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)e early weak fault characteristics of rolling bearings are extremely weak and are easily overwhelmed by other noises. In order to
effectively extract the characteristics of the early weak faults of the rolling bearings and draw on the multilayer wavelet de-
composition idea, a method for diagnosing the early weak faults of the rolling bearing based on the multilayer reconstruction filter
is proposed. As we all know, empirical wavelet transform (EWT) makes full use of wavelet filter bank, and variational mode
decomposition (VMD) uses Wiener filter bank. )is paper fully combines the advantages of the above two methods, adaptively
determines the number of modes through empirical wavelet decomposition and divides the original signal, extracts the frequency
band that contains the fault characteristic information, and effectively eliminates noise interference.)ese steps are repeated until
the optimal component of the condition is obtained. In the output layer, the weak fault impact components are further separated
by the strong filtering and signal decomposition capability of VMD. )e advantages of the proposed method are proved by the
experiment of weak fault of rolling bearing and the accelerated failure experiment of full life. )e proposed method has the
advantages of reducing noise influence and adaptive estimation of decomposed modes, which can be applied more efficiently
in practice.

1. Introduction

Timely and effective identification of early weak faults for
rolling bearings has an important significance to ensure
the safety of equipment operation [1]. )e small impact of
early weak faults leads to weak fault characteristics. At the
same time, the signal usually contains a large number of
noise interferences caused by the mutual impact of other
components, which brings about great challenges to
relevant studies [2, 3].

Data-driven fault diagnosis methods for rolling
bearings have been the most widely studied, most of
which are based on vibration signals and acoustic signals,
which are essentially the same, but each has its own
advantages and disadvantages [4]. )e advantages of

vibration signal used in fault diagnosis are as follows: the
cost of the sensor is relatively low, the vibration signal is
easy to be measured, and the measured vibration signal
can contain more fault information. Its disadvantages are
as follows: this is a kind of contact measurement, and the
sensor needs to be installed in the position close to the
workpiece. )e advantages of using acoustic signals for
fault diagnosis are as follows: the requirements for the
installation position are not very strict, they do not need
to be attached to the workpiece under test, and the
measurement cost is relatively low. )e disadvantage is
that the measured acoustic signal may contain sound
other than the target workpiece, so the SNR is relatively
small [5]. Adam Glowacz used acoustic signals for early
bearing and stator of the single-phase induction motor
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fault diagnosis [6]. Parey and Singh proposed a contin-
uous wavelet transform and adaptive neural fuzzy rea-
soning system to process the acoustic signal of gearbox
and complete fault diagnosis [7]. Adam Glowacz pro-
posed a fault diagnosis method of single-phase motor
based on acoustic signal [5]. Zhang and Stewart proposed
a deep graph convolutional network for roller bearings
based on acoustic signal [8]. Liu and Pei achieved fault
detection on belt conveyor idlers by processing acoustic
signals using machine learning method [9]. In the ap-
plication of vibration signals for fault diagnosis, Huang
et al. extracted frequency band entropy from vibration
signals for fault diagnosis [10]. Wang et al. used time-
frequency curves of vibration signals for fault detection
under variable speed [11].

In the past decades, researchers have proposed many
methods for the rolling bearing fault diagnosis, among which
the adaptive signal decompositionmethod is quite popular [12].
Common adaptive decomposition methods include empirical
mode decomposition (EMD), EWT, and VMD [13]. EMD has
beenwidely used in various fields [14, 15]. Due to its difficulty in
mathematical modeling, sensitivity to noise, and endpoint ef-
fect, scholars have developed a lot of improved EMD, but it still
cannot achieve ideal results [16]. In order to overcome the
limitations of EMD, Jerome Gilles and Konstantin Drag-
omiretskiy proposed EWT [17] and VMD [18], respectively.
)e EWT constructs an adaptive empirical wavelet filter bank
and the variational modal decomposition fully borrows the
Wiener filter. Both of themhave been fully studied in the field of
rolling bearing fault diagnosis.

