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The safety of tunneling with shield tunnel boring machines largely depends on the tunnel face pressure, which is currently decided
by human operators empirically. Face pressure control is vulnerable to human misjudgment and human errors can cause severe
consequences, especially in difficult ground conditions. From a practical perspective, it is therefore beneficial to have a model
capable of predicting the tunnel face pressure given operation and the changing geology. In this paper, we propose such a model
based on deep learning. More specifically, a long short-term memory (LSTM) recurrent neural network is employed for tunnel
face pressure prediction. To correlate with PLC data, linear interpolation is employed to transform the borehole geological data
into sequential geological data according to the shield machine position. The slurry pressure in the excavation chamber (SPE) is
taken as the output in the case study of Nanning Metro, which is confronted with the clogging problem due to the mixed ground of
mudstone and round gravel. The LSTM-based SPE prediction model achieved an overall MAPE and RMSE of 3.83% and 10.3 kPa,
respectively, in mudstone rich ground conditions. Factors that influence the model, including different kinds and length of input

data and comparison with the traditional machine learning-based model, are also discussed.

1. Introduction

With the growing demand of urban tunneling, mechanized
tunneling has become increasingly popular due to its con-
struction efficiency and low ground disturbance [1, 2].
Compared to earth pressure balance shield (EPB), slurry
pressure balance shield (SPB) is preferred when tunneling in
the ground with considerable cobbles and gravels, a com-
mon mixed-ground condition encountered when tunneling
in southwestern China [3, 4].

Figure 1 shows the typical arrangement of an SPB
shield, with the SPB, which has two pressurized chambers:
the excavation chamber in the front is filled with bentonite
slurry to provide pressure to counterbalance the in-situ
pore pressure and lateral earth pressure. Behind the ex-
cavation chamber is the working chamber, where the
lower portion is filled with slurry and the top portion by
air (i.e., air cushion), enabling fine pressure adjustment in
the working chamber. Though separated by a submerged

wall, the two chambers are hydraulically connected
through an opening at the bottom and two communi-
cating pipes at the middle on the submerged wall. During
tunneling, the excavated formation soil falls into the
excavation chamber and is transported via piping to a
slurry treatment plant at the ground surface.
Maintaining proper chamber pressure is critical to the
success of SPB tunneling. This is realized manually by op-
erators who decide SPB operations based on experience as
well as the reported SPB data (e.g., advance rate, cutterhead
torque, and slurry flow rate). With due respect to the value of
a seasoned operator, such practice is not ideal when dealing
with the difficult ground (e.g., variable geology, mixed face
conditions, high clogging potential, and gas-richness), as the
relationship of the slurry pressure between the excavation
chamber and the working chamber may be ever-changing
[3]. Therefore, it would be beneficial to have a model pre-
dicting the pressure response and assisting tunneling by
suggesting operations in difficult ground conditions. Such a
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model would also be helpful for the automation driving of
the shield machine.

Efforts have been made in this regard, mostly using
machine learning- (ML-) based methods [5]. For example,
Yeh [6] applied an artificial neural network (ANN) for
automatic chamber pressure control in EPB tunneling. In his
model, to predict the chamber pressure at next time step (a
time step is when the programmable logic controller (PLC)
on the tunnel boring machine updates the data measure-
ments, and f and ¢ + 1 here refer to the current and the next
time step), p (t + 1), both the current and the next time step
EPB advance rate, AR (t) and AR (t + 1), screw conveyor
rotation speed, ws (t) and ws (¢ + 1), and current chamber
pressure p(t) are used. After training with 1000 samples, the
model is reported to achieve a root mean square error
(RMSE) of 13.3 kPa. However, the limited dataset yields high
model performance; the author suggested to accumulating
additional training examples to improve the prediction
accuracy. Similarly, Liu et al. [7] used, instead of ANN, the
least square support vector machine with inputs of AR (t), ws
(1), and p (). They proved that their method is capable of
predicting earth pressure with RMSE of 8.32kPa, where
there are 400 samples in the training set and 200 samples in
the test set. However, they did not address the issue of the
influence of geological information. For SPB tunneling,
Zhou et al. [8] used the Elman neural network, a variant of
ANN, for the prediction of air pressure in the working
chamber. Their model takes as inputs AR, total thrust force,
bentonite suspension level, cutterhead rotation speed, and
slurry feed line flow rate at the next time step, as well as the
current working chamber air pressure p,;, (¢). The average
value per ring in the section of Wuhan Metro Line 2 was
adopted to train and test the prediction model while the
dataset size is 350 for training and 150 for testing, respec-
tively. The relative error mean value (%) is carried out to
evaluate the model performance, which is 0.82% in the
training set and 0.55% in the test set. Although a low
predicted error was achieved in this model, the feasibility of
the model for instantaneous shield tunneling parameters is
not addressed. Moreover, the temporal effect is not con-
sidered and only one step back’s data is taken into account in
prediction.

