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Abstract
The aim of this paper is to develop tractable large deviation approximations for the
empirical measure of a small noise diffusion. The starting point is the Freidlin–
Wentzell theory, which shows how to approximate via a large deviation principle the
invariant distribution of such a diffusion. The rate function of the invariant measure
is formulated in terms of quasipotentials, quantities that measure the difficulty of a
transition from the neighborhood of onemetastable set to another. The theory provides
an intuitive and useful approximation for the invariant measure, and along the way
many useful related results (e.g., transition rates between metastable states) are also
developed.With the specific goal of design ofMonte Carlo schemes in mind, we prove
large deviation limits for integrals with respect to the empirical measure, where the
process is considered over a time interval whose length grows as the noise decreases
to zero. In particular, we show how the first and second moments of these integrals can
be expressed in terms of quasipotentials. When the dynamics of the process depend on
parameters, these approximations can be used for algorithm design, and applications
of this sort will appear elsewhere. The use of a small noise limit is well motivated,
since in this limit good sampling of the state space becomes most challenging. The
proof exploits a regenerative structure, and a number of new techniques are needed to
turn large deviation estimates over a regenerative cycle into estimates for the empirical
measure and its moments.
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1 Introduction

Among the many interesting results proved by Freidlin and Wentzell in the 70’s and
80’s concerning small random perturbations of dynamical systems, one of particular
note is the large deviation principle for the invariantmeasure of such a system.Consider
the small noise diffusion

dXε
t = b(Xε

t )dt +
√

εσ (Xε
t )dWt , Xε

0 = x,

where Xε
t ∈ R

d , b : Rd → R
d , σ : Rd → R

d ×R
k (the d× k matrices) andWt ∈ R

k

is a standard Brownian motion. Under mild regularity conditions on b and σ , one has
that for any T ∈ (0,∞) the processes {Xε· }ε>0 satisfy a large deviation principle on
C([0, T ] : Rd) with rate function

IT (φ)
.=
∫ T

0
sup
α∈Rd

[
〈φ̇t , α〉 − 〈b(φt ), α〉 − 1

2
‖σ(φt )α‖2

]
dt

when φ is absolutely continuous and φ(0) = x , and IT (φ) = ∞ otherwise. If
σ(x)σ (x)′ > 0 (in the sense of symmetric square matrices) for all x ∈ R

d , then
one can evaluate the supremum and find

IT (φ) =
∫ T

0

1

2

〈
φ̇t − b(φt ),

[
σ(φt )σ (φt )

′]−1 (φ̇t − b(φt ))
〉
dt . (1.1)

To simplify the discussion, we will assume this non-degeneracy condition. It is also
assumed by Freidlin and Wentzell in [12], but can be weakened.

Define the quasipotential V (x, y) for x, y ∈ R
d by

V (x, y)
.= inf {IT (φ) : φ(0) = x, φ(T ) = y, T <∞} .

Suppose that {Xε} is ergodic on a compact manifold M ⊂ R
d with invariant measure

με ∈ P(M). Then, under a number of additional assumptions, including assumptions
on the structure of the dynamical system Ẋ0

t = b(X0
t ), Freidlin and Wentzell [12,

Chapter 6] show how to construct a function J : M → [0,∞] in terms of V , such
that J is the large deviation rate function for {με}ε>0: J has compact level sets, and

lim inf
ε→0

ε logμε(G) ≥ − inf
y∈G J (y) for open G ⊂ M,

lim sup
ε→0

ε logμε(F) ≤ − inf
y∈F J (y) for closed F ⊂ M .

This gives a very useful approximation to με, and along the way many interesting
related results (e.g., transition rates between metastable states) are also developed.
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The aim of this paper is to develop large deviation type estimates for a quantity that
is closely related to με, which is the empirical measure over an interval [0, T ε]. This
is defined by

ρε(A)
.= 1

T ε

∫ T ε

0
1A(Xε

s )ds (1.2)

for A ∈ B(M). For reasons thatwill bemade precise later on,wewill assume T ε →∞
as ε → 0, and typically T ε will grow exponentially in the form ec/ε for some c > 0.

There is of course a large deviation theory for the empirical measure when ε > 0
is held fixed and the length of the time interval tends to infinity (see, e.g., [7,8]).
However, it can be hard to extract information from the corresponding rate function.
Our interest in proving large deviations estimates when ε → 0 and T ε → ∞ is
in the hope that one will find it easier to extract information in this double limit,
analogous to the simplified approximation to με just mentioned. These results will
be applied in [10] to analyze and optimize a Monte Carlo method known as infinite
swapping [9,15] when the noise is small. Small noise models are common in appli-
cations and are also the setting in which Monte Carlo methods can have the greatest
difficulty. We expect that the general set of results will be useful for other purposes as
well.

We note that while developed in the context of small noise diffusions, the collection
of results due to Freidlin and Wentzell that are discussed in [12] also hold for other
classes of processes, such as scaled stochastic networks, when appropriate conditions
are assumed and the finite time sample path large deviation results are available (see,
e.g., [19]). We expect that such generalizations are possible for the results we prove
as well.

The outline of the paper is as follows. In Sect. 2, we explain our motivation and
the relevance for studying the particular quantities that are the topic of the paper. In
Sect. 3, we provide definitions and assumptions that are used throughout the paper,
and Sect. 4 states the main asymptotic results as well as a related conjecture. Examples
that illustrate the results are given in Sect. 5. In Sect. 6, we introduce an important
tool for our analysis—the regenerative structure, and with this concept, we decom-
pose the original asymptotic problem into two sub-problems that require very different
forms of analysis. These two types of asymptotic problems are then analyzed sepa-
rately in Sects. 7 and 8. In Sect. 9, we combine the partial asymptotic results from
Sects. 7 and 8 to prove the main large deviation type results that are stated in Sec-
tion 4. Section 10 gives the proof of a key theorem from Section 8, which asserts an
approximately exponential distribution for return times that arise in the decomposition
based on regenerative structure, as well as a tail bound needed for some integrabil-
ity arguments. The last section of the paper, Sect. 11, presents the proof of an upper
bound for the rate of decay of the variance per unit time in the context of a special
case, thereby showing for the case that the lower bounds of Sect. 4 are in a sense
tight. To focus on the main discussion, proofs of some lemmas are collected in an
Appendix.
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Remark 1.1 There are certain time-scaling parameters that play key roles throughout
this paper. For the reader’s convenience, we record here where they are first described:
h1 and w are defined in (4.1) and (4.2); c is introduced and its relation to h1 and w is
given in Theorem 4.3; m is introduced at the beginning of Sect. 6.2.

2 Quantities of Interest

The quantities we are interested in are the higher order moments, and in particular sec-
ond moments, of an integral of a risk-sensitive functional with respect to the empirical
measure ρε defined in (1.2). To be more precise, the integral is of the form

∫
M
e−

1
ε
f (x)1A (x) ρε (dx) (2.1)

for some nice (e.g., bounded and continuous) function f : M → R and a closed set
A ∈ B(M). Note that this integral can also be expressed as

1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt . (2.2)

In order to understand the large deviation behavior of moments of such an integral,
we must identify the correct scaling to extract meaningful information. Moreover,
as will be shown, there is an important difference between centered moments and
ordinary (non-centered) moments.

By the use of the regenerative structure of {Xε
t }t≥0,we can decompose (2.2) [equiva-

lently (2.1)] into the sumof a randomnumber of independent and identically distributed
(iid) random variables, plus a residual term which here we will ignore. To simplify the
notation, we temporarily drop the ε, and without being precise about how the regen-

erative structure is introduced, let Y j denote the integral of e−
1
ε
f (Xε

t )1A
(
Xε
t

)
over a

regenerative cycle. (The specific regenerative structure we use will be identified later
on.)

Thus, we consider a sequence {Y j } j∈N of iid random variables with finite second
moments and want to compare the scaling properties of, for example, the second
moment and the second centered moment of 1

n

∑n
j=1 Y j . When used for the small

noise system, both n and moments of Yi will scale exponentially in 1/ε, and n will be
random, but for now we assume n is deterministic. The second moment is

E

(
1

n

n∑
k=1

Yk

)2

= 1

n2

n∑
k=1

E (Yk)
2 + 1

n2
∑

i, j :i 
= j

E
(
YiY j

) = (EY1)
2 + 1

n
Var (Y1) ,

and the second centered moment is

E

(
1

n

n∑
k=1

(Yk − EY1)

)2

= Var

(
1

n

n∑
k=1

Yk

)
= 1

n
Var (Y1) .
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When analyzing the performance of the Monte Carlo schemes, one is concerned of
course with both bias and variance, but in situations where we would like to apply the
results of this paper one assumes T ε is large enough that the bias term is unimportant,
so that all we are concerned with is the variance. However, some care will be needed to
determine a suitable measure of quality of the algorithm, since as noted Yi could scale
exponentially with in 1/ε with a negative coefficient (exponentially small), while n
will be exponentially large.

In the analysis of unbiased acceleratedMonteCarlomethods for small noise systems
over bounded time intervals (e.g., to estimate escape probabilities), it is standard to
use the second moment, which is often easier to analyze, in lieu of the variance [3,
Chapter VI], [4, Chapter 14]. This situation corresponds to n = 1. The alternative
criterion is more convenient since by Jensen’s inequality one can easily establish a
best possible rate of decay of the second moment, and estimators are deemed efficient
if they possess the optimal rate of decay [3,4]. However, with n exponentially large this
is no longer true. Using the previous calculations, we see that the second moment of
1
n

∑n
j=1 Y j can be completely dominated by (EY1)2, and therefore using this quantity

to compare algorithms may be misleading, since our true concern is the variance of
1
n

∑n
j=1 Y j .

This observation suggests that our study of moments of the empirical measure we
should consider only centered moments, and in particular quantities like

T εVar

(∫
M
e−

1
ε
f (x)1A (x) ρε (dx)

)
= T εVar

(
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt

)
,

which is the variance per unit time. For Monte Carlo, one wants to minimize the
variance per unit time, and to make the problem more tractable we instead try to
maximize the decay rate of the variance per unit time. Assuming the limit exists, this
is defined by

lim
ε→0

−ε log

[
T εVar

(
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt

)]

and so we are especially interested in lower bounds on this decay rate.
Thus, our goal is to develop methods that allow the approximation of at least first

and second moments of (2.2). In fact, the methods we introduce can be developed
further to obtain large deviation estimates of higher moments if that were needed or
desired.

3 Setting of the Problem, Assumptions and Definitions

The process model we would like to consider is an R
d -valued solution to an Itô

stochastic differential equation (SDE), where the drift so strongly returns the process
to some compact set that events involving exit of the process from some larger compact
set are so rare that they can effectively be ignored when analyzing the empirical
measure. However, to simplify the analysis we follow the convention of [12, Chapter
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6], and work with a small noise diffusion that takes values in a compact and connected
manifold M ⊂ R

d of dimension r and with smooth boundary. The precise regularity
assumptions for M are given on [12, page 135]. With this convention in mind, we
consider a family of diffusion processes {Xε}ε∈(0,∞), Xε ∈ C([0,∞) : M), that
satisfy the following condition.

Condition 3.1 Consider continuous b : M → R
d and σ : M → R

d × R
d (the d × d

matrices) and assume that σ is uniformly nondegenerate, in that there is c > 0 such
that for any x and any v in the tangent space of M at x, 〈v, σ (x)σ (x)′v〉 ≥ c〈v, v〉.
For absolutely continuous φ ∈ C([0, T ] : M) define IT (φ) by (1.1), where the inverse[
σ(x)σ (x)′

]−1
is relative to the tangent space of M at x. Let IT (φ) = ∞ for all other

φ ∈ C([0, T ] : M). Then, we assume that for each T < ∞, {Xε
t }0≤t≤T satisfies the

large deviation principle with rate function IT , uniformly with respect to the initial
condition [4, Definition 1.13].

We note that for such diffusion processes nondegeneracy of the diffusion matrix
implies there is a unique invariantmeasureμε ∈ P(M).Adiscussionofweak sufficient
conditions under which Condition 3.1 holds appears in [12, Sect. 3, Chapter 5].

Remark 3.2 There are several ways one can approximate a diffusion of the sort
described at the beginning of this section by a diffusion on a smooth compact man-
ifold. One such “compactification” of the state space can be obtained by assuming
that for some bounded but large enough rectangle trajectories that exit the rectangle
do not affect the large deviation behavior of quantities of interest and then extend
the coefficients of the process periodically and smoothly off an even larger rectangle
to all of R

d (a technique sometimes used to bound the state space for purposes of
numerical approximation). One can then map R

d to a manifold that is topologically
equivalent to a torus, and even arrange that the metric structure on the part of the
manifold corresponding to the smaller rectangle coincides with a Euclidean metric.

Define the quasipotential V (x, y) : M × M → [0,∞) by

V (x, y)
.= inf {IT (φ) : φ(0) = x, φ(T ) = y, T <∞} . (3.1)

For a given set A ⊂ M, define V (x, A)
.= inf y∈A V (x, y) and V (A, y)

.=
infx∈A V (x, y).

Remark 3.3 For any fixed y and set A, V (x, y) and V (x, A) are both continuous
functions of x . Similarly, for any given x and any set A, V (x, y) and V (A, y) are also
continuous in y.

Definition 3.4 We say that a set N ⊂ M is stable if for any x ∈ N , y /∈ N we have
V (x, y) > 0. A set which is not stable is called unstable.

Definition 3.5 We say that O ∈ M is an equilibriumpoint of the ordinary differential
equation (ODE) ẋt = b(xt ) if b(O) = 0. Moreover, we say that this equilibrium point
O is asymptotically stable if for every neighborhood E1 of O (relative to M) there
exists a smaller neighborhoodE2 such that the trajectories of system ẋt = b(xt ) starting
in E2 converge to O without leaving E1 as t →∞.
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Remark 3.6 An asymptotically stable equilibrium point is a stable set, but a stable set
might contain no asymptotically stable equilibrium point.

The following restrictions on the structure of the dynamical system in M will be
used. These restrictions include the assumption that the equilibrium points are a finite
collection. This is a more restrictive framework than that of [12], which allows, e.g.,
limit cycles. In a remark at the end of this section, we comment on what would be
needed to extend to the general setup of [12].

Condition 3.7 There exists a finite number of points {Oj } j∈L ⊂ M with L
.=

{1, 2, . . . , l} for some l ∈ N, such that ∪ j∈L{Oj } coincides with the ω-limit set of
the ODE ẋt = b(xt ).

Without loss of generality, we may assume that Oj is stable if and only if j ∈ Ls
where Ls

.= {1, . . . , ls} for some ls ≤ l.
Next, we give a definition from graph theory which will be used in the statement

of the main results.

Definition 3.8 Given a subset W ⊂ L = {1, . . . , l}, a directed graph consisting of
arrows i → j (i ∈ L \ W , j ∈ L, i 
= j) is called a W -graph on L if it satisfies the
following conditions.

1. Every point i ∈ L \W is the initial point of exactly one arrow.
2. For any point i ∈ L \W , there exists a sequence of arrows leading from i to some

point in W .

We note that we could replace the second condition by the requirement that there
are no closed cycles in the graph. We denote by G(W ) the set of W -graphs; we shall
use the letter g to denote graphs. Moreover, if pi j (i, j ∈ L, j 
= i) are numbers, then∏

(i→ j)∈g pi j will be denoted by π(g).

Remark 3.9 We mostly consider the set of {i}-graphs, i.e., G({i}) for some i ∈ L ,
and also use G(i) to denote G({i}). We occasionally consider the set of {i, j}-graphs,
i.e., G({i, j}) for some i, j ∈ L with i 
= j . Again, we also use G(i, j) to denote
G({i, j}).
Definition 3.10 For all j ∈ L , define

W
(
Oj
) .= min

g∈G( j)

[∑
(m→n)∈gV (Om, On)

]
(3.2)

and

W
(
O1 ∪ Oj

) .= min
g∈G(1, j)

[∑
(m→n)∈gV (Om, On)

]
. (3.3)

Remark 3.11 Heuristically, if we interpret V (Om, On) as the “cost” of moving from
Om to On, then W

(
Oj
)
is the “least total cost” of reaching Oj from every Oi

with i ∈ L \ { j}. According to [12, Theorem 4.1, Chapter 6], one can interpret
W (Oi ) − min j∈L W (Oj ) as the decay rate of με(Bδ(Oi )), where Bδ(Oi ) is a small
open neighborhood of Oi .
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Definition 3.12 We use Gs (W ) to denote the collection of all W -graphs on Ls =
{1, . . . , ls} with W ⊂ Ls.

We make the following technical assumptions on the structure of the SDE. Let
Bδ(K ) denote the δ-neighborhood of a set K ⊂ M . Recall that με is the unique
invariant probability measure of the diffusion process {Xε

t }t . The existence of the
limits appearing in the first part of the condition is ensured by Theorem 4.1 in [12,
Chapter 6].

Condition 3.13 1. There exists a unique asymptotically stable equilibrium point O1
of the system ẋt = b(xt ) such that

lim
δ→0

lim
ε→0

−ε logμε(Bδ(O1)) = 0, and

lim
δ→0

lim
ε→0

−ε logμε(Bδ(Oj )) > 0 for any j ∈ L \ {1}.

2. All of the eigenvalues of the matrix of partial derivatives of b at O
 relative to M
have negative real parts for 
 ∈ Ls.

3. b : M → R
d and σ : M → R

d × R
d are C1.

Remark 3.14 According to [12, Theorem 4.1, Chapter 6] and the first part of Condi-
tion 3.13, we know that W (Oj ) > W (O1) for all j ∈ L \ {1}.
Remark 3.15 We comment on the use of the various parts of the condition. Part 1
means that neighborhoods of O1 capture more of the mass as ε → 0 than neighbor-
hoods of any other equilibrium point. It simplifies the analysis greatly, but we expect
it could be weakened if desired. Parts 2 and 3 are assumed in [6], which gives an
explicit exponential bound on the tail probability of the exit time from the domain
of attraction. It is largely because of our reliance on the results of [6] that we must
assume that equilibrium sets are points in Condition 3.7, rather than the more general
compacta as considered in [12]. Both Condition 3.7 and 3.13 could be weakened if
the corresponding versions of the results we use from [6] were available.

