the whole framework for pose estimation. The
architectures generated by our framework possess
high performance with low numbers of required
FLOPs and latency, as shown in Fig. 2.

Our contributions can be summarized as follows.
• An efficient pose estimation network search

framework. The differentiable NAS method
adjusts and lightens the backbone network
automatically. The head network is redesigned by
the proposed slim transposed convolutions and
spatial information correction module to give a
better trade-off between computational cost and
accuracy.

• An extremely efficient pose estimation network
that requires only 0.65 GFLOPs yet has
high performance (88.1% PCKh@0.5). Our
large model takes only 2 GFLOPs while its
accuracy is competitive with the state-of-the-
art large model, HRNet [6] which takes 9.5
GFLOPs. Furthermore, the good generalizability
of the proposed EfficientPose networks has been
confirmed on the COCO dataset.

• An extensive analysis and study on the design
principle of our efficient framework, providing
heuristic conclusions for future network design
for human pose estimation.

Fig. 1 EfficientPose framework. For the backbone, we use the NAS method to obtain more efficient and precise networks. The desired network
is finally derived from the super network. For the head part, we slim the transposed convolution and use a SIC module to correct the spatial
information in the feature maps after the transposed convolutions. The input “Conv3 × 3” denotes a plain 3 × 3 convolution followed by a 3 × 3
separable depthwise convolution [12].



EfficientPose: Efficient human pose estimation with neural architecture search 337

Fig. 2 FLOPs needed by different networks for the MPII validation
dataset.

2 Related work
2.1 Human pose estimation
Previous methods of human pose estimation have
achieved great success. DeepPose [3] first applied
deep learning to pose estimation tasks, regarding
pose estimation as a regression problem. This
convolutional neural network outputs the keypoints
positions directly. Most work in recent years predicts
the locations of heat maps, which allows the network
to save more spatial information. Hourglass [4] stacks
repeating U-shaped blocks with skip connections
to promote overall performance. PyraNet [23]
uses a pyramid residual module to obtain multi-
scale information. CPN [9] adopts a GlobalNet to
roughly localize keypoints and a RefineNet to explicitly
handle hard keypoints. SimpleBaseline [5] aims
at constructing a simplified network and applies
transposed convolutions to get high-resolution
heatmaps. HRNet [6] achieves state-of-the-art
results on COCO [8] by maintaining high-resolution
representations, but the multi-branch framework
leads to a high computational cost and is not friendly
for inferencing on embedded devices.

Though previous methods have achieved high
accuracies in human pose estimation tasks, most
suffer from high computational cost and high latency.
The efficiency of the network is rarely considered,
which makes them difficult to apply in real-word
scenarios. Bulat and Tzimiropoulos [24] improved
performance of the binarized model to get a better
trade-off between model size and accuracy. DU-Net

[25] applies quantification to reduce model size. FPD
[26] uses a strong teacher network to supervise
small student networks to improve performance. We
aim to construct a lightweight framework for pose
estimation which achieves high accuracy with a low
computational cost.

2.2 Spatial information correction
When processing pixel-level tasks, neural networks
usually downsample the input image first, and then
upsample the encoded features. Previous works
[10, 27] use interpolation to handle this task, or
use learnable transposed convolutions to improve
performance [5]. These approaches expand the
receptive field and make the model more efficient, but
at the same time cause the loss of feature information.
Transposed convolutions often cause a checkerboard
pattern of artifacts [28]. To solve this problem,
different upsampling layer designs [28–30] have been
proposed. Sugawara et al. [31] addressed the issue
that CNNs must have a nonperiodic steady-state
value in the unit step response to avoid checkerboard
artifacts, providing insights for our design.

2.3 Neural architecture search
Recent NAS methods greatly improve the performance
of neural networks. Early NAS works use
reinforcement learning [13, 32] or an evolutionary
algorithm [14] to search for architectures and achieve
superior results to networks designed manually. Later
one-shot [15, 33] or differentiable [16–18, 34, 35] NAS
methods search for high-performance architectures
with low computational cost. To further reduce the
search cost, some methods search for a cell structure
and then stack it to build the final architecture
[16, 35]. NAS is also applied to improve model
efficiency [17, 18, 32, 36] by optimizing the required
number of FLOPs, latency, etc. NAS methods have
already been applied to other tasks, e.g., semantic
segmentation [19, 20] and object detection [21, 22].
In this paper, we implement a differentiable NAS to
backbone network design for human pose estimation.
The resulting networks achieve a better trade-off
between accuracy and efficiency than other state-
of-the-art methods [5, 6, 37].

3 Method
In this section, we first introduce the method of



338 W. Zhang, J. Fang, X. Wang, et al.

differentiable neural architecture search, used to
design the backbone network automatically targeted
at pose estimation. Secondly, we explain how the
search space for the backbone network is designed and
how we optimize both accuracy and latency. Finally,
we illustrate the design principles of our redesigned
lightweight head. The whole framework is shown in
Fig. 1.