Some researchers made a detailed comparative study
on EWT and EMD and concluded that EWT has better
performance than EEMD and EMD in model estimation
[19]. EWT has been widely used in the fields of medical
signal analysis, seismic signal analysis, meteorological
prediction, and fault diagnosis [20–23]. In the field of
fault diagnosis, some papers have improved EWT from
the aspects of spectrum segmentation, so that it can be
better applied to practical engineering problems [17, 24].
VMD obtains all modalities from the signal at the same
time through a joint optimization scheme, so it has higher
resolution [25]. Compared with EWT, this method has
been widely used. A large number of scholars have also
improved the VMD. Some scholars use the dimension-
ality-increasing feature of VMD to apply it to under-
determined blind source separation [26]. Jiang et al. [27]
proposed a VMD decomposition strategy from rough to
fine, which was well applied to the fault diagnosis of
rotating equipment. Many scholars have also studied the
parameter optimization of VMD to improve its adaptive
ability [28, 29]. Xu et al. [30] proposed a method based on
VMD which can reduce noise in the propagation path.
Although EWTand VMD have been widely studied in the

field of rolling bearing fault diagnosis, they still have
some room for improvement.

Due to extremely weak fault characteristics and large
amount of noise interference in vibration signal and
acoustic signal, it is a great challenge to extract fault
characteristic information effectively. Some scholars have
combined the mode decomposition method with other
methods. For example, Fan [2] combined with the ad-
vantages of EMD to improve VMD and achieved certain
results.

)is method utilizes EWT’s great capability of mode
number estimation [17] and its excellent filtering capability of
the empirical wavelet filter bank and combines the kurtosis
criterion to effectively extract the optimal mode from the
original signal. Multilayer reconstruction filter can remove
most of the noise components and highlight the fault impact
components. However, due to the weak fault features, it is
usually not possible to directly extract the fault characteristics
from the denoised signal. By virtue of the great band-pass
filtering capability and signal decomposition capability of
VMD, it is used as the output layer to reconstruct and filter the
signal after noise reduction. Because the multilayer recon-
struction filter reduces the interference of redundant infor-
mation to the VMD, the fault feature information can be
separated and extracted better, and the early weak fault di-
agnosis of rolling bearing can be realized.

)e structure of this paper is as follows: Section 2
introduces the theoretical basis of the method and in-
troduces the process of the proposed method; Section 3
verifies the proposed method by using the acoustic signal
of rolling bearing fault experiment and the vibration
signal of accelerated fatigue experiment, respectively. )e
results and discussion are given in Section 4.

2. Methodology

2.1. Empirical Wavelet Transform. )e EWT divides the
Fourier spectrum of a signal and constructs a wavelet filter
bank to extract the intrinsic modes and can be divided into
several main components.

Assuming that the Fourier support [0, π] is segmented
into contiguous N segments, a total number of N + 1
boundaries are needed. According to the local maximum
values, the Fourier spectrum of a signal is divided into N

segments. Denote ωn to be the limits between each segment
(where ω0 � 0 and ωn � π). Each segment is represented as
Λn � [ωn− 1,ωn]. A transition phase Tn of width 2τn is then
defined, as shown in Figure 1.

)e empirical wavelets are defined as band-pass filters on

each Λn. )e empirical scale function ϕ
∧
(ω) and empirical

wavelet function ψ
∧

(ω) can be calculated by the two following
equations, respectively:
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(2)

)e ratio c in equations (1) and (2) is restricted to a small
value as 0≤ c≤minn[(ωn+1 − ωn)/(ωn+1 + ωn)] to ensure the
empirical scaling function and the empirical wavelets are a
tight frame ofωn: τn � cωn, 0< c< 1.)e function β(x) is an
arbitrary Ck([0, 1]) function, and β(x) is defined as follows:

β(x) � x
4 35 − 84x + 70x

2
+ 20x

3
􏼐 􏼑. (3)

