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Abstract 52 

 Phenomena related to positive emotional valence and reward responsiveness have been 53 

extensively studied in psychology. These constructs have been linked to midbrain dopaminergic 54 

pathways central to the literature on psychopathologies and development, and their measurement 55 

is a key interest in task-based fMRI. One such task, used for almost twenty years, is the 56 

Monetary Incentive Delay (MID) task. By cueing and delivering performance contingent reward, 57 

this task has been demonstrated to elicit robust and distinct activation of neural circuits involved 58 

in different phases of reward responsiveness (e.g. anticipation and outcome). Despite the broad 59 

application of the MID task, systematic evaluations of common task contrasts have been limited 60 

to between study comparisons of mean level (or group level) activation maps. In this study, we 61 

systematically examine within-task and between-contrast differences in MID task activation 62 

maps and how these differences impact inferences about their correlations with psychological 63 

characteristics. In a sample of 104 participants (Age Mean = 19.3, SD = 1.3; Female 57%), we 64 

evaluate similarities between contrasts in group- and individual-level activation maps, region-of-65 

interest activations and their correlations with psychological characteristics. Our findings 66 

demonstrate more similarities than differences between positive and negative cues during the 67 

anticipation contrast, dissimilarity between some positive anticipation contrasts, a robust 68 

deactivation effect in the outcome phase, and behavioral associations that are less robust than 69 

previously thought. This work has practical implications for helping researchers interpret prior 70 

MID studies and make more informed a priori decisions about contrasts to focus on in future 71 

work. Consistent with other recent findings from large neuroimaging samples, it also suggests 72 

that researchers using the MID to identify brain-behavior relationships may have to more 73 

carefully specify their contrasts in advance in order to reliably detect small, variable effects.  74 
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1. Introduction 78 

1.1. Purpose 79 

Due to the hypothesized role of the midbrain dopaminergic reward system in wanting, 80 

liking, and learning about rewarding stimuli, neural measurements of reward processing have 81 

become a central focus in the study of various psychopathologies and problem behaviors 82 

(Berridge & Robinson, 2003; Ernst & Luciana, 2015). The Monetary Incentive Delay (MID) 83 

task, specifically, has been frequently used to measure neural correlates of approach and 84 

avoidance mechanisms during reward processing (Knutson et al., 2000). Due to its ability to 85 

probe neural circuity of reward systems, the MID task has proven a valuable indicator of 86 

dysfunction in reward related processes and various maladaptive behaviors (Balodis & Potenza, 87 

2015; Dugré et al., 2018). More recently, the task has been incorporated into large longitudinal 88 

studies to index developmental changes in reward mechanisms and their links with negative 89 

outcomes (Casey et al., 2018; Schumann et al., 2010). Despite frequent use of this task, there are 90 

relatively few studies that have examined how analytic choices made by investigators may 91 

impact the results and interpretations about their findings in mean level activation and 92 

associations with behavior. Therefore, this study aims to understand the methodological and 93 

interindividual variability in MID task contrast maps and their associations with psychological 94 

behavior. 95 

1.2. MID task and Central Tenets of Reward Processing 96 

The MID task has been used in functional magnetic resonance imaging (fMRI) research 97 

for almost 20 years and is considered a robust measurement of incentive motivation (Knutson et 98 

al., 2000; Knutson & Greer, 2008). The task was designed to leverage spatial and temporal 99 

properties of subcortical structures to localize brain activation in substance use populations 100 
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(Brian Knutson & Heinz, 2015), demonstrating correlates with individual traits of positive and 101 

negative arousal (Wu et al., 2014). A central assumption of the task is that there are brain regions 102 

responsible for anticipating and responding to salient stimuli that are positively or negatively 103 

valenced, inspired in part by the literature on Pavlovian conditioning and dopamine responses to 104 

positive cues (Knutson et al., 2000). Projections from the dopamine (DA) rich ventral tegmental 105 

area (VTA) are thought to enhance activation in striatal regions that respond to reward 106 

anticipation (e.g., tones or cues that predict incentives) and in mesial prefrontal regions that 107 

respond to reward outcomes (Breiter et al., 1996; Knutson et al., 2003; Schultz, 1998). The task 108 

allows a comparison of valence (winning, positive valence, or losing, negative valence, big or 109 

small rewards) and temporal phase (anticipation or outcome). It is an instrumental-reward task 110 

that delivers rewards that are contingent on performance involving a timed button response 111 

(Richards et al., 2013). Different neural regions are recruited depending on whether the reward is 112 

being anticipated (or wanted) or consumed (or liked) (Haber & Knutson, 2010).   113 

Activation patterns within these phases would be expected to align with recent theories of 114 

reward processing. For instance, the first stage during cue presentation (prior to probe, or 115 

response phase), may be modeled as a ‘wanting’ phase, eliciting motivation (or saliency of the 116 

reward/cue). This anticipation phase should elicit robust activation in striatal regions as DA has 117 

been shown to have robust effects on wanting (or incentive salience) in both animals and humans 118 

in the ventral striatum (VS) and ventral pallidum (Berridge, 2007, 2019; Berridge & 119 

Kringelbach, 2015). Conversely, when modeling the outcome phase (or liking), one would 120 

expect less activation of VS (as only ~10% of neurons in NAcc facilitate pleasure) in response to 121 

the pleasure of reward, as hedonic ‘hot-spots’ are more likely to be represented in the insula and 122 

OFC (Berridge & Kringelbach, 2015).  123 
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The bulk of fMRI analyses using the MID task have focused on specific, unmodulated 124 

phases of the task. But, previous work suggests that modulators based on formal models of 125 

reinforcement learning may be important to incorporate into the task to account for individual 126 

variability not captured by a standard analysis (Bjork et al., 2010; Oldham et al., 2018). Although 127 

the utility of prediction error is still debated (Berridge & O’Doherty, 2014), it remains to be seen 128 

whether or not, as part of a prediction error model, expected value and prediction error (positive 129 

or negative) modulates the signal in the anticipation and outcome phases in the MID task. Such 130 

modulators may be critical in accounting for individual level variation that drives performance 131 

and learning values that may be represented in subcortical and cortical neural signatures 132 

(Balleine & O’Doherty, 2010). Although previous work has recommended the use of modulators 133 

in the MID task (Bjork et al., 2010; Oldham et al., 2018), to our knowledge, modulators of 134 

prediction error are still underexplored. One recent study (Cao et al., 2019) using prediction error 135 

modulators found that prediction error was positively related to activation in the bilateral VS, 136 

and another found association with substance use problems in young adults (Cao et al., 2020).  137 

1.3. Differential use and Research Degrees of Freedom in MID Task 138 

Although the MID task has been used extensively to study dysfunctional reward 139 

processing in populations with substance use disorders (Balodis & Potenza, 2015), it has also 140 

been incorporated into other studies of neurodevelopment and broader psychopathology. Various 141 

versions of the MID task have been used to investigate reward related changes as a function of 142 

age (Bjork et al., 2010; Dhingra et al., 2019), social vs non-social rewards (Schwartz et al., 143 

2019), psychosocial characteristics of impulsivity and sensation seeking  (Büchel et al., 2017; 144 

Cao et al., 2019; Joseph et al., 2016), early adversity (Boecker et al., 2014; Gonzalez et al., 145 

2016), substance use (Aloi et al., 2019; Cope et al., 2019; Nestor et al., 2019; Sauder et al., 2016; 146 
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Swartz et al., 2019), depression (Chan et al., 2016; Colich et al., 2017; Landes et al., 2018; Mori 147 

et al., 2016) and other clinical related problems (Bourque et al., 2017; Lancaster et al., 2016; 148 

Maresh et al., 2019; Mikita et al., 2016; Papanastasiou et al., 2018; Stevens et al., 2018; Urošević 149 

et al., 2016; Veroude et al., 2016; von Rhein et al., 2015; Xu et al., 2017). Similar to earlier 150 

reviews (Balodis & Potenza, 2015; Oldham et al., 2018), the research studies cited above often 151 

used different MID versions and incorporated various contrasts to derive activation maps that 152 

were used to compare their variables of interest (see Supplementary Table S2). This raises the 153 

question: To what extent are similarities and differences between the findings and conclusions 154 

from these studies due to variance in analytic methods? 155 

Recent evidence has suggested that analytic methods and decisions may not only alter 156 

outcomes, but also result in different interpretations of fMRI analyses. For instance, Hong et al. 157 