On modern shields, data are recorded by the pro-
grammable logic controller (PLC) every 5~10 seconds (PLC
data for short), and the human operators make decisions
based on these instantaneous values. The high sampling
frequency of the PLC system brings about big data problems.
In order to provide better assistance for shield tunneling
construction, we harbor the idea that its more reasonable to
use big PLC data and geological information to establish the
prediction model as well as to consider a longer time effect.
None of these works accounted for the contribution of
geological conditions and big data problem and only con-
sidered the influence of machine operation on pressure. In
addition, they all failed to consider the longer term temporal
effect of the operation on chamber pressure variation, which
may be the reason behind their low performance. For ex-
ample, the choice of slurry flow rate would cause the change
of slurry density in both chambers, whose influence will
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likely last more than a one-time step forward. However,
considering a long temporal effect simply by adding more
inputs in the previous time steps to the model is intractable,
and a new learning method will have to be used.

In the last decade, some key breakthroughs have made
using deep learning to deal with big data problems both in
academia and industry [9, 10]. In this paper, we will utilize
the deep learning method recurrent neural network (RNN),
designed to deal with the time series regression problem and
capable of considering all historical information when
making new predictions [11]. Specifically, the long short-
term memory (LSTM) neural network (NN), a popular
variant of RNN [12], will be used. The LSTM-based pre-
diction model has been successfully employed in several
cases of time series prediction when considering historical
information, such as short wind speed [13], sea surface
temperature [14], soil moisture [15], animal behavior pattern
[16], traffic speed [17, 18], travel time [19], and rail transit
passenger flow [20], showing outstanding results. Recently,
Yang et al. [21] presented the LSTM network to predict the
periodic landslide displacement, which was found to
properly model the dynamic characteristics of landslides
than static models and make full use of the historical in-
formation. They employed the last 12 data with a sampling
interval of one month as input sequence. Liu et al. [22]
presented an LSTM-based model for predicting the vibra-
tion frequency in the structural health monitoring of ma-
chinery or civil structures, which conducted a time step of 6
and a sampling interval of 107%s. Their model yielded a
dataset with 225,000,000 simulated signals with a size of
1000 GB, which shows the advantages of LSTM network in
dealing with big data problems. Kim et al. [23] proposed
spatial partitioning of the hall and an occupancy prediction
model based on LSTM to solve the problem of its spatial
volume and irregular movements of visitors.

Gao et al. [11] proposed the real-time prediction of
tunneling parameters (e.g., the torque, the velocity, the
thrust, and chamber pressure) using traditional RNN,
LSTM, and gated recurrent unit (GRU) neural networks. The
time step of 5 was used in the prediction model but only 3000
samples were presented. Besides, the influence of geological
properties was not considered in their research. They did not
make clear the effect of input PLC data on the model
performance. From the abovementioned applications of the
LSTM neural network in the time series prediction problem,
we hypothesize it would be beneficial to apply a deep
learning-based LSTM network for the tunnel face pressure
prediction during SPB excavation.

Our main contributions can be summarized as follows:
firstly, we developed the SPE prediction model with mul-
tivariable tunneling parameters (not including the SPE)
together with the geological parameters at time #-1 to t-k as
inputs and the SPE at time t as output. Secondly, we in-
vestigated the model performance in the different ground
conditions, where the clogging problem induced great
fluctuations of SPE. To overcome the difficulties of SPE
prediction in mudstone rich areas, we developed a deep
learning model, which improved the prediction accuracy in
the mudstone rich areas. Thirdly, we explore the importance
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of the input PLC parameters and geological parameters on
SPE prediction and using 36% features to achieve a 95%
prediction accuracy measured by the R” in the proposed
model.

The remainder of the paper is organized as follows: in
Section 2, we introduce the recurrent neural network and,
specifically, the LSTM-based prediction model proposed in
this work. In Section 3, a case study of the Nanning Metro
Line 1 is presented for model demonstration. A discussion is
presented in Section 4 before presenting the conclusions in
Section 5.

2. Methodology

2.1. RNN, DEN, and LSTM. Figure 2 illustrates the typical
architecture of a deep feedforward network (DFN) and the
calculation of the output of the /" neuron in the I'" layer, alj.
There are two steps in the calculation of the neuron:
summation and activation. Summation relies on the weight
matrix that will be learned by the neural network, and ac-
tivation depends on the choice of the activation function.
Figure 3 shows four kinds of activation functions that are
commonly used.

Figure 4(a) shows the general structure of an RNN and
its unfolding in time. Compared to DFN, the major dif-
ference of RNN is the existence of a self-loop in its hidden
layer, which allows information in the previous time step to
be stored and used. In making predictions, the RNN takes
one input (x,) at a time, together with the maintained hidden
state (h,) to determine the current output (o,). The behavior
of RNN is controlled by its parameters (i.e., matrix U, V, W),
which are shared across all time steps and determined during
training.