)e approximation coefficients wε
f(0, t) and the detail

coefficients wε
f(n, t) can be calculated by the two following

equations, respectively:
w

ε
f(0, t) � f,

ϕ1 � 􏽚 f(τ)ϕ1(τ − t)dτ � f
∧

(ω)ϕ
∧
1(ω)􏼠 􏼡,

(4)

w
ε
f(n, t) � f,

ψn � 􏽚 f(τ)ψn(τ − t)dτ � f
∧

(ω)ψ
∧

n(ω)􏼠 􏼡

∨

,
(5)

where ϕ
∧
1(ω) and ψ

∧
n(ω) are defined by equations (1) and (2),

respectively.
)e inverse empirical wavelet transformation is carried

out by the following equation:

f(t) � w
ε
f(0, t)∗ϕ1(t) + 􏽘

N

n�1
w

ε
f(n, t)∗ψn(t),

� w
∧ ε

f(0,ω)∗ ϕ
∧
1(ω) + 􏽘

n�1

N
∧

w
∧ ε

f(n,ω)∗ψ
∧

n(ω)⎛⎜⎝ ⎞⎟⎠

∨

.

(6)

2.2. Variational Mode Decomposition. Variational modal
decomposition is an adaptive time-frequency analysis tool,
which decomposes the signal into multiple BLIMFs (band
limited intrinsic mode function) through iterative solution.

)e detailed steps are described below.
First, it is assumed that the signal x (t) can be decom-

posed into a finite number of inherent modes, each of which
has a different center frequency and ωk, a finite bandwidth.

)e specific formula of the unilateral spectrum obtained
by Fourier transform is as follows:

δ(t) +
j

πt
􏼒 􏼓∗ uk(t). (7)

In the above formula, δ(t) stands for Dirichlet function,
and ∗ stands for convolution.

)e spectrum of each component is obtained by the
following equation:

δ(t) +
j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

jωkt
. (8)

)e variational constraint mode function of VMD is as
follows:

min
uk{ }, wk{ }

􏽘

​

k
zt δ(t) +

j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

− jwkt

�������

�������

2

2
􏼨 􏼩,

s.t. 􏽘
k

uk � x.

(9)

In the above formula, uk􏼈 􏼉 � u1, . . . , uK􏼈 􏼉 represents
the K components obtained after decomposition;
ωk􏼈 􏼉 � ω1, . . . ,ωK􏼈 􏼉 represents the center frequency corre-
sponding to each component.

In order to obtain the optimal solution of the above
variational constraint model, the VMD algorithm introduces
the Lagrangian method, including the secondary punish-
ment factor α and the Lagrangian multiplier λ. )e formula
is as follows:
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k

zt δ(t) +
j
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2

2
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2

2

+ λ(t), x(t) − 􏽘
k

uk(t). (10)

Iteratively update uk􏼈 􏼉, wk􏼈 􏼉, and finally obtain the
saddle point of Lagrange equation, which is the optimal
solution.

)e specific steps of the VMD procedure are shown in
Figure 2.

2.3. Proposed Method: Multilayer Reconstruction Filter.
)eVMDmethod has a reliable theoretical basis, with band-
pass filtering capability similar to wavelet packet decom-
position and excellent signal decomposition capability.
However, weak fault pulses and strong background noise
can seriously affect the accuracy of diagnosis. )erefore,
drawing on the idea of multilayer wavelet decomposition,
this paper introduces a powerful signal processing tool,
EWT, as a preprocessing. EWT has an outstanding ability to
detect the number of modes. )is method divides the signal
in the Fourier domain by looking for the local maximum and
divides the signal into multiple frequency bands adaptively.
By constructing an empirical wavelet filter bank with ex-
cellent performance, each frequency band is reconstructed
and filtered to effectively eliminate the interference of
nonimpulsive noise. As a fourth-order high-order statistic
equation (11), kurtosis is very sensitive to early failures. )e
correlation coefficient can choose the most containing fault
information frequency band. )erefore, with the help of the
above two coefficients, a relatively optimal component can
be well selected. Using this component as the input signal of
the next layer, perform the above process again until the set
number of decomposition layers is reached to obtain the
optimal mode.

K �
1
N

􏽘

N

i�1

xi(t) − μ
σ

􏼢 􏼣

4

. (11)

In the above formula, N is the length of the signal, xi is
the i-th EWT component, and μ and σ are the mean value
and standard deviation of the signal, respectively.