(2019) found that peak level coordinates from various studies have a high degree of variability, 158 

that may often lead to inaccurate conclusions about replication. Although activations may be 159 

close in distance between two groups (or studies), such that they appear to be in similar brain 160 

regions, these may not be related to a ‘replication’ of a neural process that is hypothesized, due 161 

to a lack of neural specificity. In addition, Botvinik-Nezer and colleageus (2020) had 70 different 162 

teams analyze identical fMRI data, testing pre-defined hypotheses associated with risky decision-163 

making. As a function of between lab differences, they found that both lab workflows and 164 

interpretations by researchers altered findings, even though statistical maps may have been 165 

comparable. Thus, such differences in workflow, contrast and parameter selection, and outcomes 166 

investigated are important to consider when forming substantive interpretations of fMRI 167 

findings. Without a clear understanding of how analytic decisions impact our results and 168 
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interpretations, the flexibility of fMRI analyses (e.g., “researcher’s degrees of freedom”) may 169 

result in an unacceptable number of false positives (Gelman & Loken, 2014).  170 

In the MID task, for example, it is not well understood how investigators’ analytic 171 

choices, such as choice of contrast (for example, Big Win Cue ($5) vs Neutral Cue, or Win Cues 172 

($5 & $0.20) vs Neutral Cue), may impact their inferences about the relations between neural 173 

reward circuitry and behavior. FMRI activation maps differ as a function of reward 174 

type/magnitude (Bjork et al., 2010) and recent reviews suggest there is substantial variability 175 

across studies in the techniques used to derive such maps (Balodis & Potenza, 2015; Dugré et al., 176 

2018; Oldham et al., 2018). Balodis & Potenza (2015) attempted to reconcile activation 177 

differences in addictive behaviors as a function of analytic strategies and individual level effects, 178 

but it was unclear whether these differences were related to sample characteristics or true 179 

between contrast task differences, some of which may go unreported.  Combined with the file 180 

drawer problem, the diverse sets of analyses may contribute to underreported contrasts and 181 

associations with behavior which may not fit into a latent distribution of results (Gelman & 182 

Loken, 2014; Simmons et al., 2011). Therefore, it is important to quantify within-individual 183 

variation across activation maps within the same sample and assess the relative utility of these 184 

maps for predicting behavioral outcomes. This would demonstrate whether there is a) stability 185 

within individuals’ estimates of activation at each phase of the task (anticipation or outcome); b) 186 

consistency between contrasts in the level of activation in specific regions of interest (ROI); and 187 

c) whether contrast choice alters the utility of these activations for predicting various 188 

psychological characteristics. 189 
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1.4. Current Study 190 

Previous reviews of the MID task have evaluated general utilization of the task in studies 191 

of reward responsiveness (Lutz & Widmer, 2014), between-study, temporal and phase-related 192 

differences in MID activation effects (Oldham et al., 2018), dynamics of reward versus loss 193 

(Dugre 2018), and influences of substance use (Balodis & Potenza, 2015) and psychosis (Radua 194 

et al., 2015) profiles on activation differences. However, the extent to which contrast choice 195 

contributes to within-subject variability in activation maps and alters conclusions about 196 

associations between neural responses and behavior is still unclear. The current study leverages a 197 

community sample of late adolescents/emerging adults to examine variability across various 198 

activation maps in the MID task. 199 

In order to delineate variability across contrast types (which is difficult to evaluate between 200 

samples/studies), we perform multiple common analyses that focus on the anticipation, outcome, 201 

and prediction error parameters, with data from the same individuals. Due the predominant role 202 

of motivation (or anticipation of reward) in this task, and difficulty to temporally differentiate the 203 

outcome phase (Bjork et al., 2010), we predominantly look at the anticipation phase. These 204 

activation maps are thresholded to compare the degree to which statistical maps (from ten 205 

contrasts) a) vary within a phase (for example, anticipation Big Win > Neutral contrast) and b) 206 

vary between phases of the task (for example, anticipation vs outcome). The degree of variability 207 

is assessed at the individual and group level to assess whether contrast activation patterns differ 208 

across individual subjects’ results and group-level results. Then, mean signal intensity values for 209 

key regions from previous reviews, such as the insula, mPFC, OFC, VS, and amygdala (Balodis 210 

& Potenza, 2015; Dugré et al., 2018; Oldham et al., 2018) are extracted to evaluate whether 211 

activation in these ROIs from different contrasts indexes similar or divergent individual 212 
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difference dimensions. Due to recent concerns that some multiband sequences may alter the 213 

BOLD signal in subcortical regions (Risk et al., 2018), we complement these results with signal-214 

to-noise ratios and plotted time-series from the VS to provide a direct observation of signal for 215 

each anticipation condition.  Finally, correlations between these ROI activations and self-216 

reported psychological characteristics (aggregate score of multi-wave longitudinal data) are 217 

assessed to determine the impact of contrast choice on the prediction of psychological measures 218 

including substance use, psychosocial, and socioemotional functioning.  219 

Similarities and differences are not intended to be reported within a null hypotheses test 220 

framework, but rather presented as a statistical index of overlap (Jaccard’s similarity coefficient) 221 

and of associations across ROIs and behavior (Pearson’s r coefficient; heat maps of r point 222 

estimates for inter-ROI relationships and posterior distributions of r values for associations of 223 

ROIs with behavioral covariates). Our broad goal is to improve the field’s understanding of how 224 

and where there is within-task variability as a function of MID task contrast choice, and, in doing 225 

so, to inform the interpretation of existing MID studies and better guide researchers’ a priori 226 

decisions about contrasts to focus on in future studies. Due to the exploratory nature of the 227 

analyses, the background, methods and analytic plan were preregistered on the Open Science 228 

Framework (https://osf.io/xh7bz). However , we elected not to preregister specific hypotheses 229 

because the intended purpose of the study was to use exploratory analyses to provide a holistic 230 

overview of how degrees of freedoms impact interpretation of MID task results (Thompson et 231 

al., 2020).  232 

2. Methods 233 

Participants in this neuroimaging study are from a subsample of the Adolescent Health 234 

Risk Behavior (AHRB) study. AHRB consists of a nonprobability sample of 2017 (mean age = 235 

https://osf.io/xh7bz
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16.8, SD = 1.1; Female 56%) 10th and 12th grade students recruited from nine public school 236 

districts across eight Southeastern Michigan counties, using a quota sampling method to enhance 237 

sample diversity. Phase I, described elsewhere (Demidenko et al., 2019), collected demographic, 238 

psychosocial, neurocognitive and behavioral information across three waves. From Phase I of the 239 

study, a subsample of 115 adolescents was recruited to participate in the neuroimaging phase of 240 

the study (elapsed time between Wave 1 and neuroimaging section (Months): M = 30.9 months 241 

SD = 5.0 months). Of the 115 adolescents that participated, 108 completed the magnetic 242 

resonance imaging (MRI) portion of the visit. Seven participants were ineligible or unable to 243 

participate in the MRI due to not meeting MRI safety eligibility (e.g. claustrophobia [n = 3] or no 244 

formally documented medical clearance to rule out potential metal in body [n = 4]). Of the 108 245 

participants that completed the MRI, four participants were excluded from the analyses due to: 246 

artifacts in the images that were not recoverable, and one participant that stopped responding 247 

during the second run of the task. The final fMRI subsample (N = 104; Age Mean = 19.3, SD = 248 

1.3; Female 57%) was included in the subsequent analyses and did not differ from the full 249 

sample in age, gender, or time from the original survey. The bulk of code used in the subsequent 250 

analyses are made available online (https://github.com/demidenm/MIDContrasts). 251 

2.1. Self-Reported Psychological Measures 252 

Substance Use. Substance use behaviors (marijuana and alcohol) are assessed via the 253 

item: “On how many occasions (if any) have you [used marijuana or hashish/had any 254 

alcoholic beverage to drink—more than just a few sips] during the last 12 months?” 255 

