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To relieve the pressure of processing computation-intensive applications on mobile devices and avoid high latency during data
transmission, edge computing is proposed to solve this problem. Mobile edge computing (MEC) allows the deployment of MEC
servers at the edge of the network to interact with users on the premise of low transmission delay, thereby improving the quality
of service (QoS) for users. However, due to the high mobility of users, with the continuous change of geographical location,
when users exceed the signal range of the MEC server, the services they request on the MEC server will also be migrated to
other MEC servers. The handoff process may involve high response delays caused by service forwarding, thereby greatly
degrading QoS. For the above problems, in this paper, a service migration optimization method based on transmission power
control is proposed. First, according to the transmission power of the MEC server, the user’s activity range is divided into
multiple subregions based on a Voronoi diagram. Therefore, there is one MEC server in each subregion, and the size of each
subregion is adjusted by controlling the transmission power of the MEC server to minimize the number of wireless handoffs
and the energy consumption of the MEC server. Then, the particle swarm optimization (PSO) is adopted to solve the above
multiobjective optimization problem. Finally, the effectiveness of the proposed method is verified through extensive experiments.

1. Introduction

Nowadays, with the rapid development of mobile devices,
mobile applications are becoming more and more complex,
and mobile devices with limited resources usually cannot
meet the needs of most applications. Therefore, the industry
began to consider offloading such computation-intensive
applications to the cloud [1]. However, the remote offloading
in traditional cloud computing may involve high latency and
cannot meet the low-latency requirements [2] of some
latency-sensitive applications, including augmented reality
(AR) and remote game control [3]. Meanwhile, the exponen-
tial growth of information caused by a large number of
devices and applications has brought tremendous pressure
to remote information transmission. To solve the above
problems, mobile edge computing (MEC) has been pro-
posed, and a large number of servers are placed at the net-
work edge [4, 5]. MEC is regarded as a supplement to

mobile devices with relatively limited computational and
storage capacity, which can enable computation offloading
and provide services to users. In MEC, a new computing
device called an MEC server, which is deployed on the base
station to provide services and computing resources for
users, is deployed at the network edge to act as a small cloud
data center, giving the network edge the ability to process
data [6]. Clearly, MEC servers can provide users with cloud
services closer to the end-users so that users can request ser-
vices with low latency.

Service providers can deploy related services on the MEC
server to improve user experience, expand the user market,
and earn more benefits. The reason is that the use of the
MEC server helps users’ mobile devices meet the perfor-
mance requirements of some applications, greatly reduces
information transmission delays, improves users’ QoS, and
reduces the traffic between users and the core network,
thereby reducing operating cost. However, in the mobile edge
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computing environment, mobile devices often have high
mobility, and service migration operations may be involved
due to the time-varying location of their users. As shown in
Figure 1, the edge computing system structure includes two
MEC servers,MECA andMECB, and the signal ranges corre-
sponding to different powers are shown in the dotted arc in
the figure. While the user moves from L1 via L2 to L3, when
the user walks out of the signal range of theMECA server
and enters the signal range of the MECB server, the service
requested by the user will be migrated from MECA to
MECB. Before the end of the handoff, the user can only use
the services of the MECA. When the service request is for-
warded from MECA to MECB through a limited capacity
backhaul, the response time of the service will be significantly
increased [7], resulting in a significant decrease in the quality
of user experience.

Due to the limited coverage of the MEC server and the
high time-varying location of users, users may switch
servers frequently in the process of using mobile devices.
So, the forwarding time and downtime of the request
involved in this process will degrade QoS. At present, some
studies propose to reduce the number and probability of
service migration by deploying service copies in advance.
However, at the same time point, users can only request
services from one MEC server. The MEC servers that are
not accessed by users but have deployed service copies will
be occupied with unnecessary storage resources, resulting in
a waste of resources.

In this paper, we focus on the problem of how to improve
user QoS and effectively reduce server energy consumption
when edge users have high mobility. Since the number of
wireless handoffs and the energy consumption of the MEC
are related to the coverage of the MEC server, it is necessary
to reasonably control the coverage of the MEC server. How-
ever, the coverage of the MEC server is closely related to the
transmission power of the MEC server. Therefore, by using
transmission power control for service migration optimiza-
tion, we can minimize the number of wireless handoffs and
the energy consumption of an MEC server through service
migration optimization. That is our motivation.