Remark 3.16 The quantities V (Oi , Oj ) determine various key transition probabilities
and time scales in the analysis of the empirical measure. The more general framework
of [12], as well as the one-dimensional case (i.e., r = 1) in the present setting, requires
some closely related but slightlymore complicated quantities. These are essentially the
analogues of V (Oi , Oj ) under the assumption that trajectories used in the definition
are not allowed to pass through equilibrium compacta (such as a limit cycle) when
traveling from Oi to Oj . The related quantities, which are designated using notation
of the form Ṽ (Oi , Oj ) in [12], are needed since the probability of a direct transition
from Oi to Oj without passing though another equilibrium structure may be zero,
which means that transitions from Oi to Oj must be decomposed according to these
intermediate transitions. To simplify the presentation, we do not provide the details of
the one-dimensional case in our setup, but simply note that it can be handled by the
introduction of these additional quantities.
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Consider the filtration {Ft }t≥0 defined byFt
.= σ(Xε

s , s ≤ t) for any t ≥ 0. For any
δ > 0 smaller than a quarter of the minimum of the distances between Oi and Oj for
all i 
= j , we consider two types of stopping times with respect to the filtration {Ft }t .
The first type are the hitting times of {Xε

t }t at the δ-neighborhood of all equilibrium
points {Oj } j∈L after traveling a reasonable distance away from those neighborhoods.
More precisely, we define stopping times by τ0

.= 0,

σn
.= inf{t > τn : Xε

t ∈ ∪ j∈L∂B2δ(Oj )} and τn
.= inf{t > σn−1 : Xε

t ∈∪ j∈L∂Bδ(Oj )}.

The second type of stopping times is the return times of {Xε
t }t to the δ-neighborhood

of O1, where as noted previously O1 is in some sense the most important equilibrium
point. The exact definitions are τ ε

0
.= 0,

σ ε
n

.= inf{t > τε
n : Xε

t ∈∪ j∈L\{1}∂Bδ(Oj )} and τ ε
n

.= inf
{
t>σε

n−1 : Xε
t ∈ ∂Bδ(O1)

}
.

(3.4)

We then define two embedded Markov chains {Zn}n∈N0

.= {Xε
τn
}n∈N0 with state space∪ j∈L∂Bδ(Oj ), and {Z ε

n}n∈N0

.= {Xε
τε
n
}n∈N0 with state space ∂Bδ(O1).

Let p(x, ∂Bδ(Oj )) denote the one-step transition probabilities of {Zn}n∈N0 starting
from a point x ∈ ∪i∈L∂Bδ(Oi ), namely,

p(x, ∂Bδ(Oj ))
.= Px (Z1 ∈ ∂Bδ(Oj )).

We have the following estimates on p(x, ∂Bδ(Oj )) in terms of V . The lemma is a
consequence of [12, Lemma 2.1, Chapter 6] and the fact that under our conditions
V (Oi , Oj ) and Ṽ (Oi , Oj ) as defined in [12] coincide.

Lemma 3.17 For any η > 0, there exists δ0 ∈ (0, 1) and ε0 ∈ (0, 1), such that for any
δ ∈ (0, δ0) and ε ∈ (0, ε0), for all x ∈ ∂Bδ(Oi ), the one-step transition probability
of the Markov chain {Zn}n∈N on ∂Bδ(Oj ) satisfies

e−
1
ε (V (Oi ,Oj)+η) ≤ p(x, ∂Bδ(Oj )) ≤ e−

1
ε (V (Oi ,Oj)−η)

for any i, j ∈ L.

Remark 3.18 According to Lemma 4.6 in [16], Condition 3.1 guarantees the exis-
tence and uniqueness of invariant measures for {Zn}n and {Z ε

n}n . We use νε ∈
P(∪i∈L∂Bδ(Oi )) and λε ∈ P(∂Bδ(O1)) to denote the associated invariant measures.

4 Results and a Conjecture

The followingmain results of this paper assumeConditions 3.1, 3.7 and3.13 .Although
moments higher than the second moment are not considered in this paper, as noted
previously one can use arguments such as those used here to identify and prove the
analogous results.
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Recall that {Oj } j∈L are the equilibrium points and that they satisfy Conditions 3.7
and 3.13. In addition, Oj is stable if and only if j ∈ Ls, where Ls

.= {1, . . . , ls} for
some ls ≤ l = |L|, and τ ε

1 is the first return time to the δ-neighborhood of O1 after
having first visited the δ-neighborhood of any other equilibrium point.

Lemma 4.1 For any δ ∈ (0, 1) smaller than a quarter of the minimum of the distances
between Oi and O j for all i 
= j , any ε > 0 and any nonnegative measurable function
g : M → R

Eλε

(∫ τ ε
1

0
g
(
Xε
s

)
ds

)
= Eλε τ ε

1 ·
∫
M
g (x) με (dx) ,

where λε ∈ P(∂Bδ(O1)) is the unique invariant measure of {Z ε
n}n = {Xε

τε
n
}n and

με ∈ P(M) is the unique invariant measure of {Xε
t }t .

Proof We define a measure on M by

μ̂ε (B)
.= Eλε

(∫ τ ε
1

0
1B
(
Xε
t

)
dt

)

for B ∈ B(M), so that for any nonnegative measurable function g : M → R

∫
M
g (x) μ̂ε (dx) = Eλε

(∫ τ ε
1

0
g
(
Xε
t

)
dt

)
.

According to the proof of Theorem4.1 in [16], themeasure given by μ̂ε (B) /μ̂ε (M) is
an invariant measure of {Xε

t }t . Since we already know that με is the unique invariant
measure of {Xε

t }t , this means that με(B) = μ̂ε (B) /μ̂ε (M) for any B ∈ B(M).

Therefore, for any nonnegative measurable function g : M → R

Eλε

(∫ τ ε
1

0
g
(
Xε
t

)
dt

)
=
∫
M
g (x) με (dx) · μ̂ε (M) =

∫
M
g (x) με (dx) · Eλε τ ε

1 .

��
Recall the definitions ofW (Oj ) andW (O1 ∪ Oj ) in Definition 3.10, as well as the

definition of the quasipotential V (x, y) in (3.1). For any k ∈ L , we define

hk
.= min

j∈L\{k} V (Ok, Oj ). (4.1)

In addition, define

w
.= W (O1)− min

j∈L\{1}W (O1 ∪ Oj ). (4.2)

123



Journal of Theoretical Probability (2022) 35:1049–1136 1059

Remark 4.2 The quantity hk is related to the time that it takes for the process to leave
a neighborhood of Ok , and W (O1) − W (O1 ∪ Oj ) is related to the transition time
from a neighborhood of Oj to one of O1. It turns out that our results and arguments
depend on which of h1 or w is larger. Throughout the paper, the constructions used in
the case when h1 > w will be in terms of what we call a single cycle, and those for
the case when h1 ≤ w in terms of a multicycle.

Theorem 4.3 Let T ε = e
1
ε
c for some c > h1∨w. Given η > 0, a continuous function

f : M → R and any compact set A ⊂ M, there exists δ0 ∈ (0, 1) such that for any
δ ∈ (0, δ0)

lim inf
ε→0

−ε log

∣∣∣∣∣Eλε

(
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt

)
−
∫
M
e−

1
ε
f (x)1A (x) με (dx)

∣∣∣∣∣
≥ inf

x∈A [ f (x)+W (x)]−W (O1)+ c − (h1 ∨ w)− η,

where W (x)
.= min j∈L [W (Oj )+ V (Oj , x)].

Remark 4.4 Since W (x) = min j∈L [W (Oj )+ V (Oj , x)], the lower bound appearing
in Theorem 4.3 is equivalent to

min
j∈L

(
inf
x∈A

[
f (x)+ V (Oj , x)

]+W (Oj )−W (O1)

)
+ c − (h1 ∨ w)− η.

The next result gives an upper bound on the variance per unit time, or equivalently a
lower bound on its rate of decay. In the design of aMarkov chainMonte Carlo method,
one would maximize this rate of decay to improve the method’s performance.

Theorem 4.5 Let T ε = e
1
ε
c for some c > h1∨w. Given η > 0, a continuous function

f : M → R and any compact set A ⊂ M, there exists δ0 ∈ (0, 1) such that for any
δ ∈ (0, δ0)

lim inf
ε→0

−ε log

(
T ε · Varλε

(
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt

))

≥
⎧⎨
⎩
min j∈L

(
R(1)
j ∧ R(2)

j

)
− η, if h1 > w

min j∈L
(
R(1)
j ∧ R(2)

j ∧ R(3)
j

)
− η, otherwise

,

where

R(1)
j

.= inf
x∈A

[
2 f (x)+ V

(
Oj , x

)]+W
(
Oj
)−W (O1) ,

R(2)
1

.= 2 inf
x∈A [ f (x)+ V (O1, x)]− h1,
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and for j ∈ L \ {1}

R(2)
j

.= 2 inf
x∈A

[
f (x)+ V

(
Oj , x

)]+W
(
Oj
)− 2W (O1)+W (O1 ∪ Oj ),

R(3)
j

.= 2 inf
x∈A

[
f (x)+ V

(
Oj , x

)]+ 2W
(
Oj
)− 2W (O1)− w.

Remark 4.6 If one mistakenly treated a single cycle case as a multicycle case in the
application of Theorem 4.5, then the result is the same sincewith h1 > w, (4.2) implies
that R(3)

j ≥ R(2)
j for any j ∈ L .

Remark 4.7 Although Theorems 4.3 and 4.5 as stated assume the starting distribution
λε, they can be extended to general initial distributions by using results from Sect. 10,
which show that the process essentially forgets the initial distribution before leaving
the neighborhood of O1.

Remark 4.8 In this remark, we interpret the use of Theorems 4.3 and 4.5 in the context
of Monte Carlo and also explain the role of the time scaling T ε.

There is a minimum amount of time that must elapse before the process can visit all
stable equilibrium points often enough that good estimation of risk-sensitive integrals
is possible. As is well known, this time scales exponentially in the form of T ε = ec/ε,
and the issue is the selection of the constant c > 0, which motivates the assumptions
on T ε for the two cases. However, when designing a scheme there typically will be
parameters available for selection. The growth constant in T ε will then depend on these
parameters, which will then be chosen to (either directly or indirectly, depending on
the criteria used) reduce the size of T ε. For a compelling example, we refer to [10],
which shows how for a system with fixed well depths a scheme known as infinite
swapping can be designed so that given any a > 0 one can design a scheme so that an
interval of length ea/ε suffices.

Theorem 4.3 is concerned with bias, and for T ε as above will give a negligible
contribution to the total error in comparison with the variance. Thus, it is Theorem 4.5
that determines the performance of the scheme and serves as a criteria for optimization.
Of particular note is that the value of c does not appear in the variational problem
appearing in Theorem 4.5.

Theorem 4.5 gives a lower bound on the rate of decay of variance per unit time.
For applications to the design of Monte Carlo schemes as in [10], there is an a priori
bound on the best possible performance, and so this lower bound (which yields an
upper bound on variances) is sufficient to determine if a scheme is nearly optimal.
However, for other purposes an upper bound on the decay rate could be useful, and
we expect the other direction holds as well.

The proofs of Theorems 4.3 and 4.5 for single cycles and multicycles are almost
identical with a few key differences. We focus on providing proofs in the single cycle
case, and then point out the required modifications in the proofs for the multicycle
case.

Theorem 4.9 The bound in Theorem 4.3 can be calculated using only stable equilib-
rium points. Specifically,

123



Journal of Theoretical Probability (2022) 35:1049–1136 1061

1. W (x) = min j∈Ls [W (Oj )+ V (Oj , x)]
2. W

(
Oj
) = ming∈Gs( j)

[∑
(m→n)∈gV (Om, On)

]

3. W (O1 ∪ Oj ) = ming∈Gs(1, j)

[∑
(m→n)∈gV (Om, On)

]
4. min j∈L(infx∈A[ f (x)+V (Oj , x)]+W (Oj )) = min j∈Ls(infx∈A[ f (x)+V (Oj , x)]
+W (Oj )).

Remark 4.10 Theorem 4.9 says that the bound appearing in Theorem 4.3 depends on
the set of indices of only stable equilibrium points. This is not surprising, since in
[12, Chapter 6], it has been shown that the logarithmic asymptotics of the invariant
measure of aMarkov process in this framework can be characterized in terms of graphs
on the set of indices of just stable equilibrium points. It is natural to ask if the same
property holds for the lower bound appearing in Theorem 4.5. Notice that part 4 of
Theorem 4.9 implies min j∈L R(1)

j = min j∈Ls R
(1)
j , so if one can prove (possibly under

extra conditions, for example, by considering a double-well model as in Sect. 11) that
min j∈L R(2)

j = min j∈Ls R
(2)
j , then these two equations assert the property we want

for the single cycle case, namely, min j∈L(R(1)
j ∧ R(2)

j ) = min j∈Ls(R
(1)
j ∧ R(2)

j ). An
analogous comment applies for the multicycle case.

Conjecture 4.11 Let T ε = e
1
ε
c for some c > h1∨w. Let f be continuous and suppose

that A is the closure of its interior. Then for any η > 0, there exists δ0 ∈ (0, 1) such
that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

(
T ε · Varλε

(
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt

))

≤
⎧⎨
⎩
min j∈L

(
R(1)
j ∧ R(2)

j

)
+ η, if h1 > w

min j∈L
(
R(1)
j ∧ R(2)

j ∧ R(3)
j

)
+ η, otherwise

.

In Section 11, we outline the proof of Conjecture 4.11 for a special case.

5 Examples

Example 5.1 We first consider the situation depicted in Fig. 1. Values of W (Oj ) are
given in the figure. If one interprets the figure as a potential with minimum zero, then
the corresponding heights of the equilibrium points are given byW (Oj )−W (O1). We
take f = 0 and A to be a small closed interval about O5. As we will see and should be
clear from the figure, this example can be analyzed using single regenerative cycles.

Recall that

R(1)
j

.= inf
x∈A[2 f (x)+ V (Oj , x)] +W (Oj )−W (O1)

R(2)
1

.= 2 inf
x∈A[ f (x)+ V (O1, x)] − h1
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Fig. 1 Single cycle example

and for j > 1

R(2)
j

.= 2 inf
x∈A[ f (x)+ V (Oj , x)] +

(
W (Oj )−W (O1)

)−W (O1)+W (O1 ∪ Oj )

If one traces through the proof of Theorem 4.5 for the case of a single cycle, then
one finds that the constraining bound is given in Lemma 7.23, which is in turn based
on Lemma 7.9. As we will see, in the minimization problem min j∈L(R(1)

j ∧ R(2)
j ) the

min on j turns out to be achieved at j = 5. This is of course not surprising, since A
is an interval about O5. It is then the minimum of R(1)

5 and R(2)
5 which determines the

dominant source of the variance of the estimator.
We recall that τ ε

1 is the time for a full regenerative cycle, and that τ1 is the time to first
reach the 2δ neighborhood of an equilibrium point and then reach a δ neighborhood of
a (perhaps the same) equilibrium point. The quantities that are relevant in Lemma 7.9
are

sup
y∈∂Bδ(O5)

Ey

(∫ τ1

0
1A(Xε

t )dt

)2

and Ex N5

for R(1)
j and

[
sup

y∈∂Bδ(O5)

Ey

∫ τ1

0
1A(Xε

t )dt

]2
, Ex N5, and essentially sup

y∈∂Bδ(O5)

EyN5
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for R(2)
j . Decay rates are in turn determined by (see the proof of Lemma 7.23)

0 and W (O1)−W (O5)+ h1

and

0, W (O1)−W (O5)+ h1 and W (O1)−W (O1 ∪ O5),

respectively. Thus, for this example it is only the term W (O1) − W (O1 ∪ O5) that
distinguishes between the two. Since this is always greater than zero and it appears in
R(2)
j in the form −(W (O1)−W (O1 ∪ O5)), it must be the case that R(2)

5 < R(1)
5 .

The numerical values for the example are

(W (O1 ∪ Oj ), j = 2, . . . , 5) = (5, 3, 5, 2)

(V (Oj , O5), j = 1, . . . , 5) = (8, 4, 4, 0, 0)

(W (Oj )−W (O1), j = 1, . . . , 5) = (0, 4, 2, 6, 3)

(R(1)
j , j = 1, . . . , 5) = (8, 8, 6, 6, 3)

(R(2)
j , j = 2, . . . , 5) = (12, 8, 6, 0)

and R(2)
1 = 16 − 4 = 12, h1 = 4 and w = 5 − 2 = 3. Since w < h1, it falls into

the single cycle case. We therefore find min j R
(1)
j ∧ R(2)

j equals to 0 and occurs with
superscript 2 and at j = 5.

For an example where the dominant contribution to the variance is through the
quantities associated with R(1)

j , we move the set A further to the right of O5. All other
quantities are unchanged save

sup
y∈∂Bδ(O5)

Ey

(∫ τ1

0
1A(Xε

t )dt

)2

and

[
sup

y∈∂Bδ(O5)

Ey

∫ τ1

0
1A(Xε

t )dt

]2
,

whose decay rates are governed (for j = 5) by inf x∈A[V (O5, x)] and 2 infx∈A
[V (O5, x)], respectively. Choosing A so that infx∈A[V (O5, x)] > 3, it is now the
case that R(1)

5 < R(2)
5 .

Example 5.2 We consider the situation depicted in Fig. 2. In this example, we again
take f = 0 and A to be a small closed interval about O3. Since the well at O5 is deeper
than that at O1, we expect that multicycles will be needed, and so recall

R(3)
j

.= 2 inf
x∈A

[
f (x)+ V

(
Oj , x

)]+ 2W
(
Oj
)− 2W (O1)− w.
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Fig. 2 Multicycle example

The needed values are

(W (O1 ∪ Oj ), j = 2, . . . , 5) = (7, 5, 7, 2)

(V (Oj , O3), j = 1, . . . , 5) = (4, 0, 0, 0, 5)

(W (Oj )−W (O1), j = 1, . . . , 5) = (0, 4, 2, 6, 1)

(R(1)
j , j = 1, . . . , 5) = (4, 4, 2, 6, 6)

(R(2)
j , j = 2, . . . , 5) = (4, 0, 6, 6)

(R(3)
j , j = 1, . . . , 5) = (3, 3,−1, 7, 7)

and R(2)
1 = 8 − 4 = 4, h1 = 4 and w = 7 − 2 = 5. Since w > h1 a single cycle

cannot be used for the analysis of the variance, and we need to use multicycles. We
find min j R

(1)
j ∧ R(2)

j ∧ R(3)
j is equal to −1 and occurs with superscript 3 and j = 3.