Responses are reported on a seven-point scale ranging from 1 = “0 occasions” to 7 = “40 or 256 

more occasions”. Use is further probed for past 30-day use for alcohol and marijuana. For 257 

alcohol, last 30-day use assessed binge drinking occasions, “During the last 30-days, how 258 

https://github.com/demidenm/MIDContrasts
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many times (if any) have you had four (for females)/five (for males) or more drinks in a row, 259 

that is, within about 2 h?” Response options were, none, once, twice, 3 to 5 times, 6 to 9 260 

times, or 10 or more times. For marijuana, use occasions within the last 30-days were assessed 261 

using the question, “How many times (if any) have you used marijuana or hashish during the 262 

last 30-days?” Response options were reported on a seven-point scale ranging from 1 = ‘0 263 

occasions’ to 7 = “40 or more occasions”. Substance use items are identical to those used in 264 

the annual, national Monitoring the Future surveys (Johnston et al., 2018). Marijuana and 265 

alcohol scores were z-scored, and then a substance use aggregate measure was created by 266 

averaging the z-scored items across Wave 1 – Wave 3.  267 

Impulsivity. The Barratt Impulsiveness Scale-Brief (BIS-B) is an 8-item, unidimensional 268 

measure of impulsiveness (Steinberg et al., 2013) based on a reduced item set obtained from 269 

the Barratt Impulsiveness Scale (BIS), 11th revision. Items were rated on a 4-point Likert-type 270 

scale: rarely/never (1), occasionally (2), often (3), and almost always/always (4). A mean score 271 

was computed (range: 1 – 4), higher scores indicated lower self-reported impulsivity (α = .79). 272 

An aggregate score was created by averaging scores across Wave 1 – Wave 3. 273 

Sensation Seeking. The Brief Sensation Seeking Scale (BSSS) is an 8-item self-report 274 

measure of sensation seeking (Hoyle et al., 2002) based on reduced item set of the Zuckerman 275 

Sensation Seeking Scale (SSS). The items measure dimensions of sensation seeking: 276 

experience seeking, boredom susceptibility, thrill and adventure seeking, and disinhibition. 277 

Responses were on a 5-point Likert-scale: strongly disagree (1), disagree (2), neither disagree 278 

nor agree (3), agree (4), and strongly agree (5). A mean score was computed (range: 1–5), with 279 

higher scores indicated higher self-reported sensation seeking (α = .78). An aggregate score 280 

was created by averaging scores across Wave 1 – Wave 3. 281 
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Socioemotional problems. Socioemotional problems were assessed using the Youth Self-282 

Report (YSR; (Achenbach & Rescorla, 2001) to characterize externalizing and internalizing 283 

problems. The YSR is a widely utilized, 112-item self-report measure assessing emotional and 284 

behavioral difficulties in 11-18-year-olds. The YSR includes two broadband scales: internalizing 285 

problems (e.g. withdrawn/depressed) and externalizing problems (e.g. attentional deficit/hyper 286 

activity problems, oppositional defiant problems). Raw scores are normalized to provide a 287 

common metric with higher scores indicating greater psychopathology. Validity and reliability of 288 

the YSR broadband, syndrome, and DSM-oriented scales are well documented (Achenbach, 289 

2013; Achenbach & Rescorla, 2001) with adequate internal consistency (α = .70 - .86) and test-290 

retest reliability (α = .67 - .88). An aggregate score was created from population-standardized t-291 

scores for internalizing and externalizing by averaging scores across Wave 1 – Wave 3. In the 292 

present study, Cronbach’s alphas of .91 and .88 were obtained for the internalizing and 293 

externalizing scales, respectively. 294 

2.2. fMRI Task 295 

A modified version of MID task (Knutson et al., 2000) was used to model neural 296 

signatures of the anticipation and outcome of monetary rewards (Bjork et al., 2010; Büchel et al., 297 

2017; Cao et al., 2019). The MID (Knutson & Greer, 2008) is an established task for assessing 298 

reward processing, and the modified version in this study (a modification from the Michigan 299 

Longitudinal Study, Martz et al., 2016) is currently being employed in the national Adolescent 300 

Brain Cognitive Development (ABCD) study to measure the development of adolescent reward 301 

processing (Casey et al., 2018). Identical to the task described in Casey et al. (2018), the task in 302 

this study consists of three phases: anticipation, probe and outcome (that is, feedback). Each trial 303 

starts with a cue type (Win $0.20, Win $5, Lose $5, Lose $0.20, or No Money At Stake). There 304 
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are twelve trial orders of the task, consisting of 50 contiguous trials and 10 trial types per run 305 

(5:42 minutes long). Participants completed two runs of the MID task during the scan (100 trials 306 

and 20 trial types). The task is individualized to reach around 60% accuracy rate by adjusting the 307 

difficulty (that is, probe duration). See Section 1.1 in Supplementary Materials for more 308 

information on task paradigm and administration. A key difference between the current version 309 

of the MID and that used in the IMAGEN sample (Cao et al., 2019), is the latter only includes 310 

Win and neutral trials, excluding Loss trials.  311 

2.3. fMRI Data Acquisition and Preprocessing  312 

Data were acquired using a GE Discovery MR750 3.0 Tesla scanner with a standard 313 

adult-sized coil (Milwaukee, WI). A full-brain high-resolution T1 SPGR PROMO scan was 314 

acquired that is used in preprocessing (TR = 7000ms, TE = 2900ms, flip angle = 8°, FOV = 25.6 315 

cm, slice thickness = 1 mm, 208 sagittal slices; matrix = 256 x 256). Before the MID task, a 316 

fieldmap was acquired using spin-echo EPI (TR = 7400ms, TE = 80 ms, FOV = 21.6 cm, 90x90 317 

matrix) with opposite phase encoding polarity (A P, P A). Two functional T2*-weighted 318 

BOLD MID runs were acquired in the axial plane following structural and a faces task using a 319 

multiband EPI sequence (MB factor=6) of 60 contiguous axial 2.4 mm slices (TR = 800ms, TE = 320 

30 ms, flip angle = 52°, FOV = 21.6 cm, 90x90 matrix, volumes = 407).  321 

fMRI Data Analyses 322 

FMRI data were reconstructed and realigned using SPM12, physiological noise was 323 

removed using RETROICOR, and a fieldmap correction was applied in SPM12 to each T2* run 324 

to recover inhomogeneity of signal in the B0 field. Preprocessing steps were completed using 325 

FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl) FEAT (FMRI Expert Analysis Tool) 326 

Version 6.00. After volumes were (1) reconstructed, (2) realigned, (3) physiological noise was 327 

http://www.fmrib.ox.ac.uk/fsl
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removed and (4) field map correction was applied, the following preprocessing steps were 328 

performed: (6) registration to high resolution structural and standard space MNI 152 image using 329 

FLIRT using a Full search 12 DOF (Jenkinson & Smith, 2001; Jenkinson, Bannister, Brady, & 330 

Smith, 2002), (6) motion correction using MCFLIRT (Jenkinson et al., 2002), (7) non-brain 331 

removal using BET (Smith, 2002), (8) spatial smoothing using a Gaussian kernel of FWHM 332 

5mm, (9) grand-mean intensity normalisation of the entire 4D dataset by a single multiplicative 333 

factor and (10) highpass temporal filtering (Gaussian-weighted least-squares straight line fitting, 334 

with sigma=50.0s).  335 

3. fMRI Analyses 336 

Subjects were excluded from analyses if a subject’s mean framewise displacement (FD) 337 

values exceeded > .9 within any given run (Mean FD Pre- & Post-preprocessing included in 338 

Supplementary Section 1.2), all subjects mean post FD were < .9. We focused on commonly 339 

used contrasts (Table 1) from a recent review (Oldham et al., 2018) and those from our review of 340 

studies using the MID (PubMed 2015 – 2019; Supplementary Table S2), such as reward 341 

anticipation (such as Big Win or Lose ($5), Small Win or Lose ($0.20) versus neutral 342 

Table 1: Contrast Modeled in the Monetary Incentive Delay Task 

Contrasts Phases of MID Modeled 

Contrast 1 (A1) - Ant Win (W; $5 & $0.20) > Neutral (N) (W>N) 

Contrast 2 (A2) - Ant Big Win (BW; $5) > Neutral (N) (BW>N) 

Contrast 3 (A3) - Ant Big Win (BW; $5) Small Win (SW; ($0.20) (BW>SW) 

Contrast 4 (A4) - Ant Big Win (BW; $5) > Implicit Baseline (BW>IB) 

Contrast 5 (A5) - Ant Big Loss (BL; $5) > Neutral (N) (BL>N) 

Contrast 6 (F6) – Out Big Win (BW; $5) Hit > Neutral (N) Hit (BWH>NH) 

Contrast 7 (F7) – Out  Big Loss (BW; $5) Hit > Neutral (N) Hit (BWH>NH) 

Contrast 8 (P8) - PE Expected Value – BW & SM Modulated (EV) 

Contrast 9 (P9) - PE Positive Prediction Error (PE) - BW & SM Modulated (PPE) 