Compared with the existing methods, our main contribu-
tions can be summarized as follows:

(1) A service migration optimization method is proposed
based on transmission power control. This method
adjusts the size of each subarea according to the
transmission power of the MEC server, so as to
achieve the goal of minimizing the number of wire-
less handoffs and energy consumption of the MEC
server

(2) The experimental scene is modeled by using the Vor-
onoi diagram, and the multiobjective optimization
problem is transformed into a single-objective opti-
mization problem by using the weight coefficient
transformation method. Furthermore, the PSO algo-
rithm is used to solve the optimization problem, so as
to achieve the goal of minimizing the user wireless
handoff times and minimizing the energy consump-
tion of the MEC server

(3) A large number of simulation experiments were car-
ried out using a real base station data set, the Telecom
Dataset [8–10], under the assumption that the user’s
mobile path is known, which verified the effective-
ness and efficiency of the algorithm in this study

The remainder of this paper is organized as follows. Sec-
tion 2 discusses and summarizes related work. In Section 3,
we introduce the system model. After that, we introduce
the PSO optimization method for minimizing the number
of wireless handoffs of user equipment and minimizing the
energy consumption of the MEC server in Section 4. Then,
we give the experimental results and analysis in Section 5.
Finally, the paper is concluded in Section 6.

2. Related Work

With the rapid development of the mobile Internet and the
Internet of Things, a large number of delay-sensitive and
computation-intensive applications have emerged. To meet
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Figure 1: Example of edge service migration in mobile network.
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the low-latency and high-performance requirements, edge
computing was proposed to provide solutions. Since the
coverage of the MEC server is limited, as the user moves,
the edge nodes that the user can connect to also change. If
the user’s service is always located on the MEC server
where the user initially connected, the user’s service
request should be forwarded from the MEC server to the
original MEC server through the backhaul link, which will
increase the service delivery delay. Therefore, in order to
maintain the user QoS, the edge service should be dynam-
ically migrated between multiple MEC servers along with
the user’s movement.

At present, many studies have contributed to reducing
service migration time. Taleb and Ksentini [11] proposed a
Follow-Me Cloud (FMC) analysis model. In this work, the
Markovian mobility model was proposed to analyze the per-
formance of MEC when users move, but they did not con-
sider whether or not services are migrated and where to
migrate. In the scenario of a one-dimensional mobile model,
Ksentini et al. [12] used the Markov decision process (MDP)
to decide whether or not to carry out service migration by
weighing the cost of service migration and the improved
experience quality of users. However, their solution can be
very time-consuming when MDP has a large number of
states. Wang et al. [13] modeled the service migration prob-
lem as MDP and proved that when users follow a one-
dimensional asymmetric random walk model, the best strat-
egy for solving service migration is the threshold strategy,
and they proposed an algorithm to find the best threshold.
The algorithm proposed byWang et al. is more effective than
the standard solution of MDP. In addition, in [14], Chen
et al. studied the service migration problem when users fol-
low the two-dimensional mobile model. Afterwards, Wang
et al. [15] proposed a layered migration architecture (base
layer, application layer, and instance layer), which can effec-
tively reduce transmission time. Machen et al. [16] proposed
a service migration method based on container handoff,
which uses a hierarchical storage system to reduce synchro-
nization overhead of the file system, thereby reducing time
cost for service migration. Furthermore, Ud Din et al. [17]
studied the performance optimization of edge service under
the constraint of long-term service migration overhead. To
solve the problem of unpredictable user movement behavior,
Ouyang et al. adopted the Lyapunov optimization to decom-
pose the long-term optimization problem into a series of
real-time optimization problems.

There are also some studies dedicated to reducing the
probability and frequency of service migration to achieve
the objective of optimizing user QoS. To reduce the delay
caused by service migration, Ma et al. [18] proposed a Cloud-
Spider architecture combining placement of a virtual
machine (VM) replica and VM scheduling to reduce high
migration delay caused by VM image transmission through
low-bandwidth wide-area network (WAN) links. They used
deduplication technology to compensate for the additional
storage requirements caused by the placement of replicas,
and studied the VM replica placement algorithm. Besides,
Ouyang et al. [19] deployed service replicas on MEC servers
near users in advance, aiming to minimize the probability of

service migration and the number of service replicas. Yatao
et al. [20] proposed an analysis model to compare the costs
of service migration and service replica deployment. The
model analyzes the impact of user movement mode and ser-
vice duration on migration and replication costs, respec-
tively. The above several studies deploy service replicas on
MEC servers around users in advance to reduce the proba-
bility of service migration. However, the user can only
request the resources of one MEC server at the same time,
and the MEC server that is not accessed by the user but
has service replicas will be occupied with storage resources.
Since the resources on the MEC server are limited, the
backup of useless resources will cause the resource waste of
the MEC server.

