Hindawi

Scientific Programming

Volume 2021, Article ID 8325417, 20 pages
https://doi.org/10.1155/2021/8325417

Research Article

Hindawi

An Empirical Assessment and Validation of Redundancy Metrics
Using Defect Density as Reliability Indicator

Dalila Amara ®,! Ezzeddine Fatnassi®,"? and Latifa Ben Arfa Rabai®"

Université de Tunis, Institut Supérieur De Gestion De Tunis, SMART Lab, Tunis, Tunisia

2Insitut des Hautes Etudes de Tunis, Tunis, Tunisia

Correspondence should be addressed to Dalila Amara; dalilaa.amara@gmail.com

Received 7 December 2019; Revised 22 December 2020; Accepted 30 January 2021; Published 19 February 2021

Academic Editor: Pfemek Brada

Copyright © 2021 Dalila Amara et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Software metrics which are language-dependent are proposed as quantitative measures to assess internal quality factors for both
method and class levels like cohesion and complexity. The external quality factors like reliability and maintainability are in general
predicted using different metrics of internal attributes. Literature review shows a lack of software metrics which are proposed for
reliability measurement and prediction. In this context, a suite of four semantic language-independent metrics was proposed by
Mili et al. (2014) to assess program redundancy using Shannon entropy measure. The main objective of these metrics is to monitor
program reliability. Despite their important purpose, they are manually computed and only theoretically validated. Therefore, this
paper aims to assess the redundancy metrics and empirically validate them as significant reliability indicators. As software
reliability is an external attribute that cannot be directly evaluated, we employ other measurable quality factors that represent
direct reflections of this attribute. Among these factors, defect density is widely used to measure and predict software reliability
based on software metrics. Therefore, a linear regression technique is used to show the usefulness of these metrics as significant
indicators of software defect density. A quantitative model is then proposed to predict software defect density based on re-
dundancy metrics in order to monitor software reliability.

1. Introduction

Software quality is one of the main concerns of all orga-
nizations using software systems. According to [1], it means
the capability of a software process to produce software
product with good quality. In both software process and
product, quality is described through a set of attributes or
characteristics that may be internal or external. Concerning
product quality, reliability is identified as one of the most
important software quality attributes. Different techniques
including fault prevention, removal, fault tolerance, and
fault forecasting are defined to produce reliable software
systems [2, 3]. Furthermore, literature shows that software
reliability like other external attributes is difficult to measure
directly [4-6]. Thus, it is generally measured and predicted
based on other quality attributes like defect density and
fault-proneness identified as direct reflections of reliability
[7]. These attributes are directly measurable through soft-
ware metrics and widely used to validate different suites

software metrics. Examples include complexity, cohesion,
defect density, and fault-proneness [6, 8-10].

Software metrics are quantitative measures used to make
evaluation, improvement, and prediction of different soft-
ware quality attributes [11-15]. Numerous software metrics
(or combination of them) are proposed to assess internal
attributes like complexity, cohesion and size, faults count,
and defect density. Concerning external attributes like re-
liability and maintainability, they are generally expressed
through internal attributes using the metrics proposed to
measure them. For instance, reliability can be reflected
through cohesion, coupling, and complexity using their
related metrics [5].

Continuous research studies focusing on the assessment
and prediction of software reliability are needed. Therefore, a
suite of four semantic metrics (language-independent) are
proposed in [16] to assess programs redundancy in order to
monitor their reliability. However, these metrics are theo-
retically presented and manually computed for basic

mailto:dalilaa.amara@gmail.com
https://orcid.org/0000-0001-9938-2384
https://orcid.org/0000-0002-9940-304X
https://orcid.org/0000-0002-5657-4682
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8325417

arithmetic operations. Furthermore, it is unclear how they
can be computed for more complex programs (functions
and classes). Using basic programs containing simple op-
erations, we cannot assume that the metrics are related to
programs’ redundancy. Thus, the authors need to perform
the empirical assessment based on more complex software
projects to convincingly show that the proposed metrics are
related to program redundancy. On the contrary, con-
cerning the hypothesis of these metrics as useful indicators
of software reliability, there are no concrete examples or
evidence of how these metrics can be linked to reliability.
Therefore, empirical studies focusing on concrete relation-
ship between these metrics and various reliability factors are
required.

The authors in [17, 18] focused on the empirical vali-
dation of the redundancy metrics as measures of programs
mutants’ rate. The manual assessment of these metrics for
basic arithmetic operations and certain types of computa-
tion-based programs represent the main limitation of these
studies.

Software metrics validation consists on identifying their
utility by studying the relationship between these metrics
and a quality attribute. The most used quality attributes as
reliability indicators are defect density and fault-proneness
[6, 8-10, 14, 19]. This relationship can be exploited to
propose a quantitative model helping to predict a quality
attribute through these metrics [9, 14].

To perform this validation, we used an empirical dataset
including the different metrics values and defect density
attribute. Metrics values are computed using a set of classes
taken from Apache projects. Defect density attribute is
obtained using the fault injection procedure on the same
classes. Using the linear regression technique, this rela-
tionship is exploited to propose a quantitative model that
reflects programs defect density through these metrics. This
model is also useful to predict defect density for further
datasets.

This paper is organized as follows: Section 2 presents the
related works and motivation. Section 3 discusses the
proposed empirical assessment approach. Section 4 outlines
the empirical validation of redundancy metrics as defect
density predictors. Section 5 analyses the experimental re-
sults. Conclusion and perspectives are reported in Section 6.

2. Related Works and Motivation

This section focuses on software reliability measurement,
software redundancy, and entropy concepts. Furthermore, it
describes the redundancy metrics suite.

2.1. Software Reliability. Software reliability is one of the
most important software quality attributes [11, 20]. It is
defined from two main sides:

(i) The mathematical side considers reliability as the
probability of failure-free operation for a specified
period of time in a specified environment [3].

(ii) The broader side considers reliability as the degree to
which a system, product, or component performs

Scientific Programming

specified functions under specified conditions for a
specified period of time [2]. It is described by
combining different subcharacteristics which are
maturity, availability, fault tolerance, and recover-
ability [3].

Different techniques, namely, fault prevention, fault
elimination, fault tolerance, and fault forecasting, are de-
fined to reflect software reliability [11, 21, 22]. Software
prevention mechanisms help to prevent faults; however, they
cannot guarantee the avoidance of all software faults [23].
Consequently, further protective mechanisms like fault re-
moval are required. For [22, 24], fault removal techniques
are important and critical for software reliability. However,
these techniques cannot guarantee the elimination of all
faults since they are based on software testing and formal
inspections which in turn have their problems. Besides, Mili
and Tchier [22] argued that while removing one fault, other
ones can appear. They also note that some faults cannot be
removed since they are not sensitized or masked (actual
states are equal to the stated ones), but these faults can cause
software failure. Consequently, fault tolerance techniques
and forecasting are required to enhance the performance of
fault avoidance and removal to reduce faults and to improve
reliability [23-25].

Bansyia et al. [19] noted that reliability is one of the high-
level quality attributes that are abstract concepts and cannot
be directly observed and measured. Different models based
on direct metrics are proposed to predict various external
quality attributes including reliability. Chidamber and
Kemerer (C&K) [19, 26-29] proposed a suite of metrics used
for reliability prediction. The proposed reliability prediction
models use software metrics (called independent variables)
to evaluate measurable reliability attributes (called depen-
dent variable) like defect density, fault-proneness, and defect
count [4, 8-10, 14, 30]. Mili et al. [16] also proposed a suite of
four metrics to monitor programs reliability based on their
redundancy.

2.2. Software Redundancy. Redundancy concept was firstly
used in hardware systems. It provides more physical copies
of components, i.e., processors and memories, to improve
their reliability [31]. Different forms of redundancy were
defined in software systems like information redundancy
(code redundancy), functional redundancy, and time re-
dundancy [22, 32, 33]:

(i) Information redundancy indicates the excess of
information expressed in Shannon bits used to
represent the state of a program [34].

(ii) Functional redundancy consists on using the same
program specification to generate different algo-
rithm or program versions performing the same
functionality [33].

(iii) Time redundancy represented by the time was used
to repeat the execution of the failed process [24, 31].

Literature review shows that redundancy can be used in
different applications. For instance, in 1976, redundancy was

Scientific Programming

exploited through N-version programming technique to
achieve reliable systems [35]. This technique was also used to
compare the probability of failure between single and
N-version systems. Furthermore, in [21], the authors noted
that redundancy is useful for self-checking programs. In
addition, in 2003, Lyu [25] showed that redundancy
structured in mutation testing is exploited through the in-
jection of faults in numerous program versions. Further-
more, in 2015, redundancy was also used to identify the
semantic similarity of code fragments [36].

The redundancy metrics proposed by Mili et al. [16, 22]
assess program information redundancy provided by the
different states of the program [34]. Program states are the
set of variables manipulating related data and reflect the
uncertainty about the outcome of these variables. To develop
a better understanding of the redundancy metrics, we
present the terminology related to program states:

(i) State space is defined by a set of values that the
declared program variables may take [16].

