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Abstract
Background: Cholesterol gallstone (CG) is the most common gallstone disease, which is induced by
biliary cholesterol supersaturation. The purpose of this study is to investigate the pathogenesis of CG.

Methods: Sixteen mice were equally and randomly divided into model group and normal control group.
The model group was fed with lithogenic diets to induce CG, and then gallbladder bile lipid analysis was
performed. After RNA-seq library was constructed, differentially expressed mRNAs (DE-mRNAs) and
differentially expressed lncRNAs (DE-lncRNAs) between model group and normal control group were
analyzed by DESeq2 package. Using clusterProfiler package, enrichment analysis for the DE-mRNAs was
carried out. Based on Cytoscape software, the protein-protein interaction (PPI) network and
competing endogenous RNA (ceRNA) network were built.

Results: The mouse model of CG was successfully established, and then 181 DE-mRNAs and 33 DE-
lncRNAs between model and normal groups were selected. For the down-regulated SCP2 , lipid
hydroperoxide transport was enriched. Moreover, KDM4A was selected as a hub node in the PPI network,
and MEG3 was taken as a key lncRNA in the regulatory network. Additionally, the miR-107-5p/miR-149-
3p/miR-346-3p—MEG3 regulatory pairs and MEG3—PABPC4/CEP131/NUMB1 co-expression pairs existed
in the regulatory network.

Conclusion: These RNAs might be related to the pathogenesis of CG.

Backgroud
Gallstone disease is a kind of biliary tract diseases, in which cholesterol gallstone (CG) is the most
frequent type 1. CG can be induced by dyslipidemia, overweigh, insulin resistance, obesity, and the
changes in cholesterol homeostasis 2. Genetic factors, lifestyle, and diet are considered to be correlated
with the occurrence of CG, especially, high-sugar, high-fat, low-fiber, and low-vitamin diets can increase
the risk of CG 3,4. The formation of CG is based on the imbalances of cholesterol, bile acid, lecithin and
other components in bile, which leads to biliary cholesterol supersaturation and crystallization 5. CG is a
common healthy problem worldwide, and its incidence has risen sharply over the past decades 6.
Therefore, the mechanisms CG should be further explored.

Some RNAs have been reported to be involved in the course of CG. For example, lower serum levels of
retinol binding protein 4 (RBP4) are detected in CG and are related to gallstone formation, and RBP4
levels reduce independent of renal function in CG patients 7. The lithogenic diet can result in significantly
lower cholecystokinin A receptor (CCKAR) and caveolin-3 (CAV3) in the gallbladder and lower CAV3 in the
liver, indicating that CAV3 and CCKAR may be implicated in CG 8. Through mediating fatty acid and
cholesterol metabolism, miR-122 plays important roles in the development and progression of gallstones
9,10. Both miR-210 and its target ATPase phospholipid transporting 11A (ATP11A) are dysregulated in
human gallstones, and ATP11A expression is negatively correlated with miR-210 expression in patients



Page 3/18

with the disease 11. However, more RNAs correlated with the pathogenesis of CG still need to be
investigated.

Previous studies demonstrate that long non-coding RNA (lncRNA) exerts its biological effects in
regulating gene expression by acting as a miRNA sponge 12,13. In the present study, the mouse model of
CG was established and gallbladder bile lipid analysis was carried out. After the RNA-seq library was
constructed, the sequencing data were implemented with a series of bioinformatics analyses to explore
the key RNAs and regulatory relationships in CG. Our findings might be helpful to further understand the
molecular mechanisms of CG.

Methods

Animal modeling and sample collection
Totally, 16 C57 male mice were purchased from Beijing Vital River Laboratory Animal Technology Co.,
Ltd. (Beijing, China). The mice were fed with chow diets in specific pathogen free (SPF) laboratory animal
room for one week. Then, the mice were randomly divided into model group (n = 8) and normal control
group (n = 8). The model group was fed with lithogenic diets (containing 15% fat, 1% cholesterol, and
0.5% sodium cholate) (Jiangsu Xietong Pharmaceutical Bio-engineering Co., Ltd., Jiangsu, China) for 5
weeks. Meanwhile, the normal control group was fed with chow diets. After the mice were killed by the
method of cervical dislocation, the liver, gallbladder and bile were isolated, photographed, and kept at
-80 °C. The experiments were conducted in accordance with the guidelines of the university committee for
animal welfare (Ren Ji Hospital, School of Medicine,Shanghai Jiao Tong University, Shanghai).