Contrast 10 (P10) - PE Negative Prediction Error (PE) - BL & SL Modulated (NPE) 
Ant = Anticipation; Out = Outcome; Individual contrasts modeled in FSL, see section 1.4 in Supplementary for list of Events 

Modeled in GLM. A = Anticipation; F = Feedback; P = Prediction Error 
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anticipation, win outcome (such as $5 or $0.20) versus neutral outcome, loss conditions (such as 343 

$5 or $0.20) and alternative contrasts that may be comparable to test for similarities within a 344 

group, for example, gain or big gain conditions. It should be noted that using anticipation vs 345 

outcome phase yields in estimates that are often powered differently, as a function of the target 346 

accuracy of the task (60%) leading to individual variation in hit/miss trials. Furthermore, since 347 

the outcome phase is often difficult to deconvolve in the task, and modeled in various ways (see 348 

Supplementary Table S2), we include one type of outcome contrast focusing on gain and loss, 349 

as it is not a central focus of these analyses and often not the focus in contrasts in the literature. 350 

First-level analyses were performed by using FEAT. Time-series statistical analysis was 351 

carried out using FILM with local autocorrelation correction (Woolrich et al., 2001). Similar to 352 

other studies (Cao et al., 2019; Hagler et al., 2019; Lamm et al., 2014), both Anticipation and 353 

Outcome events were modeled (15 explanatory variables) and modulated prediction error signal 354 

of EV, PPE and NPE (see Table 1), in addition to six motion parameters (translations and 355 

rotations in x, y, z directions) and the derivatives of the motion parameters. The modeled 356 

contrasts and design matrix are described in greater detail in Supplementary Section 1.3. We 357 

included prediction error explanatory variables based on a recent review suggesting the MID is 358 

considered to be an implicit reinforcement learning (RL) paradigm (Balodis & Potenza, 2015), 359 

and others recommending use of modulators (Bjork et al., 2010; Oldham et al., 2018). To 360 

incorporate these recommendations, the RL modulators included: Expected Value (EV) and 361 

Prediction Error (PE). To derive estimates of EV and PE for this task, the behavioral data were 362 

modeled for each participant (100 trials – trial-by-trial) to calculate parametric modulators (EV 363 

for anticipation; PE for Received Reward (RR); pGain = probability gain,  = learning rate 364 
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(0.7)). Similar to Cao et al. (2019), we used a RL model trained by reward cues and outcomes 365 

(Rescorla & Wagner, 1972): 366 

𝐸𝑉𝑡 =  𝑝𝐺𝑎𝑖𝑛𝑡  ×  𝐶𝑢𝑒𝑡 367 

 𝑃𝐸𝑡 =  𝑅𝑅𝑡  × 𝐸𝑉𝑡 368 

𝑝𝐺𝑎𝑖𝑛𝑡+1 =  𝑝𝐺𝑎𝑖𝑛𝑡 + ( ×
𝑃𝐸𝑡

𝐶𝑢𝑒𝑡
)   369 

To average across the two runs that are used in subsequent stages, a second-level model 370 

was defined for each participant for each of the ten contrasts (see Supplementary Section 1.3) 371 

using fixed effect analysis in FEAT. A group-level analyses was performed using FMRIB’s 372 

Local Analysis of Mixed Effects (FLAME 1) to generate a mean level activation across subjects 373 

for a given contrast. Considering the large array of contrasts that are modeled, abbreviations 374 

from the first column of Table 1 are referred to when referencing contrasts henceforth.  375 

To provide a direct observation of the BOLD signal and signal-to-noise information of 376 

subcortical regions, we include complementary post-hoc analyses evaluating raw BOLD signal 377 

(see Section 2.6 in Supplemental Materials). We extract the mean signal for VS and mPFC in the 378 

timeseries for VS and plot it for 15 TRs. Likewise, for cortical mPFC and subcortical VS we 379 

extract and present the distribution of the signal-to-noise ratios (SNR) for each individual and 380 

run to confirm that SNR is within an acceptable range (see Section 2.6 in Supplemental 381 

Materials). 382 

3.1. Individual Level and Group Estimates  383 

In order to compare overlap between thresholded activation maps for each contrast at the 384 

individual and group level, we thresholded activation maps produced by the second level and 385 

group level analyses. For the individual level, subjects second level maps (zstat) for each contrast 386 

are thresholded at p < .01 (z = 2.3) and group level contrasts are thresholded at p < .001 (z = 3.1). 387 
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We selected a lower threshold for individual maps due to more variability in estimates within an 388 

individual map, that may substantially alter the Jaccard’s Similarity Indices. These thresholded 389 

maps are binarized (using fsl -bin) and compared to derive Jaccard’s Similarity Indices 390 

(described below). 391 

3.2. Calculating Similarity 392 

One of the aims for this study is to compare similarity between different activation maps 393 

of the MID task within individuals and at the group level. This requires calculating similarity 394 

matrices between our ten contrasts (described above). FMRI task activation maps have been 395 

utilized in similar studies before (Maitra, 2010), but there is no consensus on how to measure 396 

percent overlap between thresholded activation maps (McGonigle et al., 2000). While measures 397 

such as Dice coefficient (Dice, 1945) have been widely used to calculate percent overlap (Taha 398 

& Hanbury, 2015), it possesses undesirable properties (Tulloss, 1997).  399 

This led us to choose Jaccard similarity index (JSI) to calculate percent overlap. One of 400 

the major advantages of using the Jaccard similarity index is that the percent overlap results 401 

obtained from this technique are intuitive and physically interpretable (Maitra, 2010). The 402 

percent overlap between any two activation maps is defined from a set theoretical point of view, 403 

where the overlap 𝐽(𝐴, 𝐵) is defined by the well-known relation as: 404 

𝐽(𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 + 𝐵 − 𝐴 ∩ 𝐵 
 405 

The relation calculates the ratio of common pixels that are activated across two activation maps 406 

to the total number of pixels present in the two maps.  Experimental results that utilized this 407 

metric in previous fMRI reproducibility studies can be found in Maitra (2010).  408 

With the JSI as our point estimates in evaluating replicable results across different 409 

contrasts, we propose a bootstrapping based confidence interval calculation for identifying the 410 
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95% confidence intervals of the overlap measures across all subjects in our sample. Bootstrap-411 

based approaches have been popular in calculating robust approximate confidence intervals 412 

(DiCiccio & Efron, 1996). We propose this approach for identifying the bounds of percent 413 

overlap between activation maps across subjects for two reasons: 1) It would provide reliable 414 

estimates of the range and shape of the distribution of percent overlap, 2) It would provide a 415 

physical interpretation of the JSI obtained across all of the subjects. 416 

3.3. Region of Interest and Behavioral Associations 417 

Voxel coordinates, from Neurosynth.org, for a priori ROI’s, bilateral insula, OFC, VS, 418 

and mPFC and ACC (see supplemental Table S1 and Figure S1), were used with fslmaths to 419 

create 10mm-diameter spheres. For each ROI, the voxels from each contrast mask (using z-420 

statistics produced by Feat Second Level) are averaged to create a mean signal intensity value 421 

and were extracted using fslmeants. Correlations (point estimates of Pearson’s r) across ROIs 422 

were analyzed in R version 3.6.1 (R Core Team, 2019) and were visualized using a heatmap.  423 

ROI mean level signal intensity values across ten contrast types (described above), were 424 

used to assess associations between neural activity and self-reported aggregate scores of a) 425 

substance use, b) sensation seeking, c) impulsivity, d) externalizing, and e) internalizing 426 

problems. Bayesian correlation analyses implemented in JASP (JASP Team, 2019; Ly et al., 427 

2018) were used to estimate posterior distributions for the Pearson’s r value of each predictive 428 

association. Default, non-informative priors (uniform distributions spanning the values from -1 429 

to 1) were used for all correlation analyses. Median values of the posterior distribution, which 430 

indicate the most likely r value, and 95% credible intervals, which represent the lower and upper 431 

bounds of the range which has a .95 probability of containing the r value, are reported below to 432 

quantify the strength of, and uncertainty about, these predictive associations. As analyses are not 433 
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intended to be formal tests of hypotheses, we will refrain from reporting either Bayes factors or 434 

frequentist p-values.  435 

4. Results 436 

4.1. Demographics, Task Behavior and General Overview 437 

The demographic characteristics for the full sample (n = 104) are provided in 438 