(ii) Initial state space is the state of the program
(function/class) represented by the input variables
[22].

(iii) Current state (actual state) is the set of states that the
program may be in at any given point [16, 37].

(iv) Final state space is the state of the program that is
produced by the output variables [22].

(v) State redundancy arises when the representation of
the program state allows a wider range of values
than needed to represent the different states [32].

These definitions are illustrated in the following
example:
Let the following program:

{

int s, x, result; //state space of the program
int s=2; //initial state of the program
s=s+1; //internal state 1 of the program
s=2 * s; //internal state 2 of the program
s=s%3; //internal state 3 of the program

s=s+12; //final state of the program

}

2.3. Entropy Concept. As mentioned, the redundancy metrics
were defined based on the Shannon entropy measure. Thus, for
a given random variable X that takes its values in a finite set, its
entropy is the function denoted by H(X) and defined by [34, 38]

H(X) ==} p(x)log(p(x)), (1)

x;€X

where p(x;) is the probability of the variable X = x;.

Intuitively, this function measures (in bits) the uncer-
tainty pertaining to the outcome of X and takes its maximum
value H(X)=1log,(N) when the probability distribution is
uniform. N is the cardinality of X.

2.4. Redundancy Metrics Suite. Redundancy metrics were
defined based on Shannon entropy measure of programs
code. Mili et al. [16] supported the hypothesis of uniform
probability distribution in order to perform the analytical
evaluation of these metrics. The authors in [16, 17] argued
that, for a random variable X that takes values of a 32-bit
integer, N equals 2> and log,(N) is then merely equal to
32 bits. They assumed the uniform probability throughout;
then, the entropy of any program variable is basically the
number of bits in that variable. The entropy of a given
variable X of value N is given as

H(X) = log, (N). ®)

Four metrics were defined which are initial state re-
dundancy, final state redundancy, functional redundancy,
and noninjectivity. To define these metrics, the following
assumptions were made by Mili et al. [16]:

(i) Probability distribution of the different variables is
uniform.

(ii) Variables are 32 bits size.

(iii) Metrics were computed at method level. These
methods manipulate input and output’ variables of
integer type. This means programs with input states
were represented by the declared variables and
output states were represented by the modified
states of these variables.

2.4.1. Initial and Final State Redundancy Metrics. We recall
that the state of a given program g is defined by its declared
variables. It is very common to declare the range of values
related to these variables much more than it is really re-
quired. For instance, the age of an employee is generally
declared as an integer variable type. However, only a re-
strict range, i.e., between 0 and 120, is really required. This
means that 7 bits are sufficient to store the age variable, but
the typical 32 bits size of an integer variable is used. The
unused bits measure the code redundancy. Thus, state
redundancy represents the gap between the declared state
and the actual state (really used) of this program
[16, 18, 22].

Mathematically, let S be the declared state of the program
(its variables) and o be its actual state (the actual values of
these variables), and then, the state redundancy is given by
the difference between their respective entropies denoted by
H(S) and H(o). The program moves from its initial states (o;)
to its final states (o), and then, two state redundancy
measures, namely, initial state redundancy (ISR) and final
state redundancy (FSR), were defined by the following
equations [18] (Table 1):

_H(S)-H(a)
ISR = —HE (3)
_H(S - H(oy) .
FSR S (4)

4
TaBLE 1: Entropy for basic data type.

Data type Entropy
Boolean 1
Byte 8
Char, short 16
Int, float 32
Double, long 64

(i) ISR is the gap between the declared state and the
initial state of the program.

(ii) FSR is the gap between the declared state and the
final state of the program.

(iil) H(S) is the entropy of the individual variable dec-
larations (number of bits required to store these
variables) of the program. For instance, for Java
language, the entropy of variable declarations of
basic data types is illustrated in Table 1.

(iv) o1 and orare, respectively, the initial and final actual
states of g.

(v) H(oy) and H(oy) are, respectively, the entropies of
these states.

(vi) To compute SR metric (ISR and FSR), each data type
has to be mapped to its width in bits.

Example 1. Consider the following program:

int x, y, z; //the program state is represented by x, y, and
z variables

{

int x=21; //initial state of x
int y=90; //initial state of y
z=(x+y)/2//final state

}

The declared space of this program is defined by three
integer variables: x, y, and z; hence, using the metrics def-
initions provided in [18], we have stated that H(S) = 96 bits
since 3 integer variables are used. Its initial state is defined by
three variables: x, y, and z. The input variables x and y
require, respectively, 5 and 7 bits to be stored. The output
variable z has a free range (32bits). Hence, H(oy)=
5+ 7+ 32 =44bits. For the final state, it is determined by the
value of the variable z; then, H(oy) = 6bits, and we find

96 — 44
ISR = = 0~54s
96
9% -6)
FSR= —— =0.93.
96

2.4.2. Functional Redundancy (FR) Metric. According to
[18], the functional redundancy metric is a function from
initial states to final states. It reflects how initial states are
mapped to final states. It also identifies how initial states are
affected by input data and how final states are projected onto

Scientific Programming

output data. Mathematically, for a program (function), FR is
the ratio of the output data delivered by g prorated to the
input data received by the program and given by

H(Y)

FR:m

(6)

(i) H(S) is the entropy of the program’ declared space
defined by the declared variables.

(ii) H(Y) is the output data delivered by the program.

(iii) H(X) is the entropy of input data passed through
parameters, global variables, and read statements.

Considering the same previous example, H (S) = 96 bits.
The random variable Y is defined by the integer variable z
represented by 32bits. Then, H (Y)=log, (2°%) = 32 bits.
H(X) is the input data received by g and represented by the
two integer variables x and y. Then, H(X) =2 * log, 2*H=
64, and FR is given by

32

FR=—=0.5. 7
64 @

2.4.3. Noninjectivity (NI). According to [28], a major source
of program (function) redundancy is its noninjectivity. An
injective function is a function whose value changes
whenever its argument does. A function is noninjective
when it maps several distinct arguments (initial states o)
into the same image (final states of). Mathematically, NI is
the conditional entropy of the initial state given the final
state: if we know the final state, how much uncertainty do we
have about the initial state? According to [34], this condi-
tional entropy equals the difference between entropies of
these two states. Hence, NI was defined as

_ H(ol/af) H(oy) - H(af)

Hey H@y Y

Using the previous example, NI is equal to 44 -6/
44 =0.86. A sum up of the presented metrics is illustrated in
Table 2.

2.5. Motivation and Objective. As mentioned, the main
objective of redundancy metrics defined in [16] is to monitor
product reliability. This makes them important measures
since software reliability is one of the most important quality
attributes. However, the different metrics composing this
suite are theoretically presented and manually computed for
basic arithmetic operations. Furthermore, it is unclear how
they can be computed for more complex programs. With
very simple operation programs, we cannot assume that the
metrics are related to programs’ redundancy. Therefore, we
need to perform the empirical assessment based on more
complex software programs (functions/classes) to con-
vincingly show that the proposed metrics are related to
program redundancy. In addition, there are no concrete
examples or evidence of how these metrics can be linked to
reliability. Thus, empirical studies focusing on concrete

Scientific Programming

TABLE 2: Sum up of redundancy metrics.

Metric Purpose

Equation

Metric hypothesis

Measures the redundancy (excess bits) of the
program’ initial state
Measures the redundancy (excess bits) of the

ISR

FSR program’ final state
FR Measures redundancy of the program
functionality
NI Mapping between initial states to the same
final ones

H(S)~ H(o,)/H(S)

H(Y)/H(X)

H(S) - H(0,)/H(S)

The proposed redundancy metrics can be exploited to
monitor software reliability

H(o,) - H(af)/H(crl)

relationship between these metrics and various reliability
factors are required. Given these statements, the main ob-
jectives of this study can be stated into two parts:

(i) First, we aim to propose an approach to empirically
assess the mentioned redundancy metrics. Solving
this issue consists first on considering complex
programs taken from real-world software projects
rather than be limited to basic operations and certain
types of computation-based programs [29, 39]. The
basic idea is to generate an empirical database in-
cluding for each program (function/class) the values
of the redundancy metrics.

(ii) Second, we aim to propose an empirical validation of
the proposed metrics as reliability indicators by
considering defect density attribute as direct re-
flection of software reliability [5, 7]. The basic idea is
to exploit the generated database to study the rela-
tionship between the metrics and defect density
using regression techniques [8, 28, 40].

Therefore, we propose in Section 3 an empirical as-
sessment approach to calculate the different metrics. In
addition, we present in Section 4 an empirical validation
approach to demonstrate the concrete relationship between
these metrics and software reliability.

3. Empirical Assessment of Entropy-Based
Redundancy Metrics

The proposed redundancy metrics were computed manually in
[16] at function level for simple examples and for specific data
type and values, i.e., greatest common division of two integer
variables. Thus, in this paper, we will consider more complex
examples taken from real-world software projects to auto-
matically compute these metrics at the class level since software
projects are organized in classes. Three main steps are used:

(1) Selection of software classes: in this step, we have
selected different classes from which the metrics will
be generated.