Gallbladder bile lipid analysis
According to the manufacturer’s instructions, the changes of total cholesterol (TCH), total bile acid (TBA),
total bilirubin (TBL), and direct bilirubin (DBL) in bile were detected by corresponding kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China).

RNA-seq library construction and data preprocessing
Using Trizol reagent (Invitrogen, Shanghai, china), total RNA was extracted from four liver tissues from
the model group and three liver tissues from the normal control group following the manufacturer's
manual. Then, the integrity and purity of the total RNA were detected by Agarose Gel Electrophoresis and
spectrophotometer (Merinton, Beijing, China), respectively. After the RNA-seq library was established
using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (New England Biolabs, Beverly, MA, USA),
library purification, library detection, library quantitation, and cBOT automatic clusters successively were
conducted. Furthermore, sequencing was performed using the TruSeq SBS kit v4-HS (Illumina, San Diego,
CA, USA).

Quality assessment of the sequencing data was performed by FastQC software 14 (version 0.10.1,
https://github.com/pnnl/fqc). Using Cutadapt software 15 (version 1.9.1,
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https://pypi.org/project/cutadapt/), the adapter sequences, the bases with mass value less than 20 or
containing N at the 5 'or 3' ends, and the reads with length less than 75 bp were filtered out. Subsequently,
the clean data was compared with the reference genome using Hisat2 software 16 (version 2.0.1,
http://www.psc.edu/user-resources/software/hisat2, default parameters).

Differential expression analysis and enrichment analysis
Using DESeq2 package 17 (http://www.bioconductor.org/packages/release/bioc/html/DESeq.html) in R,
differential analysis between model group and normal control group was carried out. The mRNAs with
the adjusted p-value < 0.05 and |log2 fold change (FC)| > 1 were selected as the differentially expressed
mRNAs (DE-mRNAs). The lncRNAs with p-value < 0.05 and |log2 FC| > 1 were taken as the differentially

expressed lncRNAs (DE-lncRNAs). Using pheatmap package 18 (https://cran.r-
project.org/web/packages/pheatmap/) in R, hierarchical clustering analysis was performed and
clustering heatmap was drew.

Based on clusterProfiler package 19

(http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) in R, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses for the DE-mRNAs were
implemented. The threshold for selecting the significant results was the p-value < 0.05.

Protein-protein interaction (PPI) network analysis
Under the threshold of PPI score (medium confidence) > 0.4, PPI network analysis for the DE-mRNAs was
conducted using STRING database 20 (http://string-db.org). Combined with Cytoscape software 21

(http://www.cytoscape.org/), the PPI network was constructed. The CytoNCA plug-in 22 (parameter:
without weight; http://apps.cytoscape.org/apps/cytonca) in Cytoscape software was used to analysis
the topology properties of network nodes. The hub nodes 23 were selected according to Degree Centrality
(DC), Betweenness centrality (BC), and Closeness centrality (CC) of network nodes.

Co-expression analysis and prediction of the genes targeted
by miRNAs
Pearson correlation coefficients 24 of the DE-lncRNAs and the DE-mRNAs were calculated. The r > 0.95
and p-value < 0.05 were utilized for screening the significant results. Using miRanda database 25

(http://www.microrna.org), the miRNAs targeting the DE-lncRNAs and the DE-mRNAs were predicted.
Under the thresholds of score > 1200 and energy < -150, the significant miRNA-lncRNA pairs and miRNA-
mRNA pairs were selected.

Competing endogenous RNA (ceRNA) network analysis and
selection of key lncRNAs
Combined with the lncRNA-mRNA co-expression pairs, the miRNA-lncRNA regulatory pairs, and the
miRNA-mRNA regulatory pairs, the mRNA-miRNA-lncRNA regulatory relationships were obtained. Using
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Cytoscape software 21, the ceRNA regulatory network was visualized.

According to the degrees of the lncRNAs in ceRNA regulatory network, the top 8 up-regulated lncRNAs and
the top 8 down-regulated lncRNAs separately were selected as the key lncRNAs. Combined the lncRNA-
mRNA co-expression pairs, the mRNAs co-expressed with the key lncRNAs were considered as the
potential target genes of the key lncRNAs. To obtain the underlying functions of the key lncRNAs,
enrichment analysis for these potential target genes was conducted using clusterProfiler package 19.