3.1 Differentiable neural architecture search
We use differentiable NAS [16–18] to customize the
backbone network design for the pose estimation
task. We formulate the NAS problem as a nested
optimization problem:

min
a∈S

min
wa

L (a, wa) (1)

where S represents the search space and wa denotes
the operating weights of architecture a. We search
for the architecture a by minimizing the loss L(a, wa)

In the differentiable NAS method, the search
space S is relaxed into a continuous representation.
Specifically, in every layer of the architecture, we
compute the probability of each candidate operation
as

p�
o =

exp(α�
o)

∑
o′∈O exp(α�

o′)
(2)

where O denotes the set of candidate operations and
α�

o denotes the architectural parameter of operation
o in layer �. The output of each layer is computed
as a weighted sum of output tensors from candidate
operations:

x�+1 =
∑

o∈O
p�

o · o(x�) (3)

where x� denotes the input tensor of layer �.
During the search process, the operating

weights and architectural parameters are optimized
alternately by stochastic gradient descent to minimize
the loss L. The final architecture is derived based on
the distribution of architectural parameters.

3.2 Efficient backbone
Most previous methods [5, 9, 10, 27] use image
classification networks as the backbone for pose
estimation, e.g., ResNet [11], MobileNetV2 [38].
To narrow the gap between classification and pose
estimation tasks, we redesign the backbone network
using the NAS method. We first give details of the
search space, and then we describe how we optimize
both accuracy and latency of the model.

3.2.1 Search space
We construct our search space based on the
MobileNetV2 [38] network, which provides great
performance at low computational cost and is
commonly used to design the search space in NAS
methods [17, 18]. We stack inverted residual blocks
(i.e., MBConvs) to build the backbone network and
allow MBConvs to have various settings. Specifically,
kernel sizes include {3, 5, 7} and expansion ratios
include {3, 6}. Skip connections are used in
candidate operations when determining the depth
of the network. The dropping-path training strategy
[15, 17, 39] is used to decrease coupling between
different sub-architectures in the search space.

Unlike previous methods [5, 6], we only perform 4
down-sampling operations in the backbone network
(5 are used in most other methods). We consider
that in a lightweight pose estimation network, 5×
down-sampled feature maps contribute little to the
final prediction and may lose much information. The
higher-resolution (4×) feature maps are used for up-
sampling. We give details of the backbone network
in Table 1.

3.3 Cost optimization
Cost optimization of a neural network is of critical
importance and can be measured by different
benchmarks such as FLOPs or latency. To obtain
a high-performance network with low cost, we
integrate cost optimization into the search formulation.

Table 1 Search space for the backbone. The first “Conv3×3” is a
plain convolution with a 3 × 3 kernel. “SepDepth3 × 3” is a separable
depthwise convolution [12] with kernel size 3 × 3. “TransConv” is the
transposed convolution. s2 denotes a stride of 2. EfficientPose-A is
found using the small setting for the search space, while EfficientPose-B
and -C are found using the large setting

Stage Output size
Layer

Small Large
Input 256 × 256 —
Conv3 × 3 128 × 128 [32, s2]
SepDepth3 × 3 128 × 128 [16, s1] [24, s1]

NAS Stage1 64 × 64
[24, s2] [32, s2]

[24, s1] × 3 [32, s1] × 5

NAS Stage2 32 × 32
[32, s2] [64, s2]

[32, s1] × 5 [64, s1] × 7

NAS Stage3 16 × 16
[64, s2] [96, s2]

[64, s1] × 9 [96, s1] × 9
NAS Stage4 16 × 16 [96, s1] × 8 [160, s2] × 10
TransConv 32 × 32 [64, s2]
TransConv 64 × 64 [32, s2]



EfficientPose: Efficient human pose estimation with neural architecture search 339

Following most differentiable NAS methods [17, 18, 39],
we build a lookup table to predict the cost of the
architecture during search. The cost of one layer is
computed as

cost� =
∑

o∈O
p�

ocost�
o (4)

where cost�
o is the cost of operation o in layer � and p�

o

denotes the corresponding probability computed by
architectural parameters. The latency of the whole
network can be computed as

cost =
∑

i

costi (5)

We add cost regularization to the loss function
for multi-objective optimization. The loss function
during search is defined as

L (a, wa) = LMSE + λ logτ cost

LMSE =
1
K

K∑

k=1
‖mk − m̂k‖2

2
(6)

where m̂k is the predicted heatmap of the kth
joint while mk is the ground truth; λ and τ are
hyperparameters to balance MSE loss and latency
regularization.