Supplementary Section 2.2, Table S3. For the anticipation phase (A1-A5) and prediction error 439 

models (P8-P10), all 104 individuals were included, however, for the feedback phase (F6 & F7) 440 

four subjects were excluded due to underpowered conditions resulting in anomalies in the 441 

estimated [First & Second Level] statistical maps, resulting in only N = 100 for those contrasts. 442 

The behavioral performance statistics from the MID task are included in Supplementary Section 443 

2.3, Table S4 and Figure S2. Although the average accuracy for the task, 57%, was below the 444 

targeted 60%, the Big Win ($5) and Big Loss ($5) conditions were at or above the target, 62% 445 

and 60% accuracy, respectively. As expected, accuracy was lower (48%) and more variable 446 

during the neutral condition. Mean response times are not reported, as the E-Prime data wasn’t 447 

collected for incorrect (‘miss’) trials during the MID task. 448 

 Similarity matrices and activation maps are displayed in supplementary Figure S4 and 449 

Figure 1, respectively. Associations between individual differences in ROI activation estimates 450 

from each contrast are reported at https://osf.io/a5wem/, and are selectively reported below for 451 

clarity (Figure 2). Correlations between ROI activation estimates and behavioral criterion 452 

measures are reported in Figure 3.  There were three notable patterns present in these results 453 

(Note: we remind the reader to refer to Table 1 for contrast descriptions): 1) during the 454 

anticipation phase, A2: BW>N and A5: BL>N demonstrate comparable striatal/insula activation 455 

and task-negative deactivation; 2) during the outcome phase, F6: BWH>NH and F7: BLH>NH 456 



Interactions Between Methodological and Interindividual Variability  

 

23 

demonstrate comparable deactivation 457 

of striatal regions; 3) F7: BWH>NH 458 

appears less meaningful, with 459 

reduced salience response and 460 

negligible task-negative activation 461 

and less association with other 462 

contrasts of anticipation phase; and 463 

4) individual differences in ROI 464 

activation, across different contrasts, 465 

demonstrate relatively weak 466 

associations with behavior. The 467 

aforementioned are expanded in 468 

greater detail below. Notably, the 469 

activation maps of the prediction 470 

error models P8: EV, P9: PPE, and 471 

P10: NPE, were extremely variable 472 

in activation and relatively weak in 473 

their associations with mean ROI 474 

activation from other contrasts, they 475 

Figure 1. Mean level activation and 

deactivation maps for A1-A5 & F6-F7, 

One-Sample T-test 
See Table 1 for details and online collection for 

untresholded statistical maps of tens contrasts 

http://neurovault.org/collections/JVXLTPHC  

http://neurovault.org/collections/JVXLTPHC
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are not discussed below. The contrast maps are available online. 476 

4.2. Big Win and Loss Anticipation Engage Similar Neural Systems 477 

The thresholded masks (p < .001) of A2:BW>N and A5:LB>N group maps had a Jaccard’s 478 

similarity Coefficient of .16 (supplemental Figure S4). This similarity is also apparent in the 479 

group level activation maps (Figure 1), demonstrated by shared patterns of activation. Bjork et 480 

al. (2010) reported the greatest striatal activation in the largest magnitude of reward, e.g. $5 481 

(A2:BW>N). Although the peak left striatal activation in the A2:BW>N is greater than in the 482 

A5:BL>N (based on magnitude of z-statistic in activation maps), in their direct comparison 483 

(https://neurovault.org/collections/JVXLTPHC/images/359857/), the difference is relatively 484 

small. The greatest difference between these two contrasts was increased activation in the mPFC 485 

in A2:BW>N as compared to A5:LB>N. Furthermore, contrasts A2:BW>N & A5:BL>N show 486 

similar activation of supplementary motor area (SMA), the insular cortex, thalamus and 487 

cerebellar regions. Similar to the shared positive activation of these contrasts, they, too, share 488 

comparable deactivation in the task-negative, angular gyrus, an effect that is not seen in the 489 

A3:BW>SM (Figure 1). This activation in the striatal regions and deactivation in task negative 490 

regions is comparable to a recent meta-analysis (open source activation maps: 491 

https://neurovault.org/collections/4258/) showing similar robust patterns of activation and 492 

deactivation in both win and loss anticipation (Wilson et al., 2018).  493 

Consistent with these similarity analyses in group level activation, correlations of mean 494 

signal intensity values from ROIs across A2:BW>N and A5:BL>N (Figure 2, full matrix 495 

available at https://osf.io/a5wem/) also suggested that neural responses from these contrasts 496 

index similar individual difference dimensions. Positive correlations in neural responses between 497 

the contrasts were identified (Figure 2) in the anterior cingulate cortex (ACC; r = .58), medial 498 

https://neurovault.org/collections/JVXLTPHC/images/359857/
https://neurovault.org/collections/4258/
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prefrontal cortex (mPFC; r = .26), bilateral Insula (Right: r = .58; Left: r = .24), bilateral 499 

orbitofrontal cortex (OFC; Right: r = .43, Left: r = 27), and bilateral ventral striatum (VS; Right: 500 

r = .57, Left: r = .42). The similarity between A2:BW>N and A5:BL>N is great than the past 501 

literature has eluded to. 502 

4.3. Reward and Loss Outcome is Paradoxically Linked to Striatal Deactivation  503 

Contrary to past work focused on striatal activation during win conditions, our contrasts 504 

during outcome phase, F6:BWH>NH & F7:BLH>NH, demonstrated a deactivation of the 505 

striatal regions. Based on the Jaccard’s similarity Coefficient, .34, the regions that were 506 

deactivated were comparable in F6:BWH>NH and F7:BLH>NH (Figure 1, and supplemental 507 

Figure S4). Although the mean level deactivation of the striatal region in the F6:BWH>NH 508 

contrast was relatively weak (t = -2.68), in the F7:BLH>NH condition the deactivation was 509 

relatively robust (t = -5.8). As a control comparison in change of activation, we reference the 510 

angular gyrus, which has a relatively weak mean level activation in both F6:BWH>NH and 511 

F7:BLH>NH, demonstrating that there is a more profound change in activation in the striatal 512 

region between the anticipation and outcome phase (see Figure 1). In a direct comparison of 513 

F6:BWH>NH & F7:BLH>NH (https://neurovault.org/collections/JVXLTPHC/images/359858/), 514 

F6:BWH>NH demonstrates greater activation in the left parahippocampal (z = 4.3) and right 515 

nucleus accumbens (z = 3.4). These two outcome contrasts demonstrated some associations 516 

(Figure 2) in individual differences analyses of mean signal intensity in the ACC (r = .33), 517 

mPFC (r =.55), and bilateral VS (r = .45 - .46) (full matrix available at https://osf.io/a5wem/ 518 

However, this effect may relate to the fact that Big Win/Lose Hit versus Neutral Hit rather than 519 

an alternative contrast that is used in the litearture, such as Big Win/Lose Hit versus Big 520 

Win/Lose Hit versus Big Win/Lose Miss. For this latter contrast, we plot the underlying BOLD 521 

https://neurovault.org/collections/JVXLTPHC/images/359858/
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signal in the latter contrast, and find no differentiation in striatal regions (Figure S7). Overall, 522 

there a consistent deactivation in these regions after the peak rise during the anticipation phase. 523 

4.4 Anticipation Big Win versus Small Win Contrast Is Distinct from other Anticipation 524 

Contrasts 525 

Despite its variable use in the literature, A3:BW>SM was unique when compared to 526 

other contrasts in anticipation phase (Figure 1). The A3:BW>SM had lowest Jaccard 527 

Coefficient’s with other contrasts modeling the anticipation phase, <.02 (Figure S4). Further, in 528 

the group mean-level activation, compared to A1:W>N, A2:BW>N, and A5:BL>N anticipation 529 

phases, the A3:BW>SM had the weakest mean-level striatal and insular activation, and no task-530 

negative activation. The task-negative activation difference is unique, as all of the other contrasts 531 

demonstrate this profile of task-negative activation in the anticipation phase.  532 

However, with respect to individual differences in ROI mean-level activation, depending 533 

on the contrast, there are similarities between A3:BW>SM and other contrasts (Full correlation 534 

matrix available at https://osf.io/a5wem/). For example, the mean-level activation between 535 

A1:W>N and A3:BW>SM is negligible: ACC (r = .15), mPFC (r = -.04), bilateral insula (r = .07 536 