In terms of reducing transmission delay, controlling
transmission power is an effective method because transmis-
sion power is closely related to signal quality, interference,
and channel capacity. Therefore, Bose et al. [21] proposed a
cloud-aware power control method to maximize the result
delivery rate under the condition of satisfying the delay
requirement. Since the transmission power is also related to
signal coverage, for the scenario of two MEC servers in
[22], the coverage of MEC servers is controlled by transmis-
sion function, and VM migration is used to achieve load bal-
ancing, so the average service delay of MEC servers is
reduced. Afterwards, Zhang et al. [23] extended the previous
work in [24]. In the case of multiple MEC servers, they con-
sidered the mobility of users and studied how to maximize
the cost-effectiveness, that is, to minimize the number of acti-
vated MEC servers, under the condition of meeting the ser-
vice delay.

In summary, based on the transmission power control
technology, this paper is aimed at solving the problem of user
QoS degradation caused by user mobility in a mobile edge
computing environment, and uses the weight coefficient
transformation method and PSO algorithm to solve the mul-
tiobjective optimization problem, which can reduce the num-
ber of wireless handoffs and service migrations of user
equipment and minimize the server energy consumption.

3. Problems and Models

3.1. Problem Description. Here, we consider n MEC servers
and m users, which form two sets E = fe1, e2,⋯, eng and U
= fu1, u2,⋯,umg, respectively. The MEC server creates an iso-
lated virtual machine environment for users. In order to meet
the service delay requirements, we assume that the virtual
machine is always placed on the MEC server connected by
the user wirelessly. With the movement of users, radio net-
work resources are also changing dynamically. So, service
migration is always accompanied by wireless handoff. As a
result, frequent wireless handoff and service migration will
have a great impact on user experience.

Suppose there are three users u1, u2, and u3, and their
moving paths are shown in Figure 2. The coverage radius of
theMEC server e1 is configured as r1 and r3, and the coverage
radius of e2, it is configured as r2 or r4. Then, according to
Figure 1, there will be four cases as follows:
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Case 1. If re1 = r1, re2 = r2, user u1 leaves the coverage area of
e1 and wireless handoff and service migration need to be
performed.

Case 2. If re1 = r1, re2 = r4, user u1 cannot connect to anyMEC
server at point B.

Case 3. If re1 = r3, re2 = r2, u1, u2, and u3 do not require wire-
less handoff and service migration.

Case 4. If re1 = r3, re2 = r4, as in case 3, all users do not need
wireless handoff.

In summary, when the coverage radius is small, users will
make frequent wireless handoffs, and even the connection
will be interrupted (for case 2). When the coverage area is
large, it will cause unnecessary high energy consumption
and waste of resources (for cases 3 and 4, handoff can be
avoided, and a smaller coverage area can meet the demand).
The coverage of the MEC server is related to its transmission
power [25]. Therefore, this section will study how to set the
transmission power of the MEC server, so as to minimize
the number of user wireless handoffs and the energy con-
sumption of the MEC server.

3.2. System Model. The definitions of related concepts are
given as follows:

Definition 1 (MEC server). The MEC server can be defined as
a two-tuple e = ðp, tpÞ, where

(1) p is the location of the MEC server

(2) tp is the transmission power of the MEC server

Definition 2 (movement path). The user’s movement path
can be modeled as a triple mp = ðtime, location,MÞ, where

(1) Time is the length of time that the user moves, which
is composed of a series of discrete moments

(2) Location is the location of the user at the above
moment

(3) M is a mapping relationship from time to location:
M : time⟶ location

In this section, it is assumed that the user is always con-
nected to the MEC server that provides the maximum
received signal strength (RSS). Therefore, in this section,
the user activity area is divided into an RSS Voronoi diagram.
The RSS Voronoi diagram is defined as follows:

Definition 3 (RSS Voronoi diagram). Assuming that there is a
group of MEC servers E = fe1, e2,⋯, eng in area A, the RSS
Voronoi diagram divides area A into multiple V polygons,
each V polygon has an MEC server, and the points in the
V polygon are defined as follows:

V eið Þ = uk : RSSukei > RSSukej ∀j ≠ i
n o

, ð1Þ

where RSSukei is the received signal strength, user uk is the
receiver, and MEC server ei is the sender.