(2) Compute redundancy metrics: once the different
classes are selected, we have used appropriate scripts
to compute these metrics.

(3) Construct the database: the implementation of the
two previous steps helps to obtain an empirical
database that contains for each class, the values of the

different metrics. The presented steps will be detailed
in the following sections.

3.1. Selection of Software Classes. According to Radjenovi¢
etal. [29] and Kumar et al. [39], software repositories used to
validate most of software metrics are of three main types:

(i) Private/commercial repositories: this type of re-
positories was used and maintained by companies
within the organizational use. In these repositories,
source code and other related information like fault
datasets are not available [29].

(ii) Partially public repositories: in these repositories,
Radjenovi¢ et al. [29] noted that only the product
source code and the related software faults are
available, whereas the values of software metrics are
usually unavailable so, they need to be calculated
from the available source code and then mapped
with their fault information. Regarding to [29], the
mapping may lead to biased results.

(iii) Public repositories: in these repositories, the values
of software metrics and other information like
software faults are usually available, and this justifies
their uses in many research projects [27]. Some
examples of these public repositories include PRe-
dictOr Models In Software Engineering (PROMISE
(http://promise.site.uottawa.ca/SERepository/
datasets-page.html)) repository of NASA projects,
Software-artifact Infrastructure Repository (SIR
(http://sir.csc.ncsu.edu/portal/index.php)), and Bug
Prediction Dataset (BPD (http://bug.inf.usi.ch/
index.php)).

To perform the empirical assessment of redundancy
metrics, we have focused on the repository containing
programs of input/output type as explained above [16].

Given that computing redundancy metrics requires the
availability of the source code, private and commercial re-
positories were not considered since the programs’ source
codes are not available. Therefore, we have focused on
partially public and public repositories. Literature review
[7, 41] shows that most of studies focused on metrics val-
idation have used programs (classes or methods) taken from
NASA projects like CM1, JM1, and KC1. In this context, the
authors in [40] showed that, from 64 metrics’ validation
studies performed from 1991 to 2013, NASA projects were

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://sir.csc.ncsu.edu/portal/index.php
http://bug.inf.usi.ch/index.php
http://bug.inf.usi.ch/index.php

the most used (60%), followed by PROMISE repository
datasets (15%) and other open-source projects (12%).
In our research project, we have proceeded as follows:

(1) First, we have used NASA then PROMISE projects
for which different information are available in-
cluding the values of software metrics. Furthermore,
faults datasets of these projects are also available; in
addition, for each class, we can identify if it is fault-
free or not (true/false). However, we have decided to
not use this repository as we have identified the
unavailability of the source code mandatory to our
study as we need to compute the redundancy metrics
using this code.

(2) Next, we have focused on a set of open-source
projects, some of them are not of input/output type
like SIR' velocity and Camel projects. Others do not
include source code such as BPD repository. Liter-
ature review [39] shows that Apache Common li-
brary including different java projects with available
source code of input/output type was also used to
validate software metrics. Besides, in this repository,
the unit tests related to the classes are available.

Consequently, to select the needed repository, we have
considered Apache Commons products library which re-
spects all our requirements and hypothesis. Then, from the
selected repository, we have considered a set 43 classes (see
Table 3) containing functions manipulating variables in the
input and the output state.

A description of each class and its related function is
available at http://commons.apache.org/proper/commons-
math/javadocs/api-3.6/.

3.2. Automatic Metrics Computing and Database
Construction. The process we used to compute redundancy
metrics (ISR, FSR, FR and NI) is summarized in Figure 1.

Figure 1 presents the different steps used to compute
redundancy metrics. These steps are the same for the dif-
ferent selected classes presented in Table 3. To compute these
metrics, we have used the Eclipse development environment
(version: Neon.3 Release (4.6.3)). As the selected source
code, we have used to compute these metrics organized in
classes, and we present under here how redundancy metrics
are computed at the class level. The computing process was
developed using the following steps.

3.2.1. Compute Program State Space H(S). To compute the
state space H(S), we have first identified for each class the
input/output functions manipulating the different states of
the class variables. Next, we have computed H(S) as the
maximum entropy of all function variables (input/output).
For a better understanding of H(S) and the other metrics
computing, an example of the used script is illustrated in
Figure 2.

In Figure 2, H(S) is computed as shown in line 33, and its
value is equated with the maximum entropy of the input and
output variables used in lines 24 to 31. The input data related

Scientific Programming

to these variables are randomly generated as shown in lines
34 to 36.

3.2.2. Compute H(o;) and ISR Metric. H(o;) reflects the
initial entropy of the input variables and the maximum
entropy of the output ones. To compute the entropy of a
variable (exact number of the used bits) presented by
equation (2), a Java function called sizeOfBits is used. More
details about this function are presented in Appendix A (see
Figure 3). H(o;) is computed as illustrated in lines 48 and 49
of Figure 2. Using equation (3), ISR metric value is deduced
as illustrated in line 64 of Figure 2.

3.2.3. Compute H(os) and FSR Metric. As mentioned, H(oy)
reflects the entropy of the variables used to produce the
output ones. The sizeOfBits function is used to provide their
values as illustrated in lines 76, 78, and 79 of Figure 2. Using
equation (4), the FSR metric value is deduced as illustrated in
line 81 of Figure 2.

3.2.4. Compute FR and NI Metrics. To compute FR and NI
metrics, we have used equations (6) and (8). We have first
computed H(Y) and H(X) values as shown in lines 84 and 85
of Figure 2. Then, FR and NI values are deduced as illustrated
in lines 86 and 88 of Figure 2.

3.2.5. Generate Metrics Values to Excel Files. We have noted
that the metrics values were generated using 1000 iterations
to test different possibilities of random inputs as shown in
lines 19 and 20 of Figure 2. To store the values of these
metrics, we have generated them in .xsl files as shown in
lines 16 and 91. Then, we have computed for each class the
average of the 1000 generated metrics values to construct
the final database. A part of this database is illustrated in
Figure 4.

The presented process can be also used to compute the
redundancy metrics at a function level. Thus, an example of
the used script is illustrated in Figure 5 of Appendix A. The
source of the metrics generator is available at https://gitlab.
com/dalilaamara/redundancymetrics.

4. Empirical Validation of Semantic Metrics as
Reliability Indicators

According to [5], a valid metric is one whose values are
statistically associated with a quality attribute. The empirical
validation aims not only to identify the utility of a proposed
metric and to make comparisons with other metrics but also
to identify which metrics are not useful. Reliability can be
reflected by other measurable attributes including defect
density and fault-proneness. In our research, we have fo-
cused on the defect density attribute as fault-proneness
attribute indicates whether a class contains faults (1) or not
(0), and in our research, all classes in the constructed re-
dundancy database contain faults.

http://commons.apache.org/proper/commons-math/javadocs/api-3.6/
http://commons.apache.org/proper/commons-math/javadocs/api-3.6/
https://gitlab.com/dalilaamara/redundancymetrics
https://gitlab.com/dalilaamara/redundancymetrics

Scientific Programming 7
TABLE 3: Selected software classes.
Class name
Beta EuclideanDistance GammaDistribution
Bessel] BinomialDistribution GeometricDistribution
Gamma Primes LogisticDistribution
Erf SmallPrimes LevyDistribution
Vector2D PollarRho LaplaceDistribution
BetaDistribution MathUtils WeibullDistribution
CombinatoricUtils FastMathCalc FDistribution
Covariance Precision ParetoDistribution
ArithmeticUtils Gaussian PolynomialFunction
StatUtils NormalDistribution Skewness
CanberraDistance SimpleRegression Variance
ChebyshevDistance SpearmansCorrelation PolynomialsUtils
EarthMoversDistance PearsonsCorrelation Percentile
ManhattanDistance ChiSquareDistribution StepFunction
DfpDec
<ISR> <NI>
* *
<Class> <H(S)> <Initial entropy>
et
4 J entropies>
<Final entropy>
v <Mapping between
input and output
_
A 4 ¥
<FSR> <FR>

FIGURE 1: Metrics computing process.

4.1. Formulation of Research Hypotheses. To study the re-
lationship between redundancy metrics and software
defect density attribute, the following hypotheses are
designed:

(i) HI: ISR redundancy metric is significant as software
defect density indicator.

(ii) H2: FR redundancy metric is significant as software
defect density indicator.

(iii) H3: NI redundancy metric is significant as software
defect density indicator.

(iv) H4: ISR, FR, and NI (or combination of them) are
jointly indicators of software defect density.

Through these hypotheses, we aim to verify if a rela-
tionship between the different metrics and defect density
attribute exists. Once, a significant correlation between re-
dundancy metrics and the defect density is identified, and it
can be stated that these metrics are useful to monitor
software reliability.

