Skip to main content
Log in

The collapse of a granular column onto an erodible bed: dynamics and morphology scaling

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The collapse of a granular column onto an erodible bed is studied experimentally and numerically, and underlying scaling laws on deposition morphology and erosion geometry are mainly considered. The differences in material properties between the column and the erodible bed give rise to the change in flow behaviors, in which the particle density ratio between the column and the erodible bed plays a crucial role. The flow duration apparently increases with initial aspect ratio \(a\), but its normalized value tends to a constant at large \(a\) regardless of particle density ratio. Furthermore, several univariable scaling laws are put forward to quantitatively characterize final deposition morphology and erosion geometry. By rescaling these univariable functions, the generalized scaling laws containing two relevant variables are further proposed, which have been verified to be applicable for a wider range of situations where the degree of erosion dominates the propagation of collapsing flow.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hungr, O., Evans, S.G., Bovis, M.J., Hutchinson, J.N.: A review of the classification of landslides of the flow type. Environ. Eng. Geosci. 3, 221–238 (2001)

    Article  Google Scholar 

  2. Iverson, R.M.: The physics of debris flows. Rev. Geophys. 35, 245–296 (1997)

    Article  ADS  Google Scholar 

  3. Shieh, C., Jan, C.D., Tsai, Y.F.: A numerical simulation of debris flow and its application. Nat. Hazards 13, 39–54 (1996)

    Article  Google Scholar 

  4. Fraccarollo, L., Toro, E.F.: Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J. Hydraul. Res. 33, 843–864 (1995)

    Article  Google Scholar 

  5. Mangeney, A., Heinrich, P., Roche, R.: Analytical solution for testing debris avalanche numerical models. Pure Appl. Geophys. 157, 1081–1096 (2000)

    Article  ADS  Google Scholar 

  6. Hunger, O.: Simplified models of spreading flow of dry granular material. Can. Geotech. J. 45, 1156–1168 (2008)

    Article  Google Scholar 

  7. Lajeunesse, E., Mangeney-Castelnau, A., Vilotte, J.P.: Spreading of a granular mass on a horizontal plane. Phys. Fluids 16, 2371–2381 (2004)

    Article  ADS  MATH  Google Scholar 

  8. Lube, G., Huppert, H.E., Sparks, R.S.J., Hallworth, M.A.: Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175–199 (2004)

    Article  ADS  MATH  Google Scholar 

  9. Lajeunesse, E., Monnier, J.B., Homsy, G.M.: Granular slumping on a horizontal surface. Phys. Fluids 17, 103302 (2005)

    Article  ADS  MATH  Google Scholar 

  10. Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Collapses of two-dimensional granular columns. Phys. Rev. E 72, 041301 (2005)

    Article  ADS  Google Scholar 

  11. Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Static and flowing regions in granular collapses down channels. Phys. Fluids 19, 043301 (2007)

    Article  ADS  MATH  Google Scholar 

  12. Balmforth, N.J., Kerswell, R.R.: Granular collapse in two dimensions. J. Fluid Mech. 538, 399–428 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Xu, X.R., Sun, Q.C., Jin, F., Chen, Y.P.: Measurements of velocity and pressure of a collapsing granular pile. Powder Technol. 303, 147–155 (2016)

    Article  Google Scholar 

  14. Staron, L., Hinch, E.J.: The spreading of a granular mass: role of grain properties and initial conditions. Granular Matter 9, 205–217 (2007)

    Article  MATH  Google Scholar 

  15. Lacaze, L., Phillips, J.C., Kerswell, R.R.: Planar collapse of a granular column: Experiments and discrete element simulations. Phys. Fluids 20, 063302 (2008)

    Article  ADS  MATH  Google Scholar 

  16. Crosta, G.B., Imposimato, S., Roddeman, D.: Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J. Geophys. Res. 114, F03020 (2009)

    ADS  Google Scholar 

  17. Girolami, L., Hergault, V., Vinay, G., Wachs, A.: A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments. Granular Matter 14, 381–392 (2012)

    Article  Google Scholar 

  18. Kerswell, R.R.: Dam break with Coulomb friction: A model for granular slumping? Phys. Fluids 17, 057101 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.P., Lajeunesse, E., Aubertin, A., Pirelli, M.: On the use of Saint Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110, B09103 (2005)

    ADS  Google Scholar 

  20. Ionescu, I.R., Mangeney, A., Bouchut, F., Roche, O.: Viscoplastic modeling of granular column collapse with pressure-dependent rheology. J. Non-Newton. Fluid Mech. 219, 1–18 (2015)