However, both theoretical and empirical evidences
suggest that an RNN cannot store information for long and
struggles to learn long-term dependency [24, 25]. To this
end, an LSTM network with a cell state explicit memory unit
(Figure 4(b)) was proposed [12, 26]. The equipped cell state
can accumulate past information and has a forget mecha-
nism to control when to erase the past memory. In
Figure 5(a), we show the LSTM network’s unfolded struc-
ture, and the zoom-in view of the LSTM network unit is
given in Figure 5(b).

The complicated forward pass calculation of the LSTM
network is summarized in equation (1), where f,, i,, and
0, are the values of the forget, input, and output gates, all
bounded between 0 and 1. ¢ (-) and tanh(-) are the sigmoid
and hyperbolic tangent functions, respectively. © stands for
the element-wise multiplication:

3
7t = 0<Wf’ [7t—1’?t] + ?f)’
7 mofw [z ] )
— —
?t—a<W0.[ht_l,?t + bo>, N

©

<=7
Z)t =70,0 tanh(7,).

The hidden state of the current LSTM network unit ﬁt
hinges on both the input X, and the previous hidden state
W, ,, and is further regulated by tanh(C’,) to capture the
network memory, which can be either strong or weak (hence
the long- or short-term). ¢, is the current cell state and is
determined from both the previous state and the current
inputs.

The training of the LSTM network is the process of
determining W and b, the weight matrix and bias, of the

three gates,?t, 7t, and 3)“ respectively. In an LSTM net-
work, these weights are fixed across different time steps and
the training can be efficiently performed using the “back-
propagation through time” algorithm [12].

2.2. LSTM-Based Pressure Prediction in SPB Shield Tunneling.
The instantaneous slurry pressure in the excavation chamber
(SPE) has a significant effect on the tunneling face stability,
and its fluctuation is determined by both the machine op-
eration and ground condition. As the TBM shield tunneling
process is of high “inertia,” the operation of a limited history
should be considered. In Figure 6, we show the structure of
the LSTM network model proposed in this paper. Besides the
LSTM network layer, some additional layers are also used
and will be discussed below.

In the input layer, both the PLC data (i.e., SPB recorded
data) and the geology data are included. Such a sequence of
input vectors is passed into the LSTM network layer, where
the calculation described above is performed. The number of
neurons in the LSTM network layer is a hyperparameter of
the model, which will be determined via numerical
experiments.

The last output of the LSTM network layer is then fed to a
dropout layer. The idea of the dropout was first proposed to
reduce overfitting risk in training deep neural network [27].
By ignoring some neurons (i.e., set their output to zero)
during training at random with some probabilities, the
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F1GURE 2: Typical architecture of deep feedforward network with two hidden layers; X and ¥ are the inputs and outputs of DEN; wék is the
weight of the connection from the k™ neuron in the (I-1)" layer to the j neuron in the I’ layer; fis the activation function.

codependency among features can be broken and the net-
work is forced to learn more robustly. When dropout is
implemented, only a subportion of the neural network is
trained in each epoch; therefore, it acts as a special form of
model regularization. As the number of neurons in the
LSTM layer, the dropout probability (or ratio) is another
hyperparameter to be determined.

Using a batch normalization (BN) layer, the output of
the dropout layer in each mini-batch is standardized,
yielding them of zero mean and unit variance. Doing so will
help to speed up the training and reduce the model’s sen-
sitivity to poor network initialization [28].

Following the BN layer are two fully-connected dense
layers, implemented to gradually compress the output to a
lower dimension for final output. The activation function
used in these two dense layers is ReLU, which has the ad-
vantage of biological plausibility, better gradient propaga-
tion, and efficient computation [29].

The Glorot uniform initialization method [30] and the
Nadam optimization method [31] are employed to obtain
good generalization performance. Besides, early-stop [32] is
used to stop the training process with the monitor parameter
of the loss function in the validation set, which is beneficial
for preventing the overfitting problem.



Computational Intelligence and Neuroscience

2 L
3
&
s
Q
14
Net
| | | |
T T T T
-2 -1 0 1 2
1 fl)=x
2 4
f
-8
() (b)
. 2+
N -~
£ :
© s
Q
1L
Net 1 Net
1 1 1 1 1 1 1 1
T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
-1 4+
2X
-1 0forx<0
f=—"v P fw=%F
-1 4+ a1 xforx=0
-2 4
(c) (d)

FIGURE 3: Activation functions in DEN and LSTM network. (a) Linear. (b) Sigmoid. (c) Tanh. (d) ReLU.
RNN LSTM 0

o EFIIN 0 0

1 T J

FIGURE 4: (a) Recurrent neural network and its unfolding in time, where x, h, and O are, respectively, the input layer, hidden layer, and

output layer, while U, W, and V are the corresponding weight matrixes; (b) in contrast, the LSTM’s hidden layer has one more component, ¢,
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3. Case Study of Nanning Metro

