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Abstract: The responses of threatened tropical avian species to projected climate change and land-use
change are important for evaluating the ability of the existing protected areas to provide habitat
to these species under future scenarios in biodiversity hotspots. This study uses Maxent, a species
distribution model that employs a maximum entropy machine learning approach to map the spatial
distributions of habitats suitable for the International Union for Conservation of Nature threatened
birds under present and future climate and land-use change in Borneo. We find that the existing
protected areas provide very low coverage of the threatened bird species’ suitable habitat areas (95%CI
= 9.3–15.4%). Analysis of habitat suitability projections for 18 species of threatened birds suggests
that in 2050, under Special Report on Emissions Scenarios A1B and B1, avian species with currently
little suitable habitat may gain area but lose in the proportion of this that is protected. Large-ranged
species are likely to lose habitat area and this will inflate the proportion of this remaining in protected
areas. The present availability of suitable habitat was the most important determinant of future
habitat availability under both the scenarios. Threat level, as measured by the International Union for
Conservation of Nature and the habitat preferences considered here, Lowland or Lowland–Montane,
are poor predictors of the amount of habitat contraction or expansion undergone by the species.

Keywords: biodiversity; climate change; conservation of nature; Maxent; entropy machine learning

1. Introduction

Climate change and anthropogenic forest loss are the greatest threats facing tropical
biodiversity [1]. Many biodiversity hotspots, such as the Indo-Malayan region, which is
home to many threatened and endemic species, are vulnerable to both these drivers of
biodiversity decline [2,3]. The island of Borneo in the heart of this region that has seen
high levels of deforestation, from 76% forest-cover (560,000 km2) in 1973 to approximately
53% in 2010 [4,5]. The land-use changes driving forest loss, such as agricultural expansion
and poorly-regulated timber extraction, will increasingly interact with climate change, and
these interactions are likely to combine to have a substantial negative impact on tropical
biodiversity [6]. In the face of rapid landcover and climate changes, it is vital to evaluate
the impact of these on biodiversity, including the persistence of biodiversity of tropical
regions such as Borneo under future scenarios.

Birds are frequently used as umbrella species and bioindicators in conservation efforts;
they are wide-spread and, unusually for tropical taxa, have relatively well-studied ecologies
and life-histories [7]. Climate change and land cover change dynamics act synergistically
to have a negative impact on avian persistence. Ignoring the interaction between these can
undermine the robust identification of future suitable habitats [8]. They are also highly
sensitive to changes in their environment, making them excellent bellwethers for global
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change research [8–10] Quantifying the potential impacts of predicted climate and land-
use change scenarios on the “suitable habitat” size of threatened montane and lowland
avian species will help us to predict patterns of future vulnerability at species-scale. Birds
classified by the International Union for the Conservation of Nature (IUCN) as “threatened”
are already vulnerable as they face considerable risk of extinction. Estimating the response
of these species to potential future scenarios will be important in predicting whether
these species are set to undergo further range size declines as a result of climate or land-
use change and thus may require additional conservation efforts. Other studies have
investigated the response of avian assemblages to these drivers in both temperate [11] and
boreal zones [12,13], but Borneo, with its particular vulnerabilities, remains unexplored in
this way. Further, a meta-analysis of the literature discovered future biodiversity related
projections mostly consider the impact of climate change and leave out land cover. Given
Borneo’s rapid land cover change, it is vital to quantify the impact of both climate and
landcover change on habitat suitability [14]. In addition to predicting the changes in
suitable habitat available to threatened avian species, understanding this in the context
of the island’s protected area (PA) network under present and future scenarios will be
important for informing conservation strategy both locally and across the Asian tropics.

Protected Areas are the cornerstone of conservation actions designed to ensure the
long-term viability of biodiversity [15]. Tropical biodiversity-rich regions are, however,
often at risk of failing to enforce the requirements of PAs, with their effectiveness limited by
rapid population growth and development and additionally challenged by the triumvirate
of weak institutional capacity, poverty, and corruption [16]. Threatened species do not
exist exclusively within PAs, and many only find a proportion of their range protected
in this way. Gap analyses can be used to quantify representation, the proportion of a
species range, or of their potentially suitable habitat that lies within PAs. Biodiversity
representation within the Indo-Burma hotspot PA network is already limited [17], and
climate change-driven range shifts may cause the suitable habitats of vulnerable species to
shift outside these [18].