3.4 Efficient head
The head of the pose estimation network aims to
generate high-resolution heatmaps. To obtain a more
efficient network, we redesign the head of the network.
We first propose slim transposed convolutions which
produce high-quality heatmaps with greatly decreased
computational cost. We also propose a SIC module
which makes the spatial information of the high-
resolution representation more reliable. The SIC
module improves the prediction performance at
negligible computational cost.
3.4.1 Slim transposed convolutions
Unlike previous methods [5, 6], the backbone of our
network outputs feature maps with a small number
of channels. Accordingly, we cut down the channels
of the transposed convolutions. Experiments show
the effectiveness of our slim transposed convolutions.
Moreover, we explored more efficient upsampling
convolutions in experiments, e.g., we used separable
depthwise convolution [12] to perform upsampling,
and achieved good performance as well.
3.4.2 Spatial information correction
As Fig. 9 later shows, after the transposed convolutions,
the feature maps present a checkerboard pattern of
artifacts [28], which is caused by the uneven overlap of

the transposed convolutions. To improve the quality
of feature maps for heatmap generation, we add a
SIC module, a 3 × 3 depthwise convolution, after
the transposed convolutions. The SIC module only
encodes features in the spatial dimension, which
efficiently corrects features after the transposed
convolution. As shown in Fig. 3, imbalance of learned
weights can easily lead to checkerboard artifacts,
even if the kernel sizes and strides of the transpose
convolutions are carefully chosen. The depth-wise
kernel has a good smoothing effect on the boundary
without destroying the learned features.

Fig. 3 Effects of the SIC module. Arrows represent convolution
operations.

The SIC module almost eliminates the checkerboard
artifact pattern and remarkably improves prediction
performance at negligible computational cost—see
later.

4 Experiments
In this section, we first describe experiments on the
MPII [7] dataset. We give implementation details and
compare the EfficientPose networks with other state-
of-the-art (SOTA) methods and different backbone
networks. Then the generalizability of EfficientPose
networks is demonstrated on the COCO [8] dataset.
We further specialize EfficientPose network design on
different model cost benchmarks. Finally, ablation
studies are carried out to show the effectiveness and
efficiency of different modules in our framework.

4.1 Experiments on MPII
4.1.1 Implementation details
The MPII [7] dataset contains approximately 25k
images with about 40k people. Following standard
training settings [5, 6, 23], all input images are
cropped to 256 × 256 for fair comparisons. For the
backbone architecture search, we randomly split the
training data into two parts, 80% for operating weight
training and 20% as the validation set to update
architectural parameters. The original validation set



340 W. Zhang, J. Fang, X. Wang, et al.

is not used in the search process. We adopt the same
data augmentation strategy as SimpleBaseline [5].

Before the search process, we build a lookup table
for the latency of each operation. The latency
is measured on a single GeForce RTX 2080 Ti
GPU with a batch size of 32. For the backbone
architecture search, we first train the operating
weights for 60 epochs which takes 6.5 hours on
two 2080 Ti GPUs. Then we start the joint
optimization by alternately training operating weights
and architectural parameters in each epoch. To
update operating weights, we use the SGD optimizer
with 0.9 momentum and 10−4 weight decay. The
initial learning rate is set to 0.05 and gradually
decays to 0 following a cosine annealing schedule.
For architectural parameter optimization, we use the
Adam optimizer with a fixed learning rate of 3×10−4.
The batch size is set to 32. The joint optimization
process takes 150 epochs, 19 hours on two 2080 Ti
GPUs. The whole search process only takes 25.5
hours on two GPUs, for 51 GPU hours in total.

We train the derived network for 200 epochs using
the Adam optimizer with an initial learning rate
of 10−3 and a batch size of 32. The learning rate
decays by 0.1 at 150 and 170 epochs respectively. The
fast neural network adaptation method (FNA) [22]
is used to initialize both the super network in the
search process and the derived network for efficient
training.
4.1.2 Comparisons with SOTA pose estimation

networks
Results on the MPII validation dataset are shown in
Table 2. We search for three networks with different

scales and compare them with the SOTA methods.
Our EfficientPose networks achieve competitive and
even higher performance with far fewer FLOPs.
Compared with CPMs [27] and DLCM [40], our
EfficientPose-A takes only 0.7 GFLOPs with 13.73
ms GPU latency while obtaining asimilar accuracy.
The cost of EfficientPose-B is only 1.5 GFLOPs
with 23.95 ms latency, while its performance
surpasses other popular methods, e.g., Hourglass
[4], SimpleBaseline(ResNet101) [5] (45.31 ms), and
the knowledge distillation based method FPD [26].
Compared to PNFS [41], which searches for a
cell-based fabric architecture in the head part,
EfficientPose-A and -B achieve higher or similar
PCKh@0.5 with 1/2.9 and 1/6.6 FLOPs. The
performance of our large model EfficientPose-C is