In this study, data gathered from Bai-Cang-Ling Station to
the Railway Station (BR section, shown in Figure 7) of Metro
Line 1 in Nanning, China, is used [2]. The section consists of
806 rings in total, 1.209 km in length, and is excavated using
a Herrenknecht SPB with a diameter of 6.28 m. The exca-
vation was performed from December 2014 to June 2015.
The SPB shield machine was designed for the round
gravel condition, which is suitable for settlement control in
the urban areas. The ground conditions with round gravel
can be regarded as the normal ground condition in this

study. However, in the ground conditions with mudstone, as
shown in Figure 7, ring #120 to 220, and ring #283 to 470, the
SPB shield machine suffered from the problem of clogging,
where the tunneling efficiency was much lower than in the
normal ground conditions. Moreover, tunnel face passive
failure often occurred in the mudstone area, which is
harmful to settlement control. Consequently, we take the
mudstone area as difficult ground conditions.

3.1. Geological Data. A total of 36 boreholes were drilled in
the vicinity of the BR section as part of the geological site
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FIGURE 7: Geological profile of the BR section according to the geotechnical investigation report including the front view of shield machine

and clogging situations.

investigation. These boreholes provide a detailed record of
soil types, basic physical properties such as unit weight,
porosity, Atterberg limits, moisture content, and particle size
distribution, as well as in-situ groundwater table measure-
ments. Using these data, a geological report was prepared for
construction reference.

To obtain the geological information at each ring from
the sparse borehole (on average 23 rings between boreholes),
a linear interpolation is performed. Specifically, all boreholes
are projected onto a 2D vertical plane following the cen-
terline of the tunnel alignment, and the geological infor-
mation at each ring location is interpolated at the center
point of the ring based on the instantaneous positions of
SPB.

According to the report, the ground in this section
mainly consists of round gravel and mudstone, the latter of
which is generally located between ring #120 to 220 and ring
#283 to 470, as is shown in Figure 7. A particular problem
when tunneling with SPB in the clayey ground such as
mudstone is clogging [3]. Here, the excavated material may
clog the opening of the cutterhead or the submerged wall,
obstructing the smooth circulation of slurry. When clogging
occurs, it can lead to extreme pressure fluctuation in the
excavation chamber and result in increased tool wear and
reduced SPB advance rate [3, 33], impacting the safety of
excavation and the longevity of the machine. These extreme
pressure fluctuations make it difficult for slurry pressure
prediction.

3.2. PLC Data. To assist machine operation, modern SPBs
are often well instrumented to gather data ranging from
human operations (e.g., slurry feed/return line flow rate and
cutterhead rotation speed) to resulting machine reactions
(e.g., cutterhead torque, advance rate, and fluid pressures).
The SPB shield data are automatically recorded by a PLC
every 10 seconds.

In Figure 8, an example of the recorded data is plotted for
ring #174 and #640. The former one represents clogging
conditions while the latter one was in normal condition. We
plot the two hours of data for each ring, which includes the
measured slurry pressures in the excavation chamber (SPE)
and working chamber (SPW), SPB advance rate (AR),
cutterhead rotation speed (RS) and torque (TOR), and thrust
force (THR), as well as slurry flow rate (both the feed (FFR)
and return lines (RFR)) and density (only feed line (FSD) as
density sensor in return line did not work well at the latter
half of BR section). Since ring #321 is in the mudstone
ground, clogging is observed [3] and is characterized by an
SPE fluctuation as much as 300 kPa, indicating the possible
jamming of the submerged wall opening. The clogging re-
sults in that the relationship between SPE and SPW is ever-
changing in mudstone rich areas, which brings about great
difficulties for tunnel face stability control. As a result,
significant variation of machine advance rate, cutterhead
torque, thrust force, and return line slurry flow rate is ob-
served, which undermines the safety and efficiency of
tunneling. Meanwhile, ring #640 locates in the round gravel
ground, no clogging occurred, thus all these parameters are
in normal condition. More specifically, the SPE and SPW
change smoothness, as well as larger AR and smaller cut-
terhead torque are observed than in ring #174.

The SPE and SPW are measured by pressure sensors
located at the spring line of both chambers. We define the
differences between SPW and SPE as AP = SPW — SPE.
Normally, AP is in the range of 0 to 20 kPa (Figure 9(b)), but
when clogging occurs, the AP will be in the range of —50 to
—150kPa (Figure 9(a)).

3.3. LSTM Model Implementation

3.3.1. Model Input. There are two types of model inputs. On
the SPB side, the PLC has recoded the machine operation



and reaction during tunneling and will be used. Specifically,
measurements from eight parameters are used, including the
slurry pressure in the working chamber (SPW), machine
advance rate (AR), cutterhead torque (TOR) and rotation
speed (RS), total thrust force (THR), flow rates of the slurry
feed line (FFR) and return line (RFR), and slurry density in
the feed line (FSD). We employ the PLC data at all tunneling
periods, both including the excavation period (AR > 0) and
the stoppage period (AR=0). Table 1 summarizes the sta-
tistics for the PLC input and output parameters.