The main aim of this research is to model the suitable habitat availability for the
IUCN-listed threatened Bornean avian species in the island’s PA network under present
and future climate and land cover scenarios. To this end, the main objectives of the research
are to: (a) estimate whether the suitable habitat area of these species is likely to change
substantially under specific scenarios; (b) identify whether habitat availability is differ-
entially affected by characteristics such as their habitat preference or their IUCN threat
level; and, (c) evaluate the “representation” of each species’ suitable habitat lying within
the protected area network with the view of assessing the effectiveness of Borneo’s PAs
for threatened bird species, both currently and under future scenarios. This is expected to
provide measure of the conservation value of IUCN PA categories (Ia-VI), to assist in iden-
tifying which protected area category is most widely valuable in terms of representation of
predicted suitable habitat for the different species and identify the species at the greatest
risk of losing habitats.

2. Materials and Methods
2.1. Study Site

The equatorial island of Borneo in Southeast Asia spans approximately 4◦ S to 7◦ N
and 108◦ to 118◦ E. At 743,330 km2, it is Asia’s largest, and the world’s third-largest, island.
This study focusses on the IUCN listed threatened avian species of Borneo’s lowland and
montane forests (see Figure 1). Avian species of both lowland and montane rainforests are
vulnerable to anthropogenic disturbances [19].
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Figure 1. The seven terrestrial ecoregions of Borneo (as defined by the World-Wide Fund for Nature (WWF) with data from
Dinerstein et al. [19].

2.2. Focal Species Selection

Bird species were selected from the IUCN Red List (IUCN, 2019), which identifies
threatened species through many criteria that include population size, size of geographic
range, and rate of decline. Borneo-resident species were identified then filtered to retain
those occurring in Subtropical/Tropical Moist Lowland and Subtropical/Tropical Moist
Montane Forests [20]. The search results were then further filtered to retain those classified
as Critically Endangered, Endangered, or Vulnerable.

Point locality data for the species records were extracted from the Global Biodiversity
Information Facility (GBIF) portal (GBIF.org, 2019) and filtered to a dataset of 20 species
with 4766 geolocation records (Table 1). Habitat preference data, including details such as
the elevational range limits of the species, were assembled from both the Handbook of the
Birds of the World and the IUCN RedList species records [21]. The WWF delimits montane
forests starting at around 1000 m above sea level [22]. Species with an upper range limit
above 1000 m were classified as “lowland/montane”, those with an upper range limit
below 1000 m were classified as being “lowland” residents (Table 1).

2.3. Environmental Data
2.3.1. Present Climate Data

Environmental data, consisting of 19 bioclimatic variables at a spatial resolution of
30 arc seconds (approximately 1 km at the equator) and representing aggregated climate
data from 1970 to 2000, were downloaded in raster format from WorldClim 2.0 [23]. These
variables are obtained through a thin-plate spline smoothing algorithm that interpolates
data from a large number of weather stations across the globe. The 19 variables represent
climate factors of varying temporal scales, from annual and seasonal trends to extreme
monthly and quarterly variables that may prove to be limiting factors to flora and fauna [24].
After a preliminary model assessment, nine of the 19 WorldClim variables were retained
(Table 2); the ten variables which consistently contributed little or nothing to the model
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explanatory power were excluded. The elimination of these redundant variables also
reduced multicollinearity between variables and potential model overfitting [21].

Table 1. The bird species included in this dataset along with their International Union for the Conservation of Nature
(IUCN) classification and habitat preferences.

Species (Latin) Species (Common) IUCN Category Habitat Preference

Aceros corrugatus WrinkledHornbill EN Lowland evergreen forest extends into the selectively logged
forest (Kemp, A.C, Boesman, P and Sharpe, 2019)

Anthracoceros malayanus Black hornbill VU Lowland primary forest, mostly <200 m, very occasionally up
to 600 m (Kemp, Boesman and Sharpe, 2019)

Berenicornis comatus White-crowned hornbill EN Primary lowland and sometimes montane forest up to 1675 m
(A. C. Kemp and Boesman, 2019b)

Buceros rhinoceros Rhinoceros hornbill VU Primary lowland forest, extending into the secondary forest up
to 1400 m (A. C. Kemp and Boesman, 2019a)

