
Letters in Mathematical Physics (2021) 111:31
https://doi.org/10.1007/s11005-021-01375-4

Free energy asymptotics of the quantum Heisenberg spin
chain

Marcin Napiórkowski1 · Robert Seiringer2

Received: 12 September 2020 / Revised: 22 February 2021 / Accepted: 23 February 2021 /
Published online: 9 March 2021
© The Author(s) 2021

Abstract
We consider the ferromagnetic quantum Heisenberg model in one dimension, for any
spin S ≥ 1/2. We give upper and lower bounds on the free energy, proving that at
low temperature it is asymptotically equal to the one of an ideal Bose gas of magnons,
as predicted by the spin-wave approximation. The trial state used in the upper bound
yields an analogous estimate also in the case of two spatial dimensions, which is
believed to be sharp at low temperature.

Keywords Quantum spin chains · Heisenberg model · Ferromagnet · Free energy ·
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1 Introduction

The ferromagnetic quantumHeisenbergmodel is one of themost important andwidely
studied models of statistical mechanics. In dimensions d ≥ 3, the model is widely
believed to display long-range order at low temperature, but a rigorous proof remains
elusive. Based on the concept of long-range order, the low temperature properties of the
model are usually examined using spin-wave theory. In the spin-wave approximation,
one assumes that the low-energy behavior of the system can be described in terms of
collective excitations of spins called spin waves. From an equivalent point of view,
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which dates back to Holstein and Primakoff [17], these spin waves are known as
bosonic quasiparticles called magnons.

The spin-wave approximation has been very successful, predicting for example a
phase transition in three and more dimensions, or the T 3/2 Bloch magnetization law
[7,8]. In his seminal 1956 paper [14], Dyson derived further properties of the quantum
Heisenbergmodel which, among other things, included the low temperature expansion
of the magnetization.

While therewas little doubt about the validity of spin-wave theory in three (ormore)
dimensions, a rigorous proof of some of its predictions has only recently been given in
[13] (see also [12]). There it was proved that the free energy of the three-dimensional
ferromagnetic quantum Heisenberg model is, to leading order, indeed given by the
expression derived using spin-wave approximation, for any spin S ≥ 1/2 (see also
[10,25] for earlier non-sharp upper bounds, or [5,11] for results in the large S limit).

The situation is different in lower dimensions. It has been known since the seminal
work of Mermin and Wagner [19] that the d = 1 and d = 2 dimensional quantum
Heisenberg models do not exhibit long-range order at any nonzero temperature. The
low temperature behavior of the system in low dimensions is thus very different from
the one in three or higher dimensions, and it is less clear whether spin-wave theory
should also be valid in lower dimensions.

In 1971, Takahashi [22] derived a free energy expansion for d = 1 in the case
S = 1/2. In this special case, the quantum Heisenberg model is exactly solvable
via the Bethe ansatz [6]. The spectrum of the (finite size) model can be obtained
by solving the corresponding Bethe equations. Under certain assumptions (known as
string hypothesis) on the solutions of these equations, he derived what are now known
as thermodynamic Bethe equations, an analysis of which leads to a formula for the
free energy. Later, in [23] he derived an alternative free energy expansion using (a
modified) spin-wave theory (for any S, and also in two dimensions). Interestingly, the
second terms in the (low temperature) free energy expansions in [22,23] do not agree
with the predictions of conventional spin-wave theory [7,8,14,17]. (The leading terms
do agree, however.)

The thermodynamic Bethe equations have been used not only for the Heisenberg
spin chain, but also in other models including the Kondo model [1–3,21] or the Gross–
Neveumodel in high energy physics [4]. Formore applications of the string hypothesis
and its relation to numerous other models in physics, we refer to the review articles
[18,24].

In the present paper, using different methods, we prove that, to leading order, the
formula derived by Takahashi based on the Bethe ansatz and the string hypothesis in
[22] is indeed correct. Our analysis does not use the Bethe ansatz and our result holds
for any spin S. It therefore also partly justifies the spin-wave approximation derived in
[23]. We shall utilize some of the methods developed for the three-dimensional case
in [13], but novel ingredients are needed to treat the case of lower dimensions, both
for the upper and the lower bounds.
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2 Model andmain result

We consider the one-dimensional ferromagnetic quantum Heisenberg model with
nearest neighbor interactions. For a chain of length L , it is defined in terms of the
Hamiltonian

HL =
L−1∑

x=1

(
S2 − �Sx · �Sx+1

)
. (2.1)

Here, �S = (S1, S2, S3) denote the three components of the spin operators correspond-
ing to spin S, i.e., they are the generators of the rotations in a 2S + 1-dimensional
representation of SU (2). The Hamiltonian HL acts on the Hilbert space HL =⊗L

x=1C
2S+1. We added a constant S2 for every bond in order to normalize the ground

state energy of HL to zero.
Our main object of study is the specific free energy

fL(β, S) = − 1

βL
ln

(
Tr e−βHL

)

for β > 0, and its thermodynamic limit

f (β, S) = lim
L→∞ fL(β, S). (2.2)

We are interested in the behavior of f (S, β) in the low temperature limit β → ∞ for
fixed S. Our main result is as follows.

Theorem 2.1 Consider the Hamiltonian (2.1) and the corresponding free energy (2.2).
For any S ≥ 1/2,

lim
β→∞ f (β, S)S

1
2 β

3
2 = C1 := 1

2π

∫

R

ln
(
1 − e−p2)dp = −ζ( 32 )

2
√

π
, (2.3)

where ζ denotes the Riemann zeta function.

The proof of Theorem 2.1 will be given in Sects. 4 and 5, where we derive quanti-
tative upper and lower bounds, respectively. The trial state employed in the derivation
of the upper bound can also be used in d = 2 dimensions. We refer to Proposition A.1
in Appendix A for a precise statement and its proof. A corresponding lower bound for
d = 2 is still missing, however.