Table 2 Comparisons with SOTA methods on the MPII validation set

Method Params GFLOPs PCKh@0.5

CPMs [27] 31.0M 175.0 88.0
DLCM [40] 15.5M 33.6 87.5
SimpleBaseline-R50 [5] 34.0M 12.0 88.5
PNFS [41] — 2.0 87.3
EfficientPose-A 1.3M 0.7 88.1

Hourglass [4] 25.1M 19.1 89.2
SimpleBaseline-R101 [5] 52.0M 16.5 89.1
FPD [26] 3.0M 9.0 89.0
PNFS [41] — 9.9 89.3
EfficientPose-B 3.3M 1.5 89.3

PyraNet [23] 28.1M 21.3 89.6
DU-Net [25] 7.9M — 89.5
DU-Net [25] 15.9M — 89.9
SimpleBaseline-R152 [5] 68.6M 21.0 89.6
HRNet-W32 [6] 28.5M 9.5 90.3
EfficientPose-C 5.0M 2.0 89.5

Fig. 4 Architectures of EfficientPose-A and -B. MBConv blocks with diverse kernel sizes and expansion ratios are shown as colored rectangles.
“Kx Ey” denotes a block with kernel size x and expansion ratio y. Blocks in the same stage (with the same width) are contained in dashed boxes.



EfficientPose: Efficient human pose estimation with neural architecture search 341

close to that of the latest SOTA networks, while
requiring only only 9.5% FLOPs of SimpleBaseline
(ResNet152), and 21.1% of HRNet-W32 [6]. Its
latency is only 27.34 ms, 44.8% of that of
SimpleBaseline (ResNet152) (61.08 ms), and 49.3% of
HRNet-W32 [6] (55.47 ms). The architectures found
are shown in Fig. 4, while GPU latency is visualized
in Fig. 5.
4.1.3 Comparisons with different backbone networks
To further demonstrate the performance of our
discovered lightweight backbones, we compare our
networks to others with only backbone networks
changed, including manually engineered networks
[11, 38] and NAS networks [17]. We train all
compared networks under the same training settings
and hyperparameters. We only perform 4 down-
sampling operations in the comparative models for
fairness.

Comparative results are shown in Table 3. In
the first group, the models are all constructed
with MBConv blocks [38]. EfficientPose-A achieves

Fig. 5 GPU latency for EfficientPose and SimpleBaseline on the
MPII val dataset. EfficientPose shows a far better trade-off between
accuracy and latency.

Table 3 Comparisons to different backbone networks on the MPII
validation set

Backbone Params GFLOPs PCKh@0.5

MobileNetV2 [38] 1.5M 0.73 86.63
Proxyless(GPU) [17] 4.5M 1.43 86.26
Proxyless(CPU) [17] 1.8M 1.05 87.54
Proxyless(Mobile) [17] 1.9M 0.91 87.29

ResNet-50 [11] 25.6M 9.70 88.02

Random Search 1.4M 0.62 87.50

EfficientPose-A 1.3M 0.67 88.10

the highest PCKh@0.5 with the fewest FLOPs.
Furthermore, compared to the large model ResNet-
50 [11], EfficientPose-A achieves similar performance
with 1/14.9 the number of FLOPs.

4.2 Generalizability on COCO
We applied our models discovered on MPII to COCO
[8]. Only the output dimension of the final 1 × 1
convolution is adjusted as the number of keypoints
changes. COCO contains about 200k images with
about 250k person instances. We adopt the same
data augmentation strategy as HRNet [6]. The input
size is set to 192 × 256. The whole training process
takes 240 epochs using the Adam optimizer with a
batch size of 128. We use the warm-up strategy in the
first 500 iterations to linearly increase the learning
rate to 10−3, and then the learning rate decays by
0.1 at 200k and 240k iterations respectively.

As shown in Table 4, our EfficientPose networks
achieve high AP with fewest FLOPs on COCO. Using
nearly 500 MFLOPs, the EfficientPose-A network
achieves a comparable result to those of Hourglass
[4], CPN [9], and LPN [42]. EfficientPose-B surpasses
both LPN [42] networks and SimpleBaseline-R50
using only 1.1 GFLOPs. EfficientPose-C also obtains
a high AP with far fewer FLOPs. The effectiveness of
EfficientPose networks is demonstrated on the COCO
test set in Table 5.