Caprimulgus concretus Bonaparte’s Nightjar VU Lowland dipterocarp forest and secondary growth, sea level to
<500 m (Cleere and Sharpe, 2019)

Centropus rectunguis Centropus rectunguis VU The undergrowth of lowland forest (Payne and de Juana, 2019)

Chloropsis sonnerati Greater green leafbird VU Lowland evergreen forest, extending up to 1100 m (Wells and
Sharpe, 2019)

Ciconia stormi Storm’s stork EN Undisturbed lowland forest
Cyornis caerulatus Sunda Blue Flycatcher VU Lowland dipterocarp forest, sea-level to <500 m (Clement, 2019)
Hydrornis baudii blue-headed pitta VU Lowland primary forest extends up to 600 m (Erritzoe, 2019)

Leptoptilos javanicus Lesser adjutant VU Mangroves, coastland wetlands adjacent to lowland forest

Mulleripicus pulverulentus Great slaty woodpecker VU Semi-open tropical lowland forests, extending up to 2000 m
(Winkler, Christie and Kirwan, 2019)

Nisaetus nanus Wallace’s hawk-eagle VU Lowland forest, rarely up to 1000 m (Clark and Kirwan, 2019)
Psittacula longicauda Long-tailed parakeet VU Extreme lowland, <300 m (Collar and Sharpe, 2019)

Ptilocichla leucogrammica Bornean wren-babbler VU Lowland dipterocarp forest extends into the montane forest
(Collar and Robson, 2019)

Rhinoplax vigil Helmeted hornbill CR Extends up to 1500 m (Kemp, Sharpe and Boesman, 2019)

Rhyticeros undulatus Wreathed hornbill VU Occasionally lowland forest extends up to 2560 m (A. Kemp
and Boesman, 2019)

Setornis criniger hook-billed bulbul VU Lowland forest, extending up to 1000 m (Myers, 2016b)

Spilornis kinabaluensis Mountain serpent eagle VU Montane and sub-montane forests, preferably ridgetops,
750–2900 m (Clark, Kirwan and Christie, 2019)

Treron capellei large green pigeon VU Lowland forest, preferably primary forest (Baptista et al., 2019)

Table 2. The area of suitable habitat available to each bird species under the modelled current (2010) scenario and the
percent of this suitable habitat that currently lies within a protected area (PA).

Available Range
Size IUCN Status Species Habitat Type Suitable Available

Habitat (km2)
Habitat within

a PA (%)

Large

VU Buceros rhinoceros Lowland/Montane 36,400 11.1
VU Ptilocichla leucogrammica Lowland/Montane 44,616 6.16
CR Rhinoplax vigil Lowland 50,166 5.9
VU Rhyticeros undulatus Lowland/Montane 41,200 18.2

Medium

VU Anthracoceros malayanus Lowland 25,554 9.6
EN Berenicornis comatus Lowland/Montane 12,721 13.4
VU Caprimulgus concretus Lowland 10,431 20.5
VU Centropus rectunguis Lowland 15,404 14.2
VU Cyornis caerulatus Lowland 21,760 15.5
VU Hydrornis baudii Lowland 25,542 14.9
VU Mulleripicus pulverulentus Lowland/Montane 22,292 8.6
VU Psittacula longicauda Lowland 21,394 6.7
VU Treron capellei Lowland 15,702 3.4

Small

VU Aceros corrugatus Lowland 8844 8.2
EN Ciconia stormi Lowland 3950 11.5
VU Leptoptilos javanicus Lowland 5957 6.5
VU Nisaetus nanus Lowland 9639 16.4
VU Spilornis kinabaluensis Lowland/Montane 7881 30.2

2.3.2. Future Climate Data

Tiles of spatially downscaled climate model data for all 19 bioclimatic variables were
downloaded from the CCAFS-Climate data portal (http://www.ccafs-climate.org (1 March

http://www.ccafs-climate.org
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2021)) at the same resolution. Future climate change scenarios for the time interval 2046–
2065 (mean = 2050) were considered. Future climate projections were derived from CSIRO
Mk3.5, a General Circulation Model (GCM) used in the Coupled Model Intercomparison
Project 3 (CMIP3). Simulations from the Mk3 family of models have contributed towards
the IPCC AR4 Assessment and have been used in modelling bat and bird distributions
in Southeast Asia and South America [22,25]. For this period, the climate parameters of
two IPCC Special Report on Emissions Scenarios (SRES), A1B, and B1, both representing
medium–high and lower emissions scenarios, respectively, were used. Thus, two future
climate scenarios were modelled and considered in this study: A1B 2050 and B1 2050.