6 Wald’s Identities and Regenerative Structure

To prove Theorems 4.3 and 4.5, we will use the regenerative structure to analyze
the system over the interval [0, T ε]. Since the number of regenerative cycles will be
random, Wald’s identities will be useful.

Recall that τ ε
n is the n-th return time to ∂Bδ (O1) after having visited the neighbor-

hood of a different equilibrium point, and λε ∈ P(∂Bδ(O1)) is the invariant measure
of theMarkov process {Xε

τε
n
}n∈N0 with state space ∂Bδ(O1). If we let the process {Xε

t }t
start with λε at time 0, that is, assume the distribution of Xε

0 is λε, then by the strong
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Markov property of {Xε
t }t , we find that {Xε

t }t is a regenerative process and the cycles
{{Xε

τε
n−1+t : 0 ≤ t < τε

n − τ ε
n−1}, τ ε

n − τ ε
n−1} are iid objects. Moreover, {τ ε

n }n∈N0 is a

sequence of renewal times under λε.

6.1 Single cycle

Define the filtration {Hn}n∈N, where Hn
.= Fτ ε

n
and Ft

.= σ({Xε
s ; s ≤ t}). With

respect to this filtration, in the single cycle case (i.e., when h1 > w), we consider the
stopping times N ε (T )

.= inf
{
n ∈ N : τ ε

n > T
}
. Note that N ε (T )− 1 is the number

of complete single renewal intervals contained in [0, T ].
With this notation, we can bound 1

T ε

∫ T ε

0 e− 1
ε
f (Xε

t )1A
(
Xε
t

)
dt from above and

below by

1

T ε

N ε(T ε)−1∑
n=1

Sε
n ≤

1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt ≤ 1

T ε

∑N ε(T ε)

n=1 Sε
n, (6.1)

where

Sε
n

.=
∫ τ ε

n

τ ε
n−1

e−
1
ε
f (Xε

t )1A
(
Xε
t

)
dt .

Applying Wald’s first identity shows

Eλε

⎛
⎝ 1

T ε

N ε(T ε)∑
n=1

Sε
n

⎞
⎠ = 1

T ε
Eλε

(
N ε
(
T ε
))

Eλε Sε
1 . (6.2)

Therefore, the logarithmic asymptotics of Eλε (
∫ T ε

0 e− 1
ε
f (Xε

t )1A
(
Xε
t

)
dt/T ε) are

determined by those of Eλε (N ε (T ε)) /T ε and Eλε Sε
1 . Likewise, to understand

the logarithmic asymptotics of T ε·Varλε (
∫ T ε

0 e− 1
ε
f (Xε

t )1A
(
Xε
t

)
dt/T ε), it is suffi-

cient to identify the corresponding logarithmic asymptotics of Varλε (N ε (T ε)) /T ε,
Varλε (Sε

1), Eλε (N ε (T ε)) /T ε and Eλε Sε
1 . This can be done with the help of Wald’s

second identity, since

T ε · Varλε

(
1

T ε

∑N ε(T ε)
n=1 Sε

n

)

≤ 2T ε · Eλε

(
1

T ε

∑N ε(T ε)
n=1 Sε

n −
1

T ε
N ε
(
T ε
)
Eλε Sε

1

)2

+ 2T ε · Eλε

(
1

T ε
N ε
(
T ε
)
Eλε Sε

1 −
1

T ε
Eλε

(
N ε
(
T ε
))

Eλε Sε
1

)2

= 2
Eλε (N ε (T ε))

T ε
Varλε Sε

1 + 2
Varλε (N ε (T ε))

T ε

(
Eλε Sε

1

)2
. (6.3)
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In the next two sections, we derive bounds on Eλε Sε
1 , Varλε (Sε

1) and Eλε (N ε (T ε)),
Varλε (N ε (T ε)), respectively.

6.2 Multicycle

Recall that in the case of a multicycle, we have w ≥ h1. For any m > 0 such that
h1+m > w and for any ε > 0, on the same probability space as {τ ε

n }, one can define a
sequence of independent and geometrically distributed randomvariables {Mε

i }i∈Nwith
parameter e−m/ε that are independent of {τ ε

n }. We then define multicycles according
to

Kε
i

.=
i∑

j=1
Mε

j , τ̂ ε
i

.=
Kε
i∑

n=Kε
i−1+1

τ ε
n , i ∈ N. (6.4)

Consider the stopping times N̂ ε (T )
.= inf

{
n ∈ N : τ̂ ε

n > T
}
. Note that N̂ ε (T ) −

1 is the number of complete multicycles contained in [0, T ]. With this nota-
tion and by following the same idea as in the single cycle case, we can bound
1
T ε

∫ T ε

0 e− 1
ε
f (Xε

t )1A
(
Xε
t

)
dt from above and below by

1

T ε

N̂ ε(T ε)−1∑
n=1

Ŝε
n ≤

1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt ≤ 1

T ε

N̂ ε(T ε)∑
n=1

Ŝε
n, (6.5)

where

Ŝε
n

.=
∫ τ̂ ε

n

τ̂ ε
n−1

e−
1
ε
f (Xε

t )1A
(
Xε
t

)
dt .

Therefore, by applying Wald’s first and second identities, we know that the loga-

rithmic asymptotics of Eλε (
∫ T ε

0 e− 1
ε
f (Xε

t )1A
(
Xε
t

)
dt/T ε) are determined by those

of Eλε (N̂ ε (T ε))/T ε and Eλε Ŝε
1 , and the asymptotics of T ε·Varλε (

∫ T ε

0 e− 1
ε
f (Xε

t )1A(
Xε
t

)
dt/T ε) by those of Varλε (N̂ ε (T ε))/T ε, Varλε (Ŝε

1), Eλε (N̂ ε (T ε))/T ε and

Eλε Ŝε
1 . In particular, we have

Eλε

(
1

T ε

∑N̂ ε(T ε)

n=1 Ŝε
n

)
= 1

T ε
Eλε

(
N̂ ε
(
T ε
))

Eλε Ŝε
1 (6.6)

and

T ε · Varλε

(
1

T ε

∑N̂ ε(T ε)

n=1 Ŝε
n

)

≤ 2
Eλε (N̂ ε (T ε))

T ε
Varλε Ŝε

1 + 2
Varλε (N̂ ε (T ε))

T ε

(
Eλε Ŝε

1

)2
. (6.7)
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In the next two sections, we derive bounds on Eλε Ŝε
1 , Varλε (Ŝε

1) and Eλε (N̂ ε (T ε)),
Varλε (N̂ ε (T ε)), respectively.

Remark 6.1 It should be kept inmind that τ̂ ε
n , N̂ ε (T ε) and Ŝε

n all dependonm, although
this dependence is not explicit in the notation.

Remark 6.2 In general, for any quantity in the single cycle case, we use analogous
notation with a “hat” on it to represent the corresponding quantity in the multicycle
version. For instance, we use τ ε

n for a single regenerative cycle, and τ̂ ε
n for a multi-

regenerative cycle.

7 Asymptotics of Moments of S"1 and Ŝ"1

In this section, we will first introduce the elementary theory of an irreducible finite
state Markov chain {Zn}n∈N0 with state space L , and then state and prove bounds for
the asymptotics of moments of Sε

1 and Ŝε
1 .

For the asymptotic analysis, the following useful facts will be used repeatedly.

Lemma 7.1 For any nonnegative sequences {aε}ε>0 and {bε}ε>0, we have

lim inf
ε→0

−ε log (aεbε) ≥ lim inf
ε→0

−ε log aε + lim inf
ε→0

−ε log bε, (7.1)

lim sup
ε→0

−ε log (aε + bε) ≤ min

{
lim sup

ε→0
−ε log aε, lim sup

ε→0
−ε log bε

}
,

lim inf
ε→0

−ε log (aε + bε) = min

{
lim inf

ε→0
−ε log aε, lim inf

ε→0
−ε log bε

}
. (7.2)

7.1 Markov Chains and Graph Theory

In this subsection,we state some elementary theory for finite stateMarkov chains taken
from [1, Chapter 2]. For a finite state Markov chain, the invariant measure, the mean
exit time, etc., can be expressed explicitly as the ratio of certain determinants, i.e.,
sums of products consisting of transition probabilities, and these sums only contain
terms with a plus sign. Which products should appear in the various sums can be
described conveniently by means of graphs on the set of states of the chain. This
method of linking graphs and quantities associated with a finite state Markov chain
was introduced by Freidlin and Wentzell in [12, Chapter 6].

Consider an irreducible finite state Markov chain {Zn}n∈N0 with state space L. For
any i, j ∈ L, let pi j be the one-step transition probability of {Zn}n from state i to
state j . Write Pi (·) and Ei (·) for probabilities and expectations of the chain started at
state i at time 0. Recall the notation π(g)

.=∏(i→ j)∈g pi j .

Lemma 7.2 The unique invariant measure of {Zn}n∈N can be expressed

λi =
∑

g∈G(i) π (g)
∑

j∈L
(∑

g∈G( j) π (g)
) .
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Proof See Lemma 3.1, Chapter 6 in [12]. ��

To analyze the empirical measure, we will need additional results, including repre-
sentations for the number of visits to a state during a regenerative cycle. Write

Ti
.= inf {n ≥ 0 : Zn = i}

for the first hitting time of state i, and write

T+i
.= inf {n ≥ 1 : Zn = i} .

Observe that T+i = Ti unless Z0 = i, in which case we call T+i the first return time
to state i .

Let N̂
.= inf{n ∈ N0 : Zn ∈ L \ {1}} and N

.= inf{n ∈ N : Zn = 1, n ≥ N̂ }. N̂ is
the first time of visiting a state other than state 1, and N is the first time of visiting state
1 after N̂ . For any j ∈ L, let N j be the number of visits (including time 0) of state j
before N , i.e., N j = |{n ∈ N0 : n < N and Zn = j}| . We would like to understand
E1N j and E j N j for any j ∈ L.These quantities will appear later on in Subsection 7.2.
The next lemma shows how they can be related to the invariant measure of {Zn}n .

Lemma 7.3 1. For any j ∈ L \ {1}

E j N j =
∑

g∈G(1, j) π (g)∑
g∈G(1) π (g)

and E j N j = λ j
(
E j T1 + E1Tj

)
.

2. For any i, j ∈ L, j 
= i

Pi
(
Tj < T+i

) = 1

λi
(
E j Ti + Ei Tj

) .

3. For any j ∈ L

E1N j = 1

1− p11

λ j

λ1
.

Proof See Lemma 3.4 in [12, Chapter 6] for the first assertion of part 1 and see Lemma
2.7 in [1, Chapter 2] for the second assertion of part 1. For part 2, see Corollary 2.8 in
[1, Chapter 2]. For part 3, since E1N j =∑∞


=1 P1
(
N j ≥ 


)
, we need to understand

P1
(
N j ≥ 


)
, which means we need to know how to count all the ways to get N j ≥ 


before returning to state 1.
We first have to move away from state 1, so the types of sequences are of the form

1, 1, . . . , 1︸ ︷︷ ︸
i times

, k1, k2, . . . , kq , 1
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for some i, q ∈ N and k1 
= 1, · · · , kq 
= 1. When j = 1, we do not care about
k1, k2, . . . , kq , and therefore

P1 (N1 ≥ i) = pi−111 and E1N1 =
∑∞

i=1 P1 (N1 ≥ i) = 1

1− p11
.

For j ∈ L \ {1}, the event {N j ≥ 
} requires that within k1, k2, . . . , kq , we

1. first visit state j before returning to state 1, which has corresponding probability
P1(Tj < T+1 ),

2. then start from state j and again visit state j before returning to state 1, which has
corresponding probability Pj (T

+
j < T1).

Step 2 needs to happen at least 
− 1 times in a row, and after that we do not care.
Thus,

P1
(
N j ≥ 


) =∑∞
i=1 (p11)

i−1 P1
(
Tj < T+1

)
(Pj (T

+
j < T1))


−1

= 1

1− p11
P1
(
Tj < T+1

)
(Pj (T

+
j < T1))


−1

and

∑∞

=1 P1

(
N j ≥ 


) = 1

1− p11

P1
(
Tj < T+1

)
Pj (T1 < T+j )

= 1

1− p11

λ j
(
E1Tj + E j T1

)
λ1
(
E1Tj + E j T1

)

= 1

1− p11

λ j

λ1
.

The third equality comes from part 2. ��
To apply the preceding results using the machinery developed by Freidlin and

Wentzell, one must have analogues that allow for small perturbations of the transition
probabilities due to the fact that initial conditions are to be taken in small neighbor-
hoods of the equilibrium points. The addition of a tilde will be used to identify the
corresponding objects, such as hitting and return times. Take as given a Markov chain
{Z̃n}n∈N0 on a state space X = ∪i∈LXi , with Xi ∩X j = ∅ (i 
= j), and assume there
is a ∈ [1,∞) such that for any i, j ∈ L and j 
= i, the transition probability of the
chain from x ∈ Xi to X j (denoted by p

(
x,X j

)
) satisfies the inequalities

a−1 pi j ≤ p
(
x,X j

) ≤ api j (7.3)

for any x ∈ Xi . Write Px (·) and Ex (·) for probabilities and expectations of the chain
started at x ∈ X at time 0. Write

T̃i
.= inf{n ≥ 0 : Z̃n ∈ Xi }

for the first hitting time of Xi , and write

T̃+i
.= inf{n ≥ 1 : Z̃n ∈ Xi }.
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Observe that T̃+i = T̃i unless Z̃0 ∈ Xi , in which case we call T̃
+
i the first return time

to Xi . Recall that l = |L|.
Remark 7.4 Observe that given j ∈ L and for any x ∈ X j , 1 − p

(
x,X j

) =∑
k∈L\{ j} p (x,Xk) . Therefore, we can apply (7.3) to obtain

a−1
∑

k∈L\{ j} p jk ≤ 1− p
(
x,X j

) ≤ a
∑

k∈L\{ j} p jk .

Lemma 7.5 1. Consider distinct i, j, k ∈ L. Then, for x ∈ Xk,

a−4l−2 Pk
(
Tj < Ti

) ≤ Px (T̃ j < T̃i ) ≤ a4
l−2

Pk
(
Tj < Ti

)
.

2. For any i ∈ L, j ∈ L \ {i} and x ∈ Xi ,

a−4l−2−1Pi
(
Tj < T+i

) ≤ Px (T̃ j < T̃+i ) ≤ a4
l−2+1Pi

(
Tj < T+i

)
.

Proof For part 1, see Lemma 3.3 in [12, Chapter 6]. We only need to prove part 2.
Note that by a first step analysis on {Z̃n}n∈N0 , for any i ∈ L , j ∈ L \ {i} and x ∈ Xi ,

Px (T̃ j < T̃+i ) = p
(
x,X j

)+∑
k∈L\{i, j}

∫
Xk

Py(T̃ j < T̃i )p (x, dy)

≤ api j +
∑

k∈L\{i, j}
(
a4

l−2
Pk
(
Tj < Ti

))
(apik)

≤ a4
l−2+1 (pi j +∑

k∈L\{i, j} Pk
(
Tj < Ti

)
pik
)

= a4
l−2+1Pi

(
Tj < T+i

)
.

The first inequality comes from the use of (7.3) and part 1; the last equality holds since
we can do a first step analysis on {Zn}n . Similarly, we can show the lower bound. ��

Let Ň
.= inf{n ∈ N0 : Z̃n ∈ ∪ j∈L\{1}X j } and Ñ

.= inf{n ∈ N : Zn ∈ X1, n ≥ Ň }.
For any j ∈ L, let Ñ j be the number of visits (including time 0) of state X j before
Ñ , i.e., Ñ j = |{n ∈ N0 : n < Ñ and Zn ∈ X j }|. We would like to understand Ex Ñ j

for any j ∈ L and x ∈ X1 or X j .

Lemma 7.6 For any j ∈ L and x ∈ X1

Ex Ñ j ≤ a4
l−1

∑

∈L\{1} p1


∑
g∈G( j) π (g)∑
g∈G(1) π (g)

.

Moreover, for any j ∈ L \ {1}
∞∑


=1
sup
x∈X j

Px
(
Ñ j ≥ 


)
≤ a4

l−1
∑

g∈G(1, j) π (g)∑
g∈G(1) π (g)
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and

∞∑

=1

sup
x∈X1

Px
(
Ñ1 ≥ 


)
≤ a∑


∈L\{1} p1

.

Proof For any x ∈ X1, note that for any 
 ∈ N, by a conditioning argument as in the
proof of Lemma 7.3 (3), we find that for j ∈ L \ {1}

Px (Ñ j ≥ 
) ≤ supy∈X1
Py(T̃ j < T̃+1 )

1− supy∈X1
p (y,X1)

(
supy∈X j

Py(T̃
+
j < T̃1)

)
−1

and

Px (Ñ1 ≥ 
) ≤ (supy∈X1
p (y,X1)

)
−1
.

Thus, for any x ∈ X1 and for j ∈ L \ {1}

Ex Ñ j =
∞∑


=1
Px (Ñ j ≥ 
) ≤ supy∈X1

Py(T̃ j < T̃+1 )

1− supy∈X1
p (y,X1)

· 1

1− supy∈X j
Py(T̃

+
j < T̃1)

= supy∈X1
Py(T̃ j < T̃+1 )(

inf y∈X j (1− p (y,X1))
)

(inf y∈X j Py(T̃1 < T̃+j ))

≤ a4
l−1 P1(Tj < T+1 )

(
∑


∈L\{1} p1
)Pj (T1 < T+j )

= a4
l−1

∑

∈L\{1} p1


λ j

λ1
= a4

l−1
∑


∈L\{1} p1


∑
g∈G( j) π (g)∑
g∈G(1) π (g)

.

The second inequality is fromRemark 7.4 and Lemma 7.5 (2); the third equality comes
from Lemma 7.3 (2); the last equality holds due to Lemma 7.2. Also,

Ex Ñ1 =
∞∑


=1
Px (Ñ1 ≥ 
) ≤ 1

1− supy∈X1
p (y,X1)

= 1

inf y∈X1 (1− p (y,X1))

≤ a∑

∈L\{1} p1


.