4.3 Specialization on different hardware
We specialize our EfficientPose network design on
three different model cost benchmarks: FLOPs, GPU
latency, and CPU latency. We achieve this by
changing the cost term in the loss function (Eq. (6)) of
the backbone architecture search. The GPU latency

Table 4 Generalizability on the COCO validation set

Method Pretrain Params GFLOPs AP
Hourglass [4] N 25.1M 14.3 66.9
CPN [9] Y 102.0M 6.2 68.6
LPN-50 [42] N 2.9M 1.0 68.9
EfficientPose-A N 1.3M 0.5 66.5
SimpleBaseline-R50 [5] Y 34.0M 8.9 70.4
LPN-101 [42] N 5.3M 1.4 70.2
LPN-152 [42] N 7.4M 1.8 70.8
EfficientPose-B N 3.3M 1.1 71.1
SimpleBaseline-R101 [5] Y 52.0M 12.4 71.4
SimpleBaseline-R152 [5] Y 68.6M 15.7 72.0
HRNet-W32 [6] N 28.5M 7.1 73.4
MSPN [10] Y — 4.4 71.5
EfficientPose-C N 5.0M 1.6 71.3



342 W. Zhang, J. Fang, X. Wang, et al.

Table 5 Generalizability on the COCO test set

Method Backbone Input size Params GFLOPs AP AP50 AP75 APM APL AR

Mask-RCNN [43] ResNet-50-FPN — — — 63.1 87.3 68.7 57.8 71.4 —
G-RMI [44] ResNet-101 353 × 257 42.6M 57.0 64.9 85.5 71.3 62.3 70.0 69.7
G-RMI + extra data [44] ResNet-101 353 × 257 42.6M 57.0 68.5 87.1 75.5 65.8 73.3 73.3
CFN [45] — 384 × 288 — — 72.6 86.1 69.7 78.3 64.1 —
RMPE [23] PyraNet 320 × 256 28.1M 26.7 72.3 89.2 79.1 68.0 78.6 —
CPN [9] ResNet-Inception 384 × 288 — — 72.1 91.4 80.0 68.7 77.2 78.5
SimpleBaseline [5] ResNet-50 256 × 192 34.0M 8.9 70.0 90.9 77.9 66.8 75.8 75.6
SimpleBaseline [5] ResNet-152 256 × 192 68.6M 15.7 71.6 91.2 80.1 68.7 77.2 77.3
HRNet-W32 [6] HRNet-W32 384 × 288 28.5M 16.0 74.9 92.5 82.8 71.3 80.9 80.1
HRNet-W48 [6] HRNet-W48 384 × 288 63.6M 32.9 75.5 92.5 83.3 71.9 81.5 80.5
LPN [42] ResNet-50 256 × 192 2.9M 1.0 68.7 90.2 76.9 65.9 74.3 74.5
LPN [42] ResNet-101 256 × 192 5.3M 1.4 70.0 90.8 78.4 67.2 75.4 75.7
LPN [42] ResNet-152 256 × 192 7.4M 1.8 70.4 91.0 78.9 67.7 76.0 76.2
PNFS [41] MobileNet-V2 256 × 192 6.1M 4.0 67.4 89.0 73.7 63.3 74.3 73.1
PNFS [41] ResNet-50 256 × 192 27.5M 11.4 70.9 90.4 77.7 66.7 78.2 76.6

EfficientPose-B NAS searched 256 × 192 3.3M 1.1 70.5 91.1 79.0 67.3 76.2 76.1
EfficientPose-C NAS searched 256 × 192 5.0M 1.6 70.9 91.3 79.4 67.7 76.5 76.5

is measured on one Tesla V100 GPU with batch size
32 and the CPU latency is measured on 1 Intel(R)
Core(TM) i7-8700K CPU with a batch size of 1. For
each cost benchmark, we search for two networks
and show results in Fig. 6. This experiment shows
that our pose estimation framework can be efficient
on diverse hardware platforms. The specialization
process can be easily performed by building different
lookup tables on the cost benchmarks for predicting
model cost. Though FLOPs are widely used to
evaluate the cost of a model, the results in Fig. 6 and
other recent works [17, 36] demonstrate that FLOPs
are not well correlated with real inferencing speed
due to differences in hardware platforms. The ability
to specialize models to a target device is crucial for
real applications.

4.4 Ablation studies
4.4.1 Effectiveness of SIC module
We visualize the feature maps in the network to study
the effect of the SIC module in Fig. 9. We find that
a checkerboard pattern of artifacts [28] exists in both
the feature maps after the transposed convolutions
in the network trained without SIC and the feature
maps before SIC in EfficientPose networks. The SIC
module eliminates the checkerboard pattern in the
feature maps obtained by transposed convolutions
and makes the field of interest more concentrated,
which contributes to the final prediction. We provide
ablation study results for SIC in Table 6. The SIC
module provides evident accuracy improvement in
both the manually designed network MobileNetV2
and the EfficientPose networks.

Fig. 6 Specialization results of different model cost benchmarks on the MPII validation set. Networks optimized with different benchmarks
are shown in different colors.



EfficientPose: Efficient human pose estimation with neural architecture search 343

Fig. 7 Results on the MPII validation set.

Fig. 8 Results on the COCO validation set.