2.3.3. Topographic Data

Digital elevation data from the Shuttle Radar Topography Mission (STRM) was down-
loaded in 5 × 5◦ tiles from the CGIAR Consortium for Spatial Information at a resolution
of 90 m. It was assumed that topographic data would remain stable in this time frame. An
additional topographic variable raster, slope, was also generated from the SRTM eleva-
tion raster.

2.3.4. Land-Use Data

A Future Land-Use Simulation (FLUS) system modelling land-use and land cover
change at a fine resolution of 1 km was downloaded for the years 2010, A1B, and B1 2050
from [26]. As with the climate change scenarios, the land-use scenarios arrived-at reflect
predicted demographic, economic, climate change, and energy requirement drivers for the
years stated, with the land-cover scenarios derived using a combination of “top-down”
agro-economic allocation and “bottom-up” spatial modelling [26].

2.3.5. Layer Preparation

The modelling of suitable habitat for all 20 species across all periods and SRES scenarios
is implemented with the Maxent model of 12 variables (Table S1: The twelve (12) bioclimatic,
topographic and land-use variables used as input variables in the MaxEnt modelling).

2.3.6. Protected Area Data

The Bornean PA network shapefile data was supplied by the World Database on
Protected Areas (WDPA), ProtectedPlanet.net. The WDPA provided a comprehensive
and global database of terrestrial and marine protected areas and was set up by the UN
Environment Programme and the IUCN [27]. The IUCN categories PAs according to
several guidelines and management approaches [28]. Strictly protected areas, in which it is
recommended that extractive and mining activities are prohibited, constitute categories
I–IV, while categories V–VI permit localized extractive activities [28]. Only categories Ia–VI
from the downloaded dataset were considered; any PA listed as “Not Reported” or “Not
Applicable” by the IUCN was excluded. A total of 213 protected areas were included in
the analysis (Figure 2).

2.3.7. Habitat Suitability Modelling

For each species, one current (2010) distribution and two SRES scenario future dis-
tributions were modelled (total = 60) using the maximum entropy modelling software
Maxent [29]. The default settings were used; the regularization parameter (used to reduce
overfitting) was fixed at 1, and the maximum number of background points was set at
10,000 [28,30]. The replicated run type was set to “cross-validate”, and the number of
iterations to 500. These auto-features have been previously validated and tuned [31,32].
Estimates of the independent contribution of each variable to the model outcome were
calculated. However, these are heuristically defined and path-dependent. Jackknife tests
were additionally used to estimate the importance of each variable [33].
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In the absence of independent data for model validation, the dataset was randomly
partitioned into test (25%) and training (75%) data (as used in [27,29,34]). Model quality was
assessed using the area under the receiver operating characteristic (ROC) curve (AUC), a
threshold-independent metric and true skill statistics (TSS) [34]. The ROC value is obtained
by plotting sensitivity (proportion of known presence predicted present (=1-false negative
rate)) against 1-specificity (proportion of known absences predicted present (=false positive
rate)) [35]. The resulting test area under the curve (AUC) value ranges from 0 to 1, with 1
indicating a model with perfect discrimination and an AUC of 0.5, indicating that model
performance is equivalent to that of random prediction [36]. TSS scores are classified as
moderate performance (≥0.5), fair performance (≥0.3), and poor performance (<0.3) [37].
Two species with test AUC values <0.75 (Chloropsis sonnerati, Setornis criniger) were then
excluded as this threshold indicates reasonable discriminatory power [27,32]. All the
remaining species had a TSS > 0.6.

The Maxent logistic output format produces continuously scaled distribution maps
of habitat suitability on a scale from 0 to 1, where cells assigned a value of 1 to contain
theoretically high habitat suitability, and cells with a value of 0 are considered highly
unsuitable. These maps were converted into binary presence/absence maps by setting
a probability of occurrence threshold of 0.6, as recommended by Nazeri et al. [38]. This
conservative approach is often preferred in conservation contexts, where a more liberal
interpretation of a probability of habitat suitability could result in the misdirection of
resources [39].