4.2. Software Defect Density. Defect density (DD) was de-
fined as the number of defects divided by thousand lines of a
delivered code [5, 42, 43]. It is given as follows [5, 7]:

number of defects (defect count)

DD =
product size (KLOC)

. ©)

1@
11
12
13
14
15
16
17
18
19
28

24
25
26
27
28
29
38
31

33
34
35
36

48
49

64

67
68
69
78
71

76
78
79
a8
81

84
85
86

88
89
98
91
92
a3
94

Scientific Programming

public class TesteErf {
public static void main(String[] args) {
Erf myclasserf = new Erf();

BufferedWriter writer = null;
try {

writer = new BufferedWriter(new FileWriter("ManipErf18.xls
} catch (IOException el) {

Random rand = new Random();
for(int s=8; s<1888; s++){

double x;

double reserf;

double reserfc;

double x1;

double x2;

double reserfi;

double reserfInv;
double reserfclnv;

int HS=(64*8);
x=rand.nextDouble()+1;
x1=rand.nextDouble()+1;
x2=rand.nextDouble()+1;

int HSigmal =sizeOfBits(x)+size0fBits(x1)+
sizeOfBits(x2)+(5%64);

float ISR=(float)(H5-HSigmal)/HS;

reserf = myclasserf.erf(x);

reserfc = myclasserf.erfc(x);
reserfl = myclasserf.erf(x1, x2);
reserfInv = myclasserf.erfInv(x);
reserfcInv = myclasserf.erfcInv(x);

int HSigmaf = sizeOfBits(reserf) + sizeOfBits(reserfc)
+ sizeOfBits(reserfl)+ sizeOfBits(reserfInv)+
+ sizeOfBits(reserfcInv);

float FSR=(float)(HS-HSigmaf)/HS;:

int HY = 5 * 64;

int HX = 64 * 6;

float FR = (float) HY / HX;

float NI = (float) (HSigmal - HSigmaf) / HSigmalj;
try {

writer.write(ISR + "\t" + FSR + "\t" + FR + "\t" + NI + "\n");
} catch (Exception e) {

e.printStackTrace();
¥

FIGURE 2: Example of metrics computing for Erf class.

Scientific Programming

137& public static int sizeOfBits(double value)

138

139 {

140

141 long binary = Double.doubleTolLongBits(value);
142 String strBinary = Long.toBinaryString(binary);
143 System.out.println(strBinary);

144

145 return strBinary.length();

146 }

149= public static int sizeOfBits(int value)
150

151 {

152

153

154 int count = @;

155 while (value > @) {
156 count++;

157 value = value >> 1;
158 }

159

FIGURE 3: Part of the used script to compute the used entropy.

1| Class ISR FSR FR NI

2 | Beta 0.03125 | 0.57179 | 0.38461 | 0.55797
3 | Bessel] 0.0781 0.1495 0.7 0.0774
4 | Gamma 0.03376 | 0.74344 | 0.6285 0.7344
5 | Erf 0.0117 0.6397 0.8333 0.6324
6 | Vector2D 0.0125 0.6125 0.75 0.6075
7 | BetaDistribution 0.0078 0.7578 1 0.7559
8 | CombinatoricUtils 0.1525 0.9761 0.9797 0.9718
9 | Covariance 0.0627 0.1102 0.025 0.0508

FIGURE 4: Example of the generated metrics in .xs/ file.

34 Random rand = new Random(); 63 f7******Compute Tinal state space **sesssssssssssses
35 for(int s=08; s<1000; s++) 64
A 65 int HSigmaf= sizeOfBits(reserf);
37 66
38 //****List of program variables **x®wsxsxsxs 67 //******Compute final state redundancy [F*****
39 68
ﬁ double x; 69 float FSR=(float)(HS-HSigmaf)/HS;
—_ 78
42 double reserf;
43 71 f/******Compute functional redundancy *********xxxxssss:
aa [[rEssrrssennnrsresCompute State Space SS**FEx*=x 72
a5 73 int HX=64;
46 int Hs=2*64; 74
47 75 int Hy=64;
48 //******input variables of the method********++++x 76
49 77 float FR =(float)HY/HX;
50 x=rand.nextDouble()+1; 78
51 79 //******Compute final state space of the program*******:
|] [/ /*¥*****Compute initial state space of the method* 80 Llint NI=HSigmal-HSigmaf;.
53 81
54 int HSigmal=sizeOfBits(x)+64; 82 float NI=(float)(HSigmal-HSigmaf)/HSigmal;
55 83 |
56 //******Compute initial state redundancy ********* 84 try {
57 85 //create a temporary file
58 float ISR=(float)(HS-HSigmal)/HS; 86
59 37 Writer Write (TSRE™\E™HESRA™\E™+FRE™\E™4NT+™\n") 3
60 FF***Function call==ses
51 reserfzerfe(x);
(®)

FIGURE 5: Metrics computing at function level.

10

(i) The product size is in general measured in terms of
thousand lines of code (KLOC) [42, 43].

(ii) According to [5], defect counts can include post-
release failures, residual faults (all faults discovered
after release), all known faults, and the set of faults
discovered after some arbitrary fixed points in the
software life cycle (after unit testing).

Once the quality attribute is identified, the next step
consists on studying the existence of a relationship between
this attribute as dependent variable and the different re-
dundancy metrics as independent variables.

4.3. Empirical Validation Approach. A software metric shall
be validated [26] as the validation helps to identify the best
metrics providing the required information leading to the
metrics’ purpose [14].

Different studies [4, 19, 26] detail various software
metric suites’ validation. Table 4 shows a comparison be-
tween the common validation approaches based on their
objectives, process validation, and used repositories.

As illustrated in Table 4, different studies were proposed
to validate software metrics as appropriate indicators of
various quality factors like defect density, maintainability,
and fault-proneness. We have stated the following:

(i) The different validation approaches were based on
three main steps: dataset collection, dataset analysis
and models building, and models’ performance
evaluation.

(ii) The data related to software metrics and the con-
sidered quality attribute to validate them are avail-
able in public datasets including NASA projects.

Therefore, our proposed methodology to validate re-
dundancy metrics consists of the following steps:

(1) First, we have collected data related to dependent
and independent variables represented, respectively,
by defect density and redundancy metrics. As
explained above, redundancy metrics are computed
for a set of classes selected from Commons Apache
library. In these classes, the defect density was not
available. Thus, we have used defect injection pro-
cedure to compute this attribute for the same used
classes.

(2) Second, we have studied the independent and joint
impact of the different redundancy metrics on
software defect density using data analysis tools.

(3) Third, we have proposed a defect density predictive
model based on redundancy metrics.

4.4. Defect Density Data Collection. Based on equation (9),
defect density is derived from the number of faults in the
source code divided by thousands of line of code (KLOC)
from the classes presented in Table 3.

Scientific Programming

4.4.1. KLOC Computing. To compute the KLOC measure,
we have used the Metrics tool [47]. Within Eclipse envi-
ronment, this tool provides for each of the used classes the
number of lines of code illustrated in Figure 6.

4.4.2. Defect Count Computing. As mentioned, we have used
the Apache commons Math library including only the source
code and the associated unit tests. Thus, we used fault in-
jection procedure to obtain the values of this measure. One
of the well-known fault injection techniques is mutation
testing consisting on automatically seeding into each class’
code a number of faults (or mutations). The new classes are
called mutants. Then, tests are run, and two possible cases
are presented [48, 49]:

(i) If tests fail: the injected fault is detected (or killed)
since the test gives different results between the
original program (function in the class) and the
faulty one.

(ii) If tests pass: the injected fault is masked (or lived)
since the original program and the faulty one
(mutant) give the same results when tests are run.

Fault injection procedure is performed based on
automated mutation tools like MuJava, MuEclipse,
PiTest, and much more [50]. In our research work, PiTest
(https://pitest.org/) is used within Maven (https://maven.
apache.org/) environment. To inject faults, we have
proceeded as follows:

(i) All possible faults which are active by default in
PiTest are injected in the considered classes [50].
These faults include the replacement of binary
arithmetic operations by another ones (+ by -, - by +,
*by/,/ by *, and % by *), replacement of increments
with decrements and vice versa, etc.

(ii) PiTest runs, and related reports are generated.
PitReport indicates for each function of the different
classes the type and the location of the injected fault.
Moreover, it indicates whether the injected fault is
detected or masked. An example of PitReport of Erf
class is illustrated, respectively, in Figures 7(a) and
7(b). Further details of fault injection process are
presented in Appendix B.

Figures 7(a) indicates the line coverage and mutation
coverage for each class. This measure represents the rate of
the source code executed by a program when a test suite is
launched. For Figure 7(b), it presents a report of the injected
faults in the Erf class especially for erf (double, double)
function. The green lines indicate that the injected fault is
detected, whereas the pink one indicates that it is masked.
Based on these reports, the number of the injected faults is
used to compute defect density measure for each class. The
final structure of the obtained database contains for each
class the values of the four metrics and the density attribute.
This database is available at https://gitlab.com/dalilaamara/
redundancymetrics/.

https://pitest.org/
https://maven.apache.org/
https://maven.apache.org/
https://gitlab.com/dalilaamara/redundancymetrics/
https://gitlab.com/dalilaamara/redundancymetrics/

Scientific Programming

11

TaBLE 4: Common software metrics’ validation approaches.