As for the geology, both the spring line tunnel buried
depth H, and groundwater table H,, interpolated from the
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borehole data are used. Besides, as the presence of mudstone
will severely influence the chamber pressure, the thickness of
the, H,,,, is also included, as shown in equation (2). These soil
parameters are chosen due to the calculation of the slurry
pressure in SPB tunneling [34]. The definition of these three
parameters is given in Figure 10(a) (mudstone formation
within the excavation envelope). The average values per ring
of geological data are demonstrated in Figure 10(b). We can
see that the H, is about 14 m to 22 m, while the H, is about
5m to 12m, and the H,, ranges from 0 to 6 m.

SPE' = f(H,, H,, H,,, SPW, AR, TOR, RS, THR, FFR, RFR, FSD|'~ 1~ 27"}, (2)

The selection of model input parameters is determined
by tunneling domain knowledge, and a further discussion on
their relative importance is given in Section 4.2.

3.3.2. Data Preprocessing. Data cleaning work is conducted
by removing the outliers of the tunneling data according to
the measurement range of different sensors. For example,
the maximum value of SPE is designed as 500 kPa, so the SPE
measured by the PLC system at time ¢ is larger than 500 kPa;
all the tunneling data at time t will be removed.

After the removal of abnormal data, data of 665 rings are
available, yielding over 1.48 million samples in total. To
remove the potential influence of various input scales, all
inputs are first normalized between 0 and 1, following

X _ X Xmin ( 3)

norm .
Xmax - Xmin

Before training, all data are segmented into sequences so
that they can be readily fed into the input layer. The sequence
length is another hyperparameter and it should neither be
too long, as this is burdensome computationally, nor too
short, as it limits the temporal dependency the model could
possibly discover. In our model, each segment consists of 18
consecutive measurements (i.e., three minutes), which will
be discussed in Section 4.1.

After segmentation, in total, 1,487,705 sequences (about
172 days data) are present, which are further randomly split
into three sets for training, validation, and testing by a
training ratio 7,7 € [0.1,0.9], each accounting for 7,
(1-7)/2, and (1 —#)/2 of the whole dataset, respectively.
The training of the LSTM neural network is conducted with
the help of Keras, a high-level neural network API, written in
Python capable of running on top of Tensor Flow, CNTK, or
Theano [35]. Four Nvidia GeForce GTX 1080 Ti graphics
cards are used in the hardware platform.

3.3.3. Hyperparameter Tuning. The proposed model has
four hyperparameters, including the number of neurons in
the LSTM layer, the batch size, the dropout ratio, and the
training ratio. They are used to tradeoft model’s empirical

performance with generalization ability and should be set
properly. Hyperparameters are determined using numerical
experiments.

Due to the large data size, the optimal hyperparameters
are determined in a stage-wise fashion: the optimal number
of neurons, batch size, drop-out ratio, and training ratio are
searched in sequence, based on the model performance on
the training and validation set. Two performance metrics are
used for model evaluation: the root mean square error
(RMSE) and the adjusted coefficient of determination (R?),
which are calculated as

RMSE = (4)
w2t (n-T)
DY A7
(5
Rz_l_(l—Rg)(N—l)
(N-p-1 "~

where Y, is the measured value, Y is the model prediction, N
is the sample size, and p is the input feature number. In
Figure 11, the model performances on the training and
validation set are plotted. After hyperparameter tuning, the
number of neurons in the LSTM of 225, the batch size of 216,
and the dropout ratio of 0.3, and the training ratio of 0.8 are
selected in our proposed model.

After the hyperparameter tuning, the proposed predic-
tion model structure is shown in Figure 12.

Figure 13(a) demonstrates the variations of loss function
values on the training set and validation set during the
training process of the proposed model. We can see that both
the training and validation loss decrease as the training
epochs increase and the difference between training and
validation loss is very small, which indicates the prediction
model gains good generalization performance. At the same
time, the R® increases as the training epochs increase
(Figure 13(b)). For 30 epochs, the R? value is approximately
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0.9, and for 113 epochs, it reaches 0.95 on the training set.
Finally, the model achieves an R value of 0.93 on the test set,
which is slightly smaller than the value on the training set of
0.95 and similar to the validation set of 0.93.