2.3.8. Habitat Suitability and Protected Area Coverage Calculation and Analysis

Binary maps were used to calculate the absolute area of the habitat suitability for each
of the species in 2010 and in 2050 under the two future scenarios modelled (A1B/B1). The
suitable habitat available was classified into three levels, Small (<10,000 km2), Medium
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(10,000–30,000 km2) and Large (>30,000 km2). The overlap of the habitat suitability maps
and the protected areas was calculated using Zonal Statistics [40].

We used an analysis of covariance (ANCOVA) to investigate whether the current
IUCN categorization, the 2010 suitable habitat area, and the habitat type preference varied
systematically with predicted changes in habitat area and in the portion of suitable habitat
predicted to lie within protected areas in 2050. The ICUN categories CR and EN were
collapsed to a single level, “EN+”, in the analysis as there was a single species in the
CR category. Generalized linear models were fit independently to the species predictions
arising from modelling of the two future scenarios and the influence of each factor/variable
was assessed by sequential deletion testing until the minimally adequate model was
identified. Only main effects and no interactions were fit as the data set was small. All
analyses were performed in R version 3.6.3 [41].

3. Results

All the current and future habitat suitability maps retained in this analysis performed
well, with mean testing and training AUC values of 0.892 (±0.051) and 0.936 (±0.036),
respectively. Isothermality (Bio3) was the most important predictor of species distribution
for the present time period and was the highest contributing variable in 52.6% of cases with
an average explanatory contribution of 41%. In all four future scenarios, precipitation of the
driest quarter (bio17) was the most important predictor, ranking as the highest contributor
in the model 31.7% of the time and contributing, on average, 32.9%. A jackknife test of
variable importance confirmed bio17 to be the highest contributing variable of 32.3% of
the time.

One species, Caprimulgus concretus, was predicted to make such habitat gains (>200%)
that it was an outlier in both future models and was excluded from the statistical analyses of
habitat area change as it obscured the generality of interpretation. Modelling was, however,
performed with, and without, this species to confirm general patterns. These did not vary,
but model fit was much improved with the outlier removed.

3.1. Current (2010) Habitat Suitability Modelling and Estimated Portion Protected

The available habitat predicted to be suitable for each species varied substantially.
Buceros rhinoceros, a large-bodied hornbill has over 50,000 km2 available whereas Ciconia
stormi, the rarest of all storks, has less than 3000 km2 of suitable undisturbed forest re-
maining on Borneo. The percentage of the available habitat lying within protected areas
was low (95%CI = 9.3–15.4 %) but also varied substantially from Spilornis kinabaluensis, the
Mountain Serpent Eagle, which prefers high ridges and has >30% within PAs to Treron
capellei, a large, green pigeon, with only 3.4% of its range protected (Table 2). The large-
ranged, critically-endangered Rhinoplax vigil had only 5.9% of its suitable habitat within
the protected areas.

3.2. Future Habitat Suitability Modelling and Estimated Portion Protected

The details of predictions for each species varied slightly between the two modelled
scenarios, but their general behavior was largely similar (Table 3). All species with current
large areas of habitat available are predicted to lose under both future climate scenarios.
The picture is more mixed in the species with less habitat currently available to them. In
the medium category (10,000–30,000 km2), five of the nine are predicted to have more
habitat available in future with Caprimulgus concretus, Bonaparte’s nightjar, being predicted
to gain substantially (Table 3). In the species with small areas of suitable habitat currently
available, only one, Spilornis kinabaluensis, the Mountain Serpent Eagle, was predicted by
both models to lose over a fifth of its currently suitable area; the others are predicted to
make habitat gain.
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Table 3. Predicted changes (%) in suitable habitat availability on the island of Borneo and the change in portion (%) of a
species’ range that lies within a protected area between 2010 and 2050. Two future scenarios were modelled independently,
A1-B (Medium–high emissions) and B1 (Low emissions).