The last inequality is from Remark 7.4. This completes the proof of part 1.
Turning to part 2, since for any 
 ∈ N

supx∈X1
Px (Ñ1 ≥ 
) ≤ (supy∈X1

p (y,X1)
)
−1

,
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we have

∞∑

=1

sup
x∈X1

Px (Ñ1 ≥ 
) ≤ 1

1− supy∈X1
p (y,X1)

≤ a∑

∈L\{1} p1


.

Furthermore, we use the conditioning argument again to find that for any j ∈ L \ {1}
and 
 ∈ N

supx∈X j
Px (Ñ j ≥ 
) ≤ (supy∈X j

Py(T̃
+
j < T̃1))


−1.

This implies that

∞∑

=1

supx∈X j
Px (Ñ j ≥ 
)

≤
∞∑


=1
(supy∈X j

Py(T̃
+
j < T̃1))


−1 = 1

1− supy∈X j
Py(T̃

+
j < T̃1)

= 1

inf y∈X j Py(T̃1 < T̃+j )
≤ a4

l−1 1

Pj (T1 < T+j )

= a4
l−1

λ j (E1Tj + E j T1) = a4
l−1
∑

g∈G(1, j) π (g)∑
g∈G(1) π (g)

.

We use Lemma 7.5 (2) to obtain the second inequality and Lemma 7.3, parts (2) and
(1), for the penultimate and last equalities. ��

7.2 Asymptotics of Moments of S"1

Recall that {Xε}ε∈(0,∞) ⊂ C([0,∞) : M) is a sequence of stochastic processes
satisfying Conditions 3.1, 3.7 and 3.13. Moreover, recall that Sε

1 is defined by

Sε
1

.=
∫ τ ε

1

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt . (7.4)

As mentioned in Section 6, we are interested in the logarithmic asymptotics of Eλε Sε
1

and Eλε (Sε
1)

2.Tofind these asymptotics, themain toolwewill use is Freidlin–Wentzell
theory [12]. In fact,wewill generalize the results of Freidlin–Wentzell to the following:
For any given continuous function f : M → R and any compact set A ⊂ M, we will
provide lower bounds for

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

Ez

(∫ τ ε
1

0
e−

1
ε
f (Xε

s )1A
(
Xε
s

)
ds

))
(7.5)
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and

lim inf
ε→0

−ε log

⎛
⎝ sup

z∈∂Bδ(O1)

Ez

(∫ τ ε
1

0
e−

1
ε
f (Xε

s )1A
(
Xε
s

)
ds

)2
⎞
⎠ . (7.6)

As will be shown, these two bounds can be expressed in terms of the quasipotentials
V (Oi , Oj ) and V (Oi , x).

Remark 7.7 In the Freidlin–Wentzell theory as presented in [12], they only consider
bounds for

lim inf
ε→0

−ε log
(
supz∈∂Bδ(O1)

Ezτ
ε
1

)
.

Thus, their result is a special case of (7.5) with f ≡ 0 and A = M . Moreover, we
generalize their result further by considering the logarithmic asymptotics of higher
moment quantities such as (7.6).

Before proceeding, we recall that L = {1, . . . , l} and for any δ > 0, we define
τ0

.= 0,

σn
.= inf{t > τn : Xε

t ∈
⋃

j∈L∂B2δ(O j )} and τn
.= inf{t > σn−1:Xε

t ∈
⋃

j∈L∂Bδ(O j )}.

Moreover, τ ε
0

.= 0,

σ ε
n

.= inf{t > τε
n :Xε

t ∈
⋃

j∈L\{1}∂Bδ(Oj )} and τ ε
n

.= inf
{
t > σε

n−1 : Xε
t ∈ ∂Bδ(O1)

}
.

In addition, {Zn}n∈N0

.= {Xε
τn
}n∈N0 is aMarkov chain on

⋃
j∈L∂Bδ(Oj ) and {Z ε

n}n∈N0
.= {Xε

τε
n
}n∈N0 is aMarkov chain on ∂Bδ(O1). It is essential to keep the distinction clear:

when there is an ε superscript the chain makes transitions between neighborhoods of
distinct equilibria, while if absent such transitions are possible, but for stable equilibria
there will be many more transitions between the δ and 2δ neighborhoods.

Following the notation of Subsect. 7.1, let N̂
.= inf{n ∈ N0 : Zn ∈⋃

j∈L\{1}∂Bδ(Oj )}, N .= inf{n ≥ N̂ : Zn ∈ ∂Bδ(O1)}, and recall Ft
.= σ({Xε

s ; s ≤
t}). Then, since {τn}n∈N0 are stopping times with respect to the filtration {Ft }t≥0, Fτn

are well-defined for any n ∈ N0 and we use Gn to denote Fτn . One can prove that
N̂ and N are stopping times with respect to {Gn}n∈N. For any j ∈ L, let N j be the
number of visits of {Zn}n∈N0 to ∂Bδ(Oj ) (including time 0) before N .

The proofs of the following two lemmas are given in Appendix.

Lemma 7.8 Given δ > 0 sufficiently small, for any x ∈ ∂Bδ(O1) and any nonnegative
measurable function g : M → R,

Ex

(∫ τ ε
1

0
g
(
Xε
s

)
ds

)
≤
∑
j∈L

[
sup

y∈∂Bδ(Oj )

Ey

(∫ τ1

0
g
(
Xε
s

)
ds

)]
· Ex N j .
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Lemma 7.9 Given δ > 0 sufficiently small, for any x ∈ ∂Bδ(O1) and any nonnegative
measurable function g : M → R,

Ex

(∫ τ ε
1

0
g
(
Xε
s

)
ds

)2

≤ l
∑
j∈L

[
sup

y∈∂Bδ(Oj )

Ey

(∫ τ1

0
g
(
Xε
s

)
ds

)2
]
· Ex N j

+ 2l
∑
j∈L

[
sup

y∈∂Bδ(Oj )

Ey

(∫ τ1

0
g
(
Xε
s

)
ds

)]2
· Ex N j

·
∞∑
k=1

sup
y∈∂Bδ(Oj )

Py
(
k ≤ N j

)
. (7.7)

Although as noted the proofs are given in Appendix, these results follow in a
straightforward way by decomposing the excursion away from O1 during [0, τ ε

1 ],
which only stops when returning to a neighborhood of O1, into excursions between
any pair of equilibrium points, counting the number of such excursions that start near
a particular equilibrium point, and using the strong Markov property.

Remark 7.10 Following an analogous argument as in the proof of Lemmas 7.8 and
7.9, we can prove the following: Given δ > 0 sufficiently small, for any x ∈ ∂Bδ(O1)

and any nonnegative measurable function g : M → R,

Ex

(∫ τ ε
1

σε
0

g
(
Xε
s

)
ds

)
≤∑ j∈L\{1}

[
sup

y∈∂Bδ(Oj )

Ey

(∫ τ1

0
g
(
Xε
s

)
ds

)]
· Ex N j

and

Ex

(∫ τ ε
1

σε
0

g
(
Xε
s

)
ds

)2

≤ l
∑

j∈L\{1}

[
sup

y∈∂Bδ(Oj )

Ey

(∫ τ1

0
g
(
Xε
s

)
ds

)2
]
· Ex N j

+ 2l
∑

j∈L\{1}

[
sup

y∈∂Bδ(Oj )

Ey

(∫ τ1

0
g
(
Xε
s

)
ds

)]2
· Ex N j

·∑∞

=1 sup

y∈∂Bδ(Oj )

Py
(
k ≤ N j

)
.

The main difference is that if the integration starts from σε
0 (the first visiting time of⋃

j∈L\{1}∂Bδ(Oj )), then any summation appearing in the upper bounds should sum
over all indices in L \ {1} instead of L.

Owing to its frequent appearance but with varying arguments, we introduce the
notation
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I ε(t1, t2; f , A)
.=
∫ t2

t1
e−

1
ε
f (Xε

s )1A(Xε
s )ds, (7.8)

and write I ε(t; f , A) if t1 = 0 and t2 = t so that, e.g., Sε
1 = I ε(τ ε

1 ; f , A).

Corollary 7.11 Given anymeasurable set A ⊂ M,ameasurable function f : M → R,

j ∈ L and δ > 0, we have

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ (O1)

Ez I
ε(τ ε

1 ; f , A)

)

≥ min
j∈L

{
lim inf

ε→0
−ε log

(
sup

z∈∂Bδ (O1)

EzN j

)
+ lim inf

ε→0
−ε log

(
sup

z∈∂Bδ (Oj )

Ez I
ε(τ1; f , A)

)}
,

and

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

Ez I
ε(τ1; f , A)2

)
≥ min

j∈L

(
R̂(1)
j ∧ R̂(2)

j

)
,

where

R̂(1)
j

.= lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)2

)
+ lim inf

ε→0
−ε log

(
sup

z∈∂Bδ(O1)

EzN j

)

and

R̂(2)
j

.= 2 lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)

)
+ lim inf

ε→0
−ε log

(
sup

z∈∂Bδ(O1)

EzN j

)

+ lim inf
ε→0

−ε log

(∑∞

=1 sup

z∈∂Bδ(Oj )

Pz
(

 ≤ N j

))
.

Proof For the first part, applying Lemma 7.8 with g(x) = e− 1
ε
f (x)1A (x) and using

(7.1) and (7.2) completes the proof. For the second part, using Lemma 7.9 with g(x) =
e− 1

ε
f (x)1A (x) and using (7.1) and (7.2) again completes the proof. ��

Remark 7.12 Owing to Remark 7.10, we can modify the proof of Corollary 7.11 and
show that given any set A ⊂ M, a measurable function f : M → R, j ∈ L and
δ > 0,

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)
Ez I

ε(σ ε
0 , τ ε

1 ; f , A)

)

≥ min
j∈L\{1}

⎧⎨
⎩lim inf

ε→0
−ε log

(
sup

z∈∂Bδ(O1)
EzN j

)
+ lim inf

ε→0
−ε log

⎛
⎝ sup
z∈∂Bδ(O j )

Ez I
ε(τ1; f , A)

⎞
⎠
⎫⎬
⎭ .
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Moreover,

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

Ez I
ε(σ ε

0 , τ ε
1 ; f , A)2

)
≥ min

j∈L\{1}

(
R̂(1)
j ∧ R̂(2)

j

)
,

where the definitions of R̂(1)
j and R̂(2)

j can be found in Corollary 7.11.

We next consider lower bounds on

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)

)
and

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)2

)

for j ∈ L . We state some useful results before studying the lower bounds. Recall also
that τ1 is the time to reach the δ-neighborhood of any of the equilibrium points after
leaving the 2δ-neighborhood of one of the equilibrium points.

Lemma 7.13 For any η > 0, there exists δ0 ∈ (0, 1) and ε0 ∈ (0, 1), such that for all
δ ∈ (0, δ0) and ε ∈ (0, ε0)

sup
x∈M

Exτ1 ≤ e
η
ε and sup

x∈M
Ex (τ1)

2 ≤ e
η
ε .

Proof If x is not in ∪ j∈L B2δ(Oj ), then a uniform (in x and small ε) upper bound on
these expected values follows from the corollary to [12, Lemma 1.9, Chapter 6].

If x ∈ ∪ j∈L B2δ(Oj ), then we must wait till the process reaches ∪ j∈L∂B2δ(Oj ),
after which we can use the uniform bound (and the strong Markov property). Since
there exists δ > 0 such the lower bound Px (inf{t ≥ 0 : Xε

t ∈ ∪ j∈L∂B2δ(Oj )} ≤
1) ≥ e−η/2ε is valid for all x ∈ ∪ j∈L B2δ(Oj ) and small ε > 0, upper bounds of the
desired form follow from the Markov property and standard calculations. ��

For any compact set A ⊂ M , we use ϑA to denote the first hitting time

ϑA
.= inf

{
t ≥ 0 : Xε

t ∈ A
}
.

Note that ϑA is a stopping time with respect to filtration {Ft }t≥0. The following result
is relatively straightforward given the just discussed bound on the distribution of τ1,
and follows by partitioning according to τ1 ≥ T and τ1 < T for large but fixed T .

Lemma 7.14 For any compact set A ⊂ M, j ∈ L and any η > 0, there exists
δ0 ∈ (0, 1) and ε0 ∈ (0, 1), such that for all ε ∈ (0, ε0) and δ ∈ (0, δ0)

sup
z∈∂Bδ(Oj )

Pz (ϑA ≤ τ1) ≤ e−
1
ε (infx∈A[V (Oj ,x)]−η).
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Lemma 7.15 Given a compact set A ⊂ M, any j ∈ L and η > 0, there exists
δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez

[∫ τ1

0
1A
(
Xε
s

)
ds

])
≥ inf

x∈A V
(
Oj , x

)− η

and

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez

(∫ τ1

0
1A
(
Xε
s

)
ds

)2
)
≥ inf

x∈A V
(
Oj , x

)− η.

Proof The idea of this proof follows from the proof of Theorem 4.3 in [12, Chapter
4]. Since I ε(τ1; 0, A) = ∫ τ1

0 1A
(
Xε
s

)
ds, for any x ∈ ∂Bδ(Oj ),

Ex I
ε(τ1; 0, A)

= Ex
[
I ε(τ1; 0, A)1{ϑA≤τ1}

] = Ex
[
Ex
[
I ε(τ1; 0, A)

∣∣FϑA

]
1{ϑA≤τ1}

]
= Ex

[
(EXε

ϑA
I ε(τ1; 0, A))1{ϑA≤τ1}

]
≤ supy∈∂A Eyτ1 · supz∈∂Bδ(Oj )

Pz (ϑA ≤ τ1) .

The inequality is due to EXε
ϑA

I ε(τ1; 0, A) ≤ EXε
ϑA

τ1 ≤ supy∈∂A Eyτ1.We then apply

Lemmas 7.13 and 7.14 to find that for the given η > 0, there exists δ0 ∈ (0, 1) and
ε0 ∈ (0, 1), such that for all ε ∈ (0, ε0) and δ ∈ (0, δ0),

Ex I
ε(τ1; 0, A) ≤ sup

y∈∂A
Eyτ1 · sup

z∈∂Bδ(Oj )

Pz (ϑA ≤ τ1) ≤ e
η/2
ε e−

1
ε (inf y∈A V (Oj ,y)−η/2).

Thus,

lim inf
ε→0

−ε log
(
supz∈∂Bδ(Oj )

Ez I
ε(τ1; 0, A)

)
≥ inf

x∈A V
(
Oj , x

)− η.

This completes the proof of part 1.
For part 2, following the same conditioning argument as for part 1 with the use of

Lemmas 7.13 and 7.14 gives that for the given η > 0, there exists δ0 ∈ (0, 1) and
ε0 ∈ (0, 1), such that for all ε ∈ (0, ε0) and δ ∈ (0, δ0),

Ex I
ε(τ1; 0, A)2 ≤ sup

y∈∂A
Ey (τ1)

2 · sup
z∈∂Bδ(Oj )

Pz (ϑA ≤ τ1) ≤ e
η/2
ε e−

1
ε (infx∈A V (Oj ,x)−η/2).

Therefore,

lim inf
ε→0

−ε log
(
supz∈∂Bδ(Oj )

Ez I
ε(τ1; 0, A)2

)
≥ inf

x∈A V
(
Oj , x

)− η.

��
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Lemma 7.16 Given compact sets A1, A2 ⊂ M, j ∈ L and η > 0, there exists
δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez

[(∫ τ1

0
1A1

(
Xε
s

)
ds

)(∫ τ1

0
1A2

(
Xε
s

)
ds

)])

≥ max

{
inf
x∈A1

V
(
Oj , x

)
, inf
x∈A2

V
(
Oj , x

)}− η.

Proof We set ϑAi

.= inf
{
t ≥ 0 : Xε

t ∈ Ai
}
for i = 1, 2. For any x ∈ ∂Bδ(Oj ), using

a conditioning argument as in the proof of Lemma 7.15 we obtain that for any η > 0,
there exists δ0 ∈ (0, 1) and ε0 ∈ (0, 1), such that for all ε ∈ (0, ε0) and δ ∈ (0, δ0),

Ex

[(∫ τ1

0
1A1

(
Xε
s

)
ds

)(∫ τ1

0
1A2

(
Xε
s

)
ds

)]

= Ex

[(∫ τ1

0

∫ τ1

0
1A1

(
Xε
s

)
1A2

(
Xε
t

)
dsdt

)
1{ϑA1∨ϑA2≤τ1

}
]

= Ex

[(
EXε

ϑA1
∨ϑA2

[∫ τ1

0

∫ τ1

0
1A1

(
Xε
s

)
1A2

(
Xε
t

)
dsdt

])
1{ϑA1∨ϑA2≤τ1

}
]

≤ supy∈∂A1∪∂A2
Ey (τ1)

2 · supz∈∂Bδ(Oj )
Pz
(
ϑA1 ≤ τ1, ϑA2 ≤ τ1

)

≤ e
η/2
ε ·min

{
supz∈∂Bδ(Oj )

Pz
(
ϑA1 ≤ τ1

)
, supz∈∂Bδ(Oj )

Pz
(
ϑA2 ≤ τ1

)}
, (7.9)

The last inequality holds since for i = 1, 2

supz∈∂Bδ(Oj )
Pz
(
ϑA1 ≤ τ1, ϑA2 ≤ τ1

) ≤ supz∈∂Bδ(Oj )
Pz
(
ϑAi ≤ τ1

)

and owing to Lemma 7.13, for all ε ∈ (0, ε0)

supy∈∂A1
Ey (τ1)

2 ≤ e
η/2
ε and supy∈∂A2

Ey (τ1)
2 ≤ e

η/2
ε .