Approach Objective and used repositories Common steps of the validation process
(1) Collect data related to software metrics and the
considered quality attribute (faults found during
tests, maintenance effort, etc); historical data related
Validate different metrics like C&K, MOOD, and to the selected quality attribute are available in the
QMOOD suites as indicators of fault-proneness used repository
Cited in attribute (2) Study the relationship between the two variables

[4, 12, 13, 26, 28, 39, 44]

The used data were extracted from different
repositories including graphical user interface (GUI),
Bugzilla Database, Mozilla Rhino open-source
project, and NASA projects

(software metrics and the quality attribute) based on
different machine learning techniques like random

forest, Naive Bayes, logistic regression, decision tree,
and neural network

(3) Evaluate results based on different performance
evaluation measures like accuracy, F-measure, and

precision

Cited in [7, 10, 42, 45]

Validate different software metrics including size as
indicators of defect density attribute
The data collected from the PROMISE and other
public datasets

(1) Historical data related to software metrics and
static code attributes (size and number of methods)
were collected from these projects

(2) Defect density attribute was predicted using the
simple and multiple linear regression techniques
applied to static metrics

(3) Results were evaluated based on R-squared
performance evaluation measure

Cited in [46]

C&K metrics were used to predict software
maintainability attribute; the number of lines
changed per class was considered as a criterion in
determining the maintainability of a class
User interface system (UIMS) and quality evaluation
system (QUES) were used to extract the needed
information (number of lines changed per class)

(1) Historical data of three years related to the
number of lines changed per class in the selected
software systems was used; also, the C&K metrics
were extracted using metrics extraction tools

(2) Neurogenetic algorithm (hybrid approach of
neural network and genetic algorithm) was applied to
estimate the maintainability attribute based on these
metrics

(3) The performance of this technique was evaluated
using the mean absolute error (MAE), mean absolute
relative error (MARE), root mean square error
(RMSE), and standard error of the mean (SEM)
evaluation measures

[E Metrics - common-mathosp - Num... 52 |13 Call Hierarchy = O

o= 00 W41 <

Metric

> Number of Static Methods (avg/max per type)

> Number of Interfaces (avg/max per packageFr:

v Total Lines of Code

v java
» org.isg.faultprone
v org.is.osp

FastMathLiteralArrays.java
FastMath.java
MathArrays.java
MillerUpdatingRegression.java
Complex.java

Total Mean *
1215 3,009
2 1

64335

64335

46329

18006

6103

2301

894

T

424

I Erf.java

418 |

ArithmeticUtils.java
FastMathCalc.java
Besselljava

386
381
375

FiGure 6: Example of LOC computing.

12

Pit Test Coverage Report
Package Summary

org.apache.commons.math3.special

Number of Classes
4 96%

Line Coverage Mutation Coverage
634/661 80% 896/1123

Breakdown by Class

Name

Line Coverage

Mutation Coverage

Besselljava 95% 247/261 65% 241/368
Beta java 94% 136/144 88% 233/264
I Erfjava 99% 84/85 86% 143/167
Gamma java 98% 167/171 86% 279/324

Report generated by PIT 1.1.10
(a)

Scientific Programming

114 public static double erf(double x1, double x2) {
1152 if(x1 > x2) {

116 2 return -erf(x2, x1);

117 }

118

1196 return

120 x1 < -X_CRIT ?

121 x2 < 0.0 ?

1222 erfc(-x2) - erfc(-x1) :
1235 erf(x2) - erf(x1) :
124 x2 > X_CRIT & x1 > 0.0 ?
1251 erfc(x1l) - erfc(x2) :
126 1 erf(x2) - erf(xl);

127 }

(®)

FiGure 7: (a) Example of PitReport; (b) example of injected faults in the Erf class.

4.5. Redundancy Metrics Data Collection. We have presented
in the previous section the procedure to inject faults into the
source code of the different selected classes from the
Commons Math library. To test whether the metrics values
can be affected by the injected faults, we have computed the
redundancy metrics after the fault injection process. Thus,
we have adopted the following steps (Table 5):

(i) Step 1: we have selected five mutators, namely,
Conditionals Boundary (Mut 1), Negate condi-
tionals (Mut 2), Return values (Mut 3), Inverts
negatives (Mut 4), and Math (Mut 5) as different
mutators were active by default in the PiTest tool
used for fault injection. A brief description of these
mutators is illustrated in Table 5. Further details are
available at https://pitest.org/quickstart/mutators/.

(ii) Step 2: we have computed the values of the re-
dundancy metrics using formulas 3 to 6 presented in
Section 2 for each injected type of mutators (faults).

(iii) Step 3: the constructed dataset contains the values of
the redundancy metrics for each type of the selected
mutators. It will be used to determine whether the
values of the redundancy metrics are still un-
changeable when faults are injected.

4.6. Dataset Analysis. Dataset analysis phase requires other
important steps like data normalization/standardization and
correlation analysis. Normalization and standardization are
feature scale transformation. According to [51], in case we
have a large difference between the maximum and minimum
values, e.g., 0.01 and 1000, we should rescale them in the
range [0, 1]. In this study, the used metrics are defined in
such a way that they range between 0 and 1 [18].
Correlation analysis is required to identify the associa-
tion between the different independent variables (redun-
dancy metrics) in order to consider only significant ones
(not intercorrelated). To test the redundancy metrics

correlation, we have used Python language. The results are
illustrated in Figure 8.

Correlation coefficients between the independent vari-
ables are analyzed based on Hopkin’s statements [52]:

(i) Correlation coefficients which are greater than 0.5
are considered as large.

(ii) Correlation coefficients which are between 0.3 and
0.5 are considered as moderate.

(iii) Correlation coefficients which are between 0.1 and
0.3 are considered as small.

(iv) Correlation coefficients which are smaller than 0.1
are considered as insubstantial.

Figure 8 indicates a strong significant correlation be-
tween NI and FSR metrics since their correlation coefficient
is equal to 0.99. Thus, one of these variables will be omitted.

5. Experiments and Results

In this section, we have evaluated the usefulness of re-
dundancy metrics as predictors of defect density to test the
stated hypotheses. According to [7, 30], regression tech-
niques are used since the defect density attribute we aim to
predict is represented by quantitative values.

5.1. Experiments. As mentioned, linear (simple and multi-
ple) can be used to predict defect density based on re-
dundancy metrics. Thus, we present the general form of each
regression type as follows:

(i) The general form of the simple linear regression
model is presented as

Y=8+pX+.... (10)

(ii) The general form of the multiple linear regression
model is presented as

https://pitest.org/quickstart/mutators/

Scientific Programming

13

TaBLE 5: Description of the five selected mutators.

Mutators Description
Mut 1: itional .

ut 1: Conditionals Replaces the relational operators <, <, >, and >
Boundary

Mut 2: Negate conditionals
Mut 3: Return values
Mut 4: Inverts negatives

Mut 5: Math

Mutates all conditionals found (< by >, > by <, etc.)
Mutates the return values of method calls (true by false, false by true, 0 by 1, and x by x+1)
Inverts negation of integer and floating-point numbers
Replaces binary arithmetic operations for either integer or floating-point arithmetic with another operation
(+ by -, - by +, * by /, etc.).

1.0

ISR
0.8
FSR - 0.6
- 04

FR
0.2

NI
0.0

ISR FSR FR NI

Figure 8: Correlation matrix of dependent and independent
variables.

Y=0B+5X +5X,+...BX;+.... (11)

In the presented equations, the Y represents the
dependent variable, the X; represent the indepen-
dent variables, f3; are the estimated parameters, and
Epsilon (¢) is the random error.

Using the presented formulas (10) and (11), three
main experiments are performed:

(iii) Experiment 1: before studying the linear regression
between the redundancy metrics and the defect
density, we have tested whether the values of the
redundancy metrics are affected by the injected
faults. Therefore, for each metric, we have repre-
sented its variation with the five selected mutators
described in Table 4.

(iv) Experiment 2: in this experiment, we have used the
univariate linear regression to test the hypotheses
H1 to H3 presented in Section 4.1.

(v) Experiment 3: in this experiment, the multivariate
linear regression is used to test the hypothesis H4.

5.2. Results

5.2.1. Experiment 1: Variation in the Redundancy Metrics
with the Injected Faults. We have studied the variation in the
ISR, ESR, and NI redundancy metrics for each type of the
injected mutators for a set of classes selected from the
constructed dataset (see Figure 9). We have only focused on

these metrics since FR redundancy metric is computed using
the maximum entropy of the input and output data in-
sensitive to any change in the variables’ states (see equation
(6)). Results are depicted in Figure 9.

Figure 9 shows some variation in the values of the re-
dundancy metrics for the different mutators. This variation
indicates that change in mutators of different types affects
the redundancy of the source code. Thus, the state of the
variables used to assess this redundancy changes with the
injected faults.