Available
Range Size

IUCN
Status

Species
Predicted Change in Range Size over

the 2010–2050 Window (%)

Predicted Change in the Portion of
the Range Found within a PA over

the 2010–2050 Window (%)

Scenario A1-B Scenario B1 Scenario A1-B Scenario B1

Large

VU Buceros rhinoceros −10.41 −7.10 0.67 −2.53
VU Ptilocichla leucogrammica −71.22 −66.20 6.16 4.14
CR Rhinoplax vigil −32.15 −37.45 2.01 0.79
VU Rhyticeros undulatus −12.12 −3.91 1.10 −2.82

Medium

VU Anthracoceros malayanus 19.21 37.74 −3.59 −4.11
EN Berenicornis comatus 22.26 51.09 −3.80 −6.50
VU Caprimulgus concretus 292.22 207.51 −11.90 −13.86
VU Centropus rectunguis 13.49 26.09 −7.44 −8.44
VU Cyornis caerulatus −5.58 −25.75 −0.27 0.88
VU Hydrornis baudii −31.47 −30.46 2.39 1.09
VU Mulleripicus pulverulentus −6.57 2.08 −2.96 −4.41
VU Psittacula longicauda 9.32 27.34 −2.97 −3.88
VU Treron capellei −16.57 −2.01 1.90 0.93

Small

VU Aceros corrugatus 67.31 39.15 −2.52 −3.99
EN Ciconia stormi 16.63 19.18 −4.64 −5.14
VU Leptoptilos javanicus 19.25 21.67 −2.38 −3.63
VU Nisaetus nanus 79.49 84.81 −10.12 −10.65
VU Spilornis kinabaluensis −20.94 −24.49 −6.73 −5.01

Protected area coverage (%) of suitable habitat is projected to decline for all bird
species with small available ranges by 2050. For the four species with more than 30,000 km2

available currently, the percent coverage is mostly projected to increase, though this is
largely an artefact of substantial range loss outside PAs (Table 3).

Although the details of predictions for each species varied slightly between the two
modelled emissions scenarios, their general behavior was largely similar (Table 3). Al-
though each scenario was analyzed independently, the statistical summaries reflect this
similarity and are largely concordant, though the effects of the higher emissions scenario
A1-B are more marked (Table 4).

Table 4. Statistical summary of the deletion tests of the variables assessed as potentially associated with the change in range
size, and the percentage of range protected for eighteen Bornean bird species between 2010 and 2050. The calculated F-ratio
(F), the degrees of freedom (d.f.) associated with the comparison and its probability (p) are presented.

Scenario B1 Predictions
(Low Emissions)

Scenario A1B Predictions
(Medium–High Emissions)

Predicted Change in Suitable Habitat between 2010 and 2050

F d.f. p effect F d.f. p Effect
IUCN Category 0.09 1,13 0.77 none detected 0.00 1,13 0.97 none detected

Habitat 0.28 1,14 0.60 none detected 1.10 1,14 0.31 none detected

Current (2010) area available 9.35 1,15 0.008 Greater loss for large
ranged-species 11.24 1,15 0.004 Greater loss for large

ranged- species

Predicted change in the proportion of the suitable habitat within a currently protected area between 2010 and 2050

F d.f. p effect F d.f. p Effect
IUCN Category 0.08 1,13 0.78 None detected 0.08 1,13 0.77 None detected

Habitat 0.11 1,14 0.77 None detected 1.04 1,14 0.33 None detected
Current (2010) coverage in PAs 2.45 1,15 0.14 None detected 4.39 1,15 0.05 None detected

Current (2010) area available 8.93 1,16 0.008 Most loss at higher
initial coverage 13.24 1,16 0.002 Most loss at higher

initial coverage

The predicted change in range was not detected to vary between the IUCN categories
nor with whether the species preferred a Lowland or Lowland/Montane habitat. The
suitable habitat available in 2010 was an effective predictor and greater habitat loss was
observed in larger ranges. The portion of the range that lay within a protected area had
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a similar pattern with systematic variation identified with the area of habitat available in
2010. For this the pattern was a greater loss of habitat protection in small-ranged species
than in large-ranged ones (Figure 3a). The portion of range within PAs in 2010 displays a
clear visual pattern, but its importance is not statistically convincing in this small data set
and may be obscured by the influence of the 2010 area available (Figure 3b and Table 4).
This tentatively suggests that species with higher 2010 levels of habitat coverage within
protected areas were also predicted to lose most protection under future scenarios.
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4. Discussion
4.1. Changes in the Area of Suitable Habitat