- .12), bilateral OFC (r = -.14 - .04) and bilateral VS (r = .05 - .11). Yet, there is a strong 537 

association between A2:BW>N and A3:BW>SM in the ACC (r = .63), mPFC (r = .65), bilateral 538 

insula (r = .42 - .64), Right OFC (r = .62), and bilateral VS (r = .43 - .65). Despite the similarity 539 

discussed between A2:BW>N and A5:BL>N above, there is a negligible association between 540 

ROI’s in A3:BW>SM and A5:BL>N (r = -.11 - .19). Which suggests that the similarities 541 

between A2:BW>N and A3:BW>SM may arise from the shared Big Win cue in the subtraction. 542 

4.5 Across Contrasts, Activations Show Only Weak to Negligible Correlational 543 

Relationships with Behavioral Criterion Measures 544 
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 The aggregated scores for psychological characteristics in this sample were associated in 545 

the direction expected (Supplementary Section 2.4, Table S5). More specifically, there was a 546 

strong positive association between internalizing and externalizing problems (r = .51), sensation 547 

seeking and impulsivity (r = .44), externalizing and substance use (r = .51), and substance use 548 

and sensation seeking (r = .38) and impulsivity (r = .24).  549 

 Posterior medians and 95% credible intervals (CIs) of Pearson’s r values, which represent 550 

the most likely r value and range in which there is a .95 probability that the r value falls, 551 

respectively, are displayed in Figure 3 for all relationships between ROI activation estimates and 552 

behavioral criterion measures (complete values available at https://osf.io/d9k3v/, bootstrapped 553 

values also provided which are comparable at https://osf.io/dr5y2/). Although the interpretation 554 

of individual associations is complicated by the large number of tests reported, several general 555 

patterns are apparent.  556 

First, the most likely r values for the majority of associations fell at or well below the 557 

threshold for what is typically considered a “small-sized” effect (|r| = .10). Similarly, the bulk of 558 

most CIs also fell in this general range. In fact, there was not a single association for which the 559 

most likely r value indicated a “moderately-sized” effect (|r| >= .30), and few CIs overlapped 560 

with this “moderate” criterion. It is also notable that only a handful of CIs (less than 5%) did not 561 

overlap with 0, suggesting that even these cases, which might be interpreted as showing 562 

promising evidence for a non-negligible effect, are likely due to multiple testing rather than 563 

reflecting true relationships. Indeed, as typical Bayesian CIs do not take into account the 564 

probability that the null (r = 0) is true (van den Bergh et al., 2019), the effect size estimates we 565 

report are, if anything, likely to be overly optimistic. Hence, consistent with other emerging 566 

findings from large, diverse neuroimaging data sets (Nees et al., 2012; Paulus et al., 2019; Paulus 567 
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& Thompson, 2019), these patterns of results suggest that direct associations of MID task 568 

activations with relevant behavioral criterion measures are less robust than what has been 569 

previously thought, and that even if these associations exist, effect sizes are likely to be small.  570 

4.6 Post-Hoc Analyses 571 

In light of prior meta-analytical comparisons of base contrasts within individuals, such as 572 

gain versus outcome phases (Knutson & Greer, 2008; Wilson et al., 2018), we compared these 573 

differences in the anticipation phase, A2:BW>N versus A5:BL>N; outcome phase, 574 

F6:BWH>NH versus F7:BLH>NH; win anticipation versus win outcome, A2:BW>N versus 575 

F6:BWH>NH; and loss anticipation versus loss gain outcome, A5:BL>N versus F7:BLH>NH. 576 

We provide these for reference online https://neurovault.org/collections/JVXLTPHC/.  Notably, 577 

in a direct comparison of the A2: BW>N versus A5: BL>N signal we find no differences in VS 578 

or Insula as a function of valence. 579 
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With respect to the direct observation of the BOLD signal, we find appropriate separation 580 

in anticipation of Big Win and Neutral cues (Figure 4) and signal-to-noise ratio in the VS region 581 

(Supplementary Figure S3). With respect to the anticipation phase, we see the expected peak in 582 

BOLD separation between Big Win and Neutral cues around 7-8seconds after cue onset (Figure 583 

4). Such that, this separation is significant from TR 6 (p < .01) to TR 11 (p < .001) in the Right 584 

VS, and TR 6 (p < .001) to TR 10 (p < .001) in the Left VS, before the undershoot at TR 14. This 585 

separation, as expected, does not occur in the mPFC. The nature of the anticipation signal 586 

bleeding into the feedback phase is apparent in the bilateral VS when the anticipation cues are 587 

locked to the feedback phase (Supplementary Figure S8). Specifically, there is significant 588 

separation for the first 4-5 TRs (or 3-4 sec) in the feedback phase in the Big Win as compared to 589 

the Neutral phase, until they reverse by TR 10. Since the signal is not appropriately deconvolved 590 

in the feedback phase, one approach is to model based on combinations of Hit/Miss trials. In our 591 

main feedback contrasts, F6 and F7, we modeled the Big Win versus Neutral Hit, which still 592 

Figure 4: Direct Observation of BOLD signal locked to Cue Onset for Big Win (LgReward) and Neutral 

(Triangle) for 15 TRs (12 seconds) after Cue Onset  
mPFC = medial prefrontal cortex; VS = Ventral Striatum.  

Error bars = bootstrapped 90% Confidence Interval; p < .05*; p < .01**; p < .001** 
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demonstrates poor deconvolution in the VS regions (see Supplementary Figure S6). One 593 

alternative approach, which we did not model in the whole brain contrasts, is the contrast of Big 594 

Win/Loss Hit versus Big Win/Loss Miss. However, direct observation of the BOLD signal 595 

(supplementary Figure S7) demonstrates that for Big Win Hit and Big Win Miss, these are nearly 596 

identical in the VS BOLD signal. However, whereas the mPFC demonstrates peak separation at 597 

TR 14 (~11 sec), this is occurring well into the subsequent trial, it is unclear what this change 598 

represents. Overall, we find appropriate peak in direct BOLD signal after anticipation cue onset, 599 

but a complicated picture forms in the outcome phase with respect to bilateral VS and mPFC. 600 

 601 
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 602 

Figure 2: Pearson 

correlation matrix of 10 

contrasts by 8 ROI’s  
Color bar represents 

associated Pearson r value 

between the 10mm ROI of 

across 10 contrasts. See 

Table 1 for associated 

contrast information.  

R = Right; L = Left; VS = 

Ventral Striatum; OFC = 

Orbitofrontal Cortex; mPFC 

= medial Prefrontal Cortex; 

ACC = Anterior Cingulate 

Cortex 
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603 

Figure 3. Forest plots displaying the most likely Pearson’s r value (black diamonds) and 95% Bayesian credible interval (black lines) for 

correlational relationships between ROI activation estimates from each contrast and behavioral criterion measures. Red, blue and green lines denote 

“small” (r=.10), “moderate” (r=.30) and “large” (r=.50) effect sizes.  
1-10 = Ten contrasts listed in Table 1; ACC = anterior cingulate cortex; mPFC = medial prefrontal cortex; Ins = insula; OFC = orbitofrontal cortex; VS = ventral 

striatum; L = left; R = right; SubUse = substance use composite measure; BISB = Barratt Impulsiveness Scale-Brief; BSSS = Brief Sensation Seeking Scale 
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5 Discussion 604 

In this study of the MID task, we performed a comprehensive evaluation of between-605 

contrast similarities and differences in activation maps, mean ROI signal intensity and 606 

correlations between ROI activations and behavioral criterion measures. After identifying ten 607 

candidate contrasts that have precedent in the previous literature, our within study comparison 608 

provides the first look at the comparative differences between these common MID task contrasts. 609 

The findings demonstrate similarity between positively and negatively arousing anticipation 610 

cues, distinct deactivation of striatal regions during the outcome phase, dissimilarity between Big 611 

Win > Small Win anticipation and other anticipation effects, and a relatively weak associations 612 

between MID task activations and real-world behaviors. These findings are consistent with 613 

previously reported MID task-specific conceptual findings (Bjork et al., 2010) and also have 614 

implications for task-general theoretical problems (Hedge et al., 2018; Poldrack & Yarkoni, 615 