Compared with the original signal, the selected optimal
component has very low noise interference and no excessive
redundant information. Taking this component as the input
of the output layer, it can better exert the powerful signal
filtering and decomposition ability of VMD, effectively
decompose the fault pulse information, and realize accurate
fault diagnosis. )e flow chart of the proposed method is
shown in Figure 3.

3. Experiment and Results

)e method proposed in this paper aims at the early weak
faults of rolling bearings with extremely weak fault char-
acteristics and extremely high background noise. )is
chapter uses two related experiments for analysis. In ex-
periment 1, weak faults were made in the inner and outer
rings of the bearing ring by using laser cutting technology,

and acoustic signals were collected by microphone sensor.
)e acoustic signals collected by this experiment met the
premise of weak fault characteristics and great background
noise. In experiment 2, the bearing accelerated degradation
experiment of NSF I/UCR Intelligent Maintenance Systems
was adopted.)e experiment collected data on the entire life
cycle of the bearing, which truly reflects the entire stage of
failure from early initiation and development to destruction
and shutdown, which is well in line with the needs of ex-
perimental research. Two experiments are presented below.

3.1. Simulation Experiment Analysis of Early Fault of Rolling
Bearing

3.1.1. Experiment Design. In this paper, a rolling bearing fault
test rig is designed, as shown in Figure 4. )e type of bearing is
NSKNU205EW, whose parameters are shown in Table 1. Laser
cutting method is adopted to cut through 0.1mm wide and
0.05mm deep grooves in the inner and outer rings of bearing.
Acquisition card was used to record the experimental data,
MPA416microphone was used to collect the acoustic signal, the
sensor was installed in front of the faulty bearing, the distance
was 30mm, and the photoelectric encoder was used to record
the speed. Experimental bench is with rated power of 1.5 kW,
rated voltage of 380V, rated frequency of 50Hz, rated current of
3.4 A, rated speed of 2840 r/min of three-phase asynchronous
motor drive, transverse load of 2 kN, sampling frequency of
20kHz, and speed of 1309.2 r/min (f� 21.82Hz).)e inner and
outer ring fault frequencies of the bearings are 169.1Hz and
114.6Hz, respectively. Equations (12)–(14), respectively, give the
calculation formula of fault characteristic frequency of bearing’s
inner ring, outer ring, and rolling element.where fI, fO, fB,
respectively, represent the characteristic frequency of inner ring
fault, the characteristic frequency of outer ring fault, and the
characteristic frequency of rolling element fault (unit: Hz); r is
the speed of rotation of the bearing (unit: (r/min)); n denotes
ball number;d denotes the diameter of the rolling element (unit:
mm); D denotes bearing pitch diameter (unit: mm); and α
denotes contact Angle (unit: ∘ ).

fI �
n

2
r

60
1 +

d

D
cos α􏼠 􏼡􏼠 􏼡, (12)

fO �
n

2
r

60
1 −

d

D
cos α􏼠 􏼡􏼠 􏼡, (13)

fB �
n

2
r

60
D

d
1 −

d

D
cos α􏼠 􏼡

2
⎛⎝ ⎞⎠, (14)

3.1.2. Experimental Results and Analysis. First, the time
domain waveform and Hilbert envelope spectrum of the
original signal were made, as shown in Figures 5 and 6,
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respectively. )e time domain diagram shows that the signal
amplitude is low and unobvious periodic impact is found.
Further observation of the signal’s Hilbert envelope spec-
trum revealed a large number of irrelevant frequencies,
especially in the low frequency region, indicating that the

original signal contained a large number of noise interfer-
ences. From the spectrogram, only the inner ring fault
characteristic frequency with less obvious amplitude can be
found, but the inner ring fault characteristic frequency
cannot be found, which is enough to prove the premise of

2τ1

1

2τ2 2τ3 2τn 2τn+1 2τN

ω1 ω2 ω3 ωn ωn+1 

Figure 1: Partitioning of the Fourier axis.