Results
Animal modeling and gallbladder bile lipid analysis

In the normal control group, the bile in the gall bladder of the mice was transparent and yellow. After five
weeks of lithogenic diets, the gall bladder of the mice in the model group was larger than that in the
normal group, and the bile was cloudy and darker. The results of gallbladder bile lipid analysis showed
that TCH, TBA, TBL, and DBL levels in the model groups were all higher than those in the normal control
group (Figure 1). These suggested that the mouse model of CG was successfully established.

Identification of DE-lncRNAs and DE-mRNAs

There were 181 DE-mRNAs (including 104 up-regulated mRNAs and 77 down-regulated mRNAs) and 33
DE-lncRNAs (including 17 up-regulated lncRNAs and 16 down-regulated lncRNAs) between model and
normal groups. The clustering heatmaps for the DE-lncRNAs and the DE-mRNAs are shown in Figure 2.

For the up-regulated mRNAs, 419 GO_biological process (BP) terms, 86 GO_cellular component (CC)
terms, and 134 GO_molecular function (MF) terms, and eight pathways were enriched (Figure 3A). For the
down-regulated mRNAs, 229 GO_BP terms (such as lipid hydroperoxide transport (involving sterol carrier
protein 2, SCP2)), 44 GO_CC terms, and 54 GO_MF terms, and seven pathways were enriched (Figure 3B).

PPI network analysis

After the PPI pairs for the DE-mRNAs were predicted, PPI network (involving 101 nodes and 116 edges)
was constructed (Figure 4). According to DC, BC, and CC, protein tyrosine phosphatase receptor type C
(PTPRC), lysine demethylase 4A (KDM4A), and spectrin alpha, non-erythrocytic 1 (SPTAN1) all were
among the top 15 network nodes and were taken as the hub nodes (Table 1).

Co-expression analysis and prediction of the genes targeted by miRNAs

A total of 173 lncRNA-mRNA co-expression pairs were obtained, involving 24 lncRNAs and 96 mRNAs. For
each lncRNA implicated in the co-expression pairs, enrichment analysis was conducted for its co-
expressed mRNAs. Finally, 457 GO_BP terms, 80 GO_CC terms, and 137 GO_MF terms, and 11 pathways
were enriched (Figure 5). Based on miRanda database, 9320 miRNA-lncRNA pairs (involving 1754
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miRNAs and 19 lncRNAs) and 86 miRNA-mRNA pairs (involving 49 miRNAs and 10 mRNAs) were
predicted.

CeRNA network analysis and selection of key lncRNAs

Combined with the mRNA-miRNA-lncRNA regulatory relationships, the ceRNA regulatory network
(involving 24 up-regulated mRNAs, 53 down-regulated mRNAs, 11 up-regulated lncRNAs, 11 down-
regulated lncRNAs, and 47 miRNAs) was built (Figure 6). There were 42 miRNA-mRNA regulatory pairs,
127 miRNA-lncRNA regulatory pairs, and 115 lncRNA-mRNA co-expression pairs in the ceRNA regulatory
network.

Based on the degrees of the lncRNAs in the regulatory network, the top eight up-regulated lncRNAs (RIKEN
cDNA 4933407K13 gene, 4933407K13Rik; RIKEN cDNA 4833418N02 gene, 4833418N02Rik; predicted
gene 8378, Gm8378; RIKEN cDNA F730311O21 gene, F730311O21Rik; RIKEN cDNA A530020G20 gene,
A530020G20Rik; Opa interacting protein 5, opposite strand 1, 1700020I14Rik; RAB10, member RAS
oncogene family, opposite strand, Rab10os; and predicted gene, 16973, Gm16973) and the top eight
down-regulated lncRNAs (predicted gene 15270, Gm15270; maternally expressed 3, MEG3; RIKEN cDNA
C730036E19 gene, C730036E19Rik; predicted gene 16576, Gm16576; predicted gene 27216, Gm27216;
predicted gene 12655, Gm12655; predicted gene 11695, Gm11695; and predicted gene 6135, Gm6135)
were screened out as the key lncRNAs. In the regulatory network, the miR-107-5p/miR-149-3p/miR-346-3p
—MEG3 regulatory pairs and MEG3—PABPC4/CEP131/NUMB1 co-expression pairs existed. To predict the
potential functions of these key lncRNAs, enrichment analysis for their co-expressed mRNAs was
performed. Moreover, the enrichment results for four up-regulated lncRNAs (4833418N02Rik, Gm8378,
1700020I14Rik, and Gm16973) and three down-regulated lncRNAs (Gm16576, Gm27216, and Gm12655)
are presented in Figure 7.