In our research we have used a combination of climate change and land cover variables
to predict the changes in bird habitat suitability under different future scenarios. Incorpo-
rating land cover change dynamics is important for generating robust habitat suitability
forecasts. Ignoring the interaction between these can undermine the robust identification
of future suitable habitats [8]. Previous research indicates that land-use change is likely to
interact with climate change and that these climates–land-use change interactions are likely
to have a significant impact on tropical biodiversity [6]. Climate change and vegetation
changes are expected to act in conjunction to cause a decline in the species richness of bats
of SE Asia circa 2050–2080 under a high emissions scenario [6]. Previous SE Asia wide
research has indicated that future forest loss will decrease suitable habitats for threatened
birds within PAs [42]. While incorporating landcover change dynamics is important for
habitat suitability modelling, the uncertainties in land cover interpretation need to be
accounted for [43]. In case of Borneo, it is important to develop regional scale future land
cover scenarios such as these [44] which also account for the spread of infrastructure [45]
and oil palm plantations.

Both climate and land cover change have been seen to, and, are expected to have future
impact on tropical bird biodiversity and the interaction between these factors is projected
to increase the impact on bird species by altering the spatial distribution of threats [46].
Looking beyond the frame of our work, projected climate change for the period 2061–2080
is expected to severely inhibit the ability of Borneo’s protected areas to conserve avian
species and biodiversity in general; these are expected to have different climatic conditions
relative to today [42,47]. Our research examined a subset of Borneo’s threatened avian
species and identified “winners” and “losers” under different future scenarios. Further,
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we identified some of the attributes that potentially make different avian species more
vulnerable to losing suitable habitat.

By showing that restricted-range birds are estimated to lose the greatest proportion
of suitable habitat we support existing observational and experimental studies that have
reported the looming threat of range contractions for smaller-ranged avian species (e.g.,
in Peruvian and New Guinean birds [48,49], and in a global dataset [50]. Simple temper-
ature change-based modelling predicts that 53% of lowland species face lowland biotic
attrition [51], here we did not detect a habitat association and may have been constrained
by the particular avian subset used. Our findings do coincide with studies such as those
by Freeman et al. [40] and Ramiles-Villegas et al. [52]; in the first, Peruvian lowland birds
were seen to expand their ranges, while in the latter birds in the tropical Andes were
predicted to be either unaffected or even favored by the warming climatic conditions in
2050, with 45% of birds estimated to undergo expansions in their climate niche in the range
of 100% or more. These suggest that lowland bird species can expand their range size
as a consequence of the leading edges of their distribution shifting upslope as climate
conditions at higher elevations become more agreeable [48]. Climate change can, therefore,
result in the promotion of range expansion under some circumstances, for instance when
lowland birds prefer drier/warmer conditions that could be provided under future climate
change [53]. We find no discernible difference in the predicted change in size of suitable
habitat between EN+ and VU categories. This agrees with previous studies of birds in
finding that IUCN threat status is not only associated with range size and predictions of
range size alteration under future scenarios [54].

4.2. Representation of Threatened Avifauna in the BORNEAN PA Network

The variation in the portion of suitable habitat represented in PAs is substantial among
the species used here. Rodrigues et al. proposed a scale of “appropriate representation”
relating the habitat available or potential range of a bird species to the proportion of this
range that should be protected [55]. For the suitable habitat extents modelled here, these
species should achieve 76.9–100% representation of suitable habitat within the PA network.
The highest we identify is just over 30% in S. kinabaluensis and this is also the species
predicted to fall to around a 10% representation within PAs over the window modelled.
Although more than 16% of Borneo is protected, the representation afforded by the PA
network suggested by this study—both now and under future scenarios—remains woefully
below the levels of adequacy recommended. Although this study does not identify any
species with no suitable habitat within PAs, or “gap species”, all species as modelled here
classify as “partial gap” species according to the definition of [55] and none are afforded
adequate protection. The small-ranged avian species modelled here are highly likely to
undergo a greater decline in suitable protected habitat availability and have been identified
elsewhere as vulnerable to suitable habitat decline under future climate scenarios [9] and to
loss of habitat for such species are rapidly affected by high levels of land cover change [54].
A similar study of range-restricted species in the Andes also suggested a habitat decline in
protected areas under different future climate scenarios [25].