Table 6 Ablation study, SIC module

Model SIC PCKh@0.5

MobileNetv2 [38]
86.34

� 86.63↑0.29

EfficientPose-A
87.62

� 88.10↑0.48

EfficientPose-B
88.55

� 89.27↑0.72

EfficientPose-C
88.61

� 89.49↑0.88

4.4.2 Efficiency of slim transposed convolutions
We set the widths of the two transposed convolutions
in the head to 64 and 32 respectively; these have
always been set larger in previous work, e.g., 256

in SimpleBaseline [5]. To further demonstrate the
efficiency of our slim transposed convolutions, we
compare use of larger width settings for the two
transpose convolutions in the head. As shown in
Table 7, when we enlarge the widths to 64 and 64,
the FLOPs used by the head increase to 134M but no

Table 7 Comparison to larger width settings for the transposed
convolutions. TConv denotes the transposed convolution

Width MFLOPs
PCKh@0.5

TConv1 TConv2 Backbone Head

64 32
405

264 88.100

64 64 369 88.095

96 96 755 87.918



344 W. Zhang, J. Fang, X. Wang, et al.

Fig. 9 Feature maps in the network. (a) Ground truth. (b) Feature maps after transposed convolutions in the network trained without SIC.
(c) Feature maps before SIC in the EfficientPose network. (d) Feature maps after SIC in the EfficientPose network.

accuracy improvement is obtained. When we set the
widths larger, to 96 and 96, the FLOPs used increase
to 520M and a worse PCKh@0.5 results. It is worth
noting the FLOPs required by the (96, 96) head is
much larger than for the backbone. We attribute
the performance degradation to overfitting when the
head is too heavy with a lightweight backbone.
4.4.3 Studies on efficient transposed convolutions
We study lighter convolution modules for the
transposed convolutions, the separable depthwise
convolution in MobileNetV1 [12] (MBV1), and the
inverted residual block in MobileNetV2 [38] (MBV2).
As shown in Table 8, we find that the MBV1 style
module decreases the FLOPs to 181M with acceptable
accuracy decay, which could be an alternative option
for the efficient head .
4.4.4 Comparisons with random search
We perform a random search experiment, which is
a key baseline for evaluating the effectiveness of
the NAS method [46]. We randomly sample 50
architectures and train each one for 5 epochs to

Table 8 Other efficient transposed convolutions

Transposed Conv MFLOPs PCKh@0.5
Plain 669 88.10

MBV1 style 469 87.91
MBV2 style 600 87.94

evaluate the validation performance. Finally, we
select the best-performing one and train it with the
same settings as our EfficientPose. The total cost
of random search is the same as ours. The results
are shown in Table 3. Our EfficientPose-A shows an
evident advantage over the random searched one.

5 Conclusions
In this paper, we have proposed a framework
for efficient human pose estimation. We use
the differentiable NAS method to automatically
customize the backbone network for pose estimation
and greatly reduce the computational cost. We
further give an efficient head network which includes
both slim transposed convolutions and a spatial
information correction module to improve prediction
performance with negligible FLOPs or latency
increases. The proposed EfficientPose networks
achieve similar accuracies to other SOTA methods
with far less computational cost.

Acknowledgements
This work was in part supported by National
Natural Science Foundation of China (NSFC) (Nos.
61733007 and 61876212) and Zhejiang Lab (No.
2019NB0AB02).



EfficientPose: Efficient human pose estimation with neural architecture search 345

References

[1] Yang, Y.; Ramanan, D. Articulated pose estimation
with flexible mixtures-of-parts. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 1385–1392, 2011.

[2] Pishchulin, L.; Andriluka, M.; Gehler, P.; Schiele,
B. Poselet conditioned pictorial structures. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 588–595, 2013.

[3] Toshev, A.; Szegedy, C. DeepPose: Human pose
estimation via deep neural networks. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 1653–1660, 2014.

[4] Newell, A.; Yang, K. Y.; Deng, J. Stacked hourglass
networks for human pose estimation. In: Computer
Vision – ECCV 2016. Lecture Notes in Computer
Science, Vol. 9912. Leibe, B.; Matas, J.; Sebe, N.;
Welling, M. Eds. Springer Cham, 483–499, 2016.

[5] Xiao, B.; Wu, H. P.; Wei, Y. C. Simple baselines for
human pose estimation and tracking. In: Computer
Vision – ECCV 2018. Lecture Notes in Computer
Science, Vol. 11210. Ferrari, V.; Hebert, M.;
Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 472–
487, 2018.

[6] Sun, K.; Xiao, B.; Liu, D.; Wang, J. D.
Deep high-resolution representation learning for
human pose estimation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 5686–5696, 2019.

[7] Andriluka, M.; Pishchulin, L.; Gehler, P.; Schiele,
B. 2D human pose estimation: New benchmark and
state of the art analysis. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 3686–3693, 2014.