The analogue of Theorem 2.1 for d = 3 was proved in [13]. While the new tools
developed here for the lower bound use the one-dimensional nature of the model in an
essential way, they are robust enough to allow for an extension of our results to quasi-
one-dimensional systems, like Heisenberg models defined on ladder graphs. Such an
extension is rather straightforward and we shall not give the details here.
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3 Boson representation

It is well known that the Heisenberg Hamiltonian can be rewritten in terms of bosonic
creation and annihilation operators [17]. For any x ∈ [1, . . . , L] ⊂ Z, we set

S+
x = √

2S a†x

[
1 − a†xax

2S

]1/2

+
, S−

x = √
2S

[
1 − a†xax

2S

]1/2

+
ax , S3x = a†xax − S ,

(3.1)

where a†x , ax are bosonic creation and annihilation operators, S±
x = S1x ± i S2x ,

and [ · ]+ = max{0, · } denotes the positive part. The operators a† and a act on
f ∈ �2(N0) via (a f )(n) = √

n + 1 f (n + 1) and (a† f )(n) = √
n f (n − 1), and

satisfy the canonical commutation relations [a, a†] = 1. One readily checks that (3.1)
defines a representation of SU (2) of spin S, and the operators �Sx leave the space⊗L

x=1 �2([0, 2S]) ∼= HL = ⊗L
x=1 C

2S+1, which can naturally be identified with a
subspace of the Fock space FL := ⊗L

x=1 �2(N0), invariant.
The Hamiltonian HL in (2.1) can be expressed in terms of the bosonic creation and

annihilation operators as

HL = S
L−1∑

x=1

(
−a†x

√
1 − nx

2S

√
1 − nx+1

2S
ax+1 − a†x+1

√
1 − nx+1

2S

√
1 − nx

2S
ax

+ nx + nx+1 − 1

S
nxnx+1

)
, (3.2)

where we denote the number of particles at site x by nx = a†xax . It describes a system
of bosons hopping on the chain [1, . . . L]with nearest neighbor attractive interactions
and a hard-core condition preventing more than 2S particles to occupy the same site.
Also the hopping amplitude depends on the number of particles on neighboring sites,
via the square root factors in the first line in (3.2).

In the bosonic representation (3.2), the Fock space vacuum |�〉 (defined by ax |�〉 =
0 for all x) is a ground state of the Hamiltonian HL , and the excitations of the model
can be described as bosonic particles in the same way as phonons in crystals. There
exists a zero-energy ground state for any particle number less or equal to 2SL , in fact.
While this may not be immediately apparent from the representation (3.2), it is a result
of the SU (2) symmetry of the model. The total spin is maximal in the ground state,
which is therefore (2SL +1)-fold degenerate, corresponding to the different values of
the 3-component of the total spin. The latter, in turn, corresponds to the total particle
number (minus SL) in the bosonic language.

Before we present the proof of Theorem 2.1, we shall briefly explain the additional
difficulties compared to the d = 3 case, and the reason why the proof in [13] does not
extend to d = 1. Spin-wave theory predicts that at low temperatures the interaction
between spin waves can be neglected to leading order. This means that (3.2) can
effectively be replaced by theHamiltonian of free bosons hopping on the lattice. At low
temperature and longwavelengths � � 1, one canwork in a continuum approximation
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where the last term−∑
x nxnx+1 in (3.2) scales as �−d , while the kinetic energy scales

as �−2. The interaction terms can thus be expected to be negligible only for d ≥ 3,
and this is indeed what was proved in [13]. This argument is in fact misleading, as the
attractive interaction term turns out to be compensated by the correction terms in the
kinetic energy coming from the square root factors. Making use of this cancellation
will be crucial for our analysis (while it was not needed in [13] to derive the free
energy asymptotics for d ≥ 3).

We note that for d = 1 and d = 2 the interaction is strong enough to create bound
states between magnons [15,16,20,26,27]. These occur only at nonzero total momen-
tum, however, with binding energy much smaller than the center-of-mass kinetic
energy at low energies. Hence, they do not influence the thermodynamic properties of
the system at low temperature to leading order.

4 Upper bound

Recall the definition of C1 in (2.3). In this section, we will prove the following.

Proposition 4.1 As βS → ∞, we have

f (β, S) ≤ C1S
− 1

2 β− 3
2

(
1 − O((βS)−

1
8 (ln βS)3/4)

)
. (4.1)

The general structure of the proof will be similar to the corresponding upper bound
given in [13]. The difference lies in the choice of the trial state, which in contrast to
[13] allows for more than one particle on a single site. This is essential in order to
capture the desired cancellations explained in the previous section.

Step 1. Localization in Dirichlet boxes. Our proof will rely on the Gibbs variational
principle, which states that

fL(β, S) ≤ 1

L
Tr HL� + 1

βL
Tr � ln� (4.2)

for any positive � with Tr � = 1. We shall confine the particles into smaller intervals,
introducing Dirichlet boundary conditions. To be precise, let

HD
L = HL + 2S2 + S(S31 + S3L)

be the Heisenberg Hamiltonian on �L := [1, . . . , L] ⊂ Z with S3x = −S boundary
conditions. Note that HD

L ≥ HL . It is well known that the thermodynamic limit in
(2.2) exists, hence we can assume without loss of generality that L = k(�+ 1)+ 1 for
some integers k and �. By letting all spins on the boundary of the smaller intervals of
side length � point maximally in the negative 3-direction, we obtain the upper bound

fL(β, S) ≤
(
1 + �−1

)−1
f D� (β, S) , f D� (β, S) := − 1

β�
ln

(
Tr e−βHD

�

)
.
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In particular, by letting k → ∞ for fixed �, we have

f (β, S) ≤
(
1 + �−1

)−1
f D� (β, S) (4.3)

in the thermodynamic limit.

Step 2. Choice of trial state.To obtain an upper bound on f D� , we can use the variational
principle (4.2), with

� = Pe−βKP
TrF Pe−βKP (4.4)

where we denote the Fock space F ≡ F� for simplicity. Here, P is an operator
satisfying 0 ≤ P ≤ 1, and is defined by

P =
�∏

x=1

f (nx ) (4.5)

where

f (n) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if n = 0;
[∏n

j=1

(
1 − j−1

2S

)] 1
2

if n = 1, 2, . . . , 2S;
0 if n > 2S.