Furthermore, for the given η > 0, by Lemma 7.14, there exists δi ∈ (0, 1) such
that for any δ ∈ (0, δi )

lim inf
ε→0

−ε log
(
supz∈∂Bδ(Oj )

Pz
(
ϑAi ≤ τ1

)) ≥ inf
x∈Ai

V
(
Oj , x

)− η/2
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for i = 1, 2. Hence, letting δ0 = δ1 ∧ δ2, for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

(
supz∈∂Bδ(Oj )

Ez

[(∫ τ1

0
1A1

(
Xε
s

)
ds

)(∫ τ1

0
1A2

(
Xε
s

)
ds

)])

≥ lim inf
ε→0

−ε log
(
e

η
2ε min

{
supz∈∂Bδ(Oj )

Pz
(
ϑA1 ≤ τ1

)
, supz∈∂Bδ(Oj )

Pz
(
ϑA2 ≤ τ1

)})

≥ −η/2+max

{
lim inf

ε→0
−ε log

(
supz∈∂Bδ(Oj )

Pz
(
ϑA1 ≤ τ1

))
,

lim inf
ε→0

−ε log
(
supz∈∂Bδ(Oj )

Pz
(
ϑA2 ≤ τ1

))}

≥ max
{
infx∈A1 V

(
Oj , x

)
, inf x∈A2 V

(
Oj , x

)}− η.

The first inequality is from (7.9). ��
Remark 7.17 The next lemma considers asymptotics of the first and second moments
of a certain integral that will appear in a decomposition of Sε

1 . It is important to note
that the variational bounds for both moments have the same structure as an infimum
over x ∈ A. While one might consider it possible that the variational problem for
the second moment could require a pair of parameters (e.g., infimum over x, y ∈ A),
the infimum is in fact achieved on the “diagonal” x = y. This means that the biggest
contribution to the second moment is likewise due to mass along the “diagonal.”

Lemma 7.18 Given a compact set A ⊂ M, a continuous function f : M → R, j ∈ L
and η > 0, there exists δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)

)
≥ inf

x∈A
[
f (x)+ V

(
Oj , x

)]− η

and

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)2

)
≥ inf

x∈A
[
2 f (x)+ V

(
Oj , x

)]− η.

Proof Since a continuous function is bounded on a compact set, there exists m ∈
(0,∞) such that −m ≤ f (x) ≤ m for all x ∈ A. For n ∈ N and k ∈ {1, 2, . . . , n},
consider the sets

An,k
.=
{
x ∈ A : f (x) ∈

[
−m + 2 (k − 1)m

n
,−m + 2km

n

]}
.

Note that An,k is a compact set for anyn, k. In addition, for anyn fixed,
⋃n

k=1An,k = A.

With this expression, for any x ∈ ∂Bδ(Oj ) and n ∈ N

Ex I
ε(τ1; f , A) ≤

∑n

k=1 Ex I
ε(τ1; f , An,k)

≤
∑n

k=1 Ex I
ε(τ1; 0, An,k)e

− 1
ε (Fn,k−2m/n).
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The second inequality holds because by definition of An,k, for any x ∈ An,k , f (x) ≥
Fn,k − 2m/n with Fn,k

.= supy∈An,k
f (y).

Next, we first apply (7.2) and then Lemma 7.15 with compact sets An,k for k ∈
{1, 2, . . . , n} to get

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)

)

≥ min
k∈{1,...,n}

{
lim inf

ε→0
−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; 0, An,k)e

− 1
ε

(
Fn,k− 2m

n

))}

= min
k∈{1,...,n}

{
lim inf

ε→0
−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; 0, An,k)

)
+ Fn,k

}
− 2m

n

≥ min
k∈{1,...,n}

{
sup

x∈An,k

f (x)+ inf
x∈An,k

V
(
Oj , x

)}− η − 2m

n
.

Finally, we know that V
(
Oj , x

)
is bounded below by 0, and then we use the fact that

for any two functions f , g : R
d → R with g being bounded below (to ensure that

the right hand side is well defined) and any set A ⊂ R
d , infx∈A ( f (x)+ g (x)) ≤

supx∈A f (x) + inf x∈A g (x) to find that the last minimum in the previous display is
greater than or equal to

min
k∈{1,...,n}

{
inf

x∈An,k

[
f (x)+ V

(
Oj , x

)]} = inf
x∈A

[
f (x)+ V

(
Oj , x

)]
.

Therefore,

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)

)
≥ inf

x∈A
[
f (x)+ V

(
Oj , x

)]− η − 2m

n
.

Since n is arbitrary, sending n →∞ completes the proof for the first part.
Turning to part 2, we follow the same argument as for part 1. For any n ∈ N, we

use the decomposition of A into
⋃n

k=1An,k to have that for any x ∈ ∂Bδ(Oj ),

Ex I
ε(τ1; f , A)2 ≤ Ex

(
n∑

k=1
I ε(τ1; f , An,k)

)2

=
n∑

k=1

n∑

=1

Ex
[
I ε(τ1; f , An,k)I

ε(τ1; f , An,
)
]
.

Recall that Fn,k is used to denote supy∈An,k
f (y). Using the definition of An,k gives

that for any k, 
 ∈ {1, . . . , n}
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Ex
[
I ε(τ1; f , An,k)I

ε(τ1; f , An,
)
]

≤ sup
z∈∂Bδ(Oj )

Ez
[
I ε(τ1; 0, An,k)I

ε(τ1; 0, An,
)
]
e
− 1

ε

(
Fn,k+Fn,
− 4m

n

)
.

Applying (7.2) first and then Lemma 7.16 with compact sets An,k and An,
 pairwise
for all k, 
 ∈ {1, 2, . . . , n} gives that

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)2

)

≥ min
k,
∈{1,...,n} lim inf

ε→0
−ε log sup

z∈∂Bδ(Oj )

Ez
[
I ε(τ1; f , An,k)I

ε(τ1; f , An,
)
]

≥ min
k,
∈{1,...,n}

{
max

{
inf

x∈An,k
V
(
Oj , x

)
, inf
x∈An,


V
(
Oj , x

)}+ Fn,k + Fn,


}
− η − 4m

n

≥ min
k∈{1,...,n}

{
sup

x∈An,k

[2 f (x)]+ inf
x∈An,k

V
(
Oj , x

)}− η − 4m

n

≥ min
k∈{1,...,n}

{
inf

x∈An,k

[
2 f (x)+ V

(
Oj , x

)]}− η − 4m

n

= inf
x∈A

[
2 f (x)+ V

(
Oj , x

)]− η − 4m

n
.

Sending n →∞ completes the proof for the second part. ��
Our next interest is to find lower bounds for

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

EzN j

)
and lim inf

ε→0
−ε log

( ∞∑

=1

sup
z∈∂Bδ(Oj )

Pz
(

 ≤ N j

))
.

We first recall that N j is the number of visits of the embedded Markov chain {Zn}n =
{Xε

τn
}n to ∂Bδ(Oj )within one loop of regenerative cycle. Also, the definitions of G(i)

and G(i, j) for any i, j ∈ L with i 
= j are given in Definition 3.8 and Remark 3.9.

Lemma 7.19 For any η > 0, there exists δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0) and
for any j ∈ L

lim inf
ε→0

−ε log
(
supz∈∂Bδ(O1)

EzN j
)≥− min


∈L\{1} V (O1, O
)+W
(
Oj
)−W (O1)− η,

where

W
(
Oj
) .= min

g∈G( j)

[∑
(m→n)∈gV (Om, On)

]
.

Proof According to Lemma 3.17, we know that for any η > 0, there exist δ0 ∈ (0, 1)
and ε0 ∈ (0, 1), such that for any δ ∈ (0, δ0) and ε ∈ (0, ε0), for all x ∈ ∂Bδ(Oi ),
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the one-step transition probability of the Markov chain {Zn}n on ∂Bδ(Oj ) satisfies
the inequalities

e−
1
ε

(
V (Oi ,Oj)+η/4l−1

)
≤ p(x, ∂Bδ(Oj )) ≤ e−

1
ε

(
V (Oi ,Oj)−η/4l−1

)
. (7.10)

We can then apply Lemma 7.6 with pi j = e− 1
ε
V (Oi ,Oj) and a = e

1
ε
η/4l−1 to obtain

that

sup
z∈∂Bδ(O1)

EzN j ≤ e
1
ε
η

∑

∈L\{1} e−

1
ε
V (O1,O
)

∑
g∈G( j)π (g)∑
g∈G(1) π (g)

≤ e
1
ε
η

e− 1
ε
min
∈L\{1} V (O1,O
)

∑
g∈G( j)π (g)∑
g∈G(1) π (g)

.

Thus,

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

EzN j

)

≥ − min

∈L\{1} V (O1, O
)− η + lim inf

ε→0
−ε log

(∑
g∈G( j) π (g)∑
g∈G(1) π (g)

)
.

Hence, it suffices to show that

lim inf
ε→0

−ε log

(∑
g∈G( j) π (g)∑
g∈G(1) π (g)

)
≥ W

(
Oj
)−W (O1) .

Observe that by definition for any j ∈ L and g ∈ G ( j)

π (g) =∏(m→n)∈g pmn =∏(m→n)∈ge−
1
ε
V (Om ,On) = exp

{
−1

ε

∑
(m→n)∈gV (Om , On)

}
,

which implies that

lim inf
ε→0

−ε log

(∑
g∈G( j) π (g)∑
g∈G(1) π (g)

)

≥ min
g∈G( j)

[
lim inf

ε→0
−ε log

(
exp

{
−1

ε

∑
(m→n)∈gV (Om, On)

})]

− min
g∈G(1)

[
lim sup

ε→0
−ε log

(
exp

{
−1

ε

∑
(m→n)∈gV (Om, On)

})]

= min
g∈G( j)

[∑
(m→n)∈gV (Om, On)

]
− min

g∈G(1)

[∑
(m→n)∈gV (Om, On)

]

= W
(
Oj
)−W (O1) .

123



Journal of Theoretical Probability (2022) 35:1049–1136 1083

The inequality is fromLemma 7.1; the last equality holds due the definition ofW
(
Oj
)
.
��

Recall the definition of W (O1 ∪ Oj ) in (3.3). In the next result, we obtain bounds
on, for example, a quantity close to the expected number of visits to Bδ(Oj ) before
visiting a neighborhood of O1, after starting near Oj .

Lemma 7.20 For any η > 0, there exists δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

( ∞∑

=1

sup
z∈∂Bδ(O1)

Pz (
 ≤ N1)

)
≥ − min


∈L\{1} V (O1, O
)− η

and for any j ∈ L \ {1}

lim inf
ε→0

−ε log

( ∞∑

=1

sup
z∈∂Bδ(Oj )

Pz
(

 ≤ N j

)) ≥ W (O1 ∪ Oj )−W (O1)− η.

Proof We again use that by Lemma 3.17, for any η > 0 there exist δ0 ∈ (0, 1) and
ε0 ∈ (0, 1), such that (7.10) holds for any δ ∈ (0, δ0), ε ∈ (0, ε0) and all x ∈ ∂Bδ(Oi ).

Then, by Lemma 7.6 with pi j = e− 1
ε
V (Oi ,Oj) and a = e

1
ε
η/4l−1

∞∑

=1

sup
x∈∂Bδ(Oj )

Px (N1 ≥ 
) ≤ e
1
ε
η

∑

∈L\{1} e−

1
ε
V (O1,O
)

and for any j ∈ L \ {1}
∞∑


=1
sup

x∈∂Bδ(Oj )

Px
(
N j ≥ 


) ≤ e
1
ε
η

∑
g∈G(1, j) π (g)∑
g∈G(1) π (g)

.

Thus,

lim inf
ε→0

−ε log

( ∞∑

=1

sup
z∈∂Bδ(O1)

Pz (
 ≤ N1)

)

≥ − lim sup
ε→0

−ε log
(∑


∈L\{1} e
− 1

ε
V (O1,O
)

)
− η

and

lim inf
ε→0

−ε log

( ∞∑

=0

sup
z∈∂Bδ(Oj )

Pz
(

 ≤ N j

))

≥ lim inf
ε→0

−ε log

(∑
g∈G(1, j) π (g)∑
g∈G(1) π (g)

)
− η.
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Following the same argument as for the proof of Lemma 7.19, we can use Lemma 7.1
to obtain that

− lim sup
ε→0

−ε log
(∑


∈L\{1} e
− 1

ε
V (O1,O
)

)
≥ − min


∈L\{1} V (O1, O
)

and

lim inf
ε→0

−ε log

(∑
g∈G(1, j) π (g)∑
g∈G(1) π (g)

)

≥ min
g∈G(1, j)

[∑
(m→n)∈gV (Om, On)

]
− min

g∈G(1)

[∑
(m→n)∈gV (Om, On)

]
.

Recalling (3.2) and (3.3), we are done. ��
As mentioned at the beginning of this subsection, our main goal is to provide lower

bounds for

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

Ez

(∫ τ ε
1

0
e−

1
ε
f (Xε

s )1A
(
Xε
s

)
ds

))

and

lim inf
ε→0

−ε log

⎛
⎝ sup

z∈∂Bδ(O1)

Ez

(∫ τ ε
1

0
e−

1
ε
f (Xε

s )1A
(
Xε
s

)
ds

)2
⎞
⎠

for a given continuous function f : M → R and compact set A ⊂ M . We now
state the main results of the subsection. Recall that h1 = min
∈L\{1} V (O1, O
),

Sε
1

.= ∫ τ ε
1

0 e− 1
ε
f (Xε

s )1A
(
Xε
s

)
ds and W

(
Oj
) .= ming∈G( j)[∑(m→n)∈g V (Om, On)]

and the definitions (7.8).

Lemma 7.21 Given a compact set A ⊂ M, a continuous function f : M → R and
η > 0, there exists δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

[
sup

z∈∂Bδ(O1)

EzS
ε
1

]
≥ min

j∈L

{
inf
x∈A

[
f (x)+ V

(
Oj , x

)]+W
(
Oj
)}

−W (O1)− h1 − η.

Proof Recall that by Lemma 7.18, we have shown that for the given η, there exists
δ1 ∈ (0, 1), such that for any δ ∈ (0, δ1) and j ∈ L

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)

)
≥ inf

x∈A
[
f (x)+ V

(
Oj , x

)]− η

2
.
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In addition, by Lemma 7.19, we know that for the same η, there exists δ2 ∈ (0, 1),
such that for any δ ∈ (0, δ2)

lim inf
ε→0

−ε log
(
supz∈∂Bδ(O1)

EzN j
) ≥ − min


∈L\{1} V (O1, O
)+W
(
Oj
)−W (O1)− η/2.

Hence, for any δ ∈ (0, δ0) with δ0 = δ1 ∧ δ2, we apply Corollary 7.11 to get

lim inf
ε→0

−ε log
[
Ex I

ε(τ ε
1 ; f , A)

]

≥ min
j∈L

{
lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)

)
+ lim inf

ε→0
−ε log

(
sup

z∈∂Bδ(O1)

Ez
(
N j
))}

≥ min
j∈L

{
inf
x∈A

[
f (x)+ V

(
O j , x

)]+W
(
O j
)}−W (O1)− h1 − η,

where τ ε
1 is the time for a regenerative cycle and τ1 is the first visit time of neighbor-

hoods of equilibrium points after being a certain distance away from them. ��
Remark 7.22 According to Remark 7.12 and using the same argument as in
Lemma 7.21, we can find that given a compact set A ⊂ M, a continuous function
f : M → R and η > 0, there exists δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

[
sup

z∈∂Bδ(O1)

Ez I
ε(σ ε

0 , τ ε
1 ; f , A)

]

≥ min
j∈L\{1}

{
inf
x∈A

[
f (x)+ V

(
Oj , x

)]+W
(
Oj
)}−W (O1)− h1 − η.

Lemma 7.23 Given a compact set A ⊂ M, a continuous function f : M → R and
η > 0, there exists δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log
[
supz∈∂Bδ(O1)

Ez(S
ε
1)

2
]
≥ min

j∈L

(
R(1)
j ∧ R(2)

j

)
− h1 − η,

where Sε
1

.= ∫ τ ε
1

0 e− 1
ε
f (Xε

s )1A
(
Xε
s

)
ds and h1 = min
∈L\{1} V (O1, O
), and

R(1)
j

.= inf
x∈A

[
2 f (x)+ V

(
Oj , x

)]+W
(
Oj
)−W (O1)

R(2)
1

.= 2 inf
x∈A [ f (x)+ V (O1, x)]− h1

and for j ∈ L \ {1}

R(2)
j

.= 2 inf
x∈A

[
f (x)+ V

(
Oj , x

)]+W
(
Oj
)− 2W (O1)+W (O1 ∪ Oj ).
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Proof Following a similar argument as for the proof of Lemma 7.21, given any η > 0,
owing to Lemmas 7.18, 7.19 and 7.20, there exists δ0 ∈ (0, 1) such that for any
δ ∈ (0, δ0) and for any j ∈ L

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)

)
≥ inf

x∈A
[
f (x)+ V

(
Oj , x

)]− η

4
,

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)2

)
≥ inf

x∈A
[
2 f (x)+ V

(
Oj , x

)]− η

4
,

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

EzN j

)
≥ −h1 +W

(
Oj
)−W (O1)− η

4
,

lim inf
ε→0

−ε log

( ∞∑

=1

sup
z∈∂Bδ(O1)

Pz (
 ≤ N1)

)
≥ −h1 − η

4
,

and for any j ∈ L \ {1},

lim inf
ε→0

−ε log

(∑∞

=1 sup

z∈∂Bδ(Oj )

Pz
(

 ≤ N j

)) ≥ W (O1 ∪ Oj )−W (O1)− η

4
.

Hence, for any δ ∈ (0, δ0) we apply Corollary 7.11 to get

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

Ez
(
Sε
1

)2
)
≥ min

j∈L

(
R̂(1)
j ∧ R̂(2)

j

)
,

where

R̂(1)
j

.= lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)2

)
+ lim inf

ε→0
−ε log

(
sup

z∈∂Bδ(O1)

EzN j

)

≥ inf
x∈A

[
2 f (x)+ V

(
Oj , x

)]+W
(
Oj
)−W (O1)− h1 − η = R(1)

j − h1 − η

and

R̂(2)
1

.= 2 lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

Ez I
ε(τ1; f , A)

)

+ lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

EzN1

)
+ lim inf

ε→0
−ε log

(∑∞

=1 sup

z∈∂Bδ (O1)

Pz (
 ≤ N1)

)

≥ 2

(
inf
x∈A [ f (x)+ V (O1, x)]− η

4

)
+
(
−h1 − η

4

)
+
(
−h1 − η

4

)

= 2 inf
x∈A [ f (x)+ V (O1, x)]− 2h1 − η = R(2)

1 − h1 − η
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and for j ∈ L \ {1}

R̂(2)
j

.= 2 lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(Oj )

Ez I
ε(τ1; f , A)

)

+ lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

EzN j

)
+ lim inf

ε→0
−ε log

(∑∞

=1 sup

z∈∂Bδ(Oj )

Pz
(

 ≤ N j

))

≥ 2

(
inf
x∈A

[
f (x)+ V

(
O j , x

)]− η

4

)
+
(
−h1 +W

(
O j
)−W (O1)− η

4

)

+
(
W (O1 ∪ O j )−W (O1)− η

4

)

= 2 inf
x∈A

[
f (x)+ V

(
O j , x

)]+W
(
O j
)− 2W (O1)+W (O1 ∪ O j )− h1 − η

= R(2)
j − h1 − η.