Figure 10 illustrates a part of the mutated source code of
the Bessel] class.

In line 446, 2 injected faults of Math mutators are
survived, and these faults consist on replacing, respectively,
the multiplication with a division and the subtraction with
an addition. Therefore, the state of the p variable will be
modified and will affect the state of the subsequent in-
structions. In line 464, other types of mutators were injected,
which are Mut 1, Mut 5, and Mut 2. These mutators affect the
state of the different variables used by the program showing
a variation in the redundancy metrics as their values depend
on the variables’ states.

In experiment 1, the variability of the redundancy
metrics for the different mutators is negligible in some
classes, as these faults cause a little change in the number of
needed bits representing the variable states. For instance, in
Figure 10 line 446, if we consider the variables en=2,
plast=1, x=1, and pold=1, then the value of p variable
before and after the injection of Math mutators (replace
multiplication with division and subtraction with addition)
is equal to 1. Thus, the redundancy provided by the state of
the p variable is still unchangeable. In line 465, if we consider
[=7, then the states of ncalc variable before and after the
Math mutators (replace subtraction with division) are, re-
spectively, 6 and 8. The required entropy to represent these
states is 3 bits. Therefore, there is no variation in the re-
dundancy metrics between these two states (6 and 8). This
explains the similar values of redundancy metrics for the
different mutators presented in Figure 9.

5.2.2. Experiment 2: Univariate Linear Regression. The
univariate linear regression uses only one independent
variable (one of the presented redundancy metrics) to
predict defect density. Thus, we perform univariate linear
regression to test separately the three first hypotheses pre-
sented above. Results of this experiment are illustrated in
Table 6.

Scientific Programming

14

sadia

s rerwous[og
wwmﬁngﬂw

uonoun Jrerwouijoq
uonnqrisigarenbgrD
uonepIIo)suewIeads
uorssardoyordurrg
uonnquysITeIwourg
9OURISI(JSIAOA)T
JdoueIsI(JRLIDqUE)D)

S NPBIWYIIY
IOUBLIBAOD)
S[[}N21I01eUIqUIO))
uonnquIsIqeIdg

34

rurures)

(19ssag

Rg

ISRMu4
—e— [SRMu5

—eo— ISRMul
—o— ISRMu2
—e— [SRMu3

uonounjdag

sadia

s erwouijog
SSOUMS
uondunJ[erwoui[og
uonnqrisiarenbgyp
uorneLIo)suewIeadg
uorssarSoyarduig
uonnqLusIeIwourg
90UB)SI(JSIIAOIA IR
20UR)SIAYSAQIYD)
20ue)SI(JRIIdqUE))
s[nNIeIS
S[NNPRIWYILIY
20URLIBAOD)
S[13NJ1I0JRUIqUIO))
uonNqLISIIIdg

3d

Bururen)

(19ssag

elag

FSRMu4
—e— FSRMu5

—eo— FSRMul
—e— FSRMu2
—o— FSRMu3

()

uonpoun,jdag
s»ada

s rerwousjog
SSOUMS

uonoun Jrerwoui[oq
uonnquusiqarenbgryD
uoneprIo)suewIeddg
uorssardoygardurig
uonnqLISIJeIwourg
20UBISI(JSIPAOIAYIIRT
20UR)SI(TAYSLQIYD)
2dUuR)SI(JRIIdQqUED)
s[mNIeIs
S[NONIWYILY
2dURLIBAOD)
S[IINOLI0JBUIqUIO))
uonnqrysI(eIdyg

g

BUIuIen)

(19ssag

elog

NIMu4
—o— NIMu5

—e— NIMul
—eo— NIMu2
—e— NIMu3

(c)

FIGURE 9: Variation in the (a) ISR, (b) FSR, and (c) NI metric values for the different mutators.

Scientific Programming

15

46 = (en * plast - pold;) .
2 p {EnIEND =) BOZC5 1. rjBesl : Replaced double multiplication with division - SURVIVED

447 2 } while (p <= 1); 2. rjBesl : Replaced double subtraction with addition -» SURVIVED

4481 tempb = en / x; 3. rjBesl : Replaced double division with multiplication = KILLED

449 [/ =

450 // Calculate backward test and find NCALC, the

451 // highest N such that

452 // the test is passed.

453 Jf = e e e e

= x *® - * .

4548 test = pold * plast * (0.5 - 0.5/ (tempb * tempb)); 1. rjBesl : Replaced double multiplication with division - SURVIVED

4551 test /= ENSIG; 2. rjBesl : Replaced double multiplication with division = SURVIVED

456 1 p = plast * tover; 3. rjBesl : Replaced double division with multiplication + SURVIVED

4. rjBesl : Replaced double subtraction with addition = SURVIVED

4571 n-=1; 5. rjBesl : Replaced double multiplication with division - SURVIVED

458 1 en -= 2.0;

459 nend = FastMath.min(nb, n);

460 3 for (int 1 = nstart; 1 <= nend; 1++) {

461 pold = psavel;

462 psavel = psave;

4633 psave = (en * psavel / x) - pold;

4643 if (psave * psavel > test) { . .

1. rjBesl : changed conditional boundary = SURVIVED
4651 ncalc = 1 - 1; 2. rjBesl : Replaced double multiplication with division = SURVIVED
3. rjBesl : negated conditional -+ SURVIVED
FiGure 10: Part of the mutated source code of the Bessel] class.
TABLE 6: Regression results of experiment 2.

Hypothesis Dependent variable Independent variable Coefhicients p >t (p values)
H1 Defect density ISR 1.566 0.000
H2 Defect density FR 0.306 0.000
H3 Defect density NI 0.398 0.000

Results shown in Table 6 are analyzed based on p
value measure. This measure is defined as the probability
of error which is the significance level that is used to
accept or reject the hypothesis [7]. Two possible cases are
presented:

(i) To accept the hypothesis, the p value must be less
than or equal to 0.05.

(ii) Otherwise, reject the hypothesis.

Taking defect density as dependent variable and re-
dundancy metrics as predictors and based on previous
statements, the results in Table 6 are summarized as
follows:

(i) For H1, p value is 0.000 and less than 0.05. So the H1
hypothesis is accepted which means that ISR metric
can be considered as a significant defect density
predictor.

(ii) For FR, p value is 0.000. Thus, we can accept the
hypothesis H3 which indicates that FR redundancy
metric can be considered as a significant predictor
of defect density attribute.

(iii) For NI, p value is 0.000. Using previous statements,
the hypothesis H3 is also accepted which means that
NI can be considered as a significant predictor of
defect density attribute.

5.2.3. Experiment 3: Multivariate Linear Regression. Once
univariate linear regressions are performed to identify the
relationship between each redundancy metric and defect
density separately, we aim in this experiment to join these

metrics and study their common effect on defect density. For
this, we have tested the multivariate regression for the hy-
pothesis H4 based on equation (11). Results are summarized
in Figure 11.

Taking defect density as dependent variable and re-
dundancy metrics as predictors, results in Figure 9 show the
following:

(i) For ISR and NI, the p values are less than 0.05 and
equal, respectively, to 0.011 and 0.000. Consequently,
the hypothesis H5 which supposes that redundancy
metrics are useful as defect density predictors is
accepted for ISR and NL

(ii) For FR metric, p value is greater than 0.05 and equal
to 0.189. For this, this metric is omitted from the
multivariate regression and only ISR and NI are
considered as significant predictors of defect density
attribute.

5.3. Model Performance Evaluation. We present in this
section the overall evaluation of the linear regression model
and summary of results:

(i) Model performance evaluation: model evaluation
is required to evaluate the significance of the
model to identify whether it fits well the data.
Among the performance evaluation measures, the
coeflicient of determination (R-squared score) is
the most used [41, 53]. This measure represents
the proportion of variance in the dependent
variable that can be predicted from the inde-
pendent variables.

16

Scientific Programming

Dep. Variable: DDIF |R-squared (uncentered): 8.736)
Model: OLS Adj. R-squared (uncentered): 8.71e
Method: Least Squares F-statistic: 28.80
Date: Fri, @3 Jul 2620 Prob (F-statistic): 4.28e-09
Time: 87:43:38 Log-Likelihood: 15.156
No. Observations: 34 AIC: -24.31
Df Residuals: 31 BIC: -19.73
Df Model: 3
Covariance Type: nonrobust

coef std err t P>|t| [e.025 8.975]
ISR 8.7274 8.268 2.713 8.011 9.181 1.274
FR -8.1342 2.1e8 -1.342 2.189 -8.338 @.ae7e
NI ©8.4626 @.113 4.881 0.e00 8.231 @.694

nmons.math3.
Errors:

Failures: @,

Errors: @, Skipped

nmons .math

mons.mat

mmons.mat

ommons .math3.util.

FIGURE 13: Maven test phase.

(ii) Model parameters are regression beta coefficients
(8;) that describe the degree of the response variable
for each 1-unit change in the independent variables.