(4.6)

Note that 0 ≤ P ≤ 1, and P is zero if more than 2S particles occupy some site.
The operator K is the Hamiltonian on Fock space F describing free bosons on �� =
[1, . . . , �] with Dirichlet boundary conditions, i.e.,

K = S
∑

x,y∈��

(
−	D

)
(x, y)a†xay

= S
∑

〈x,y〉⊂��

(
−a†xay − a†yax + nx + ny

)
+ S(n1 + n�) (4.7)

where 	D denotes the Dirichlet Laplacian on �� and 〈x, y〉 means that x and y are
nearest neighbors. The eigenvalues of −	D are given by

{
ε(p) = 2(1 − cos(p)) : p ∈ �∗D

� :=
{

kπ

� + 1
: k ∈ {1, . . . , �}

}}
(4.8)

with corresponding eigenfunctions φp(x) = [2/(� + 1)] 12 sin(xp).
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Step 3. Energy estimate. We shall now give a bound on the energy of the trial state.

Lemma 4.1 On the Fock space F = ⊗
x∈��

�2(N0),

PHD
� P ≤ K . (4.9)

Proof Definition (4.5) implies that

Pa†x =
∏

z∈��

f (nz)a
†
x = a†x f (nx + 1)

∏

z∈��
z �=x

f (nz) = a†xP
√
1 − nx

2S
.

(4.10)

It follows that

Pa†x

√
1 − nx

2S

√
1 − ny

2S
ayP = a†xP2

(
1 − nx

2S

)(
1 − ny

2S

)
ay . (4.11)

With the aid of (4.10) and (4.11), one checks that

PHD
� P = S

∑

〈x,y〉⊂��

(a†x − a†y)P2
(
1 − nx

2S

)(
1 − ny

2S

)
(ax − ay)

+ S
∑

x∈{1,�}
a†xP2

(
1 − nx

2S

)
ax .

The desired bound (4.9) then follows directly from P2
(
1 − nx

2S

)(
1 − ny

2S

) ≤ 1 and
P2

(
1 − nx

2S

) ≤ 1. ��
We conclude that

Tr HD
� � ≤ TrF Ke−βK

TrF Pe−βKP . (4.12)

As a next step, we will show that TrF Pe−βKP is close to TrF e−βK for � � (βS)
2
3 .

The following lemma is an adaptation of the corresponding result in [13, Lemma 4.3].

Lemma 4.2 We have

TrF Pe−βKP
TrF e−βK

≥ 1 −
(

π2

12

)2
�(� + 1)2

(βS)2
. (4.13)

Proof Using that f (nx ) ≤ 1 and that f (nx ) = 1 if nx ∈ {0, 1}, we have

1 − P2 ≤
�∑

x=1

(1 − f 2(nx )) ≤ 1

2

�∑

x=1

nx (nx − 1) = 1

2

�∑

x=1

a†xa
†
xaxax . (4.14)
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Wick’s rule for Gaussian states therefore implies that

TrF Pe−βKP
TrF e−βK

≥ 1 − 1

2

�∑

x=1

TrF a†xa
†
xaxaxe−βK

TrF e−βK
= 1 −

�∑

x=1

(
TrF nxe−βK

TrF e−βK

)2

.

(4.15)

Moreover,

TrF nxe−βK

TrF e−βK
= 1

eβS(−	D) − 1
(x, x) =

∑

p∈�∗D
�

|φp(x)|2
eβSε(p) − 1

≤ 2

� + 1

∑

p∈�∗D
�

1

eβSε(p) − 1
.

By using (ex − 1)−1 ≤ x−1 for x ≥ 0 in the last sum, as well as 1 − cos x ≥ 2x2

π2 for
x ∈ (0, π), this gives

TrF nxe−βK

TrF e−βK
≤ � + 1

2βS

�∑

n=1

1

n2
≤ π2

12

� + 1

βS
. (4.16)

Inserting this bound into (4.15) yields the desired result. ��
Step 4. Entropy estimate. It remains to give a lower bound on −Tr � ln�, the entropy
of �. We proceed in the same way as in [13, Lemma 4.4].

Lemma 4.3 We have

1

β
Tr � ln� ≤ − 1

β
ln

(
TrF Pe−βKP

)
− TrF Ke−βK

TrF Pe−βKP

+ S

(
π2

12

)2
�(� + 1)3

(βS)7/2

[√
πζ(3/2)

8
+ (βS)1/2

�

]
TrF e−βK

TrF Pe−βKP .

Proof We have

Tr � ln� = − ln
(
TrF Pe−βKP

)
+ 1

TrF Pe−βKP TrF Pe−βKP ln
(
Pe−βKP

)
.

Using the operator monotonicity of the logarithm, as well as the fact that the spectra
of Pe−βKP and e−βK/2P2e−βK/2 agree, we can bound

TrFPe−βKP ln
(
Pe−βKP

)
= TrF e−βK/2P2e−βK/2 ln

(
e−βK/2P2e−βK/2

)

≤ TrF e−βK/2P2e−βK/2 ln e−βK = −β TrF KP2e−βK .
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Hence,

Tr � ln� ≤ − ln
(
TrF Pe−βKP

)
− β

TrF Ke−βK

TrF Pe−βKP + β
TrF K (1 − P2)e−βK

TrF Pe−βKP .

(4.17)

In the last term, we can bound 1−P2 as in (4.14), and evaluate the resulting expression
using Wick’s rule. With φp the eigenfunctions of the Dirichlet Laplacian, displayed
below Eq. (4.8), we obtain

TrF Knx (nx − 1)e−βK

TrF e−βK
=

(
TrF nxe−βK

TrF e−βK

)2 ∑

p∈�∗D
�

2Sε(p)

eβSε(p) − 1

+ TrF nxe−βK

TrF e−βK

∑

p∈�∗D
�

Sε(p)|φp(x)|2
(
sinh 1

2βSε(p)
)2 .

(4.18)

The expectation value of nx can be bounded independently of x as in (4.16). When
summing over x , we can use the normalization

∑
x |φp(x)|2 = 1. To estimate the

sums over p, we proceed similarly as in the proof of Lemma 4.2 to obtain

∑

p∈�∗D
�

2Sε(p)

eβSε(p) − 1
≤ � + 1

π

∫ π

0

2Sε(p)

eβSε(p) − 1
dp ≤ � + 1

π3

∫ π

0

8Sp2

e4βSp2/π2 − 1
dp

≤ S
� + 1

(βS)3/2

∫ ∞

0

p2

ep2 − 1
dp = S

� + 1

(βS)3/2

√
π

4
ζ(3/2)

and

∑

p∈�∗D
�

Sε(p)
(
sinh 1

2βSε(p)
)2 ≤ 4

Sβ2

∑

p∈�∗D
�

1

ε(p)
≤ (� + 1)2

Sβ2

�∑

n=1

1

n2
≤ π2

6

(� + 1)2

Sβ2 .