4.3. Conservation Implications and Recommendations

There are already very-low to low levels of representation of threatened birds within
Bornean PAs, and with land-use change predicted to increase outside of PAs, efforts must
be focused towards preserving what little is still protected. This should include efforts
to monitor populations of birds in PAs that have been flagged as being potentially at
higher risk of habitat decline (e.g., small-ranged and specialist birds). Protected areas do
have a positive effect on maintaining the diversity of range-restricted species [56–58] and
inclusion of existing nature reserves into the formal PA network system was recommended
as a way of conserving the habitats of small-ranged birds [59]. Further, protected areas
can mitigate the climate change impacts and are an effective tool for conservation in a
changing climatic world [60]. However static reserve networks are likely to struggle to
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account for future climate change scenarios. This message, that areas under protection will
have to shift or expand under climate change scenarios is likely universal. Analyses of
the habitat dynamics of all vertebrate classes, including identifying refugia and habitat
areas that are suitable for species both under present and future climate change scenarios
has been recommended [61]. Future conservation in this region could benefit substantially
by expanding the protected areas to ensure that their configuration in terms of size and
connectivity account for future scenarios [62].

The climate change related variables we identify as the strongest drivers of change
in suitable habitat under the future scenarios, precipitation in the driest quarter and
isothermality, have been noted in other studies. A global scale analysis revealed that
these aspects of climate change remain drivers of species habitat availability, and, in many
tropical ecosystems, surpass the importance of land cover change [63]. Borneo, however,
faces rapid forest loss with oil palm plantation cultivation driving deforestation and
population expansion driving other agriculture. Future oil palm expansion is projected to
have a damaging impact on ecosystems worldwide [64,65]. However, no specific Bornean
projections exist of the future temporal-spatial distributions of these agricultural plantations
and this makes it difficult to quantify habitat availability in the face of future climate change
and oil palm expansion. The climate and land use change scenarios modelled here are thus
not necessarily representative of real-life trajectories; scenario B1, for example, represents
full mitigation of emissions and a decrease in farmland. In reality, we have passed the
point of such complete mitigation. Given the current political and economic climate, a
business-as-usual scenario predicts that we will reach much higher emissions scenarios than
those used by this study. Similarly, decreasing cropland, as predicted in B1, is a scenario
that is improbable, given the current population growth trajectory and land conversion
rates [26]. Consequently, the effects of some of the patterns reported in this study (e.g.,
decrease in range size for small-ranged) would almost certainly be magnified under a
more realistic scenario. In addition, the omission of certain species-specific factors such as
those pertaining to physiology from our model may have resulted in an overestimate of
the suitable habitat size of species under future scenarios.

5. Conclusions

Threatened bird species can act as an indicator group for patterns of predicted biodiver-
sity change. Employing climatic, topographic, and land-use variables in maximum-entropy
modelling, we find that overall, the threatened avian species found in the lowland and
montane regions of Borneo are not predicted to experience vast range size contractions
in the next century in either an A1B or a B1 world. Some assemblages, however, may be
“losers” (e.g., large-ranged birds) under future scenarios, while others may be “winners” as
they are predicted to expand their suitable habitat (e.g., birds with small areas of habitat
currently available to them). The majority of modelled suitable habitat, both now and in
the future, was found to lie outside of current PA boundaries, with no species approaching
the recommended representation targets. This work reinforces conservation messages from
other taxa and biogeographic regions. Suggested conservation actions include both local-
ized (e.g., increasing the area and ensuring the persistence of individual upland PAs) and
regional-scale (e.g., managing wider landscapes, for example, through retaining selectively
logged forests as a complement to PAs) approaches.

Borneo, although undergoing some of the most extensive changes globally in terms of
forest conversion and habitat degradation, is not unique in the situation it faces. Southeast
Asia generally is not only a biodiversity hotspot, but also a hotspot of threats, and as such,
the conservation recommendations we make apply widely.

Supplementary Materials: The following are available online at https://www.mdpi.com/2071-105
0/13/5/2792/s1, Table S1: The twelve (12) bioclimatic, topographic and land-use variables used as
input variables in the MaxEnt modelling.
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