Discussion
After the mouse model of CG was successfully constructed, 181 DE-mRNAs (including 104 up-regulated
mRNAs and 77 down-regulated mRNAs) and 33 DE-lncRNAs (including 17 up-regulated lncRNAs and 16
down-regulated lncRNAs) between model and normal groups were screened. Enrichment analysis showed
that lipid hydroperoxide transport was enriched for the down-regulated SCP2. Through mediating SCP2
expression, ursodeoxycholic acid decreases bile lithogenicity and thereby prevents the formation of CG
26. Thus, SCP2 might act in the pathogenesis of CG via participating in lipid hydroperoxide transport. In
the PPI network, KDM4A was selected as a hub node according to DC, BC, and CC. KDM4 expression is
reduced during the activation of hepatic stellate cells and its knockdown induces the low expression of
miR-29, which may provide potential therapeutic approaches for liver fibrosis 27. Through recruiting
KDM4, SBP (S-ribonuclease binding protein) family protein (BRG1) activates β-catenin target genes and
may contribute to hepatic homeostasis and liver repair 28. These suggested that KDM4A might be
correlated with the mechanisms of CG.
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After the regulatory network was built, the top eight up-regulated lncRNAs and the top eight down-
regulated lncRNAs (including MEG3) were screened out as the key lncRNAs based on their degrees. MEG3
suppresses cell proliferation and promotes cell apoptosis in gallbladder cancer, and up-regulating MEG3
may be applied for inhibiting the deterioration of the tumor 29. MEG3 overexpression in mouse liver can
destabilize Shp mRNA and induce cholestatic liver injury via interacting with polypyrimidine tract-binding
protein 1 (PTBP1) 30. Therefore, MEG3 might also play roles in the development of CG.

Moreover, the miR-107-5p/miR-149-3p/miR-346-3p—MEG3 regulatory pairs and MEG3—
PABPC4/CEP131/NUMB1 co-expression pairs were found in the regulatory network. MiR-107 facilitates
hepatic lipid accumulation, causes hyperglycemia and damages glucose tolerance, and thus miR-107
plays important roles in hepatic lipid accumulation 31,32. MiR-149 is up-regulated in the HepG2 cells
receiving the treatment of long-chain fatty acid (FFA) and contributes to lipogenesis in the HepG2 cells
untreated with FFA, therefore, miR-149 serves as a promising target for treating non-alcoholic fatty liver
disease 33,34. MiR-346 expression in the peripheral blood mononuclear cells of primary biliary cirrhosis
patients is down-regulated in relative to the healthy controls, which may be related to the pathogenesis of
the disease 35. Zinc finger protein 664 (ZNF664) and PABPC4 variants have different correlations with the
high density liptein cholesterol (HDL-C) in adolescents and adults, which may be induced by
developmental changes or environmental differences 36. The rs4660293 in PABPC4 is related to serum
TCH, HDL-C, low-density lipoprotein cholesterol (LDL-C) and apolipoprotein A-I (ApoAI) levels in the Mulao
and Han populations, and a gender-specific correlation is found in these populations 37. CEP131
overexpression promotes cell proliferation and migration in hepatocellular carcinoma through activating
the phosphatidylinositol-3 kinase (PI3K)/AKT signaling pathway, therefore, CEP131 is an oncogene and a
candidate prognostic marker in the disease 38. Numb in bile in liver mediates cholesterol reabsorption,
and the G595D substitution of Numb damages NPC1 like intracellular cholesterol transporter 1 (NPC1L1)-
associated cholesterol reabsorption in humans with low blood LDL-C 39. These indicated that the miR-
107-5p/miR-149-3p/miR-346-3p—MEG3 and MEG3—PABPC4/CEP131/NUMB1 regulatory axises might be
involved in the pathogenesis of CG.