In combination, this yields the desired bound. ��
Step 5. Final estimate. The Gibbs variational principle (4.2) together with (4.12) and
Lemmas 4.3 and 4.2 implies that

f D� (β, S) ≤ − 1

β�
ln

(
TrF Pe−βKP

)
+ CS

�3

(βS)7/2

TrF e−βK

TrF Pe−βKP
≤ − 1

β�
ln

(
TrF e−βK

)
− 1

β�
ln

(
1 − C�3

(βS)2

)
+ CS

�3

(βS)7/2

for a suitable constant C > 0, as long as C(βS)1/2 ≤ � � (βS)2/3. The first term on
the right side in the second line of the expression above equals
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− 1

β�
ln

(
TrF e−βK

)
= 1

β�

∑

p∈�∗D
�

ln(1 − e−βSε(p)) . (4.19)

By monotonicity, we can bound the sum by the corresponding integral,

1

β�

∑

p∈�∗D
�

ln(1 − e−βSε(p)) ≤ 1

πβ

(
1 + �−1

) ∫ π

π
�+1

ln(1 − e−βSε(p))dp , (4.20)

which is of the desired form, except for the missing part

− 1

πβ

∫ π
�+1

0
ln(1 − e−βSε(p))dp ≤ − 1

β(� + 1)

∫ 1

0
ln

(
1 − e

− 4βS
(�+1)2

p2
)
dp

= O
(
ln(�2/(βS))

β�

)

for � � (βS)1/2. Since ε(p) ≤ p2, we further have

1

βπ

∫ π

0
ln(1 − e−βSε(p))dp ≤ 1

πβ

∫ ∞

0
ln(1 − e−βSp2)dp + C

β(βS)α

= C1S
−1/2β−3/2 + C

β(βS)α

for arbitrary α > 0, some C > 0 (depending on α), and C1 defined in (2.3). For
(βS)2/3 � � � (βS)1/2, all the error terms are small compared to the main term. The
desired upper bound stated in Proposition 4.1 is obtained by combining the estimate
above with (4.3) and choosing � = C(βS)5/8(ln βS)1/4. ��

5 Lower bound

Recall the definition (2.3) of C1. In this section, we shall prove the following.

Proposition 5.1 As βS → ∞, we have

f (β, S) ≥ C1S
− 1

2 β− 3
2

(
1 + O((βS)−

1
12 (ln βS)1/2(ln βS3)

1
3 )

)
.

Note that in contrast to the upper bound in Proposition 4.1, the lower bound above
is not entirely uniform in S. Indeed, one has ln(βS3) = ln(βS)+ ln S2 and hence S is
not allowed to grow arbitrarily fast compared to βS. To obtain a uniform bound, one
can combine our results with the method in [11] where the case S → ∞ for fixed βS
was analyzed.

The remainder of this section is devoted to the proof of Proposition 5.1. For clarity,
the presentation will be divided into several steps. Some of them will use results from
[13].
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Step 1. Localization. Recall the definition (2.1) of the Hamiltonian HL . For a lower
bound, we can drop a term (S2 − �S� · �S�+1) from the Hamiltonian, which leads to the
subadditivity

L fL(β, S) ≥ � f�(β, S) + (L − �) fL−�(β, S) (5.1)

for 1 ≤ � ≤ L − 1. By applying this repeatedly, one readily finds that

f (β, S) ≥ f�(β, S)

for any � ≥ 1. We shall choose � large compared with the thermal wavelength, i.e.,
� � (βS)1/2.

Step 2. Lower bound on the Hamiltonian. Recall that the total spin operator is defined
as �Stot = ∑�

x=1
�Sx . It follows from the theory of addition of angular momenta that

�S2tot = T (T + 1) with σ(T ) = {0, 1, . . . , S�} , (5.2)

where σ denotes the spectrum. We will use the following bound on the Hamiltonian.

Lemma 5.1 With T defined in (5.2), we have

H� ≥ 2

�3
(S�(S� + 1) − �S2tot) ≥ 2S

�2
(S� − T ) . (5.3)

Proof It was shown in [13, Eq. (5.6)] that

(S2 − �Sx · �Sy) + (S2 − �Sy · �Sz) ≥ 1

2
(S2 − �Sx · �Sz)

for three distinct sites x, y, z, and consequently that

(y − x)
y−1∑

w=x

(
S2 − �Sw · �Sw+1

)
≥ 1

2
(S2 − �Sx · �Sy)

for any x < y. After summing the above bound over all 1 ≤ x < y ≤ �, we obtain

∑

1≤x<y≤�

(S2 − �Sx · �Sy) ≤ 2
∑

1≤x<y≤�

(y − x)
y−1∑

w=x

(
S2 − �Sw · �Sw+1

)

= 2
�−1∑

w=1

(
S2 − �Sw · �Sw+1

) w∑

x=1

�∑

y=w+1

(y − x).

We have

w∑

x=1

�∑

y=w+1

(y − x) = �

2
w(� − w) ≤ �3

8
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for 1 ≤ w ≤ � − 1, and hence

H� ≥ 4

�3

∑

1≤x<y≤�

(S2 − �Sx · �Sy) = 2

�3
(S�(S� + 1) − �S2tot).

As �S2tot = T (T + 1) we thus have

H� ≥ 2S

�2

(
S� + 1 − T (T + 1)

S�

)
.

The final bound (5.3) then follows from the fact that T ≤ S�. ��
Note that Lemma 5.3 implies, in particular, a lower bound of 2S�−2 on the spectral

gap of H� above its ground state energy. For S = 1/2, it follows from the work in [9]
that the exact spectral gap equals (1 − cos(π/�)) (which is 1

2π
2�−2 to leading order

for large �).