��

7.3 Asymptotics of Moments of Ŝ"1

Recall that

Ŝε
n

.=
∫ τ̂ ε

n

τ̂ ε
n−1

e−
1
ε
f (Xε

t )1A
(
Xε
t

)
dt,

where τ̂ ε
i is a multicycle defined according to (6.4) and with {Mε

i }i∈N being a sequence
of independent and geometrically distributed random variables with parameter e−m/ε

for some m > 0 such that m + h1 > w. Moreover, {Mε
i } is also independent of {τ ε

n }.
Using the independence of {Mε

i } and {τ ε
n }, and the fact that {τ ε

n } and {Sε
n} are both iid

under Pλε , we find that {Ŝε
n} is also iid under Pλε and

Eλε Ŝε
1 = EλεMε

1 · Eλε Sε
1 (7.11)

and

Varλε Ŝε
1 = EλεMε

1 · Varλε (Sε
1)+ Varλε (Mε

1) · (Eλε Sε
1)

2

≤ EλεMε
1 · Eλε (Sε

1)
2 + Varλε (Mε

1) · (Eλε Sε
1)

2 (7.12)

On the other hand, since Mε
1 is geometrically distributed with parameter e−m/ε, this

gives that

EλεMε
1 = e

m
ε and Varλε (Mε

1) = e
2m
ε (1− e

−m
ε ). (7.13)

Therefore, by combining (7.11), (7.12) and (7.13) with Lemma 7.21 and
Lemma 7.23, we have the following two lemmas.
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Lemma 7.24 Given a compact set A ⊂ M, a continuous function f : M → R and
η > 0, there exists δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log Eλε Ŝε
1

≥ min
j∈L

{
inf
x∈A

[
f (x)+ V

(
Oj , x

)]+W
(
Oj
)}−W (O1)− (m + h1)− η.

Lemma 7.25 Given a compact set A ⊂ M, a continuous function f : M → R and
η > 0, there exists δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε logVarλε (Ŝε
1) ≥ min

j∈L

(
R(1)
j ∧ R(2)

j ∧ R(3,m)
j

)
− (m + h1)− η,

where R(1)
j and R(2)

j are defined as in Lemma 7.23, and

R(3,m)
j

.= 2 inf
x∈A

[
f (x)+ V

(
Oj , x

)]+ 2W
(
Oj
)− 2W (O1)− (m + h1).

Later on, we will optimize on m to obtain the largest bound from below. This will
require that we consider firstm > w−h1, so that as shown in the next section N ε(T ε)

can be suitably approximated in terms of a Poisson distribution, and then sending
m ↓ w − h1.

8 Asymptotics of Moments of N"(T") and N̂"(T")

Recall that the number of single cycles in the time interval [0, T ε] plus one is defined
as

N ε
(
T ε
) .= inf

{
n ∈ N : τ ε

n > T ε
}
,

where the τ ε
n are the return times to Bδ(O1) after ever visiting one of the δ-

neighborhood of other equilibrium points than O1. In addition, λε is the unique
invariant measure of {Z ε

n}n = {Xε
τε
n
}n . The number of multicycles in the time interval

[0, T ε] plus one is defined as

N̂ ε
(
T ε
) .= inf

{
n ∈ N : τ̂ ε

n > T ε
}
,

where τ̂ ε
i are defined as in (6.4).

In this section, we will find the logarithmic asymptotics of the expected value and

the variance of N ε (T ε) with T ε = e
1
ε
c for some c > h1 in Lemmas 8.2 and 8.4 under

the assumption that h1 > w (i.e., single cycle case), and the analogous quantities

for N̂ ε (T ε) with T ε = e
1
ε
c for some c > w in Lemmas 8.19 and 8.21 under the

assumption that w ≥ h1 (i.e., multicycle case).
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Remark 8.1 While the proofs of these asymptotic results are quite detailed, it is essen-
tial that we obtain estimates good enough for a relatively precise comparison of the
expected value and the variance of N ε (T ε), and likewise for N̂ ε (T ε). For this, the key
result needed is the characterization of N ε (T ε) (and N̂ ε (T ε)) as having an approxi-
mately Poisson distribution. These followby exploiting the asymptotically exponential
character of τ ε

n (and τ̂ ε
n ), together with some uniform integrability properties.

Lemmas 8.2 and 8.4 below are proved in Sect. 8.3.

Lemma 8.2 If h1 > w and T ε = e
1
ε
c for some c > h1, then there exists δ0 ∈ (0, 1)

such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

∣∣∣∣ Eλε (N ε (T ε))

T ε
− 1

Eλε τ ε
1

∣∣∣∣ ≥ c.

Corollary 8.3 If h1 > w and T ε = e
1
ε
c for some c > h1, then there exists δ0 ∈ (0, 1)

such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log
Eλε (N ε (T ε))

T ε
≥ κδ,

where κδ
.= miny∈∪k∈L\{1}∂Bδ(Ok ) V (O1, y).

Lemma 8.4 If h1 > w and T ε = e
1
ε
c for some c > h1, then for any η > 0, there

exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log
Varλε (N ε (T ε))

T ε
≥ h1 − η.

Before proceeding, we mention a result from [11] and define some notation which
will be used in this section. Results in Section 5 and Section 10 of [11, Chapter XI]
say that for any t > 0, the first and second moment of N ε (t) can be represented as

Eλε

(
N ε (t)

) =∑∞
n=0 Pλε

(
τε
n ≤ t

)
and Eλε

(
N ε (t)

)2 =∑∞
n=0 (2n + 1) Pλε

(
τε
n ≤ t

)
.

(8.1)

Let �ε .= T ε/Eλε τ ε
1 and γ ε .= (�ε)−
 with some 
 ∈ (0, 1) which will be cho-

sen later. Intuitively, �ε is the typical number of regenerative cycles in [0, T ε] since
Eλε τ ε

1 is the expected length of one regenerative cycle. To simplify notation, we pre-
tend that (1+ 2γ ε) �ε and (1− 2γ ε) �ε are positive integers so that we can divide
Eλε (N ε (T ε)) into three partial sums which are

P1
.=
∑∞

n=(1+2γ ε)�ε+1 Pλε

(
τ ε
n ≤ T ε

)
, P2

.=
∑(1+2γ ε)�ε

n=(1−2γ ε)�ε
Pλε

(
τ ε
n ≤ T ε

)

and

P3
.=
∑(1−2γ ε)�ε−1

n=0 Pλε

(
τ ε
n ≤ T ε

)
. (8.2)

123



1090 Journal of Theoretical Probability (2022) 35:1049–1136

Similarly, we divide Eλε (N ε (T ε))2 into

R1
.=

∞∑
n=(1+2γ ε)�ε+1

(2n + 1) Pλε

(
τ ε
n ≤ T ε

)
, R2

.=
(1+2γ ε)�ε∑

n=(1−2γ ε)�ε

(2n + 1) Pλε

(
τ ε
n ≤ T ε

)

and

R3
.=
∑(1−2γ ε)�ε−1

n=0 (2n + 1) Pλε

(
τ ε
n ≤ T ε

)
. (8.3)

The next step is to find upper bounds for these partial sums, and these bounds will help
us to find suitable lower bounds for the logarithmic asymptotics of Eλε (N ε (T ε)) and
Varλε (N ε (T ε)). Before looking into the upper bound for partial sums, we establish
some properties.

Theorem 8.5 If h1 > w, then for any δ > 0 sufficiently small,

lim
ε→0

ε log Eλε τ ε
1 = κδ and τ ε

1 /Eλε τ ε
1

d→ Exp(1).

Moreover, there exists ε0 ∈ (0, 1) and a constant c̃ > 0 such that

Pλε

(
τ ε
1 /Eλε τ ε

1 > t
) ≤ e−c̃t

for any t > 0 and any ε ∈ (0, ε0).

Remark 8.6 For any δ > 0, κδ ≤ h1.

The proof of Theorem 8.5 will be given in Section 10. In that section, we will first
prove an analogous result for the exit time (or first visiting time to other equilibrium
points to bemore precise) and then show how one can extend those results to the return
time. The proof of the following lemma is straightforward and hence omitted.

Lemma 8.7 If h1 > w and T ε = e
1
ε
c for some c > h1, then for any η > 0, there

exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0),

h1 − η ≥ lim
ε→0

−ε log�ε ≥ h1 − c − η.

Lemma 8.8 Define Zε
1

.= τ ε
1 /Eλε τ ε

1 . Then, for any δ > 0 sufficiently small,

• there exists some ε0 ∈ (0, 1) such that supε∈(0,ε0) Eλε

(Zε
1

)3
<∞,

• there exists some ε0 ∈ (0, 1) such that infε∈(0,ε0) Varλε (Zε
1 ) > 0 and Eλε

(Zε
1

)2 =
Eλε

(
τ ε
1

)2
/
(
Eλε τ ε

1

)2 → 2 as ε → 0.

Proof For the first part, we use Theorem 8.5 to find that there exists ε0 ∈ (0, 1) and a
constant c̃ > 0 such that

Pλε

(Zε
1 > t

) = Pλε

(
τ ε
1 /Eλε τ ε

1 > t
) ≤ e−c̃t
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for any t > 0 and any ε ∈ (0, ε0). Therefore, for ε ∈ (0, ε0)

Eλε

(Zε
1

)3 = 3
∫ ∞

0
t2Pλε (Zε

1 > t)dt ≤ 3
∫ ∞

0
t2e−c̃t dt <∞.

For the second assertion, since sup0<ε<ε0
Eλε

(Zε
1

)3
< ∞, it implies that

{(Zε
1

)2}0<ε<ε0 and {Zε
1 }0<ε<ε0 are both uniformly integrable. Moreover, because

Zε
1

d→ Exp(1) as ε → 0 from Theorem 8.5 and since for X
d= Exp(1), EX = 1

and EX2 = 2, we obtain

Eλε

(
τ ε
1 /Eλε τ ε

1

)2 = Eλε

(Zε
1

)2 → 2 and EλεZε
1 → 1.

as ε → 0. This implies Varλε (Zε
1 ) → 1 as ε → 0. Obviously, there exists some

ε0 ∈ (0, 1) such that infε∈(0,ε0) Varλε (Zε
1 ) ≥ 1/2 > 0. This completes the proof. ��

Remark 8.9 Throughout the rest of this section, we will use C to denote a constant in
(0,∞) which is independent of ε but whose value may change from use to use.

8.1 Chernoff Bound

In this subsection, we will provide upper bounds for

P1
.=

∞∑
n=(1+2γ ε)�ε+1

Pλε

(
τ ε
n ≤ T ε

)
and R1

.=
∞∑

n=(1+2γ ε)�ε+1
(2n + 1) Pλε

(
τ ε
n ≤ T ε

)

via a Chernoff bound. The following result is well known, and its proof is standard.

Lemma 8.10 (Chernoff bound) Let X1, . . . , Xn be an iid sequence of random vari-
ables. For any a ∈ R and for any t ∈ (0,∞)

P (X1 + · · · + Xn ≤ a) ≤
(
Ee−t X1

)n
eta .

Recall that �ε .= T ε/Eλε τ ε
1 and γ ε .= (�ε)−
 with some 
 ∈ (0, 1) which will be

chosen later.

Lemma 8.11 Given any δ > 0 and any 
 > 0, there exists ε0 ∈ (0, 1) such that for
any ε ∈ (0, ε0)

Pλε

(
τ ε
n ≤ T ε

) ≤ e−n(�ε)−2


for any n ≥ (1+ 2γ ε) �ε. In addition,

P1 ≤ C
(
�ε
)2


e−(�ε)1−2
 and R1 ≤ C
(
�ε
)1+2


e−(�ε)1−2
 + C
(
�ε
)4


e−(�ε)1−2
 .
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Proof Given δ > 0, 
 > 0 and ε ∈ (0, 1), we find that for n ≥ (1+ 2γ ε) �ε

Pλε

(
τ ε
n ≤ T ε

) = Pλε

(
τ ε
1 +

(
τ ε
2 − τ ε

1

)+ · · · + (τ ε
n − τ ε

n−1
)

Eλε τ ε
1

≤ �ε

)

≤ Pλε

(
τ ε
1 +

(
τ ε
2 − τ ε

1

)+ · · · + (τ ε
n − τ ε

n−1
)

Eλε τ ε
1

≤ n

1+ 2γ ε

)

≤
(
Eλεe−γ εZε

1

)
e

nγ ε

1+2γ ε ,

where Zε
1 = τ ε

1 /Eλε τ ε
1 . We use the fact that {τ ε

n − τ ε
n−1}n∈N are iid and apply

Lemma 8.10 (Chernoff bound) with a = n/ (1+ 2γ ε) and t = γ ε for the last inequal-
ity. Therefore, in order to verify the first claim, it suffices to show that

(
Eλεe−γ εZε

1

)
e

γ ε

1+2γ ε ≤ e−(γ ε)2 = e−(�ε)−2
 .

We observe that for any x ≥ 0, e−x ≤ 1− x + x2/2, and this gives

Eλεe−γ εZε
1 ≤ 1− Eλε

(
γ εZε

1

)+ Eλε

(
γ εZε

1

)2
/2 = 1− γ ε + (γ ε

)2
Eλε

(Zε
1

)2
/2.

Moreover, since we can apply Lemma 8.8 to find Eλε

(Zε
1

)2 → 2 as ε → 0, there

exists ε0 ∈ (0, 1) such that for any ε ∈ (0, ε0), Eλε

(Zε
1

)2 ≤ 9/4. Thus, for any
ε ∈ (0, ε0)

(
Eλεe−γ εZε

1

)
e

γ ε

1+2γ ε ≤ exp
{
γ ε/(1+ 2γ ε)+ log(1− γ ε + (9/8)

(
γ ε
)2

)
}

.

Using a Taylor series expansion, we find that for all |x | < 1

1/(1+ x) = 1− x + O
(
x2
)
and log (1+ x) = x − x2/2+ O

(
x3
)

,

which gives

γ ε/(1+ 2γ ε)+ log(1− γ ε + (9/8)
(
γ ε
)2

)

= γ ε − 2
(
γ ε
)2 + [(−γ ε + (9/8)

(
γ ε
)2] − [−γ ε + (9/8)

(
γ ε
)2]2/2+ O((γ ε)3)

= −(11/8)
(
γ ε
)2 + O(

(
γ ε
)3

) ≤ − (γ ε
)2

,

for all ε ∈ (0, ε0). We are done for part 1.
For part 2, we use the estimate from part 1 and find

∞∑
n=(1+2γ ε)�ε+1

Pλε

(
τ ε
n ≤ T ε

) ≤
∞∑

n=(1+2γ ε)�ε+1
e−n(γ ε)2 ≤ e−(1+2γ ε)�ε(γ ε)2

1− e−(γ ε)2
.
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Since e−x ≤ 1−x+x2/2 for any x ∈ R,wehave 1−e−x ≥ x−x2/2 ≥ x−x/2 = x/2
for all x ∈ (0, 1), and thus 1/(1− e−x ) ≤ 2/x for all x ∈ (0, 1). As a result,

∞∑
n=(1+2γ ε)�ε+1

Pλε

(
τ ε
n ≤ T ε

) ≤ e−(1+2γ ε)�ε(γ ε)2

1− e−(γ ε)2
≤ 2

(γ ε)2
e−(1+2γ ε)�ε(γ ε)2

≤ 2
(
�ε
)2


e−(�ε)1−2
 .

This completes the proof of part 2.
Finally, for part 3, we use the fact that for x ∈ (0, 1), and for any k ∈ N,

∑∞
n=k nx

n = kxk(1− x)−1 + xk+1(1− x)−2 ≤ (k(1− x)−1 + (1− x)−2)xk .

Using the estimate from part 1 once again, we have

∞∑
n=(1+2γ ε)�ε+1

nPλε

(
τ ε
n ≤ T ε

) ≤
∞∑

n=(1+2γ ε)�ε

ne−n(γ ε)2

≤
(

(1+ 2γ ε) �ε

1− e−(γ ε)2
+
(
1− e−(γ ε)2

)−2)
e−(1+2γ ε)�ε(γ ε)2

≤
(
4
(
�ε
)1+2
 + 4

(
�ε
)4
)

e−(�ε)1−2
 .

We are done. ��
Remark 8.12 If 0 < 
 < 1/2, then P1 and R1 converge to 0 doubly exponentially
fast as ε → 0 in the sense that for any k ∈ (0,∞)

lim inf
ε→0

−ε log
[(

�ε
)k

e−(�ε)1−2

]
= ∞.

8.2 Berry–Esseen Bound

In this subsection, we will provide upper bounds for

P2
.=

(1+2γ ε)�ε∑
n=(1−2γ ε)�ε

Pλε

(
τ ε
n ≤ T ε

)
and R2

.=
(1+2γ ε)�ε∑

n=(1−2γ ε)�ε

(2n + 1) Pλε

(
τ ε
n ≤ T ε

)

via the Berry–Esseen bound.
We first recall that �ε = T ε/Eε

λε τ
ε
1 . The following is Theorem 1 in [11, Chapter

XVI.5].

Theorem 8.13 (Berry–Esseen) Let {Xn}n∈N be independent real-valued random vari-
ables with a common distribution such that

E (X1) = 0, σ 2 .= E (X1)
2 > 0, ρ

.= E |X1|3 <∞.
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Then, for all x ∈ R and n ∈ N,

∣∣∣∣P
(
X1 + · · · + Xn

σ
√
n

≤ x

)
−�(x)

∣∣∣∣ ≤ 3ρ

σ 3
√
n
,

where �(·) is the distribution function of N (0, 1) .