A summary of results for the different above hypothesis
based on the presented performance measures and model
parameters is illustrated in Table 7.

For the different previous hypotheses and based on the
presented performance evaluation measures, Table 7 shows
the following:

(i) For H1, H2, and H3, R-squared values indicate,
respectively, that 38.8%, 47.3%, and 65.8% of the
variability of defect density is predicted separately

Scientific Programming 17
FIGURE 14: Mutations run phase.
TaBLE 7: Evaluation measures and model parameters for regression techniques.
Hypotheses p value Beta coefficient Result R-squared
H1 (ISR) 0.000 1.566 Accepted 0.388
H2 (FR) 0.000 0.306 Accepted 0.473
H3 (NI) 0.000 0.398 Accepted 0.658
ISR 0.011 0.727
H4 (multiple linear regression) FR 0.189 -0.134 Accepted for ISR and NI but rejected for FR 0.736
NI 0.000 0.462

by, respectively, ISR, FR, and NI. The obtained R-
squared values for these hypotheses are moderate
and indicate that using the redundancy metrics as
separate independent variables explains moderately
the variation in defect density as a dependent
variable.

(ii) For H4, adjusted R-squared shows that ISR and NI
jointly predict 73.6% variability of defect density.
This indicates that, overall, the performed multiple
regression can significantly predict the defect den-
sity. So, this multiple regression between redun-
dancy metrics and defect density is justified.

To sum up, the combined impact of ISR and NI re-
dundancy metrics is analyzed, and results show that this
multiple regression is justified. So, using these metrics jointly
gives more improvement in predicting defect density. The
application of multiple linear regression provides a model that
reflects the relationship between the redundancy metrics and
defect density and can be depicted by the following equation
based on beta coeflicients presented in Table 7:

DD = 0.727 ISR + 0.462 NI (12)

Using previous statements, we can note the following:

(i) For ISR, the regression coeflicient is positive and
equal to 0.727. This means that, for each 1-unit

increase in the ISR metric, there will be an increase in
defect density by 0.727 units.

(ii) For NI, the regression coefficient is positive and
equal to 0.462. Consequently, for each 1-unit in-
crease in the NI variable, the defect density variable
will increase by 0.462 units.

5.4. Discussion and Threats to Validity. Reliability is in
general predicted based on predictive models which are
developed using two basic elements: software metrics and
software faults 8, 54]. The proposed linear regression model
is justified and can be used to predict the defect density for
new datasets based on their redundancy measures. This
defect prediction model can serve as early quality indicator
for developers and testing teams to manage and control test
execution activities. For different code alternations, different
values of the ISR and NI redundancy metrics are obtained.
The variation in these values can affect the defect density
attribute.

We have obtained promising results proposing validated
ISR and NI redundancy metrics as significant reliability
indicators. However, we have noted several threads to
validity. First, the proposed redundancy metrics are se-
mantic as they depend on the program functionality; each
program (function or class) has its state represented by the

18

manipulated variables. Hence, each time the used variables
in the program input state change, the output state will
change, and the values of the redundancy metrics will
change too. Therefore, the proposed computing process
described in Section 3 is not automated, and it is imple-
mented separately for each program. Second, the more the
larger training datasets and optimizing model parameters
are used, the better the model prediction performance [55],
and our dataset can be extended to enhance the performance
of the proposed prediction model. Third, literature review
related to software metrics validation [7, 10, 12, 13] shows
that usually numerous quality attributes can be used to
validate a software metric. Hence, we can use other reliability
subcharacteristics like fault-proneness to show the utility of
the redundancy metrics as reliability indicators.

6. Conclusion and Perspectives

Initial state redundancy, final state redundancy, non-
injectivity, and functional redundancy metrics were pro-
posed to assess the code’ redundancy in order to monitor
software reliability. However, all of these metrics are
manually computed and theoretically presented. In this
research, we aim at empirically assessing and validating these
metrics as significant reliability indicators. We have used the
defect density attribute as a direct reflection of software
reliability to reach our objective.

We have built an empirical database including a set of
Java classes taken from the Commons Math Library, all
related redundancy metrics’ values, and the defect density as
a direct reliability indicator. This database has allowed us to
empirically assess and validate the redundancy metrics as
reliability indicators.

Regression techniques have been used to propose a
predictive model based on the defect density attribute as a
dependent variable and initial state redundancy and non-
injectivity metrics as independent variables.

The proposed model is useful for testers and developers
and can be used to predict defect density and to monitor
software reliability for further datasets.

As the initial state redundancy metric only measures
the program redundancy in its initial and final states
without considering the redundancy of its internal states,
we propose in the future work, to improve this metric by
considering its internal states in order to reflect the overall
program redundancy. In addition, we envision to develop
an automated support tool computing the redundancy
metrics leading to ameliorate the performance of the
computing process.

Appendix

A

In this Appendix, we present examples of the used scripts to
perform the empirical assessment and the validation of
redundancy metrics as useful indicators of software
reliability.

Scientific Programming

Figure 3 presents an example of the sizeOfBits function
identifying the needed entropy of the used variables in the
different program (function/class) states.

In Figure 5, the different redundancy metrics are
computed at method level. The computing process is the
same as for the class level. However, at function level, only
one function and the associated input and output variables
are considered.

B

This appendix presents the process of mutations (faults)
injection. Thus, three main steps were adopted to seed faults
into java programs. These steps consist on executing three
Maven command lines:

(1) mvn install: consists of installing Maven packages
into the local repository; various actions are printed
which end with build success result as shown in
Figure 12.

(2) mvn test: required to compile test classes result as
shown in Figure 13.

(3) mvn org.pitest:pitest-maven:mutationCoverage:
used to run mutations; build success result is ob-
tained as shown in Figure 14.

Data Availability

Datasets used to perform our empirical research work are
available through https://gitlab.com/dalilaamara/
redundancymetrics. This link is also included in the
manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] G. A. Garcia-Mireles, M. A. Moraga, F. Garcia, and
M. Piattini, “Approaches to promote product quality within
software process improvement initiatives: a mapping study,”
Journal of Systems and Software, vol. 103, pp. 150-166, 2015.

[2] L. S. O. Iso, “Tec25010: 2011 systems and software engineer-
ing-systems and software quality requirements and evalua-
tion (square)-system and software quality models,”
International Organization for Standardization, vol. 34,
p. 2910, 2011.

[3] F. Febrero, C. Calero, and M. Angeles Moraga, “Software
reliability modeling based on ISO/IEC SQuaRE,” Information
and Software Technology, vol. 70, pp. 18-29, 2016.

[4] L. C. Briand and J. Wiist, “Empirical studies of quality models
in object-oriented systems,” Advances in Computers, vol. 56,
pp. 97-166, 2002.

[5] N. Fenton and J. Bieman, Software Metrics: A Rigorous and
Practical Approach, CRC Press, Boca Raton, FL, USA, 2014.

[6] R.Jabangwe, J. Borstler, D. Smite, and C. Wohlin, “Empirical
evidence on the link between object-oriented measures and
external quality attributes: a systematic literature review,”
Empirical Software Engineering, vol. 20, no. 3, pp. 640-693,
2015.

https://gitlab.com/dalilaamara/redundancymetrics
https://gitlab.com/dalilaamara/redundancymetrics

Scientific Programming

[7] D. K. Verma and S. Kumar, “Prediction of defect density for
open source software using repository metrics,” Journal of
Web Engineering, vol. 16, no. 3, pp. 294-311, 2017.

C. Catal, “Software fault prediction: a literature review and

current trends,” Expert Systems with Applications, vol. 38,

no. 4, pp. 4626-4636, 2011.

[9] K. P. Srinivasan, “Unique fundamentals of software mea-
surement and software metrics in software engineering,”
International Journal of Computer Science & Information
Technology, vol. 7, no. 4, 2015.

[10] D. Verma and S. Kumar, “An improved approach for re-
duction of defect density using optimal module sizes,” Ad-
vances in Software Engineering, vol. 2014, Article ID 803530,
2014.

[11] M.R.Lyu, Handbook of Software Reliability Engineering, IEEE
Computer Society Press, Los Alamitos, CA, USA, 1996.

[12] N. Vanitha and R. ThirumalaiSelvi, A Report on the Analysis of
Metrics and Measures on Software Quality Factors-A Liter-
ature Study, International Journal of Computer Science and
Information Technologies, vol. 5, no. 5, , pp. 6591-6595, 2014.

[13] H. Nakai, N. Tsuda, K. Honda, H. Washizaki, and
Y. Fukazawa, “Initial framework for software quality evalu-
ation based on iso/iec 25022 and iso/iec 25023,” in Proceedings
of the 2016 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pp. 410-411,
IEEE, Vienna, Austria, August 2016).

[14] E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and
P. Avgeriou, “Software metrics fluctuation: a property for
assisting the metric selection process,” Information and
Software Technology, vol. 72, pp. 110-124, 2016.