[8] Lin, T. Y.; Maire, M.; Belongie, S.; Hays, J.; Perona,
P.; Ramanan, D.; Dollár, P.; Zitnick, C. L. Microsoft
COCO: Common objects in context. In: Computer
Vision – ECCV 2014. Lecture Notes in Computer
Science, Vol. 8693. Fleet, D.; Pajdla, T.; Schiele, B.;
Tuytelaars, T. Eds. Springer Cham, 740–755, 2014.

[9] Chen, Y. L.; Wang, Z. C.; Peng, Y. X.; Zhang,
Z. Q.; Yu, G.; Sun, J. Cascaded pyramid network
for multi-person pose estimation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7103–7112, 2018.

[10] Li, W. B.; Wang, Z. C.; Yin, B. Y.; Peng, Q. X.; Su,
J. Rethinking on multi-stage networks for human pose
estimation. arXiv preprint arXiv:1901.00148, 2019.

[11] He, K. M.; Zhang, X. Y.; Ren, S. Q.; Sun, J. Deep
residual learning for image recognition. In: Proceedings

of the IEEE Conference on Computer Vision and
Pattern Recognition, 770–778, 2016.

[12] Howard, A. G.; Zhu, M. L.; Chen, B.; Kalenichenko, D.;
Adam, H. Mobilenets: Efficient convolutional neural
networks formobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[13] Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q. V. Learning
transferable architectures for scalable image recognition.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 8697–8710,
2018.

[14] Real, E.; Aggarwal, A.; Huang, Y. P.; Le, Q. V.
Regularized evolution for image classifier architecture
search. In: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33, 4780–4789, 2019.

[15] Bender, G.; Kindermans, P.; Zoph, B.; Vasudevan,
V.; Le, Q. Understanding and simplifying one-shot
architecture search. In: Proceedings of the 35th
International Conference on Machine Learning, 549–
558, 2018.

[16] Liu, H. X.; Simonyan, K.; Yang, Y. M. DARTS:
Differentiable architecture search. In: Proceedings
of the 7th International Conference on Learning
Representations, 2019.

[17] Cai, H.; Zhu, L.; Han, S. ProxylessNAS: Direct
neural architecture search on target task and hardware.
In: Proceedings of the International Conference on
Learning Representations, 2019.

[18] Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun,
F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.;
Keutzer, K. Fbnet: Hardware-aware efficient convNet
design via differentiable neural architecture search.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 10726–
10734, 2019.

[19] Liu, C. X.; Chen, L. C.; Schroff, F.; Adam,
H.; Hua, W.; Yuille, A. L.; Fei-Fei, L. Auto-
DeepLab: Hierarchical neural architecture search for
semantic image segmentation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 82–92, 2019.

[20] Zhang, Y.; Qiu, Z.; Liu, J.; Yao, T.; Liu,
D.; Mei, T. Customizable architecture search
forsemantic segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 11633–11642, 2019.

[21] Ghiasi, G.; Lin, T. Y.; Le, Q. V. NAS-FPN:
Learning scalable feature pyramid architecture for
object detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 7029–7038, 2019.



346 W. Zhang, J. Fang, X. Wang, et al.

[22] Fang, J. M.; Sun, Y. Z.; Zhang, Q.; Peng, K. J.;
Wang, X. G. FNA++: Fast network adaptation
via parameter remapping and architecture search.
In: Proceedings of the International Conference on
Learning Representations, 2020.

[23] Yang, W.; Li, S.; Ouyang, W. L.; Li, H. S.; Wang, X. G.
Learning feature pyramids for human pose estimation.
In: Proceedings of the IEEE International Conference
on Computer Vision, 1290–1299, 2017.

[24] Bulat, A.; Tzimiropoulos, G. Binarized convolutional
landmark localizers for human pose estimation and
face alignment with limited resources. In: Proceedings
of the IEEE International Conference on Computer
Vision, 3726–3734, 2017.

[25] Tang, Z. Q.; Peng, X.; Geng, S. J.; Wu, L. F.; Zhang, S.
T.; Metaxas, D. Quantized densely connected U-nets
for efficient landmark localization. In: Computer Vision
– ECCV 2018. Lecture Notes in Computer Science, Vol.
11207. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss,
Y. Eds. Springer Cham, 348–364, 2018.

[26] Zhang, F.; Zhu, X. T.; Ye, M. Fast human
pose estimation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 3512–3521, 2019.

[27] Wei, S. H.; Ramakrishna, V.; Kanade, T.; Sheikh, Y.
Convolutional pose machines. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 4724–4732, 2016.

[28] Odena, A.; Dumoulin, V.; Olah, C. Deconvolution
and checkerboard artifacts. Distill, 2016. Available at
http://doi.org/10.23915/distill.

[29] Gao, H.; Yuan, H.; Wang, Z.; Ji, S. Pixel deconvolutional
networks. arXiv preprint arXiv:1705.06820, 2017.