Corollary 8.14 For any ε > 0, let
{
Xε
n

}
n∈N be independent real-valued random vari-

ables with a common distribution such that

E
(
Xε
1

) = 0,
(
σε
)2 .= E

(
Xε
1

)2
> 0, ρε .= E

∣∣Xε
1

∣∣3 <∞.

Assume that there exists ε0 ∈ (0, 1) such that

ρ̂
.= supε∈(0,ε0) ρε <∞ and σ̂ 2 .= infε∈(0,ε0)

(
σε
)2

> 0.

Then for all x ∈ R, n ∈ N and ε ∈ (0, ε0),

∣∣∣∣P
(
Xε
1 + · · · + Xε

n

σε
√
n

≤ x

)
−�(x)

∣∣∣∣ ≤ 3ρε

(σ ε)3
√
n
≤ 3ρ̂

σ̂ 3
√
n
.

Lemma 8.15 Given any δ > 0 and any 
 > 0, there exists ε0 ∈ (0, 1) such that for
any ε ∈ (0, ε0) and k ∈ N0, 0 ≤ k ≤ 2γ ε�ε

Pλε

(
τ ε
�ε+k ≤ T ε

) ≤ 1−�

(
k

σε
√

�ε + k

)
+ 3ρ̂

σ̂ 3
√

�ε + k

and

Pλε

(
τ ε
�ε−k ≤ T ε

) ≤ �

(
k

σε
√

�ε − k

)
+ 3ρ̂

σ̂ 3
√

�ε − k
,

where (σ ε)2
.= Eλε

(
Xε
1

)2
, ρ̂

.= supε∈(0,ε0) Eλε

∣∣Xε
1

∣∣3 < ∞ and σ̂ 2 .=
infε∈(0,ε0)(σ

ε)2 > 0 with Xε
1

.= τ ε
1 /Eε

λε τ
ε
1 − 1.

Proof For any n ∈ N, we define Xε
n

.= Zε
n − Eε

λεZε
1 with Zε

n
.= (τ ε

n − τ ε
n−1)/Eε

λε τ
ε
1 .

Obviously, EλεZε
n = 1 and EλεXε

n = 0 and if we apply Lemma 8.8, then

we find that there exists some ε0 ∈ (0, 1) such that supε∈(0,ε0) Eλε

(Zε
1

)3
<

∞ and infε∈(0,ε0) Varλε (Zε
1 ) > 0. Since Zε

1 ≥ 0, Jensen’s inequality implies(
EλεZε

1

)3 ≤ Eλε

(Zε
1

)3, and therefore

ρ̂ ≤ 4 supε∈(0,ε0)

(
Eλε

(Zε
1

)3 + (EλεZε
1

)3) ≤ 8 supε∈(0,ε0) Eλε

(Zε
1

)3
<∞,

and

σ̂ 2 = infε∈(0,ε0) Eλε

(
Xε
1

)2 = infε∈(0,ε0) Varλε

(Zε
1

)
> 0.
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Therefore, we can use Corollary 8.14 with the iid sequence
{
Xε
n

}
n∈N to find that for

any k ∈ N0 and 0 ≤ k ≤ 2γ ε�ε

Pλε

(
τ ε
�ε+k ≤ T ε

) = Pλε

(Zε
1 + · · · + Zε

�ε+k ≤ �ε
)

= Pλε

(
Xε
1 + · · · + Xε

�ε+k
σε
√

�ε + k
≤ −k

σε
√

�ε + k

)

≤ 1−�

(
k

σε
√

�ε + k

)
+ 3ρ̂

σ̂ 3
√

�ε + k
,

and similarly

Pλε

(
τ ε
�ε−k ≤ T ε

) ≤ �

(
k

σε
√

�ε − k

)
+ 3ρ̂

σ̂ 3
√

�ε − k
.

��
Lemma 8.16 Given any δ > 0 and any 
 ∈ (0, 1/2), there exists ε0 ∈ (0, 1) such that

for any ε ∈ (0, ε0), P2 ≤ C (�ε)
1
2−
 + 2 (�ε)1−
 .

Proof We rewrite P2 as

P2 =
∑2γ ε�ε

k=1 Pλε

(
τ ε
�ε−k ≤ T ε

)+ Pλε

(
τ ε
�ε ≤ T ε

)+∑2γ ε�ε

k=1 Pλε

(
τ ε
�ε+k ≤ T ε

)
.

Then, we use the upper bounds from Lemma 8.15 to get

P2 ≤
2γ ε�ε∑
k=1

[
�

(
k

σε
√

�ε − k

)
+ 3ρ̂

σ̂ 3
√

�ε − k

]

+ 1+
2γ ε�ε∑
k=1

[
1−�

(
k

σε
√

�ε + k

)
+ 3ρ̂

σ̂ 3
√

�ε + k

]

≤ 24ρ̂

σ̂ 3 γ ε
√

�ε + 1+ 2γ ε�ε +
2γ ε�ε∑
k=1

[
�

(
k

σε
√

�ε − k

)
−�

(
k

σε
√

�ε + k

)]
.

The sum of the first three terms is easily bounded above by C (�ε)
1
2−
 + 2 (�ε)1−
.

We will show that the last term is bounded above by a constant to complete the proof.
To prove this, we observe that for any k ≤ 2γ ε�ε, we may assume k ≤ �ε/2 by

taking ε sufficiently small. Then, we apply the Mean Value Theorem and find

∣∣∣∣�
(

k

σε
√

�ε − k

)
−�

(
k

σε
√

�ε + k

)∣∣∣∣
≤ sup

x∈
[ √

2/3k
σε
√

�ε ,
√
2k

σε
√

�ε

]φ (x) ·
(

k

σε
√

�ε − k
− k

σε
√

�ε + k

)
,
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where φ (x)
.= e− x2

2 /
√
2π and since 0 ≤ k ≤ �ε/2, we have

[
k

σε
√

�ε + k
,

k

σε
√

�ε − k

]
⊂
[√

2/3k

σε
√

�ε
,

√
2k

σε
√

�ε

]
.

Additionally, because φ (x) = e− x2
2 /
√
2π is a monotone decreasing function on

[0,∞), we find that

x ∈ [(√2/3k)(σ ε
√

�ε), (
√
2k)(σ ε

√
�ε)] implies φ (x) ≤ e

− k2

3(σε)2�ε
/
√
2π.

Also,
√
1+ x − √1− x ≤ 2x for all x ∈ [0, 1] and k ≤ �ε/2 and a little algebra

give k/
√

�ε − k − k/
√

�ε + k ≤ 4k2/�ε
√

�ε. Therefore, we find

∑2γ ε�ε

k=1

[
�

(
k

σε
√

�ε − k

)
−�

(
k

σε
√

�ε + k

)]

≤
∑2γ ε�ε

k=1
1√
2π

e
− k2

3(σε)2�ε 4k2

σε�ε
√

�ε
≤ 4

σε�ε

∑2γ ε�ε

k=1

∫ k

k−1
(1+ x)2√

2π�ε
e
− x2

3(σε)2�ε dx

≤ 4

�ε

√
3

2

∫ ∞

0

(1+ x)2√
3π (σ ε)2 �ε

e
− x2

3(σε)2�ε dx ≤ 6

�ε
E
(
1+ X+

)2
,

where X ∼ N (0, 3 (σ ε)2 �ε/2). Finally, since E
(
1+ X+

)2 ≤ 2 + 2E
(
X2
) = 2 +

3 (σ ε)2 �ε, this implies that

2γ ε�ε∑
k=1

[
�

(
k

σε
√

�ε − k

)
−�

(
k

σε
√

�ε + k

)]
≤ 6

�ε

(
2+ 3

(
σε
)2

�ε
)
≤ 12+ 18ρ̂2/3,

(8.4)

where the last inequality is from

supε∈(0,ε0) σ ε = supε∈(0,ε0)
(
Eλε (Xε

1

)2
)1/2 ≤ supε∈(0,ε0)(Eλε

∣∣Xε
1

∣∣3)1/3 = ρ̂1/3.

Since according to Lemma 8.15 ρ̂1/3 is finite, we are done. ��
Lemma 8.17 Given any δ > 0 and any 
 ∈ (0, 1/2), there exists ε0 ∈ (0, 1) and a
constant C <∞ such that for any ε ∈ (0, ε0), R2 ≤ 4 (�ε)2−
 + C (�ε)2(1−
) .

Proof The proof of this lemma is similar to the proof of Lemma 8.16. We rewriteR2
as

R2 =
∑2γ ε�ε

k=1
(
2�ε − 2k + 1

)
Pλε

(
τ ε
�ε−k ≤ T ε

)+ (2�ε + 1
)
Pλε

(
τ ε
�ε ≤ T ε

)

+
∑2γ ε�ε

k=1
(
2�ε + 2k + 1

)
Pλε

(
τ ε
�ε+k ≤ T ε

)
.
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Then, we use the upper bounds from Lemma 8.15 to get

R2 ≤
∑2γ ε�ε

k=1
(
2�ε − 2k + 1

) [
�

(
k

σε
√

�ε − k

)
+ 3ρ̂

σ̂ 3
√

�ε − k

]
+ (2�ε + 1

)

+
∑2γ ε�ε

k=1
(
2�ε + 2k + 1

) [
1−�

(
k

σε
√

�ε + k

)
+ 3ρ̂

σ̂ 3
√

�ε + k

]
.

The next thing is to pair all the terms carefully and bound these pairs separately.
We start with

∑2γ ε�ε

k=1
(
2�ε − 2k + 1

)
�

(
k

σε
√

�ε − k

)
−
∑2γ ε�ε

k=1
(
2�ε + 2k + 1

)
�

(
k

σε
√

�ε + k

)

≤ (2�ε + 1
)∑2γ ε�ε

k=1

[
�

(
k

σε
√

�ε − k

)
−�

(
k

σε
√

�ε + k

)]
≤ C�ε.

We use (8.4) for the last inequality. The second pair is

∑2γ ε�ε

k=1
(
2�ε − 2k + 1

) 3ρ̂

σ̂ 3
√

�ε − k
+
∑2γ ε�ε

k=1
(
2�ε + 2k + 1

) 3ρ̂

σ̂ 3
√

�ε + k

= 6ρ̂

σ̂ 3

∑2γ ε�ε

k=1
(√

�ε − k +√�ε + k
)
+ 3ρ̂

σ̂ 3

∑2γ ε�ε

k=1

(
1√

�ε − k
+ 1√

�ε + k

)

≤ 6ρ̂

σ̂ 3

∑2γ ε�ε

k=1 2
√
2�ε + 3ρ̂

σ̂ 3

∑2γ ε�ε

k=1 2 ≤ Cγ ε�ε
√

�ε + Cγ ε�ε ≤ C
(
�ε
) 3
2−


,

where the first inequality holds due to k ≤ �ε/2. The third term is

∑2γ ε�ε

k=1
(
2�ε + 2k + 1

)+ (2�ε + 1
)

= 4γ ε
(
�ε
)2 + 2γ ε�ε + 4

(
γ ε�ε

)2 + 2γ ε�ε + (2�ε + 1
)

≤ 4γ ε
(
�ε
)2 + C

(
γ ε�ε

)2 = 4
(
�ε
)2−
 + C

(
�ε
)2(1−
)

,

where the inequality holds since for 
 ∈ (0, 1/2), 2 − 2
 ≥ 1 and this implies that
(2�ε + 1) ≤ C (γ ε�ε)2 . Lastly, combining all the pairs and the corresponding upper
bounds, we find that for any 
 ∈ (0, 1/2),

R2 ≤ [4
(
�ε
)2−
 + C

(
�ε
)2(1−
)] + C�ε + C

(
�ε
) 3
2−
 ≤ 4

(
�ε
)2−
 + C

(
�ε
)2(1−
)

,

where C is a constant which depends on 
 only (and in particular is independent of
ε). ��

8.3 Asymptotics of Moments of N"(T")

In this subsection, we prove Lemmas 8.2 and 8.4.
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Proof of Lemma 8.2 First, recall that

Eλε

(
N ε
(
T ε
)) =∑∞

n=0 Pλε

(
τ ε
n ≤ T ε

) = P1 +P2 +P3,

where the Pi are defined in (8.2). We can simply bound P3 from above by
(1− 2γ ε) �ε. Applying Lemma 8.11 and Lemma 8.16 for the other terms, we have
for any 
 ∈ (0, 1/2) that

Eλε

(
N ε
(
T ε
)) ≤ C

(
�ε
)2


e−(�ε)1−2
 + (C
(
�ε
) 1
2−
 + 2

(
�ε
)1−


)+ (1− 2γ ε
)
�ε

= T ε/Eλε τ ε
1 + C

(
�ε
) 1
2−
 + C

(
�ε
)2


e−(�ε)1−2
 .

On the other hand, from the definition of N ε (T ε) , Eλε τ ε
N ε(T ε) ≥ T ε. Using Wald’s

first identity, we find

Eλε τ ε
N ε(T ε) = Eλε

∑N ε(T ε)

n=1
(
τ ε
n − τ ε

n−1
) = Eλε

(
N ε
(
T ε
)) · Eλε τ ε

1 .

Hence,

0 ≤ Eλε (N ε (T ε))

T ε
− 1

Eλε τ ε
1
≤ 1

T ε
[C (�ε

) 1
2−
 + C

(
�ε
)2


e−(�ε)1−2
 ].

Therefore,

lim inf
ε→0

−ε log

∣∣∣∣ Eλε (N ε (T ε))

T ε
− 1

Eλε τ ε
1

∣∣∣∣
≥ lim inf

ε→0
−ε log

[
1

T ε

(
C
(
�ε
) 1
2−
 + (�ε

)2

e−(�ε)1−2


)]
.

It remains to find an appropriate lower bound for the liminf.
We use (7.2), Lemma 8.7 and Remark 8.12 to find that for any η > 0, there exists

δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0) and any 
 ∈ (0, 1/2)

lim inf
ε→0

−ε log

[
1

T ε

(
C
(
�ε
) 1
2−
 + (�ε

)2

e−(�ε)1−2


)]
≥ lim inf

ε→0
ε log T ε

+min

{
lim inf

ε→0
−ε log

(
�ε
)1/2−


, lim inf
ε→0

−ε log
((

�ε
)2


e−(�ε)1−2

)}

≥ c +min {(1/2− 
) (h1 − c − η) ,∞} = c + (1/2− 
) (h1 − c − η) .

We complete the proof by sending 
 to 1/2. ��
Proof of Lemma 8.4 Recall that

Eλε

(
N ε
(
T ε
))2 =∑∞

n=0 (2n + 1) Pλε

(
τ ε
n ≤ t

) = R1 +R2 +R3
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where the Ri are defined in (8.3). We can bound R3 from above by

∑(1−2γ ε)�ε−1
n=0 (2n + 1) = (1− 4γ ε + 4

(
γ ε
)2

)
(
�ε
)2

.

Applying Lemma 8.11 and Lemma 8.17, we have for any 
 ∈ (0, 1/2) that

Eλε (N ε
(
T ε
)
)2 ≤ C

(
�ε
)1+2


e−(�ε)1−2


+ 4
(
�ε
)2−
 + C

(
�ε
)2(1−
) + (1− 4γ ε + 4

(
γ ε
)2

)
(
�ε
)2

≤ (�ε
)2 + C

(
�ε
)2(1−
) + C

(
�ε
)1+2


e−(�ε)1−2
 .

As in the proof of Lemma 8.2 Eλε (N ε (T ε)) ≥ �ε. Thus, for any 
 ∈ (0, 1/2)

Varλε

(
N ε
(
T ε
)) ≤ Eλε

(
N ε
(
T ε
))2 − (�ε

)2
≤ [(�ε

)2 + C
(
�ε
)2(1−
) + C

(
�ε
)1+2


e−(�ε)1−2
 ] − (�ε
)2

= C
(
�ε
)2(1−
) + C

(
�ε
)1+2


e−(�ε)1−2
 .

Again we use (7.2), Lemma 8.7 and Remark 8.12 to find that for any η > 0, there
exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0) and for any 
 ∈ (0, 1/2),

lim inf
ε→0

−ε log
Varλε (N ε (T ε))

T ε

≥ lim inf
ε→0

ε log T ε +min

{
lim inf

ε→0
−ε log

(
�ε
)2(1−
)

, lim inf
ε→0

−ε log
((

�ε
)1+2


e−(�ε)1−2

)}

≥ c +min {2 (1− 
) (h1 − c − η) ,∞} = 2 (1− 
) (h1 − η)+ (2
− 1) c.

We complete the proof by sending 
 to 1/2. ��

8.4 Asymptotics of Moments of N̂"(T")

The proof of the following result is given in Section 10.

Theorem 8.18 If w ≥ h1, then given any m > 0 such that m + h1 > w and for any
δ > 0 sufficiently small,

lim
ε→0

ε log Eλε τ̂ ε
1 = m + κδ and τ̂ ε

1 /Eλε τ̂ ε
1

d→ Exp(1).

Moreover, there exists ε0 ∈ (0, 1) and a constant c̃ > 0 such that

Pλε

(
τ̂ ε
1 /Eλε τ̂ ε

1 > t
) ≤ e−c̃t

for any t > 0 and any ε ∈ (0, ε0).
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Notice that Theorem 8.18 is a multicycle version of Theorem 8.5, which is the
key to the proofs of the asymptotics of moments of N ε(T ε), namely, Lemma 8.2 and
Lemma 8.4. Given Theorem 8.18, the proofs of the following analogous results follow
from essentially the same arguments as those of Lemma 8.2 and Lemma 8.4.

Lemma 8.19 Suppose that w ≥ h1, m+ h1 > w, and that T ε = e
1
ε
c for some c > w.

Then, there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

∣∣∣∣∣
Eλε (N̂ ε (T ε))

T ε
− 1

Eλε τ̂ ε
1

∣∣∣∣∣ ≥ c.

Corollary 8.20 Suppose thatw ≥ h1, m+h1 > w and that T ε = e
1
ε
c for some c > w.

Then, there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log
Eλε (N̂ ε (T ε))

T ε
≥ m + κδ.