3.4. Results. In Figure 14, we plot the model predicted SPE
against the measured SPE, along the BR section, together
with the H,, distributions. For a better analysis of model
performance, the mean absolute percentage error (MAPE) is
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F1GURE 9: AP distributions of ring #174 and #640.
TaBLE 1: Statistics of output and input PLC data.
PLC parameter Unit Mean Max. Min. Std.
SPE (output) kPa 172.09 493.30 0 44.28
SPW (input) kPa 176.25 489.30 0 28.99
AR (input) mm/min 4.01 50 0 8.83
TOR (input) MN-'m 0.52 5.44 0 0.93
RS (input) rpm 0.39 2.07 0 0.55
THR (input) MN 9.49 27.96 0.02 5.93
FFR (input) m’/h 327.70 1482.73 0 352.73
RER (input) m*/h 337.51 1428.82 0 365.90
FSD (input) g/cm3 1.12 1.41 0 0.06
25
g
& 10 4
5 N
D-SPE B-AR
-SPW ®-Slurry feed line 0 . : j
@ wry ‘ 35 210 385 560 735
®-TOR @-Slurry return line (green) Ring #
@-THR
— H,
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FI1GURE 10: (a) Schematic diagram of SPB in the mixed ground of round gravel and mudstone in the BR section and the input parameters of
the prediction model; (b) average values per ring of tunnel buried depth, groundwater table, and mudstone thickness in excavation face.

presented as calculated in equation (6). We also defined the
mixed ground ratioA [3] as the ratio of H,, and cutterhead
diameter D to represent the impact of mudstone, as illus-
trated in equation (7). The overall RMSE and MAPE are

calculated to be 10.3kPa and 3.83%, respectively, and the
adjusted coefficient of determination is found to be R* = 0.93
in the test set, suggesting LSTM could model the evolution of
SPE with reasonable accuracy.
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FiGure 11: Hyperparameters including neuron number in the LSTM layer, batch size, dropout ratio, and time sequence length tuning
process considering the R,

Input LSTM  Dropout BN Dense  Dense Output

Nx18 x 11 225 225 225 50 25 1

FIGURE 12: Proposed prediction model structure; N x 18 x 11 means the dimensions of the input layer, where N is the sample number, 18
represents the time step (3 minutes), and 11 is the kinds of the input parameters. Integers such as 225 and 50 are the nodes in each layer, BN
is the batch normalization layer, and Dense is the fully-connected layer.
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R?=0.93, MAPE = 3.83%, RMSE = 10.3kPa

640 1.00
< 480 L 0.75
g 320 L 0.50 A
m
5 160 L 0.25
0 0
35 210 385 560 735
Ring #
—— Measured
—— Predicted
— A

FIGURE 14: Model prediction performance in the BR section. Measured and predicted SPE with the mudstone distribution along the tunnel

alignment in the BR section.

MAPE = i =Y, x 100 (6)
_Ni=1 i ’
H
A= 7
D (7)

In order to investigate the model performance in dif-
ferent ground conditions, we plot three typical rings with
different A, as shown in Figures 15(a)-15(c). For ring #174
with A = 0.5 (Figure 15(a)), it is observed that the model can
well capture the variation of SPE in most cases, only missing
some extreme fluctuations. These differences have led to
MAPE of 5.09% and RMSE of 22.9 kPa, which is larger than
the overall dataset MAPE and RMSE. In the ring #417 with
A =0.96 (Figure 15(b)), the model performs a little better
than in ring #174, which yields a MAPE of 4.89% and an
RMSE of 12.2 kPa, but still larger than those on the overall
dataset. In the ring #640 with A = 0 (Figure 15(c)), the model
performs much better than in ring #174 and #417 with a
MAPE of 1.71% and an RMSE of 4.2kPa. We also find
differences between the measured and predicted SPE in

Figure 15(c), but very small, thus the MAPE and RMSE are
much smaller than those in the overall dataset.

From these three typical rings, we believe that the model
performance is related to the mudstone distribution; there-
fore, we plot the MAPE and RMSE per ring along with the
mudstone distribution in Figures 16(a) and 16(b). It can be
seen that the large values of MAPE and RMSE are obtained
when A >0.15[3] in most cases. The correlation coeflicient
Pumape, between MAPE and A is 0.59 and ppyg, between
RMSE and A is 0.69, which indicates a strong relationship
between the model performance and mudstone distribution.
In Figures 16(c) and 16(d), we employ boxplot to show the
spread and centers of MAPE and RMSE with different ranges
of A. As previous research [3] suggested, when A >0.15,
clogging is easy to take place. Here, we divided the A into three
groups, A =0, A € (0,0.15], and A € (0.15,1], to investigate
the distributions of MAPE and RMSE. It can be found that
when A =0 and A € (0,0.15], the MAPE and RMSE have
similar median values and quartiles, that is, the model per-
formance has no differences when 0<A1<0.15. However,
when 0.15<A <1, the model performance becomes a litter
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FI1GURE 15: Three typical rings in BR section of the measured and predicted SPE; (a) ring #174 with half mudstone in tunnel face; (b) ring
#417 with almost full mudstone in tunnel face; and (c) ring #640 with no mudstone in tunnel face.
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FIGURE 16: Model performance with the mudstone distribution; (a) MAPE variation per ring with A and (b) RMSE variation per ring with.A

worse. The reason about the model performance change in
different ground condition may be the much larger fluctu-
ations of SPE than the input parameters. When tunneling in
mudstone dominated ground, the pressure is characterized by
higher magnitude (up to 500 kPa) and variation. The LSTM-
based deep learning model can capture the variation trend
according to the input parameter fluctuations but fail to
predict the extreme value of measured SPE. The prediction
error of extreme values of measured SPE has contributed to
large MAPE and RMSE.