2016)  616 

 A relatively similar pattern of activation was observed during the Big Win anticipation 617 

and the Big Loss anticipation phase. A direct comparison of Big Win and Big Loss anticipation 618 

phases revealed negligible differences between the activation in the NAcc and insula in the group 619 

level activation maps, and only a small Win-related increase in activation in the mPFC. This 620 

similarity in activation profiles during anticipation of both positive and negative stimuli is 621 

consistent with a recent meta-analysis demonstrating that approach and avoidance behavior have 622 

considerable overlap in activation (Oldham et al., 2018), and prior studies reporting similar 623 

activation patterns in young adults (Joseph et al., 2015; Joseph et al., 2016) and substance use 624 

populations (Bjork et al., 2008). Although prior models suggested that levels of uncertainty, 625 

depending on positive or negative arousal, would elicit activation in the NAcc or insula (Knutson 626 
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& Greer, 2008), these difference were not apparent during the anticipation phase. In the direct 627 

comparison of BOLD in cue onset of Big Win and Big Loss, although there are subtle 628 

differences in our larger sample, these differences are relatively small. This may suggest 629 

alternative cognitive processes (such as attention or motivation) that may be involved during the 630 

anticipation phase (Abler et al., 2006; Breckel et al., 2011; Krebs et al., 2012; Schouppe et al., 631 

2014), as the NAcc may facilitate detection and attention to cues (Peters et al., 2011), as it serves 632 

as a limbic-motor interface that converts signals into action (Floresco, 2015). Thus, the proactive 633 

nature of the anticipation phase in the task may permit the individual to strategically prepare via 634 

the confounded relationship between attention and reward (Pessoa, 2015). 635 

 Our within-task analysis revealed some dissimilarity within contrasts in the anticipation 636 

and distinct patterns of activation in the outcome phase compared to the anticipation phase. 637 

Although the Big Win versus Small Win contrast activated striatal regions, the contrast was 638 

distinct from all others, demonstrating a limited association with other contrasts in the 639 

anticipation phase and not apparent improvement in estimates of behavior. Since the contrast is 640 

used in the literature (Büchel et al., 2017), more theoretical support is needed to contextualize 641 

this modeling approach. Conversely, our comparison of positively and negatively valenced 642 

reward outcomes revealed widespread deactivation throughout the brain during the outcome 643 

phase. These patterns were counter to a recent meta-analysis, using activation likelihood 644 

estimation (based on nine studies), that reported no activation in the contrasts of Big Win hit 645 

versus Neutral hit conditions in the MID task (Oldham et al., 2018). However, the pattern of 646 

deactivation may have been overlooked in a meta-analytic strategy, especially since the 647 

technique focuses on reported points of positive activation. Although the pattern of deactivation 648 

is consistent in both positively and negatively valenced outcomes, there appears to be a greater 649 
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deactivation in the negatively valenced cues as compared to positively valenced cues. This 650 

pattern of deactivation is consistent when comparing contrasts modeling the anticipation and 651 

outcome phase, whereby there is a consistent negative association between correlations of ROI 652 

activation estimates. This suggests a unique pattern of deactivation in the outcome phase that is 653 

anti-correlated with the anticipation phase, which is important to consider as the direction of 654 

activation may differ as a function of the anticipation and outcome phase, and so should be 655 

considered when interpreting an increase or decrease in the MID task. However, since the 656 

outcome phase is not temporally-separated from the anticipation phase in most versions of the 657 

MID task (Bjork et al., 2010), it is still unclear whether the negative activation in this version is 658 

related to some overlap in the BOLD response occurring during the anticipation, probe and 659 

outcome phase.  660 

Alternative contrasts may have been examined in the outcome phase, such as Big Win 661 

Hit versus Big Win Miss or more complicated contrasts (Bjork et al., 2011; Veroude et al., 662 

2016), but these contrasts would likely still suffer from a signal that is not temporally separated 663 

between the outcome and anticipation phase or offer an inadequately powered number of trials. 664 

In the direct observation of Big Win Hit versus Big Win Miss cues, we observe that they are 665 

nearly identical in during the feedback phase in the VS regions. Although the mPFC 666 

demonstrates some separation in these cues, it occurs well into the subsequent trials, which 667 

would make it difficult to conclude on the effect.  In a version of the MID task that used a filler 668 

between the probe and outcome phase, some increases in activation were reported to winning 669 

rewards but not loss avoidance (Bjork et al., 2010). Since deactivation was not reported, it is still 670 

unclear whether deactivation found here is confounded by contrast type in the outcome phase 671 

and/or overlap in BOLD signal. Although it is difficult to do for the current MID design, future 672 
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designs would benefit from deconvolving the BOLD signal between the anticipation and 673 

outcome phase to disentangle the complexity of the design and subsequent conclusions.  674 

 In addition to understanding the variability across different contrasts of the MID task, it is 675 

also critical to consider how patterns of activation across task phases/conditions relate to 676 

behaviors, since the task is used in a broad clinical and behavioral literature. In our analysis 677 

using psychosocial and clinical criterion measures, we found limited evidence for associations 678 

with activations across different phases and conditions. Specifically, the majority of associations 679 

between neural activation during the MID task and behavior were likely to be relatively small or 680 

negligible effects. As the original design focused on clinical populations (Brian Knutson & 681 

Heinz, 2015) and reviews have suggest a robust role of limbic regions in substance use (Balodis 682 

& Potenza, 2015) and psychosis (Radua et al., 2015), this may contribute to the weak effects 683 

found in our young adult community sample.  Although we cannot rule out that this lack of 684 

robust associations with behavior may have been due to features of our sample or measures, it 685 

stands in stark contrast to the large array of previous studies reporting associations of MID task 686 

activations with various real-world outcomes (Büchel et al., 2017; Boecker et al., 2014). 687 

However, our findings are broadly consistent with recent work that has reported a distinct 688 

contrast between the effects found in studies with (median r = .16) and without  preregistration 689 

(median r = .36) respectively) (Schäfer & Schwarz, 2019) and with findings in large, diverse data 690 

sets which indicate that neuroimaging markers often explain only very small portions of the 691 

variance in behavioral outcomes of interest (Nees et al., 2012; Paulus et al., 2019; Paulus & 692 

Thompson, 2019). This has led some (Paulus and Thompson, 2019) to suggest that small effects 693 

are the “new normal” in clinical neuroscience research.  694 
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One reason for discrepancy between our results and prior reports of more robust MID 695 

task associations with behavior is that effect sizes may have been overestimated in previous 696 

studies with smaller samples. Until recently, neuroimaging studies of individual differences have 697 

frequently been underpowered (Cremers et al., 2017; Yarkoni, 2009), which tends to cause the 698 

size and replicability of effects to be dramatically overestimated due to a combination of noise in 699 

small samples and the “statistical significance filter” (Gelman & Loken, 2014; Vasishth et al., 700 

2018). Hence, when viewed in the broader context of current challenges faced by neuroimaging 701 

studies of individual differences, our findings suggest that researchers should be prepared for 702 

relationships between MID task activations and clinical or real-world outcomes of interest to be 703 

of small size, and design their studies accordingly. For example, the use of large data sets from 704 

collaborative efforts (e.g., ABCD: Casey et al., 2018) may be preferable to smaller samples 705 

collected by individual labs (Beltz & Weigard, 2019; Paulus & Thompson, 2019). 706 

Beyond the possibility that effect sizes in previous MID studies may have simply been 707 

inflated, the lack of relationships may also be attributed to problematic validity of fMRI-based 708 

tasks and the underlying assumptions in the cognitive processes and their related phenomena, 709 

such as positive or negative valence. A large proportion of tasks in fMRI are experiment based, 710 

whereby conditions are manipulated to evoke excitation of a specific cognitive processes. 711 

Although the MID task evokes distinct neural processes that are consistent with current 712 

conceptualizations of the mesolimbic system (Knutson & Greer, 2008) – which we find distinct 713 

separation in VS to valence – the classic metric of validity, that a test measures what it claims to 714 

measure (Cronbach & Meehl, 1955; Kelley, 1927), is underexplored. In fMRI studies of 715 

individual variation, such as behavioral differences that may be associated with neural measures 716 

of reward, requires the combination of experimental and correlation work which has been 717 
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considered to be two distinct traditions in psychology (Cronbach, 1957). Correlation work 718 

attempts to increase between individual variation, whereas experimental work attempts to limit 719 

the between-individual variation; the latter methodological practice has been argued to contribute 720 

to the poor predictive effect of cognitive measures in correlational research (Dang et al., 2020; 721 

Hedge et al., 2018). Together, the weak predictive effect of cognitive tasks and poor test re-test 722 

of fMRI (Elliott et al., 2020) can contribute to the unreliable estimates of different task contrasts.  723 