Step 3. Preliminary lower bound on free energy. With the aid of (5.3), we shall now
prove the following preliminary lower bound on the free energy.

Lemma 5.2 Let

�0 :=
√

4βS

ln βS
(5.4)

and assume that � ≥ �0/2. Then, for βS sufficiently large, we have

f�(β, S) ≥ −C
(ln βS)1/2

β3/2S1/2
ln βS3 (5.5)

for some constant C > 0.

Proof With the aid of (5.3) and the SU (2) symmetry, we have

Tr e−βH� ≤
�S��∑

n=0

e−2βS�−2n Tr 1T=S�−n

=
�S��∑

n=0

e−2βS�−2n (2(S� − n) + 1)Tr 1T=S�−n1S3tot=n−S�

≤ (2S� + 1)
�S��∑

n=0

e−2βS�−2n Tr 1S3tot=n−S�.

The last trace equals the number ofwaysn indistinguishable particles can be distributed
over � sites, with at most 2S particles per site. Dropping this latter constraint for an
upper bound, we obtain
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Tr e−βH� ≤ (2S� + 1)
(
1 − e−2βS�−2

)−�

.

In particular,

f�(β, S) ≥ − 1

β�
ln(1 + 2S�) + 1

β
ln

(
1 − e−2βS�−2

)
. (5.6)

For large βS, this expression is minimized when � ≈ �0 with �0 given in (5.4). If
�0/2 ≤ � ≤ �0, we can use the lower bound on � in the first term in (5.6), and the
upper bound on the second, to obtain

f�(β, S) ≥ − (ln βS)1/2

β(βS)1/2
ln

(
1 + 2S(βS)1/2(ln βS)−1/2

)
+ 1

β
ln

(
1 − (βS)−1/2

)
,

(5.7)

which is of the desired form. If � > �0, we can divide the interval [1, �] into smaller
ones of size between �0/2 and �0. Using the subadditivity (5.1), we conclude (5.7)
also in that case. ��
Step 4. Restriction to low energies. For any E > 0, we have

Tr e−βH� ≤ Tr e−βH�1H�<E + e−βE/2 Tr e−βH�/21H�≥E

≤ Tr e−βH�1H�<E + e−β(E+� f�(β/2,S))/2.

In particular, with the choice

E = E0(�, β, S) := −� f�(β/2, S)

this gives

Tr e−βH� ≤ 1 + Tr e−βH�1H�<E0 . (5.8)

Using the SU (2) invariance, we can further write

Tr e−βH�1H�<E0 =
�S��∑

n=0

(2(S� − n) + 1)Tr e−βH�1H�<E01T=S�−n1S3tot=n−S�

≤ (2S� + 1)
�S��∑

n=0

Tr e−βH� PE0,n (5.9)

where

PE0,n = 1H�<E01T=S�−n1S3tot=n−S�. (5.10)
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31 Page 14 of 24 M. Napiórkowski, R. Seiringer

In other words, we can restrict the trace to states with S3tot being as small as possible
(given �S2tot). In the particle picture discussed in Sect. 3, this amounts to particle number
N = S� − T = n. Because of (5.3), we have E0 > H� ≥ 2Sn/�2 on the range of
PE0,n , hence the sum in (5.9) is restricted to

n < N0 := E0�
2

2S
. (5.11)

Step 5. A Laplacian lower bound.With the aid of the Holstein–Primakoff representa-
tion (3.1), we can equivalently write the Hamiltonian H� in terms of bosonic creation
and annihilation operators as

H� = S
�−1∑

x=1

(
a†x+1

√
1 − nx

2S
− a†x

√
1 − nx+1

2S

)(
ax+1

√
1 − nx

2S
− ax

√
1 − nx+1

2S

)

(5.12)

where nx = a†xax ≤ 2S. Note that written in this form, the Hamiltonian H� is mani-
festly positive, contrary to (3.2).

Let N = ∑
x nx = �S + S3tot denote the total number of bosons. States � with n

particles, i.e., N� = n�, are naturally identified with n-boson wave functions1 in
�2sym([1, �]n) via

� = 1√
n!

∑

1≤x1,...,xn≤�

�(x1, . . . , xn)a
†
x1 . . . a†xn |�〉 ,

where |�〉 denotes the vacuum (which corresponds to the state with all spins pointing
maximally down). Using (5.12), we have in this representation

〈�|H��〉 = Sn
�−1∑

x=1

∑

x1,...,xn−1

∣∣∣∣∣∣
�(x + 1, x1, . . . , xn−1)

√

1 −
∑n−1

k=1 δx,xk

2S

−�(x, x1, . . . , xn−1)

√

1 −
∑n−1

k=1 δx+1,xk

2S

∣∣∣∣∣∣

2

.

Because of permutation-symmetry, we can also write this as

1 Here, �2sym(A) denotes the Hilbert space of square-summable sequences on A invariant under permuta-
tions
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〈�|H��〉 = S
n∑

j=1

∑

x1,...,xn
x j≤�−1

∣∣∣∣∣∣
�(x1, . . . , x j + 1, . . . xn)

√

1 −
∑

k,k �= j δx j ,xk

2S

−�(x1, . . . , x j , . . . xn)

√

1 −
∑

k,k �= j δx j+1,xk

2S

∣∣∣∣∣∣

2

.

For a lower bound, we can restrict the sum over x1, . . . , xn to values such that
xk �= xl for all k �= �. For a given j , we can further restrict to xk �= x j + 1 for all
k �= j . In this case, the square root factors above are equal to 1. In other words, we
have the lower bound

〈�|H��〉 ≥ S

2

∑

X ,Y∈X�,n|X−Y |=1

|�(X) − �(Y )|2

where the sum is over the set X�,n := {[1, �]n : xi �= x j∀i �= j}, and |X − Y | =∑n
i=1 |xi − yi |. Note that we have to assume that � ≥ n for the set X�,n to be non-

empty. The factor 1/2 arises from the fact that particles are allowed to hop both left
and right, i.e., each pair (X ,Y ) appears twice in the sum. Note also that the above
inequality is actually an equality for S = 1/2, since in this case no two particles can
occupy the same site.