The basic features of the Voronoi diagram are as follows:

(1) There is a generator in each subregion
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Figure 2: The impact of transmission power on service migration.
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(2) The distance from the point in the subregion to the
generator is less than the distances to other
generators

Different from the traditional Voronoi diagram, the stan-
dard of dividing the subregions is the received signal strength
rather than Euclidean distance. Figure 3 is an example of the
RSS Voronoi diagram, in which

(1) There is one MEC server in each subregion

(2) The signal strength received by the points in the sub-
region from the MEC server in the subregion is
greater than that received from other MEC servers

(3) The points on the boundary of the subarea receive the
same signal strength from theMEC server that gener-
ated the boundary

When the user’s moving path spans multiple subregions,
the user needs to perform multiple wireless handoffs. The
division of subregions is related to the user’s received signal
strength, and the user’s received signal strength is related to
the transmission power of the MEC server. Therefore, the
number of user wireless handoffs and service migrations
can be reduced by controlling the transmission power of
the MEC server. The relationship between the received signal
strength of the user and the transmission power of the MEC
server [26, 27] is as follows:

RSSuiej = tpej +Gej
+ Gui

+H − Luiej , ð2Þ

where tpej is the transmission power of the MEC server ej in

decibels (dbm), Gej
and Gui

are the antenna gains of the

sender and receiver, respectively, H is the Rayleigh power
fading coefficient, and Luiej is the path loss between the sender
and the receiver, which is calculated as follows [28–30]:

Luiej = L1 + 10n1 log10 d ej, ui
� �� �

+ 10 n2 − n1ð Þ 1 +
d ej, ui
� �
db

 !
,

ð3Þ

where L1 is the path loss when the distance between the
receiver and the sender is 1 meter; n1 and n2 are the long-
distance and short-distance path loss indexes, respectively;
dðej, uiÞ is the Euclidean distance between the MEC server
ej and the user ui, db is the boundary value dividing long dis-
tance and short distance. The symbols commonly used in this
section are shown in Table 1.

Through the mapping M : time⟶ location, the loca-
tion of the user at any point in time can be derived, and the
MEC server that the user is connected to can be obtained.
According to the user’s movement trajectory, the final num-
ber of user’s handoffs can be obtained. Here, the user’s
mobile information can be obtained from many channels;
for example, the user may apply map services (such as navi-
gation). In addition, since the user’s daily itinerary will not
change much, the user’s movement path can also be inferred
through the user’s past behavior. There are many studies on
predicting user mobile behavior [31–33], which is beyond
the scope of this section. In this section, it is assumed that
the user’s moving path is known.

As users move, MEC servers that can provide services to
users are constantly changing. When the transmission power
of the MEC server is low, the coverage area of the MEC server
is small, causing frequent user wireless handoffs, and even

Figure 3: Examples of the Voronoi diagram.

Table 1: The symbols commonly used in this section.

Symbols Meaning

E MEC server set

ei The ith MEC server in E

RSS Received signal strength

Tp Transmission power

G Antenna gain

H Rayleigh power fading coefficient

L Path loss

n1 Short-distance path loss index

n2 Long-distance path loss index

db Boundary value of long distance and short distance

ENj Energy consumption of MEC server j

Hti Number of handoffs of user ui
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signal interruption may occur. If the transmission power is
too large, the energy consumption of theMEC server will also
increase. Moreover, when the MEC server has a large over-
lapping coverage area, the interference received by the MEC
server will be too large, which in turn increases the service
delay. Based on such fact, in this section, the service migra-
tion optimization problem is modeled as a multiobjective
optimization problem, which is aimed at minimizing the
number of user wireless handoffs and minimize the energy
consumption of the MEC server.

The energy consumption of the MEC server can be
expressed as follows:

ENj = α ∗ tpj: ð4Þ

In formula (4), EN j is the energy consumption of MEC
server ej, which is proportional to the transmission power
tpj of ej, and α is an adjustable parameter.