[15] A. S. Nunez-Varela, H. G. Pérez-Gonzalez, F. E. Martinez-

Perez, and C. Soubervielle-Montalvo, “Source code metrics: a

systematic mapping study,” Journal of Systems and Software,

vol. 128, pp. 164-197, 2017.

A. Mili, A. Jaoua, M. Frias, and R. G. M. Helali, “Semantic

metrics for software products,” Innovations in Systems and

Software Engineering, vol. 10, no. 3, pp. 203-217, 2014.

I. Marsit, M. N. Omri, and A. Mili, “Estimating the survival

rate of mutants,” in Proceedings of the 2th International

Conference on Software Technologies (ICSOFT), pp. 208-213,

Madrid, Spain, July 2017.

[18] A. Ayad, I. Marsit, N. M. Omri, J. Loh, and A. Mili, “Using

semantic metrics to predict mutation equivalence,” in Pro-

ceedings of the International Conference on Software Tech-

nologies, pp. 3-27, Porto, Portugal, July 2018.

J. Bansiya and C. G. Davis, “A hierarchical model for object-

oriented design quality assessment,” IEEE Transactions on

Software Engineering, vol. 28, no. 1, pp. 4-17, 2002.

[20] D. Amara, E. Fatnassi, and L. Rabai, “An automated support
tool to compute state redundancy semantic metric,” in Pro-
ceedings of the International Conference on Intelligent Systems
Design and Applications, pp. 262-272, Delhi, India, December
2017.

[21] A. Jaoua and A. Mili, “The use of executable assertions for
error detection and damage assessment,” Journal of Systems
and Software, vol. 12, no. 1, pp. 15-37, 1990.

[22] A. Mili and F. Tchier, Software Testing: Concepts and Oper-
ations, John Wiley & Sons, Hoboken, NJ, USA, 2015.

[23] M. R. Lyu, “Software reliability engineering: a roadmap,” in
Future of Software Engineering (FOSE'07), pp. 153-170, IEEE,
2007.

[24] L. L. Pullum, Software Fault Tolerance Techniques and
Implementation, Artech House, Norwood, MA, USA, 2001.

(8

(16

[17

[19

19

[25] M. R. Lyu, Z. Huang, S. K. Sze, and X. Cai, “An empirical
study on testing and fault tolerance for software reliability
engineering,” in Proceedings of the 14th International Sym-
posium on Software Reliability Engineering, pp. 119-130,
Denver, Colorado, November 2003.

[26] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of
object-oriented design metrics as quality indicators,” IEEE
Transactions on Software Engineering, vol. 22, no. 10,
pp. 751-761, 1996.

[27] C. S. Gall, S. Lukins, L. Etzkorn et al., “Semantic software
metrics computed from natural language design specifica-
tions,” IET Software, vol. 2, no. 1, pp. 17-26, 2008.

[28] C. Catal and B. Diri, “A systematic review of software fault
prediction studies,” Expert Systems with Applications, vol. 36,
no. 4, pp. 7346-7354, 2009.

[29] D. Radjenovi¢, M. Heritko, R. Torkar, and A. Zivkovig,
“Software fault prediction metrics: a systematic literature
review,” Information and Software Technology, vol. 55, no. 8,
pp. 1397-1418, 2013.

[30] N. Kalaivani and R. Beena, “Overview of software defect
prediction using machine learning algorithms,” International
Journal of Pure and Applied Mathematics, vol. 118, no. 20,
pp. 3863-3873, 2018.

[31] E. Dubrova, Fault-Tolerant Design, pp. 55-65, Springer, New
York, NY, USA, 2013.

[32] A. Mili, L. Wu, F. T. Sheldon, M. Shereshevsky, and
J. Desharnais, “Modeling redundancy: quantitative and
qualitative models,” in Proceedings of the IEEE International
Conference on Computer Systems and Applications, pp. 1-8,
Sharjah, United Arab Emirates, March 2006.

[33] S. A. Asghari, M. Binesh Marvasti, and A. M. Rahmani,
“Enhancing transient fault tolerance in embedded systems
through an OS task level redundancy approach,” Future
Generation Computer Systems, vol. 87, pp. 58-65, 2018.

[34] C. E. Shannon, “A mathematical theory of communication,”

ACM SIGMOBILE Mobile Computing and Communications

Review, vol. 5, no. 1, pp. 3-55, 2001.

A. Avizienis,].-C. Laprie, B. Randell, and C. Landwehr, “Basic

concepts and taxonomy of dependable and secure comput-

ing,” IEEE Transactions on Dependable and Secure Computing,

vol. 1, no. 1, pp. 11-33, 2004.

[36] A. Carzaniga, A. Mattavelli and M. Pezze, “Measuring
software redundancy,” in Proceedings of the 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering,
pp- 156-166, IEEE, Florence, Italy, May 2015.

[37] P. A. Laplante, Ed., Dictionary of Computer Science, Engi-

neering and Technology, CRC Press, Boca Raton, FL, USA,

2000.

V. B. Singh and K. K. Chaturvedi, “Improving the quality of

software by quantifying the code change metric and pre-

dicting the bugs,” in Proceedings of the International Con-
ference on Computational Science and its Applications,

pp- 408-426, Ho Chi Minh City, Vietnam, June 2013.

[39] S.Kumar and S. S. Rathore, Software Fault Prediction: A Road
Map, Springer, Singapore, 2018.

[40] R. Malhotra, “A systematic review of machine learning
techniques for software fault prediction,” Applied Soft
Computing, vol. 27, pp. 504-518, 2015.

[41] S. Reddivari and J. Raman, “Software quality prediction: an
investigation based on machine learning,” in Proceedings of
the 2019 IEEE 20th International Conference on Information
Reuse and Integration for Data Science (IRI), pp. 115-122,
IEEE, Los Angeles, CA, USA, July 2019.

(35

[38

20

(42]

(43]

(44

[45

(46]

[47

(48

[49]

(50]

[51]

(52]

(53]

(54]

(5]

S. M. A. Shah, M. Morisio, and M. Torchiano, “An overview of
software defect density: a scoping study,” in Proceedings of the
2012 19th Asia-Pacific Software Engineering Conference,
pp- 406-415, IEEE, Hong Kong, China, December 2012.

H. B. Yadav and D. K. Yadav, “Early software reliability
analysis using reliability relevant software metrics,” Interna-
tional Journal of System Assurance Engineering and Man-
agement, vol. 8, no. 4, pp. 2097-2108, 2017.

Y. Zhou, B. Xu, and H. Leung, “On the ability of complexity
metrics to predict fault-prone classes in object-oriented
systems,” Journal of Systems and Software, vol. 83, no. 4,
pp. 660674, 2010.

N. Mandhan, D. K. Verma, and S. Kumar, “Analysis of ap-
proach for predicting software defect density using static
metrics,” in Proceedings of the International Conference on
Computing, Communication & Automation, pp. 880-886,
IEEE, Noida, India, May 2015.

L. Kumar, D. K. Naik, and S. K. Rath, “Validating the ef-
fectiveness of object-oriented metrics for predicting main-
tainability,” Procedia Computer Science, vol. 57, pp. 798-806,
2015.

R. Lincke, J. Lundberg, and W. Lowe, “Comparing software
metrics tools,” in Proceedings of the 2008 International
Symposium on Software Testing and Analysis, pp. 131-142,
Seattle, WA, USA, July 2008.

1. Pill, I. Rubil, F. Wotawa, and M. Nica, “SIMULTATE: a
toolset for fault injection and mutation testing of simulink
models,” in Proceedings of the 2016 IEEE Ninth International
Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 168-173, IEEE, Chicago, IL, USA,
April 2016.

R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing de-
pendability with software fault injection,” ACM Computing
Surveys, vol. 48, no. 3, pp. 1-55, 2016.

M. Delahaye and L. Du Bousquet, “A comparison of mutation
analysis tools for java,” in Proceedings of the 2013 13th In-
ternational Conference on Quality Software, pp. 187-195,
IEEE, Nanjing, China, July 2013.

T. Chen and K. Honda, “Solving data preprocessing problems
in existing location-aware systems,” Journal of Ambient In-
telligence and Humanized Computing, vol. 9, no. 2, pp. 253-
259, 2018.

L. H. Etzkorn, S. Gholston, and W. E. Hughes Jr., “A semantic
entropy metric,” Journal of Software Maintenance and Evo-
lution: Research and Practice, vol. 14, no. 4, pp. 293-310, 2002.
G. Abaei and A. Selamat, “A survey on software fault detection
based on different prediction approaches,” Vietnam Journal of
Computer Science, vol. 1, no. 2, pp. 79-95, 2014.

H. Turabieh, M. Mafarja, and X. Li, “Iterated feature selection
algorithms with layered recurrent neural network for software
fault prediction,” Expert Systems with Applications, vol. 122,
pp. 27-42, 2019.

A. Singh, R. Bhatia, and A. Singhrova, “Taxonomy of machine
learning algorithms in software fault prediction using object
oriented metrics,” Procedia Computer Science, vol. 132,
pp. 993-1001, 2018.

Scientific Programming