Signal x (t)

End

Initialize {uk
1}, {ωk

1}, {λ1}. For n = 0

n = n + 1

Update λ: λn+1 (ω) = λn(ω) + τ(x(ω) – ∑kuk
n+1 (ω))

For k = 1:K, update ωk

BLIMFs

Start

No
∑k||uk

n+1 – uk
n||22 / ||uk

n||22 < ε

Yes

For k = 1:K, update uk

x(ω) – ∑i<kui
n+1(ω) – ∑i>k u i

n(ω) – (λn(ω)/2))

1 + 2α (ω – ωk
n)2

ωk
n+1 = ∫∞

0 ω |uk
 (ω)|2 dω / ∫∞

0 |uk
 (ω)|2 dω

uk
n+1 (ω) =

Figure 2: Variational mode decomposition algorithm flow.
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Acoustic or vibration signals

Empirical wavelet transform

Component

Relative optimal component

Variational mode 
decomposition

Hilbert envelope analysis

Early weak fault diagnosis

Whether it reaches 
the setting?

Yes

No

Optimal mode 
selection

Output layer

Figure 3: )e flow chart of the proposed method.

Electric motor Healthy
bearing Tachometer Radial load Fault

bearing
Microphone

sensor

MPA416

Figure 4: Rolling bearing fault test rig.

Table 1: Basic parameters of NSK NU205EW bearing.

Bearing pitch diameter Roller diameter Ball number Contact angle
39 7.5 12 0°
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weak fault characteristics and large noise interference. )e
following describes the specific process of signal processing
using the method proposed in this paper.

)e first reconstruction filter is performed. EWT is used
to decompose the signal, and Figure 7 is the boundary
detection graph. From the figure, EWT can detect 4
boundaries in the Fourier spectrum and divide the signal
into 5 parts. By constructing an empirical wavelet filter bank,
band-pass filtering is carried out on these 5 parts, and 5
components are finally obtained. Figure 8 shows the en-
velope spectra corresponding to the 5 components from top
to bottom, and the corresponding correlation coefficients
and kurtosis are given in Table 2.

According to the correlation coefficient, we can get that
component 5 contains the richest information, which can
also be seen from its corresponding envelope spectrum. At
the same time, its envelope spectrum can clearly find the
inner ring fault characteristic frequency and its multiplier,
but it still cannot find the outer ring fault characteristic
frequency. It also proves that primary filtering is insufficient
for this early weak fault diagnosis. Meanwhile, the kurtosis of
component 5 also reflects that it contains some fault pulse
information.

Component 2 has the highest kurtosis, and the corre-
sponding envelope spectrum can also find the inner ring
fault characteristic frequency, rotation frequency, and its
doubling frequency more clearly, so it can be judged that
component 2 contains valid fault pulse information.

Based on the above two points, we choose the combi-
nation of components 2 and 5 as the optimal mode com-
ponent. )rough the above steps, part of the interference
noise in the original signal has been removed, and a part of
the fault features have been highlighted, laying a good
foundation for the next processing.

)en input the reconstructed signal to the output layer
after filtering, and set K� 5 and α� 2000 for VMD [31].

Figure 9 shows the envelope spectrum of the BLIMF
component obtained after the decomposition of VMD.

Careful analysis of the envelope spectra of the above 5
components shows that, in component 5, the fundamental
frequency and frequency multiplication of the rotation
frequency, the characteristic frequency of the inner ring
fault, the characteristic frequency of the outer ring fault, and
the theoretical calculation can be clearly found. )ere is
almost no difference from the theoretically calculated fre-
quency. Corresponding side bands are also found near the
inner ring fault frequency, and the entire frequency spec-
trum contains almost no other noise interferences. )e
experimental results fully reflect the accuracy of the pro-
posed method for early weak fault diagnosis.

3.2. Experimental Analysis of Full-Life Acceleration of Rolling
Bearings

3.2.1. Experiment Design. Experiment 2 adopts the NSF I/
UCR intelligent maintenance system center bearing life
accelerated damage experiment data, which is used by many
scholars for related research and is an internationally rec-
ognized data set.)is data covers the whole process from the
initiation of the fault to the failure, so it can reflect the
damage characteristics of the actual early failure of the
bearing and better reflect the effectiveness of the proposed
method.