Moreover, the inferential processes in task-based fMRI pose conceptual challenges. It has 724 

been argued that the standard approaches in task-based fMRI, that utilize the technique of 725 

subtracting conditions, are fundamentally flawed in achieving the isolated mental functions in 726 

neural substrates, making it difficult to map brain to behavior (Poldrack & Yarkoni, 2016). 727 

Poldrack & Yarkoni (2016) recommended that there are basic conceptual difficulties in task-728 

based fMRI ‘that remain widely underappreciated within the neuroimaging community’ (pg. 729 

589). This is observed in the MID task, as conceptually the subtraction intends to measure 730 

approach and avoidance of positive and negative conditions (Knutson & Greer, 2008), but, this is 731 

not consistent in the activation patterns of valence (insula) and approach (NAcc) structures that, 732 

here, are activated similarly in both. Although using monetary value illustrates control of 733 

magnitude, probability and timing (Knutson & Greer, 2008), adding a discrete step with positive 734 

or negative monetary cues may not be sophisticated enough to identify valence and approach 735 

over and above processes of attention and/or motivation within an individual. This poor one-to-736 

one mapping makes it especially difficult to predict socioemotional vulnerabilities due to the 737 

heterogeneity of populations that do not uniquely fit into one-to-one neural mappings (Paulus & 738 

Thompson, 2019). While the MID task poses to measure distinct positive and negative valenced 739 

systems in two distinct phases (Balodis & Potenza, 2015; Knutson et al., 2000; Knutson & Greer, 740 
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2008; Oldham et al., 2018), the nature to which these phenomena vary or are consistent have not 741 

been validated. And in fact, our work in a community sample of young adults suggests that they 742 

may not significantly differ in terms of the structures that are involved. 743 

Therefore, as has long been acknowledged in behavioral research (Cronbach & Meehl, 744 

1955), it is crucial to test whether activations from fMRI contrasts cluster in the same manner in 745 

which they are proposed to by theorists and task designers. Likewise, if reviewers are to contrast 746 

between studies and tasks at the results level, implying a construct of a cognitive process, it 747 

would be valuable to the field to know whether within- and between-task conditions converge on 748 

a hypothesized phenomenon (Campbell & Fiske, 1959). Until assumptions are considered in 749 

cognitive processes of fMRI tasks, simple manipulations that are laden with theoretical claims of 750 

reward processes will provide overconfidence in the robustness of findings (Poldrack & Yarkoni, 751 

2016; Vasishth et al., 2018). Due to the variability in our findings, the current state of practices 752 

used in the MID task (and potentially others) will inevitably result in playing ‘20 questions with 753 

nature’ (Newell, 1973), which will  result in some winners and some losers (Button et al., 2013). 754 

By modeling multiple versions of an unvalidated phenomena in contrasts, the incorrect measure 755 

of error will invariability result in significance 5-percent of the time (Fisher, 1926), and in small 756 

samples, this may be lauded as a significant finding between neural substrates of reward and 757 

behavior, which can alter designs and conclusions of subsequent studies (Button et al., 2013). 758 

Although our findings suggest a high level of variability between contrast choices and 759 

behavioral associations, several measures can be taken to improve the reproducibility of results 760 

in the MID task literature. A first and immediate step that can been taken by researchers is 761 

increasing sample sizes of samples using fMRI. Currently, a large proportion of fMRI studies are 762 

substantially underpowered for finding the effect they are testing (Szucs & Ioannidis, 2017). In 763 



Interactions Between Methodological and Interindividual Variability  

 

40 

addition to improving power, researchers would benefit from assessing how the MID contrast 764 

values fit in a larger nomological network of neural and behavioral constructs, beyond an 765 

abstract subtraction processes that presumes a process of motivation or consumption of reward 766 

(Poldrack & Yarkoni, 2016). One approach may be to use parametric modulators, which has 767 

been used in prior analyses, but is largely underutilized (Aloi et al., 2019; Joseph et al., 2016). In 768 

addition to improving estimates of functional parcels (Nikolaidis et al., 2020), multivariate 769 

pattern analyses may help with the reproducibility of theorized cognitive processes (Hong et al., 770 

2019). Multivariate, cross-validated, pattern analyses can provide a priori activation patterns and 771 

locations that can be confirmed out of sample, reducing the possibility of exploring multiple 772 

hypotheses. Furthermore, in order to characterize individual variability in neural models, 773 

researchers should implement functional organization techniques to explain changes in behavior 774 

and cognitive processes (Beltz et al., 2016; Greene et al., 2018; Yip et al., 2019; Zhang et al., 775 

2019). For example, Zhang and colleagues (2019) used a network modeling approach to identify 776 

a developmentally stable architecture of emotion related findings, providing some reliable 777 

estimates. Further, the network models of task-based fMRI may aid researchers in uncovering 778 

the neural architecture of cognitive processes (Medaglia et al., 2015), such that connectivity 779 

metrics may provide predictive effects of individual traits (Greene et al., 2018). By using 780 

individual and group level estimates of connectivity patterns (Beltz et al., 2016), task-based 781 

analyses may improve the identification and replication of neural signatures that will aid 782 

researchers studying developmental and clinical differences (Yip et al., 2019; Zhang et al., 783 

2019). 784 

5.1 Limitations 785 
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 Although the findings here pose significant implications, there are multiple limitations. 786 

First, the nature of our findings are specific only a modified version of MID task that was 787 

administered in a young adult sample, so the implications should be considered and confirmed in 788 

a separate sample(s) to determine which effects are converge between samples and which are 789 

limited to a sample. Second, the correlates between ROI activation and self-reported behavior 790 

may be underestimated, such that behavior that is collected contemporaneously with the scan 791 

acquisition or in the nature that brain predicts behavior may produce different effects. Third, only 792 

a subset of common a priori contrasts were selected from the literature. Alternative contrasts, 793 

such as the linear combination of winning or alternative contrasts during the outcome phase, 794 

should be considered in future work. Further, since the anticipation and outcome phase in this 795 

task were not jittered, we could not directly contrast these phases at the individual level (only 796 

group level), due to risk of collinearity. Finally, due to the outcome phase containing variable 797 

number of trials as a function of 60% accuracy rate, the activation patterns may be influenced by 798 

the surprise of the event(s) (Vassena et al., 2020), which should be considered in future work. 799 

It is worth noting, that some of differences between positive and negative cues in our and 800 

previous studies may depend on age-related factors and sample characteristics. For instance, 801 

while our results did not demonstrate a meaningful difference in the activation of the VS or 802 

insula between big win and big lose anticipation phases, age related differences have been 803 

previously reported using this task (Bjork et al., 2010; Cope et al., 2019), such that increases in 804 

activation during big win anticipation trials were greater in older adults (Bjork et al., 2010), and 805 

reduced activation in reponse to lose big anticipation in 9-12 year old’s (Cope et al., 2019). This 806 

suggests patterns of activation during the MID task within and between sample comparisons has 807 

be considered when age-related effects are present, as qualitative differences between some 808 
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contrasts may not be easily apparent. Furthermore, whereas these analyses focus on a 809 

community-recruited young adult sample, previous reviews focused on clinical population 810 

(Balodis & Potenza, 2015; Radua et al., 2015), and these results should be considered in the 811 

future within a clinical population to assess how associations would change in light of clinical 812 

factors. 813 

Finally, in this analysis we were not able to explore at what degree individual intrinsic 814 

motivation differentiated across cue types (win/loss/neutral). Although the accuracy in the task 815 

was used as a marker, it is difficult to determine how interested a participant was in the task 816 

conditions. Future work should consider how relationships can be accounted for by self-reported 817 

metrics, and whether the degree of task-negative activation in the default mode network may be a 818 

useful indicator of vigor (or attention) during the MID task.  819 

5.2 Conclusion 820 

 Although the MID task has been used to measure neural substrates of reward processing, 821 

modeling techniques have varied substantially between studies. While the structure of the task 822 

has been proposed to measure varying levels of arousal and valence, it is still unclear whether 823 

findings from different within task comparisons can be easily generalized between studies. Our 824 

comparison of within-sample MID task contrasts during multiband fMRI revealed more 825 

similarities than differences between positive and negative cues during the anticipation contrast, 826 

dissimilarity of a distinct contrasts during the anticipation phase, a robust deactivation effect in 827 

the outcome phase, and behavioral associations that are less robust than previously thought. 828 

These findings point to the need for caution in future work that make attempts at generalization, 829 

and encourage researchers to power their studies for effects that may be smaller than previously 830 

hypothesized.    831 
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