On the set {1 ≤ x1 < x2 < · · · < xn ≤ �} ⊂ X�,n , define the map

V (x1, . . . , xn) = (x1, x2 − 1, x3 − 2, . . . , xn − n + 1)

and extend it to the set X�,n = {[1, �]n : xi �= x j∀i �= j} via permutations. In other
words, V maps xi to xi − ki where ki denotes the number of x j with x j < xi . As a
map from X�,n to [1, � − n + 1]n , V is clearly surjective, but it is not injective. Points
in [1, � − n + 1]n with at least two coordinates equal have more than one pre-image
under V . The pre-images are unique up to permutations, however, hence we can define
a map V : �2sym([1, �]n) → �2sym([1, � − n + 1]n) via

V�(V (X)) = �(X) for X ∈ X�,n . (5.13)

We then have

∑

X ,Y∈X�,n|X−Y |=1

|�(X) − �(Y )|2

=
∑

A,B∈[1,�−n+1]n
|V�(A) − V�(B)|2

∑

X∈V−1(A),Y∈V−1(B)

χ|X−Y |=1 .

For every pair (A, B) ∈ [1, � − n + 1]n with |A − B| = 1, there exists at least one
pair (X ,Y ) ∈ X�,n with |X − Y | = 1 in the pre-image of V . In other words, the last
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31 Page 16 of 24 M. Napiórkowski, R. Seiringer

sum above is greater or equal to 1 if |A − B| = 1. We have thus proved the following
statement.

Proposition 5.2 Let V : �2sym([1, �]n) → �2sym([1, � − n + 1]n) be defined in (5.13).
Then,

1N=nH� ≥ SV†(−	�−n+1
n )V,

where 	�
n denotes the Laplacian

2 on [1, �]n.
Step 6. Bounds on the two-particle density.We will use Proposition 5.2 and the min–
max principle to obtain a lower bound on the eigenvalues of H�. For this purpose, we
need an estimate on the norm of V�.

For � ∈ �2sym([1, �]n) with ‖�‖ = 1, we let

ρ�(x, y) = 〈�|a†xa†yayax�〉

denote its two-particle density.

Lemma 5.3 Let � ∈ �2sym([1, �]n) with ‖�‖ = 1. Then,

‖V�‖2 ≥ 1 − 1

2

�∑

x=1

ρ�(x, x) −
�−1∑

x=1

ρ�(x, x + 1) . (5.14)

Proof From the definition of � := V�, we have

‖�‖2 =
∑

A∈[1,�−n+1]n
|�(A)|2 =

∑

X∈X�,n

|�(X)|2|V−1(V (X))|−1 ,

where |V−1(V (X))| denotes the number of points in the pre-image of V (X). This
number equals one if X is such that |x j − xk | ≥ 2 for all j �= k. Hence,

‖�‖2 ≥
∑

X∈X�,n|x j−xk |≥2 ∀ j �=k

|�(X)|2 ≥ ‖�‖2 − 1

2

�∑

x=1

〈�|nx (nx − 1)�〉

−
�−1∑

x=1

〈�|nxnx+1�〉.

Indeed, the norm of � involves a sum over all possible configurations so we need to
remove the terms which correspond to xi = x j or xi = x j + 1 for some i �= j . The
xi = x j terms are removed through the term 1

2

∑�
x=1 nx (nx − 1), which is zero if and

only if on each site there is at most one particle. Similarly, the terms corresponding

2 This is the graph Laplacian, with free (or Neumann) boundary conditions.
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to xi = x j + 1 are removed through
∑�−1

x=1 nxnx+1, which is zero if and only if there
are no two neighboring sites that are occupied. With ‖�‖ = 1 and the definition of
ρ�(x, y) this becomes (5.14). ��
We shall give a lower bound on the right side of (5.14) in terms of the energy of �.

Proposition 5.3 Let � ∈ �2sym([1, �]n) with ‖�‖ = 1. Then,

�−1∑

x=1

ρ�(x + 1, x) ≤ 4

�
n(n − 1) + 4(n − 1)

√
n

S
〈�|H��〉1/2. (5.15)

Proof For x �= z, we have

ρ�(x, y)

(
1 − δz,y

2S

)
− ρ�(z, y)

(
1 − δx,y

2S

)

= �
〈
�

∣∣∣∣

(
a†x

√
1 − nz

2S
− a†z

√
1 − nx

2S

)
ny

(
ax

√
1 − nz

2S
+ az

√
1 − nx

2S

)
�

〉
.

The Cauchy–Schwarz inequality therefore implies that

∣∣∣∣ρ�(x, y)

(
1 − δz,y

2S

)
− ρ�(z, y)

(
1 − δx,y

2S

)∣∣∣∣
2

≤
〈
�

∣∣∣∣

(
a†x

√
1 − nz

2S
− a†z

√
1 − nx

2S

)
ny

(
ax

√
1 − nz

2S
− az

√
1 − nx

2S

)
�

〉

×
〈
�

∣∣∣∣

(
a†x

√
1 − nz

2S
+ a†z

√
1 − nx

2S

)
ny

(
ax

√
1 − nz

2S
+ az

√
1 − nx

2S

)
�

〉
.

Moreover,

〈
�

∣∣∣∣

(
a†x

√
1 − nz

2S
+ a†z

√
1 − nx

2S

)
ny

(
ax

√
1 − nz

2S
+ az

√
1 − nx

2S

)
�

〉

≤ 2
〈
�

∣∣∣a†x
(
1 − nz

2S

)
nyax �

〉
+ 2

〈
�

∣∣∣a†z
(
1 − nx

2S

)
nyaz �

〉

≤ 2ρ�(x, y)

(
1 − δz,y

2S

)
+ 2ρ�(z, y)

(
1 − δx,y

2S

)
.

With

hy
x :=

(
a†x+1

√
1 − nx

2S
− a†x

√
1 − nx+1

2S

)
ny

(
ax+1

√
1 − nx

2S
− ax

√
1 − nx+1

2S

)
,

we thus have

∣∣∣∣ρ�(x + 1, y)

(
1 − δx,y

2S

)
− ρ�(x, y)

(
1 − δx+1,y

2S

)∣∣∣∣
2
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≤ 2
〈
�

∣∣hy
x �

〉 (
ρ�(x + 1, y)

(
1 − δx,y

2S

)
+ ρ�(x, y)

(
1 − δx+1,y

2S

))
. (5.16)

We note that

S
�−1∑

x=1

�∑

y=1

hy
x = H� (N − 1) .