Let CiðtkÞ represent the MEC server that user ui is con-
nected to at time tk, and the user is always connected to the
MEC server that provides the maximum received signal
strength, so CiðtkÞ can be expressed as follows:

Ci tkð Þ = j RSSuiej
��� > RSSuiel , ∀el ∈ E

n o
: ð5Þ

Next, the following variables are defined:

Iij tkð Þ =
1, Ci tkð Þ = j,

0, otherwise,

(

Ii tkð Þ =
1, Ci tkð Þ ≠ Ci tk+1ð Þ,
0, otherwise:

( ð6Þ

Since users can only connect to the same MEC server at a
time, we can have

〠
ej∈E

Iij tkð Þ = 1: ð7Þ

Let Hti represent the number of device handoffs during
the user’s movement, then Hti can be expressed as follows:

Hti =〠
k

Ii tkð Þ: ð8Þ

Therefore, in this paper, the optimization objective can
be expressed as follows:

P :   min  〠
ui∈U

Hti

min  〠
ej∈E

ENj:
ð9Þ

4. The Optimization Method

In this section, two optimization objectives are considered:
minimizing the number of wireless handoffs of user equip-
ment and minimizing the energy consumption of the MEC
server. This is a multiobjective optimization problem. There
are many ways to solve the multiobjective optimization prob-
lem. As in reference [34], this paper uses the weight coeffi-
cient transformation method to solve the problems raised
in this section. Therefore, problem P can be transformed into
problem P1:

P1 :   min  w1 〠
ui∈U

Hti +w2〠
ej∈E

ENj, ð10Þ

where w1 +w2 = 1. In this study, the PSO algorithm [34] was
used to solve problem P1. Because of its simplicity and ease of
implementation and the small number of parameters, the
particle swarm algorithm is widely used in function optimi-
zation, neural network training, etc. In the PSO algorithm,
the particle is a bird in the search space, the position of the
particle is the solution to the optimization problem, and the
speed of the particle determines the direction and distance
of its flight. During each iteration, each particle updates its
position according to its velocity. After multiple iterations,
the optimal solution is finally obtained. Using PSO algorithm
to solve the problem P1 mainly includes the following steps:

Step 1. Randomly initialize the particle swarm position and
velocity matrix: xMatrix, vMatrix. The position and velocity
of each particle are n-dimensional vectors, and the position
is composed of the transmission power of n MEC servers.
Assuming that the transmission power range of the MEC
server is ½tpmin, tpmax�, the position of particle i is initialized
to n random numbers in ½tpmin, tpmax�, that is, xi = ðtpi1, tpi2
,⋯, tpinÞ, and the velocity is initialized to n random numbers
in ð0, 1Þ, that is, vi = ðvi1, vi2,⋯, vinÞ.

Step 2. Calculate the fitness of the particles according to for-
mulas (4)–(8), and get the fitness matrix fitMatrix

Step 3.Update the historical optimal position of each particle.
In the first iteration, the historical optimal position of each
particle is its random initial position pi = xi

Step 4. Update the global optimal position of the group. Ini-
tially, the global optimal position of the swarm is the particle
position with the smallest fitness in the particle swarm posi-
tion matrix xMatrix pg =minfitðxMatrixÞ

Step 5. Update the speed and position of each particle:

vt+1i =w ⋅ vti + c1 ⋅ r1 ⋅ pti − xti
� �

+ c2 ⋅ r2 ⋅ ptg − xti
� �

, ð11Þ

where w is the inertia weight, c1 is the local learning factor, c2
is the global learning factor, r1, r2 are random numbers in ½
0, 1�.
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The position of the particle is updated to:

xt+1i = xti + vt+1i ð12Þ

Step 6. Repeat (Steps 2–5) until the end condition is met.