Conclusion
In conclusion, 181 DE-mRNAs and 33 DE-lncRNAs between model and normal groups were identified.
Besides, SCP2 and KDM4A might be implicated in the mechanisms of CG. Furthermore, the miR-107-
5p/miR-149-3p/miR-346-3p—MEG3 and MEG3—PABPC4/CEP131/NUMB1 regulatory axises might play
roles in the development and progression of CG. Nevertheless, these results still need to be validated by
rigorous experiments.

Abbreviations
CG
Cholesterol gallstone
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DE-mRNAs
differentially expressed mRNAs
DE-lncRNAs
differentially expressed lncRNAs
PPI
protein-protein interaction
ceRNA
competing endogenous RNA
lncRNA
long non-coding RNA
TCH
total cholesterol
TBA
total bile acid
TBL
total bilirubin
DBL
direct bilirubin
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Table 1. The top 15 Protein-protein interaction (PPI) network nodes according to Degree Centrality (DC),
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Gene_id DC Gene_id BC Gene_id CC

Cdc26 7 Ptprc 2964 Ptprc 0.032425
Ubr4 6 Ctss 2853 Ctss 0.032415

Kdm4a 5 Kdm4a 2569.333 Esr1 0.032196
Rps4x 5 Esr1 2448 Sptan1 0.032175
Fbxl8 5 Sptan1 2151 Mov10 0.031939
Spsb2 5 Triobp 1740 Kdm4a 0.031928
Ptprc 5 Cdc42bpa 1652 Il7r 0.031857
Klhl3 5 Ppp1r12c 1560 Triobp 0.031746
Keap1 5 Mov10 1560 Lyn 0.031746
Epn1 5 Psmd4 1504 Chpt1 0.031686
Uty 4 Dhx9 1467.667 Epn1 0.031626
Wac 4 Alkbh1 1384 Add3 0.031596

Psmd4 4 Cdc26 1188 Arf4 0.031496
Adsl 4 Adsl 1182 Rassf1 0.031466

Sptan1 4 Uty 988 Dhx9 0.031456

 

Figures
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Figure 1

The results of animal modeling and gallbladder bile lipid analysis. TCH, total cholesterol; TBA, total bile
acid; TBL, total bilirubin; DBL, direct bilirubin.
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Figure 2

The clustering heatmaps for the differentially expressed mRNAs and the differentially expressed
lncRNAs. In the sample strips, green and red separately represent model group and normal control (NC)
group.

Figure 3
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The enrichment results for the differentially expressed mRNAs (top 10 listed). (A) The enrichment results
for the up-regulated mRNAs; (B) The enrichment results for the down-regulated mRNAs. Red, green, blue,
and purple represent biological process terms, cellular component terms, molecular function terms, and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively.

Figure 4
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The protein-protein interaction network. Red and green circles separately represent up-regulated mRNAs
and down-regulated mRNAs. The node size represents the connectivity degree.

Figure 5

The enrichment results for the lncRNAs implicated in the co-expression pairs. Circles, triangles, squares,
and crosses represent Gene Ontology (GO)_biological process (BP) terms, GO_cellular component (CC)
terms, GO_molecular function (MF), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways,
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respectively. The color changing from red to blue indicates that the significant p-value decreases. The
bubble size represents the proportion of the genes involved in one term.

Figure 6

The competing endogenous RNA (ceRNA) network. Red and green separately represent up-regulation and
down-regulation. Circles, inverted triangles, and purple regular triangles represent mRNAs, lncRNAs, and
miRNAs, respectively. Dotted lines, fish scale lines, and the solid lines with arrows represent the lncRNA-
mRNA co-expression pairs, the miRNA-lncRNA regulatory pairs, and the miRNA-mRNA regulatory pairs,
respectively. The node size represents the connectivity degree.
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Figure 7

The enrichment results for up-regulated 4833418N02Rik, Gm8378, 1700020I14Rik, and Gm16973, and
down-regulated Gm16576, Gm27216, and Gm12655. Triangles and circles represent up-regulated
lncRNAs and down-regulated lncRNAs, respectively. The color changing from red to blue indicates that
the significant p-value decreases. The bubble size represents the proportion of the genes involved in one
term.