For given y ≤ �/2, choose xy > y such that

ρ�(x, y) ≥ ρ�(xy, y) for all x > y .

We have

ρ�(y + 1, y) = ρ�(xy, y) +
xy−1∑

w=y+1

(ρ�(w, y) − ρ�(w + 1, y))

(where the sum is understood to be zero if xy = y + 1). The first term on the right
side can be bounded as

ρ�(xy, y) ≤ 1

� − y

�∑

x=y+1

ρ�(x, y) ≤ 2

�

�∑

x=1

ρ�(x, y)

using that y ≤ �/2 by assumption. For the second, we use the bound (5.16) above,
which implies that

|ρ�(w, y) − ρ�(w + 1, y)| ≤ √
2〈�|hy

w�〉1/2 (ρ�(w + 1, y) + ρ�(w, y))1/2

for w ≥ y + 1. After summing over y and w, using the Cauchy–Schwarz inequality
and the fact that

∑
x,y ρ�(x, y) = n(n − 1), we thus have the upper bound

∑

y≤�/2

ρ�(y + 1, y) ≤ 2n(n − 1)

�
+ 2

√
n

S
(n − 1)〈�|H��〉1/2.

If y > �/2, we use the symmetry of ρ and write

ρ�(y + 1, y) = ρ�(y, y + 1) = ρ�(xy, y + 1)

+
y−1∑

w=xy

(ρ�(w + 1, y + 1) − ρ�(w, y + 1))

instead, where xy is now defined by minimizing ρ�(x, y + 1) for x ≤ y. Proceeding
as above, we finally conclude the desired estimate. ��
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A similar bound holds for
∑

x ρ�(x, x).

Proposition 5.4 Let � ∈ �2sym([1, �]n) with ‖�‖ = 1. Then,

�∑

x=1

ρ�(x, x) ≤ 4

�
n(n − 1) + (4 + √

3)(n − 1)

√
n

S
〈�|H��〉1/2 . (5.17)

Proof Since ρ�(x, x) vanishes for S = 1/2, we can assume S ≥ 1 henceforth. By
(5.16),

∣∣∣∣ρ�(x ± 1, x)

(
1 − 1

2S

)
− ρ�(x, x)

∣∣∣∣
2

≤ 2
�−1∑

y=1

〈
�

∣∣∣hxy �
〉 (

ρ�(x ± 1, x)

(
1 − 1

2S

)
+ ρ�(x, x)

)
.

It thus follows from the Cauchy–Schwarz inequality that

�∑

x=1

ρ�(x, x) ≤ 2

(
1 − 1

2S

) �−1∑

x=1

ρ�(x + 1, x)

+ √
2(n − 1)/S 〈�|H��〉1/2

(
2

�−1∑

x=1

ρ�(x + 1, x)

(
1 − 1

2S

)
+

�∑

x=1

ρ�(x, x)

)1/2

.

In the last line, we can make the rough bounds 2
∑�−1

x=1 ρ�(x + 1, x) ≤ n(n − 1) and∑�
x=1 ρ�(x, x) ≤ n(n−1), and for the term in the first line we use (5.15). Using also

S ≥ 1, this completes the proof of (5.17). ��
Step 7. Final estimate. Recall the definition (5.10) of PE0,n . It follows from Proposi-
tion 5.2 that

PE0,nH� ≥ SPE0,nV
†(−	�−n+1

n )VPE0,n

and from Lemma 5.3 and Propositions 5.3 and 5.4 that

PE0,nV
†
VPE0,n ≥ PE0,n(1 − δ)

where

δ = 8N 2
0

�
+ 9N0

√
N0E0

S
=

(
2 + 9√

8

)
E2
0�

3

S2
. (5.18)

Here, we used (5.11). We shall choose the parameters such that δ � 1 for large β. The
min–max principle readily implies that the eigenvalues of H� in the range PE0,n are
bounded from below by the corresponding ones of S(1− δ)(−	�−n+1

n ). In particular,
for any β > 0
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Tr PE0,ne
−βH� ≤ Tr eβS(1−δ)	�−n+1

n .

Note that the Laplacian	�−n+1
n depends on n, besides the particle number, also via

the size of the interval [1, � − n + 1]. For a lower bound, we can increase the interval
size back to �, all eigenvalues are clearly decreasing under this transformation. In
particular,

Tr e−βH�1H�<E0 ≤ (2S� + 1)
�N0�∑

n=0

Tr eβS(1−δ)	�
n

≤ (2S� + 1)(N0 + 1)
�−1∏

m=1

(
1 − e−βS(1−δ)ε(πm/�)

)−1
(5.19)

where ε(p) = 2(1 − cos p) is the dispersion relation of the discrete Laplacian on
[1, �].

Combining (5.8) and (5.19), we have thus shown that

f�(β, S) ≥ − 1

β�
ln

(
1 + (2S� + 1)(N0 + 1)

�−1∏

m=1

(
1 − e−βS(1−δ)ε(πm/�)

)−1
)

≥ 1

β�

�−1∑

m=1

ln
(
1 − e−βS(1−δ)ε(πm/�)

)
− 1

β�
ln (1 + (2S� + 1)(N0 + 1)) ,

with δ in (5.18), N0 = E0�
2/(2S) and E0 = O(�β−3/2S−1/2(ln(βS))1/2 ln(βS3)).

Since ε(p) is increasing in p, we further have

1

β�

�−1∑

m=1

ln
(
1 − e−βS(1−δ)ε(πm/�)

)
≥ 1

πβ

∫ π

0
ln(1 − e−βS(1−δ)ε(p))dp.