As mentioned before, we use the tunneling data both in
the excavation period and the stoppage period. Here, we
explore the model performance in different construction
periods, as listed in Table 2. Very long stoppage time was
encountered in the BR section due to the Spring Festival
holiday and clogging. When clogging occurred, the opera-
tors had to stop the shield machine and tried some other
measures to eliminate clogging. Increasing the slurry cycle
time to remove the jammed mudstone was frequently
conducted. There is a little difference in the model perfor-
mance in the excavation period and stoppage period. When
the shield machine stopped, the SPW may be a good

predictor of SPE, thus smaller MAPE and RMSE are ob-
tained than that in the whole dataset.

4. Discussion

4.1. Comparison with RF, DFN, and SVR. To evaluate the
LSTM-based prediction model performance, we employ
three predictive models including the RF model [36], the
deep feedforward network (DEN [37]) model, and the SVR
model [38] which are for the SPE prediction here. At first, we
will compare the model performance of RF and LSTM in
considering time effect, and then we will compare the model
performance between the LSTM network and other models.
The RF, DEN, and SVR models employ the same training,
validation, and test dataset as the proposed LSTM model.
The input of these three models will be (N, time steps x
n_features) while the input of the LSTM model is
(N, time steps, n_features). The DFN model structure is
similar to the LSTM model, whose hypermeters are deter-
mined by the numerical experiments. The hyperparameters
of the RF and SVR models are obtained via a randomized
search and 3-fold cross-validation [39]. Figure 17 shows the
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TaBLE 2: LSTM-based deep learning model performance in the different construction periods.
Construction period Time ratio (%) MAPE (%) RMSE (kPa)
Excavation 27.7 4.05 12.9
Stoppage 72.3 3.74 9.3
Total 100 3.83 10.3
0.950 6.00
0.925 5.25
g
R2 0.900 450 &
<
=
0.875 3.75
0.850 3.00
0 3 9 12

Time step (min)

—- MAPE_LSTM
-x- MAPE_RF

—o— R2 LSTM
-H- R’_RF

FiGUure 17: Comparisons between the LSTM model and RF model with a different time step.

R* and MAPE of the LSTM model and RF model with
different time steps. It can be told that with the time step
increase, the LSTM model performance becomes better
while the RF model performance changes very little. Though
the RF model has a larger R* and a smaller MAPE with a time
step of one, the LSTM model can achieve an R* value of 0.934
when the time step is 18 (three-minute series). When
considering a long time effect, the R* value of the LSTM
model can be a litter larger and the MAPE of the LSTM
model becomes smaller, but longer time effect means more
computing resources. Therefore, we conduct a time step of
three minutes in the proposed LSTM prediction model.
With the comparisons between these two models with
different time steps, we can see that the LSTM model can
learn more information when considering a longer temporal
effect due to its recurrent structure and gating mechanisms.

Table 3 shows R” values in the test set and the overall
MAPE. The proposed LSTM-based SPE model shows the
best performances in both R*> and MAPE values. The RF
model performs a little worse than the proposed LSTM-
based model. As a kind of deep learning model, the DFN
model performance is worse than the LSTM model be-
cause the DFN model cannot consider the time effect. The
SVR model achieves the lowest R* value and the highest
MAPE value, which is unsuitable for SPE prediction with
great fluctuations in the difficult ground conditions. Also,
we consider the stacked LSTM network structure, men-
tioned in [40], but the overfitting problem limits the
applications of stacked LSTM network in the SPE pre-
diction with great fluctuations in the difficult ground
conditions.

4.2. Feature Importance. In this study, a total of 11 features
are selected as the model input, as shown in equation (2). To

evaluate the importance of each feature, we first proposed 22
scenarios by dropping or keeping one certain type of input
feature and compared the R’ values in the test set with the
proposed model, as shown in Figure 18.

By comparing the R” with the proposed model in Section
3.3, it can be found that by dropping only one feature, there
is a little diminution of R°. Among dropping one feature
scenarios, SPW, THR, and FSD are the most significant ones
with a decrement of R” about 0.03. When we only use one
feature to predict SPE, the model performs poorly in most
cases with an R’ value of around 0.25. However, the SPW,
H,, and H,, can achieve an R’ value larger than 0.6. Besides,
the THR also has an R’ value of around 0.5. The above-
mentioned rules can be explained by field experience during
the SPB shield tunneling. Based on the theoretical calcula-
tion of tunnel face stability, the H, and H,, are the main
reasons for soil pressure and water pressure. Meanwhile, the
SPW and the total thrust of cutterhead are related to R from
the perspective of the mechanical equilibrium of SPB;
therefore, these four kinds of input features have the greatest
impact on the prediction performance of SPE. Although the
model performance in different rings has a strong rela-
tionship with the mudstone distribution, the H,, has little
impact on model performance as H,, = 0 in the majority of
rings.