[30] Wojna, Z.; Uijlings, J.; Guadarrama, S.; Silberman, N.;
Chen, L. C.; Fathi, A.; Uijlings, J. The devil is in the
decoder. In: Proceedings of the British Machine Vision
Conference, 10.1–10.13, 2017.

[31] Sugawara, Y.; Shiota, S.; Kiya, H. Checkerboard
artifacts free convolutional neural networks. APSIPA
Transactions on Signal and Information Processing Vol.
8, e9, 2019.

[32] Tan, M. X.; Le, Q. V. EfficientNet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019.

[33] Brock, A.; Lim, T.; Ritchie, J. M.; Weston, N.
SMASH: One-shot model architecture search through
HyperNetworks. In: Proceedings of the International
Conference on Learning Representations, 2018.

[34] Dong, X. Y.; Yang, Y. Searching for a robust neural
architecture in four GPU hours. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1761–1770, 2019.

[35] Xu, Y. H.; Xie, L. X.; Zhang, X. P.; Chen, X.;
Xiong, H. K. PC-DARTS: Partial channel connections
for memory-efficient differentiable architecture search.
In: Proceedings of the International Conference on
Learning Representations, 2019.

[36] Tan, M. X.; Chen, B.; Pang, R. M.; Vasudevan,
V.; Sandler, M.; Howard, A.; Le, Q. V. MnasNet:
Platform-aware neural architecture search for mobile.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2815–2823,
2019.

[37] Gong, X. Y.; Chen, W. Y.; Jiang, Y. F.; Yuan,
Y.; Wang, Z. Y. AutoPose: Searching multi-scale
branch aggregation for pose estimation. arXiv preprint
arXiv:2008.07018, 2020.

[38] Sandler, M.; Howard, A.; Zhu, M. L.; Zhmoginov,
A.; Chen, L. C. MobileNetV2: Inverted residuals
and linear bottlenecks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4510–4520, 2018.

[39] Fang, J. M.; Sun, Y. Z.; Zhang, Q.; Li, Y.; Wang, X.
G. Densely connected search space for more flexible
neural architecture search, In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 10625–10634, 2020.

[40] Tang, W.; Yu, P.; Wu, Y. Deeply learned compositional
models for human pose estimation. In: Computer
Vision – ECCV 2018. Lecture Notes in Computer
Science, Vol. 11207. Ferrari, V.; Hebert, M.;
Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 197–
214, 2018.

[41] Yang, S.; Yang, W. K.; Cui, Z. Pose neural fabrics
search. arXiv preprint arXiv:1909.07068, 2019.

[42] Zhang, Z.; Tang, J.; Wu, G. Simple and
lightweight human pose estimation. arXiv preprint
arXiv:1911.10346, 2019.

[43] He, K. M.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask
R-CNN. In: Proceedings of the IEEE International
Conference on Computer Vision, 2980–2988, 2017.

[44] Papandreou, G.; Zhu, T.; Kanazawa, N.; Toshev,
A.; Tompson, J.; Bregler, C.; Murphy, K. Towards
accurate multi-person pose estimation in the wild. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 3711–3719, 2017.

[45] Huang, S. L.; Gong, M. M.; Tao, D. C. A coarse-fine
network for keypoint localization. In: Proceedings of
the IEEE International Conference on Computer Vision,
3047–3056, 2017.

[46] Ottelander, T. D.; Dushatskiy, A.; Virgolin, M.;
Bosman, P. A. N. Local search is a remarkably strong
baseline for neural architecture search. arXiv preprint
arXiv:2004.08996, 2020.



EfficientPose: Efficient human pose estimation with neural architecture search 347

Wenqiang Zhang is a master student
in the School of Electronic Information
and Communications, Huazhong
University of Science and Technology,
Wuhan. His research interests include
pose estimation and neural architecture
search.

Jiemin Fang received his B.E.
degree from the School of Electronic
Information and Communications,
Huazhong University of Science
and Technology in 2018. He is
currently a Ph.D. candidate at the
Institute of Artificial Intelligence and
School of Electronic Information and

Communications, Huazhong University of Science and
Technology. His research interests include AutoML and
efficient deep learning.

Xinggang Wang received his B.S.
and Ph.D. degrees in electronics and
information engineering from Huazhong
University of Science and Technology,
in 2009 and 2014, respectively. He is
currently an associate professor with the
School of Electronic Information and
Communications, HUST. His research

interests include computer vision and machine learning.

Wenyu Liu received his B.S. degree
in computer science from Tsinghua
University, Beijing, China, in 1986, and
his M.S. and Ph.D. degrees, both in
electronics and information engineering,
from Huazhong University of Science and
Technology (HUST), in 1991 and 2001,
respectively. He is now a professor and

associate dean of the School of Electronic Information and
Communications, HUST. His current research areas include
computer vision, multimedia, and machine learning.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