The error terms compared to the desired expression

1

πβ

∫ π

0
ln(1 − e−βSε(p))dp = O

(
β−3/2S−1/2

)

are thus

�5
ln(βS)

(βS)3

(
ln(βS3)

)2
and (βS)1/2�−1 ln (S�N0)

which leads to a choice of � = C(βS)1/2+1/12(ln(βS3))−1/3 and a relative error of
the order (βS)−1/12 ln(βS)(ln(βS3))1/3. Note that for this

choice the condition � ≥ �0/2 of Lemma 5.2 is fulfilled exactly when this error is
small.
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Finally, we note that (compare with [13, Eqs. (5.42) and (5.43)])

∫ π

0
ln(1 − e−βSε(p))dp ≥ 1

(βS)1/2

∫ ∞

0
ln(1 − e−p2)dp − O((βS)−3/2)

for large βS. This completes the proof of the lower bound. ��
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Appendix A: Upper bound in two dimensions

In two dimensions, we consider the ferromagnetic Heisenberg model with nearest
neighbor interactions on the square latticeZ2. It is defined in terms of the Hamiltonian

H� :=
∑

〈x,y〉⊂�

(S2 − �Sx · �Sy) , (A.1)

where 〈x, y〉 denotes a pair of nearest neighbors and � is a finite subset of Z2. We
denote the free energy in the thermodynamic limit by

f 2d(β, S) := lim
�→Z2

f 2d� (β, S) = − lim
�→Z2

1

β|�| Tr e
−βH� . (A.2)

The limit has to be understood via a suitable sequence of increasing domains, e.g.,
squares of side length L with L → ∞.

For d = 2, we have the following upper bound.

Proposition A.1 Consider the Hamiltonian (A.1) and the corresponding free energy
(A.2). Let

C2 := 1

(2π)2

∫

R2
ln

(
1 − e−p2)dp = −ζ(2)

4π
= − π

24
. (A.3)

Then, for any S ≥ 1/2, we have

f 2d(β, S) ≤ C2S
−1β−2

(
1 − O((βS)−1/3(ln βS)2/3)

)
(A.4)
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as βS → ∞.

We note that it remains an open problem to derive a corresponding lower bound,
i.e., the analogue of Proposition 5.1 in d = 2 dimensions.

The proof of Proposition A.1 differs from the one-dimensional case discussed in
Sect. 4 only in the evaluation of the error terms in Lemmas 4.2 and 4.3. Let �, P and
K be defined as in (4.4), (4.5) and (4.7), with the obvious modifications to d = 2, for
a square-shaped domain �� = [1, �]2. Then, the following holds

Lemma A.1 In the case d = 2, we have

TrF Pe−βKP
TrF e−βK

≥ 1 −
(

π� ln(1 + 2�)

2βS

)2

. (A.5)

Proof The bound (4.15) remains correct in two dimensions. We thus only need to
estimate the (now) double sum over the two-dimensional dual lattice

TrF nxe−βK

TrF e−βK
≤

∑

p∈�∗D
�

|φp(x)|2
eβSε(p) − 1

≤ 4

(� + 1)2

�∑

m=1

�∑

n=1

1

eβSε̃(m,n) − 1

where ε̃(m, n) = 2(2 − cos( πm
�+1 ) − cos( πn

�+1 )). By proceeding as in the proof of
Lemma 4.2, we have

TrF nxe−βK

TrF e−βK
≤ 1

βS

�∑

m=1

�∑

n=1

1

m2 + n2
≤ π

2

ln(1 + 2�)

βS
. (A.6)

Looking again at (4.15), we see that the summation over x ∈ �� yields a factor �2,
and hence we arrive at the desired bound (A.5). ��

Next, we establish the two-dimensional counterpart of the entropy estimate. We
have

Lemma A.2 In the case d = 2, we have

1

β
Tr � ln� ≤ − 1

β
ln

(
TrF Pe−βKP

)
− TrF Ke−βK

TrF Pe−βKP

+ S

2

(
π

2
�(� + 1)

ln(1 + 2�)

(βS)2

)2 [
π3

48
+ βS

�2

]
TrF e−βK

TrF Pe−βKP .

Proof As in the case of the previous lemma, the only difference with regard to the
one-dimensional case lies in the estimation of the p sums in (4.18). By proceeding
similarly as above, we obtain

∑

p∈�∗D
�

2Sε(p)

eβSε(p) − 1
≤ π3

48
S
(� + 1)2

(βS)2
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as well as

∑

p∈�∗D
�

Sε(p)
(
sinh 1

2βSε(p)
)2 ≤ S

(� + 1)2

(βS)2

�∑

m=1

�∑

n=1

1

m2 + n2
≤ π

2
S
(� + 1)2

(βS)2
ln(1 + 2�) .

In combination with (A.6), this yields the desired result. ��
It remains to obtain the two-dimensional counterpart of the final estimate of the

free energy. The Gibbs variational principle together with Lemma A.1 and Lemma
A.2 implies that for C(βS)1/2 ≤ � � βS/ ln(βS)

f 2d,D
��

(β, S) ≤ − 1

β�2
ln

(
TrF e−βK

)
− 1

β�2
ln

(
1 − C�2 ln2 �

(βS)2

)
+ CS

�2 ln2 �

(βS)4

for a suitable constant C > 0. The first term on the right side equals

− 1

β�2
ln

(
TrF e−βK

)
= 1

β�2

∑

p∈�∗D
�

ln(1 − e−βSε(p)) . (A.7)

By monotonicity, we can again bound the sum in terms of the corresponding integral,
i.e.,

1

β�2

∑

p∈�∗D
�

ln(1 − e−βSε(p)) ≤ 1

βπ2

(
1 + �−1

)2 ∫

[ π
�+1 ,π ]2

ln(1 − e−βSε(p))dp .

(A.8)

The missing term is now bounded by

− 2

βπ2

∫

[0, π
�+1 ]×[0,π ]

ln(1 − e−βSε(p))dp ≤ − 1

β(βS)1/2(� + 1)

∫

R+
ln(1 − e−p2)dp .

Furthermore, since ε(p) ≤ |p|2 we have

1

π2

∫

[0,π ]2
ln(1 − e−βSε(p))dp ≤ 1

(2π)2

∫

R2
ln(1 − e−βS|p|2)dp + C

(βS)α

= C2(βS)−1 + C

(βS)α
(A.9)

for α > 0 arbitrary, some C > 0 (depending on α), and C2 defined in (A.3). For �

satisfying � ln � � βS and � � (βS)1/2, all the error terms are small compared to the
main term. The desired upper bound stated in Proposition A.1 is obtained by choosing
� = C(βS)5/6(ln βS)−2/3. ��
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