The algorithm is described as follows, where iterations
represents the current number of iterations, IteratorNum
represents the number of iterations, and N is the size of the
particle swarm:

5. Experimental Results and Analysis

The experimental environment is PyCharm Community Edi-
tion, the programming language is Python 3.5, and the con-
figuration of the experimental machine is 16G memory,
core i7-4790 3.60GHz processor, Windows 7, 64-bit operat-
ing system. The Telecom Dataset is provided by Shanghai
Telecom [8–10]. The data set has six parameters including
month, day, start time, end time, base station location, and
user ID. The data set contains a total of 7.2 million records,
which are records of 9,481 mobile phones accessing the Inter-
net through 3,233 base stations. In this experiment, 10 sta-
tions of three subways in Shanghai were selected as the
user’s moving routes, the latitude and longitude of these 30
sites were obtained on Baidu Maps, and 8 base stations were
selected near the 30 sites to provide services to users. The
experiment parameters are shown in Table 2:

5.1. Experiment for PSO Parameter Selection. First, the
parameters in the PSO algorithm were verified, including

the impact of inertia weight w, local learning factor c1, global
learning factor c2 on the number of handoffs, and energy
consumption. The particle swarm size was set to 10, the num-
ber of iterations was set to 100, the particle swarm algorithm
was executed 20 times, and the average value was taken as the
experimental result. The experimental parameter settings are
shown in Table 3.

The essence of PSO is to apply formula (11) to update
the velocity of particles in each iteration. Formula (11) is

Input: base station location, user moving path
Output: number of wireless handoffs, energy consumption
Begin
1: //initialization
2: for each particle i do
3: Randomly select n numbers from the interval ½tpmin, tpmax� as the position xi of i
4: Randomly select n numbers from the interval ð0, 1Þ as the speed vi of i
5: Apply formulas (4)–(8) to evaluate particle i
6: The historical optimal position of particle ipi = xi
7: end for
8: Global optimal position pg =minfitfpig
9: while iterations < IteratorNum do:
10: for i = 1 to N do
11: Apply formula (11) to update velocity of particle i
12: Apply formula (12) to update position of particle i
13: // Update pi and pg
14: if fitðxiÞ < fitðpiÞ do
15: pi = xi
16: if fitðpiÞ < fitðpgÞ do
17: pg = pi
18: end for
19: end while
End

Algorithm 1: PSO algorithm to solve problem P1.

Table 2: Experimental parameters.

Parameters Values

L1 20 dBm

Gui 8.35 dBi

Gej 24.5 dBi

n1 2

n2 4

db 100m

PSO number of particles 10

PSO number of iterations 100

Table 3: PSO parameters.

Parameter w c1 c2
Experiment 1 0.1 to 1 2 2

Experiment 2 0.5 0.5 to 4 2

Experiment 3 0.5 2 0.5 to 4

7Wireless Communications and Mobile Computing



composed of three items: memory item, self-cognition item,
and group recognition item. The inertia weight w determines
the influence of the speed in the previous iteration on this
iteration. To study the influence of the inertia weight w on
the experiment, the values of other parameters are fixed: c1
= c2 = 2, w changes from 0.1 to 0.9, and the step size is 0.1.
The experimental results are shown in Figure 4.

The figure above shows that, as the value of w increases,
the trend of the number of handoffs is slowly increasing
and then decreasing sharply. The minimum value is obtained
when w = 0:8, and the minimum value is close to 8. The
energy consumption drops first and then rises. When the
energy consumption is small, the power of the MEC server
is small and the coverage area is small, so the number of
handoffs is relatively high. Therefore, when w = 0:5, the
energy consumption achieved the minimum value, and the
number of handoffs is 9.55, which is at a relatively high level.

In this study, 20 repeated experiments were performed and
the average value was taken as the result, so the number of
handoffs may be a decimal.

The local learning factor c1 and the global learning factor
c2 are the weights of self-cognition items and group recogni-
tion items. The purpose of the self-cognition item is that the
speed of particles is affected by one’s own experience. The
group cognition item reflects the influence of knowledge
sharing between particles on finding the optimal solution.
To study the influence of these two parameters on the exper-
iment, w = 0:5 was set and c1, c2 were set to range from 0.5 to
4, and the step length was 0.5. The experimental results are
shown in Figures 5 and 6.

In Figure 5, the number of user handoffs decreases as the
value of c1 increases, while the energy consumption shows a
fluctuating upward trend. The influence of the global learn-
ing factor on the number of user handoffs and the energy
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Figure 4: The influence of parameter w on experimental results.
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Figure 5: The influence of parameter c1 on experimental results.
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consumption of the MEC server is shown in Figure 5. The
number of user handoffs and the MEC server energy con-
sumption have a similar trend, and both decrease first and
then increase. When c2 = 3, the number of user handoffs
achieves the extreme value, and when c2 = 1:5, the energy
consumption achieves the optimal value.