)e motor transmits power to the shaft through a belt.
Four bearings are mounted on the shaft. At the same time, a
constant radial load of 6000 lbs is applied to the shaft. )e
speed is 2000 r/min, the bearing type is Rexnord ZA-2115
double row bearing, and the basic parameters are shown in
Table 3. During operation, the bearing will be worn under
heavy load and produce metal debris. A magnetic screw plug
is installed on the test bench to collect metal debris. When

Time (s)

A
 (V

)

0.1

0

–0.1
0 1 2 3 4 5

Figure 5: Time domain waveform of the original signal of experiment 1.

f = 21.82Hz

fi = 169Hz

f (Hz)
0 100

×10–3

200 300 400 500 600
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2

1
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A
 (V

)

Figure 6: )e original signal envelope of experiment 1.
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Figure 7: EWT boundary detection diagram of experiment 1.
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Figure 8: EWT component envelope spectra of experiment 1.
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the accumulation of metal debris exceeds a certain level, the
electrical switch is automatically controlled to stop.

)e experiment consists of three sets of data sets, and
each set of data sets contains the complete degradation
process data from the beginning of the bearing to the
damage. In this part, the second data set is adopted. )e
sampling frequency is set at 20 kHz and the sampling time is

1s. A total of 20480 acceleration data points are collected in
each sampling time, with a sampling interval of 10min.

3.2.2. Experimental Results and Analysis. )e rolling bear-
ing fault test rig is shown in Figure 10. )e change curve of
the root mean square value of each collection point of the

Table 2: Correlation coefficient and kurtosis of EWT component of experiment 1.

Correlation coefficient Kurtosis
Component 1 0.19 2.93
Component 2 0.36 4.54
Component 3 0.33 3.21
Component 4 0.41 3.51
Component 5 0.83 3.84

0 100 200 300 400 500 600
0

2

4
×10–3

0 100 200 300 400 500 600

×10–3

×10–4

×10–3

×10–4

0

1

2
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)
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0

0.5

1
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0

1
2f

f 2fo

fo

2fi

fi

Figure 9: VMD component envelope spectrum of experiment 1.
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whole life data is shown in Figure 11. Since the RMS of the
fault state and the normal state will be different under
normal circumstances, most scholars regard the mutation
points at T1 (about 5320min) and T2 (about 6460min) as
the fault occurrence point. However, through the research in
this article, it is found that the failure may have occurred
earlier.

First of all, it can be found in Figure 11 that the signal
RMS has not changed significantly around the 4520th
minute. Analyzing its time domain waveform and envelope
spectrum in Figures 12 and 13, no obvious periodic shock
nor obvious fault characteristic information appears, which
indicates that even if a fault occurs at this point, it is an
extremely weak early fault, or no fault has occurred.

)e experimental data were analyzed using the proposed
method. )e result of EWT boundary detection is shown in
Figure 14. First, the signal is decomposed into 5 components
in the first layer. Figure 15 shows the envelope spectrum of
each component. In the envelope spectrum of these 5
components, no relevant fault characteristic information can
be found, and a large number of interference frequencies are
included. In component 3, a frequency component similar to
the fault frequency of the outer ring was found, but it was not
accurate (the fault frequency of the outer ring was 230.7Hz,
while the frequency was 232.5Hz).)erefore, a layer of filter
analysis could not effectively identify whether the bearing
fault occurred and the type of fault. )is also indicates that
the actual fault at 4520 minutes in experiment 2 is weaker
and more difficult to identify than the simulated fault in
experiment 1.

)e correlation coefficients and kurtosis corresponding
to each component are given in Table 4. )rough the
comprehensive analysis of correlation coefficient, kurtosis,
and envelope spectrum, component 5 is selected as the

reconstructed signal after a layer filtering. Component 5 has
a very high correlation coefficient, and it can be seen from its
envelope spectrum that it contains sufficient frequency
components. Meanwhile, its kurtosis value also reflects that
the component may contain fault pulse information. Al-
though component 1 has the highest kurtosis value, its
correlation coefficient is too small, which may be the noise
interference component. By removing component 1, some
interference components are also removed correspondingly,
which is also the purpose of the first layer of filtering.