Based on the single feature importance on model per-
formance, we design additional scenarios to investigate
whether we can use fewer features to obtain a good pre-
diction model, as shown in Table 4. We define § = R?/R x
100 as a measure of the different input scenario perfor-
mances, where R? is the adjusted coefficient of determina-
tion, considering the ith input scenarios, and RZ = 0.934 is
obtained by the proposed model. As shown in Figure 18, the
SPW seems a good predictor for SPE, and only using SPW
can achieve 85% performance compared to our proposed
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TaBLE 3: R* and RMSE values of different predictive models.

Metrics\models LSTM

RF DFN SVR

0.934
3.83

R? in test set
Overall MAPE (%)

0.894
4.50

0.852
5.24

0.812
6.15

1.00

R? 050 -

0.25 4

“ 2 s

T oxor

All
SPW

mm Drop
mm Keep

AR
TOR
RS
THR
FFR
RFR
FSD

F1GURE 18: R’ value comparison considering single input features; drop means drop this feature, keep means only keep this feature, and all

means the proposed model.

TaBLE 4: Model performance with significant input features.

i Input scenarios R? 8 (%)
1 SPW 0.797 85

2 H, H, 0.712 76

3 H, H,, SPW 0.848 91

4 SPW, THR 0.865 93

5 H,, H,, SPW, THR 0.884 95
model. However, the relationship between SPE and SPW is ~ because it can reduce measurement and storage
ever-changing in mudstone-rich areas, as illustrated in  requirements.

Figure 8. Therefore, we believe it is better to employ more
features as model input to obtain good performance in
difficult ground conditions. We first use two kinds of
geological data, H, and H,, and find that the R is 0.712 and
0 is 76%, which means if we just take the buried depth and
underground water table as input to predict the SPE, the
LSTM model can achieve 76% performance of our proposed
model. Then, we add SPW to the input and obtain a fairly
good result with R” of 0.848, which reaches 91% performance
compared to our proposed model. Thirdly, only two kinds of
PLC data are employed, the SPW and THR. In the third
scenario, an R? of 0.865 is obtained, which is a little better
than the second scenario. Finally, we put the four significant
features into the model and acquire an R” of 0.884. That is,
we use 36% features and obtain a 95% performance of the
proposed model. Identifying significant features that have
affected prediction performance is crucial in that it provides
insight into how a model may be improved and supports
understanding of the shield tunneling process being mod-
eled. It is also important in terms of input feature selection

5. Conclusion

In this paper, a deep learning-based slurry pressure pre-
diction model for SPB has been established using the LSTM
network, which predicts the slurry pressure in the excavation
chamber with instantaneous tunneling parameters, and the
geological data. A case study of the Nanning Metro Tunnel
project is included for model demonstration. The conclu-
sions of the paper are as follows:

(1) It is suitable for the LSTM network to deal with big
data time series prediction problem due to its ability
to take the effect of history inputs into account. An
SPE prediction model has been put forward, which
can achieve a prediction performance of R” value of
0.934 in Nanning Metro.

(2) The overall MAPE and RMSE of SPE in this study are
3.83% and 10.3kPa, respectively. The prediction
model performs better in the round gravel ground
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than in the mudstone ground. The SPE prediction
model is capable of capturing the variation trend but
ignores some peak values in the high clogging po-
tential ground, especially in the mixed ground of
half-mudstone and half-round gravel.

(3) The influence of the LSTM-based SPE prediction
model is demonstrated. More specifically, the in-
fluences of input data have been evaluated, and the
results indicate that the mudstone, buried depth,
underground water table, SPW, and total thrust of
cutterhead have a larger effect on prediction accu-
racy. By feature selection, we can obtain 95% per-
formance of the proposed model with 36% features.
Besides, the time step influences the LSTM-based
model performance significantly compared with
other ML models (e.g., RF, DEN, and SVR), and the
LSTM-based deep learning model can learn more
information when considering a longer temporal
effect.

Despite the abovementioned achievements, however,
some further improvements should be made in the deep
learning-based prediction model. On the one hand, it is
crucial to adopt more kinds of geological data as the model
input, which seems more rewarding in actual shield tun-
neling construction. On the other hand, the output of this
model is the instantaneous SPE, which is indirect in contrast
with the settlement that the field engineers mainly concern
during shield tunneling construction. Meanwhile, the ad-
vance rate and attitude of the shield are also their interest as
pursuing tunneling efficiency and quality. Therefore, in the
following researches, the tunneling parameter prediction
model should consider more geological data, especially the
soil or rock properties, and employ more parameters as
output to provide better guidance for shield operators. If we
can build a cycle of prediction and control with the intel-
ligent methods, the tunneling construction would be
smarter.
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