    Article  MathSciNet  Google Scholar 

  21. Lagree, P.-Y., Staron, L., Popinet, S.: The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a µ (I)-rheology. J. Fluid Mech. 686, 378–408 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Lee, C.-H., Huang, Z.H., Chiew, Y.-M.: A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column. Phys. Fluids 27, 113303 (2015)

    Article  ADS  Google Scholar 

  23. Larrieu, E., Staron, L., Hinch, E.J.: Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech. 554, 259–270 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., Lucas, A.: Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040 (2010)

    ADS  Google Scholar 

  25. Farin, M., Mangeney, A., Roche, O.: Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: insights from laboratory experiments. J. Geophys. Res. Earth Surf. 119, 504–532 (2014)

    Article  ADS  Google Scholar 

  26. Wu, Y.S., Li, P.S., Wang, D.M.: Erosion-deposition regime formation in granular column collapse over an erodible surface. Phys. Rev. E 98, 052909 (2018)

    Article  ADS  Google Scholar 

  27. Rondon, L., Pouliquen, O., Aussillous, P.: Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 073301 (2011)

    Article  ADS  Google Scholar 

  28. Topin, V., Monnaie, Y., Perales, F., Radjai, F.: Collapse dynamics and runout of dense granular materials in a fluid. Phys. Rev. Lett. 109, 188001 (2012)

    Article  ADS  Google Scholar 

  29. Wang, C., Wang, Y.Q., Peng, C., Meng, X.N.: Dilatancy and compaction effects on the submerged granular column collapse. Phys. Fluids 29, 103307 (2017)

    Article  ADS  Google Scholar 

  30. Jing, L., Yang, G.C., Kwok, C.Y., Sobral, Y.D.: Dynamics and scaling laws of underwater granular collapse with varying aspect ratios. Phys. Rev. E 98, 042901 (2018)

    Article  ADS  Google Scholar 

  31. Bougouin, A., Lacaze, L.: Granular collapse in a fluid: different flow regimes for an initially dense-packing. Phys. Rev. Fluids 3, 064305 (2018)

    Article  ADS  Google Scholar 

  32. Bo, T.L., Zheng, X.J.: The formation and evolution of aeolian dune fields under unidirectional wind. Geomorphology 134, 408–416 (2011)

    Article  ADS  Google Scholar 

  33. Zheng, X.J., Bo, T.L., Zhu, W.: A scale-coupled method for simulation of the formation and evolution of aeolian dune field. Int. J. Nonlinear Sci. Numer. Simul. 10(3), 387–395 (2009)

    Article  Google Scholar 

  34. Jiang, Y.J., Zhao, Y., Towhata, I., Liu, D.X.: Influence of particle characteristics on impact event of dry granular flow. Powder Technol. 270, 53–67 (2015)

    Article  Google Scholar 

  35. Tsimring, L.S., Volfson, D.: Modeling of impact cratering in granular media. In: García-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and grains 2005. A. A. Balkema, Rotterdam (2005)

    Google Scholar 

  36. Katsuragi, H., Durian, D.J.: Unified force law for granular impact the cratering. Nature Phys. 3, 420–423 (2007)

    Article  ADS  Google Scholar 

  37. Goldman, D.I., Umbanhowar, P.: Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77, 021308 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  38. Ambroso, M.A., Santore, C.R., Abate, A.R., Durian, D.J.: Penetration depth for shallow impact cratering. Phys. Rev. E 71, 051305 (2005)

    Article  ADS  Google Scholar 

  39. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Ceotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  40. Utili, S., Zhao, T., Houlsby, G.T.: 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Eng. Geol. 186, 3–16 (2015)

    Article  Google Scholar 

  41. Cabrera, M., Estrada, N.: Granular column collapse: Analysis of grain-size effects. Phys. Rev. E 99, 012905 (2019)

    Article  ADS  Google Scholar 

  42. Wang, D.M., Ye, X.Y., Zheng, X.J.: The scaling and dynamics of a projectile obliquely impacting a granular medium. Eur. Phys. J. E 35, 7 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (Grants No. 11872028, No. 11572144), the Fundamental Research Funds for the Central Universities (Grants No. lzujbky-2019-it18, No. lzujbky- 2020-kb03), and 111 Project (No. B14044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengming Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Flow regimes and phase transitions in granular matter: multiscale modeling from micromechanics to continuum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, D. & Li, P. The collapse of a granular column onto an erodible bed: dynamics and morphology scaling. Granular Matter 23, 31 (2021). https://doi.org/10.1007/s10035-021-01100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01100-x

Keywords

Navigation