Since the first layer of reconstruction filter analysis did
not obtain very effective fault information, multilayer re-
construction filter analysis can be performed. After ana-
lyzing the one-to-three-layer filtering, it is found that the
multilayer filter in this experiment is a certain improvement,
but themost basic two-layer reconstruction filter can be used
for accurate fault diagnosis, which will be described in detail
below.

)e filter reconstruction signal is input to the output
layer. Figure 16 shows the envelope spectrum of the com-
ponents obtained, and the corresponding kurtosis of each
component is given in Table 5. In component 5, there is an
extremely prominent fault characteristic frequency com-
ponent; that is, the characteristic frequency of the outer ring
fault is 230.7Hz. At the same time, there is a relatively less
obvious component of double frequency. At the same time,
the kurtosis value of component 5 is 4.18, much larger than
3, which can also reflect that the bearing may have a fault
impact. Figure 17 shows the envelope spectrum diagram of
the 7050th minute T3 point in Figure 11. At this point, it can
be clearly seen that the bearing has an obvious outer ring
fault, and the fault characteristic frequency is 230.7Hz,
which is exactly the same as the fault characteristic frequency
obtained by the method proposed in this paper after data

Table 3: Basic parameters of Rexnord ZA-2115 double-row bearing.

Bearing pitch diameter (mm) Roller diameter (mm) Ball number Contact angle
71.5 8.4 16 15.17°

Bearing 1

Radial load

Electric motor

Bearing 2 Bearing 4Bearing 3

Acceleration sensor �ermocouple

Figure 10: Rolling bearing accelerated degradation rig.
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Figure 11: Root mean square value diagram of bearing life cycle.
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Figure 12: Data time domain waveform of the 4520th minute.
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Figure 13: )e data envelope spectrum at the 4520th minute.
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Figure 14: EWT boundary detection diagram of experiment 2.
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Figure 15: EWT component envelope spectrum of experiment 2.
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Table 4: Correlation coefficient and kurtosis of EWT component of experiment 2.

Correlation coefficient Kurtosis
Component 1 0.06 4.60
Component 2 0.20 2.92
Component 3 0.23 2.98
Component 4 0.45 2.22
Component 5 0.94 3.55
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Figure 16: VMD component envelope spectrum of experiment 2.
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processing of the 4520th minute. Based on the above in-
formation, it can be concluded that the bearing has had an
early weak failure of the outer ring.

At the same time, we also analyzed the data at other time
points. )e data after 4520 minutes can effectively identify
the fault features, so we will not make a detailed introduction
here.

4. Conclusions

Aiming at the problem that the early weak fault charac-
teristics of rolling bearing are weak, which is difficult to
diagnose in time, this paper proposes a method for early
weak fault diagnosis of rolling bearing based on multilayer
reconstruction filter, which can effectively extract the fault
characteristics from the acoustic and vibration signals, detect
the fault earlier, and avoid serious consequences.

)e early weak fault diagnosis method of rolling bearing
based on multilayer reconstruction filter is proposed, which
combines the characteristics of two advanced time-fre-
quency analysis methods EWT and VMD, to gradually
remove the interference information, highlight the fault
pulse information, extract the early weak fault features, and
accurately diagnose the fault. )e proposed multilayer re-
construction filter method can be used to decompose the
measured signal layer by layer to detect weaker fault
characteristics, which means that the rolling bearing fault
can be found earlier in the practical application, which is of
great significance to the safe operation of the equipment.

In this paper, the validity of the proposed method is
verified by the rolling bearing fault experiment and the full
life cycle acceleration experiment data. Experiment results
show that the proposedmethod can overcome the challenges
brought about by low SNR and weak fault features, extract
fault feature information earlier, and avoid the further
evolution of the fault, resulting in incalculable losses. At the
end of the paper, the future research work is prospected. In
the proposed method, the parameters of some steps should
be obtained by preprocessing the signal. )erefore, other

parameter optimization methods can be integrated into the
future work, so that the whole method can be adaptively
selected to complete the early fault diagnosis.

Data Availability

)e experimental data used in this study can be obtained
from the corresponding author upon request.
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