In Figure 6, the experimental results show that the two
evaluation indicators of number of handoffs and energy con-
sumption cannot reach the optimal value at the same time. In
order to balance these two evaluation indicators, the param-
eters of PSO were set as w = 0:8, c1 = 3, and c2 = 1.

5.2. Comparative Analysis of Experiment Results. This exper-
iment was compared with the following two algorithms:

(1) Genetic algorithm (GA) [24]: the genetic algorithm
searches for the optimal solution of the problem by
simulating the natural evolution process. The main
steps are as follows: (1) initialize the population, (2)
assess the individual fitness value, (3) select, (4)
crossover, (5) mutate, and (6) repeat (2)–(5) until
the end conditions are met

(2) Simulated annealing algorithm (SA) [25]: the princi-
ple of solid annealing is the theoretical basis of the
simulated annealing algorithm. A solid is heated to
a sufficiently high temperature, and then slowly
cooled. During cooling, the particles are gradually
ordered, and finally the internal energy is the smallest
at room temperature. The basic steps of the simulated
annealing algorithm are as follows: (1) initialize the
solution Told; (2) generate a new solution Tnew; (3)
apply the evaluation function to evaluate Told and
Tnew; (4) if Tnew is better than Told, replace Told with
Tnew, otherwise, accept Tnew with a certain probabil-
ity; (5) repeat (2)–(4) until the end condition is met.
The parameters of the simulated annealing algorithm
were set as number of iterations = 100, initial

temperature = 100, attenuation factor = 0:85, and
probability of accepting the difference = exp ð−Δt/tÞ,
where Δt is the difference between Tnew and Told, and
t is the current temperature

Three subway routes in Shanghai were selected as the
user’s movement trajectory. For each subway line, 10 stations
were selected, and 8 base stations were selected around these
30 stations to provide services to users. Then, the influence of
the number of sites on the number of handoffs and energy
consumption was studied. Figure 7 is the result of the com-
parison of the three algorithms.

Figure 6(a) shows that, for the three algorithms, the dif-
ference in the number of handoffs is small and the results
and trends of PSO and SA are very similar. When the number
of stations is 20 and 25, the number of handoffs calculated by
the two are equal. When the number of stations is less than
20, PSO is slightly better than SA. GA has the worst perfor-
mance in the number of handoffs, and only when the number
of sites is 25 is it better than SA and PSO. The performance of
the three algorithms in terms of energy consumption is
shown in Figure 6(b). The energy consumption increases as
the number of sites increases. Obviously, the results calcu-
lated by PSO are optimal in terms of energy consumption.
Finally, these three algorithms were also measured from the
running time. Although GA performs poorly in the number
of handoffs and energy consumption, its execution time cost
is the lowest. Although PSO has a slight advantage over SA in
the number of handoffs and energy consumption, its execu-
tion time cost is much lower than SA. Therefore, PSO can
effectively solve this multiobjective optimization problem.

6. Conclusion

Deploying services on edge nodes can bring computing and
storage resources closer to users, thereby reducing service
delays and improving user experience. However, the dynamic
feature of user equipment inmobile edge computing has led to
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Figure 6: The influence of parameter c2 on the experimental results.
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the need to migrate services between different MEC servers.
Since the edge nodes communicate through the backhaul link,
the service forwarding between the edge nodes will cause a
high delay, which leads to a significant reduction in the quality
of user experience. Therefore, reducing service migration is a
very important task.

The study considers the use of transmission power con-
trol technology to reduce the number of service migrations
during user movement. Under the assumption that the user’s
moving route is known, the edge node of the user’s wireless
connection is controlled through the transmission power of
the MEC server, so the number of wireless handoffs during
the user’s movement is reduced. Meanwhile, in order to avoid
energy waste caused by excessive transmission power, mini-
mizing the energy consumption of the MEC server is also

regarded as an optimization objective. The multiobjective
optimization problem is transformed into a single-objective
problem through the weight coefficient conversion method,
and then the PSO algorithm is used to solve the problem.
The experimental results show the effectiveness of the PSO
algorithm in this multiobjective optimization problem.

Data Availability

All of the data used in this study are already available on the
Internet and is easily accessible.
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