Lemma 8.21 Suppose that w ≥ h1, m + h1 > w and that T ε = e
1
ε
c for some c > w.

Then, for any η > 0, there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log
Varλε (N̂ ε (T ε))

T ε
≥ m + h1 − η.

9 Large Deviation Type Upper Bounds

In this section, we collect results from the previous sections to prove the main results
of the paper, Theorems 4.3 and 4.5 , which give large deviation upper bounds on the
bias under the empirical measure and the variance per unit time.We also give the proof
of Theorem 4.9, which shows how to simplify some expressions appearing in the large
deviation bounds. Before giving the proof of the first result, we establish Lemmas 9.1
and 9.2 for the single cycle case, and Lemmas 9.3 and 9.4 for the multicycle case,
which are needed in the proof of Theorem 4.3. Recall that for any n ∈ N

Sε
n

.=
∫ τ ε

n

τ ε
n−1

e−
1
ε
f (Xε

t )1A
(
Xε
t

)
dt . (9.1)

Lemma 9.1 If h1 > w, A ⊂ M is compact and T ε = e
1
ε
c for some c > h1, then for

any η > 0, there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

∣∣∣∣ Eλε N ε (T ε)

T ε
Eλε Sε

1 −
∫
M
e−

1
ε
f (x)1A (x) με (dx)

∣∣∣∣
≥ inf

x∈A [ f (x)+W (x)]−W (O1)+ c − h1 − η.
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Proof To begin, by Lemma 4.1 with g (x) = e− 1
ε
f (x)1A (x), we know that for any δ

sufficiently small and ε > 0,

Eλε Sε
1 = Eλε

(∫ τ ε
1

0
e−

1
ε
f (Xε

s )1A
(
Xε
s

)
ds

)
= Eλε τ ε

1 ·
∫
M
e−

1
ε
f (x)1A (x) με (dx) .

This implies that

∣∣∣∣ Eλε (N ε (T ε))

T ε
Eλε Sε

1 −
∫
M
e−

1
ε
f (x)1A (x) με (dx)

∣∣∣∣
= Eλε Sε

1 ·
∣∣∣∣ Eλε (N ε (T ε))

T ε
− 1

Eλε τ ε
1

∣∣∣∣ .

Hence, by (7.1), Lemmas 7.21 and8.2,wefind that givenη > 0, there exists δ0 ∈ (0, 1)
such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

∣∣∣∣ Eλε (N ε (T ε))

T ε
Eλε Sε

1 −
∫
M
e−

1
ε
f (x)1A (x) με (dx)

∣∣∣∣
≥ lim inf

ε→0
−ε log Eλε Sε

1 + lim inf
ε→0

−ε log

∣∣∣∣ Eλε (N ε (T ε))

T ε
− 1

Eλε τ ε
1

∣∣∣∣
≥ inf

x∈A [ f (x)+W (x)]−W (O1)+ c − h1 − η.

��
In the application of Wald’s identity, a difficulty arises in that, owing to the ran-

domness of N ε (T ε), Sε
N ε(T ε) need not have the same distribution as Sε

1 . Nevertheless,
such minor term can be dealt with by using technique in, for example, [18, Theorem
3.16]. The proof of the following lemma can be found in Appendix.

Lemma 9.2 If h1 > w, A ⊂ M is compact and T ε = e
1
ε
c for some c > h1, then for

any η > 0, there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log
Eλε Sε

N ε(T ε)

T ε
≥ inf

x∈A [ f (x)+W (x)]−W (O1)+ c − h1 − η.

We have similar results for multicycles. To be specific, we have the following two
lemmas.

Lemma 9.3 Suppose thatw ≥ h1, m+h1 > w, A ⊂ M is compact and that T ε = e
1
ε
c

for some c > w. Then, for any η > 0, there exists δ0 ∈ (0, 1) such that for any
δ ∈ (0, δ0)

lim inf
ε→0

−ε log

∣∣∣∣∣
Eλε N̂ ε (T ε)

T ε
Eλε Ŝε

1 −
∫
M
e−

1
ε
f (x)1A (x) με (dx)

∣∣∣∣∣
≥ inf

x∈A [ f (x)+W (x)]−W (O1)+ c − (m + h1)− η.
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Lemma 9.4 Suppose thatw ≥ h1, m+h1 > w, A ⊂ M is compact and that T ε = e
1
ε
c

for some c > w. Then, for any η > 0, there exists δ0 ∈ (0, 1) such that for any
δ ∈ (0, δ0)

lim inf
ε→0

−ε log
Eλε Ŝε

N̂ ε(T ε)

T ε
≥ inf

x∈A [ f (x)+W (x)]−W (O1)+ c − (m + h1)− η.

Proof of Theorem 4.3 If h1 > w, then recall that

1

T ε

∑N ε(T ε)−1
n=1 Sε

n ≤
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt ≤ 1

T ε

∑N ε(T ε)

n=1 Sε
n,

where Sε
n is defined in (9.1). Then, we apply Wald’s first identity to obtain

Eλε

(∑N ε(T ε)−1
n=1 Sε

n

)
= Eλε

(∑N ε(T ε)

n=1 Sε
n

)
− Eλε Sε

N ε(T ε)

= Eλε

(
N ε
(
T ε
))

Eλε Sε
1 − Eλε Sε

N ε(T ε).

Thus,

∣∣∣∣∣Eλε

(
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt

)
−
∫
M
e−

1
ε
f (x)1A (x) με (dx)

∣∣∣∣∣
≤
∣∣∣∣ Eλε (N ε (T ε))

T ε
Eλε Sε

1 −
∫
M
e−

1
ε
f (x)1A (x) με (dx)

∣∣∣∣+
Eλε Sε

N ε(T ε)

T ε
.

Therefore, by Lemmas 9.1 and 9.2 we have that for any η > 0, there exists δ0 ∈ (0, 1)
such that for any δ ∈ (0, δ0),

lim inf
ε→0

−ε log

∣∣∣∣∣Eλε

(
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt

)
−
∫
M
e−

1
ε
f (x)1A (x) με (dx)

∣∣∣∣∣
≥ inf

x∈A [ f (x)+W (x)]−W (O1)+ c − h1 − η.

The argument for h1 ≤ w is entirely analogous but uses by Lemmas 9.3 and 9.4. ��
The following lemma bounds quantities that will arise in the proof of Theorem 4.5.

Its proof is given in Appendix.

Lemma 9.5 Recall the definitions R(2)
1

.= 2 inf x∈A [ f (x)+ V (O1, x)] − h1, and

for j ∈ L \ {1}, R(2)
j

.= 2 infx∈A
[
f (x)+ V

(
Oj , x

)] + W
(
Oj
) − 2W (O1) +

W
(
O1 ∪ Oj

)
with h1

.= min
∈L\{1} V (O1, O
). Then, 2 inf x∈A [ f (x)+W (x)] −
2W (O1)− h1 ≥ min j∈L R(2)

j .
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Proof of Theorem 4.5 We begin with the observation that is for any random variables
X ,Y and Z satisfying 0 ≤ Y − Z ≤ X ≤ Y ,

Var (X) = EX2 − (EX)2 ≤ EY 2 − (E (Y − Z))2

= Var (Y )+ 2EY · EZ − (EZ)2 ≤ Var (Y )+ 2EY · EZ .

When h1 > w, since

0 ≤ 1

T ε

∑N ε(T ε)

n=1 Sε
n −

1

T ε
Sε
N ε(T ε) ≤

1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt ≤ 1

T ε

∑N ε(T ε)

n=1 Sε
n,

we have

Varλε

(
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt

)

≤ Varλε

(
1

T ε

∑N ε(T ε)

n=1 Sε
n

)
+ 2Eλε

(
1

T ε

∑N ε(T ε)

n=1 Sε
n

) Eλε Sε
N ε(T ε)

T ε
,

and with the help of (7.2)

lim inf
ε→0

−ε log

(
Varλε

(
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt

)
T ε

)

≥ min

{
lim inf

ε→0
−ε log

[
Varλε

(
1

T ε

∑N ε(T ε)

n=1 Sε
n

)
T ε

]
,

lim inf
ε→0

−ε log

[
Eλε

(
1

T ε

∑N ε(T ε)

n=1 Sε
n

) Eλε Sε
N ε(T ε)

T ε
T ε

]}
.

We complete the proof in the case of single cycle by showing both terms are bounded
below by min j∈L(R(1)

j ∧ R(2)
j )− η, where we recall

R(1)
j

.= inf x∈A
[
2 f (x)+ V

(
Oj , x

)]+W
(
Oj
)−W (O1) ,

R(2)
1

.= 2 infx∈A [ f (x)+ V (O1, x)]− h1,

and for j ∈ L \ {1}

R(2)
j

.= 2 inf x∈A
[
f (x)+ V

(
Oj , x

)]+W
(
Oj
)− 2W (O1)+W

(
O1 ∪ Oj

)
.

For the second term, we apply Wald’s first identity, Lemma 7.21, Corollary 8.3
and Lemma 9.2 to find that given η > 0, there exists δ0 ∈ (0, 1), such that for any
δ ∈ (0, δ0)
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lim inf
ε→0

−ε log

[
Eλε

(
1

T ε

∑N ε(T ε)

n=1 Sε
n

) Eλε Sε
N ε(T ε)

T ε
T ε

]

≥ lim inf
ε→0

−ε log T ε + lim inf
ε→0

−ε log Eλε

(
1

T ε

∑N ε(T ε)

n=1 Sε
n

)

+ lim inf
ε→0

−ε log
Eλε Sε

N ε(T ε)

T ε

≥ −c + (inf x∈A [ f (x)+W (x)]−W (O1)− h1 − η/3)+ κδ

+ (inf x∈A [ f (x)+W (x)]−W (O1)+ (c − h1)− η/3)

≥ 2 inf x∈A [ f (x)+W (x)]− 2W (O1)− h1 − η

≥ min j∈L R(2)
j − η ≥ min j∈L(R(1)

j ∧ R(2)
j )− η.

The third inequality holds by choosing δ sufficiently small hδ ≥ h1− η/3. The fourth
inequality is from Lemma 9.5.

Turning to the first term, we can bound the variance by (6.3):

Varλε

(
1

T ε

∑N ε(T ε)

n=1 Sε
n

)
T ε ≤ 2

Eλε (N ε (T ε))

T ε
Varλε Sε

1 + 2
Varλε (N ε (T ε))

T ε

(
Eλε Sε

1

)2

≤ 2
Eλε (N ε (T ε))

T ε
Eλε

(
Sε
1

)2 + 2
Varλε (N ε (T ε))

T ε

(
Eλε Sε

1

)2
.

If we use Corollary 8.3 and Lemma 7.23, then we know that given η > 0, there exists
δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

[
Eλε (N ε (T ε))

T ε
Eλε

(
Sε
1

)2]

≥ lim inf
ε→0

−ε log
Eλε (N ε (T ε))

T ε
+ lim inf

ε→0
−ε log Eλε

(
Sε
1

)2

≥ min
j∈L (R(1)

j ∧ R(2)
j )− η.

In addition, we can apply Lemmas 7.21 and 8.4 to show that given η > 0, there exists
δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log

[
Varλε (N ε (T ε))

T ε

(
Eλε Sε

1

)2]

≥ lim inf
ε→0

−ε log
Varλε (N ε (T ε))

T ε
+ 2 lim inf

ε→0
−ε log Eλε Sε

1

≥ 2 inf
x∈A [ f (x)+W (x)]− 2W (O1)− h1 − η

≥ min
j∈L R(2)

j − η ≥ min
j∈L (R(1)

j ∧ R(2)
j )− η.

The second last inequality comes from Lemma 9.5.
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Hence, we find that given η > 0, there exists δ0 ∈ (0, 1), such that for any
δ ∈ (0, δ0)

lim inf
ε→0

−ε log

(
Varλε

(
1

T ε

∑N ε(T ε)

n=1 Sε
n

)
T ε

)
≥ min

j∈L (R(1)
j ∧ R(2)

j )− η,

and we are done for the single cycle case.
For multicycle case, by using a similar argument and applying Lemmas 7.24, 7.25,

8.21, 9.4 and Corollary 8.20, we find that

lim inf
ε→0

−ε log

(
Varλε

(
1

T ε

∫ T ε

0
e−

1
ε
f (Xε

t )1A
(
Xε
t

)
dt

)
T ε

)

≥ min
j∈L (R(1)

j ∧ R(2)
j ∧ R(3,m)

j )− η,

with

R(3,m)
j

.= 2 inf
x∈A

[
f (x)+ V

(
Oj , x

)]+ 2W
(
Oj
)− 2W (O1)− (m + h1).

We complete the proof by sending m ↓ w − h1. ��
Proof of Theorem 4.9 Parts 1, 2 and 3 are from Theorem 4.3, Lemma 4.3 (b) and The-
orem 6.1 in [12, Chapter 6], respectively.

We now turn to part 4. Before giving the proof, we state a result from [12]. The result
is Lemma 4.3 (c) in [12, Chapter 6], which says that for any unstable equilibrium point
Oj , there exists a stable equilibriumpointOi such thatW (Oj ) = W (Oi )+V (Oi , Oj ).

Now, suppose that min j∈L(infx∈A
[
f (x)+ V

(
Oj , x

)] + W
(
Oj
)
) is attained at

some 
 ∈ L such that O
 is unstable (i.e., 
 ∈ L \ Ls). Then, since there exists a stable
equilibrium point Oi (i.e., i ∈ Ls) such that W (O
) = W (Oi )+ V (Oi , O
) we find

min
j∈L

(
inf
x∈A

[
f (x)+ V

(
Oj , x

)]+W
(
Oj
))

= inf
x∈A [ f (x)+ V (O
, x)]+W (O
) = inf

x∈A [ f (x)+ V (O
, x)]+ V (Oi , O
)+W (Oi )

≥ inf
x∈A [ f (x)+ V (Oi , x)]+W (Oi ) ≥ min

j∈Ls

(
inf
x∈A

[
f (x)+ V

(
Oj , x

)]+W
(
Oj
))

≥ min
j∈L

(
inf
x∈A

[
f (x)+ V

(
Oj , x

)]+W
(
Oj
))

.

The first inequality is from a dynamic programming inequality. Therefore, the mini-
mum is also attained at i ∈ Ls and min j∈L R(1)

j = min j∈Ls R
(1)
j . ��

10 Exponential Return Law and Tail Behavior

In this section, we give the proof of Theorem 8.5, which was the key fact needed to
obtain bounds on the distribution of N ε(T ε), and the related multicycle analogy. A
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result of this type first appears in [6], which asserts that the time needed to escape from
an open subset of the domain of attraction of a stable equilibrium point that contains
the equilibrium point has an asymptotically exponential distribution. [6] also proves
a nonasymptotic bound on the tail of the probability of escape before a certain time
that is also of exponential form. Theorem 8.5 is a more complicated statement, in that
it asserts the asymptotically exponential form for the return time to the neighborhood
of O1. To prove this, we build on the results of [6] and decompose the return time into
times of transitions between equilibrium points. This in turn will require the proof of
a number of related results, such as establishing the independence of certain estimates
with respect to initial distributions.

The existence of an exponentially distributed first hitting time is a central topic
in the theory of quasistationary distributions. For a recent book length treatment of
the topic, we refer to [5]. However, so far as we can tell the types of situations, we
encounter are not covered by existing results, and so as noted we develop what is
needed using [6] as the starting point. See Remark 3.15.

For any j ∈ L, define υε
j as the hitting time of ∂Bδ(Ok) for some k ∈ L \ { j}, i.e.,

υε
j

.= inf
{
t > 0 : Xε

t ∈ ∪k∈L\{ j}∂Bδ(Ok)
}
. (10.1)

We will prove the following result for first hitting times of another equilibrium point,
and later extend to return times.

Lemma 10.1 For any j ∈ Ls, there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0) and
any distribution λε on ∂Bδ(Oj ),

lim
ε→0

ε log Eλευε
j = min

y∈∪k∈L\{ j}∂Bδ(Ok )
V (Oj , y) and υε

j /Eλευε
j

d→ Exp(1).

Moreover, there exists ε0 ∈ (0, 1) and a constant c̃ > 0 such that

Pλε

(
υε
j /Eλευε

j > t
)
≤ e−c̃t

for any t > 0 and any ε ∈ (0, ε0).

The organization of this section is as follows. The first part of Lemma 10.1 that is
concerned with mean first hitting times is proved in Section 10.1, while the second
part that is concernedwith an asymptotically exponential distribution butwhen starting
with a special distribution is proved in Section 10.2. The last part of the lemma, which
focuses on bounds on the tail of the hitting time of another equilibrium point but
when starting with a special distribution, is proved in Section 10.3. We then extend the
second and third parts of Lemma 10.1 to general initial distributions in Section 10.4
and Section 10.5. The last two subsections then extend all of Lemma 10.1 to return
times for single cycles and multicycles, respectively.
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10.1 Mean First Hitting Time

Lemma 10.2 For any δ > 0 sufficiently small and x ∈ ∂Bδ(Oj ) with j ∈ Ls

lim
ε→0

ε log Exυ
ε
j = min

y∈∪k∈L\{ j}∂Bδ(Ok )
V (Oj , y). (10.2)

Proof For the given j ∈ Ls, let Dj denote the corresponding domain of attraction. We
claim there is k ∈ L \ Ls such that

q j
.= inf

y∈∂Dj
V (Oj , y) = V (Oj , Ok).

Since V (Oj , ·) is continuous and ∂Dj is compact, there is a point y∗ ∈ ∂Dj such that
q j = V (Oj , y∗). If y∗ ∈ ∪k∈L\LsOk , then we are done. If this is not true, then since
y∗ /∈ (∪k∈LsDk)∪ (∪k∈L\LsOk), and since the solution to φ̇ = b(φ), φ(0) = y∗ must
converge to ∪k∈L Ok as t →∞, it must in fact converge to a point in ∪k∈L\LsOk , say
Ok . Since such trajectories have zero cost, by a standard argument for any ε > 0 we
can construct by concatenation a trajectory that connects Oj to Ok in finite time and
with cost less than q j + ε. Since ε > 0 is arbitrary, we have q j = V (Oj , Ok).

There may be more than one l ∈ L \ Ls such that Ol ∈ ∂Dj and q j = V (Oj , Ol),
but we can assume that for some k ∈ L \ Ls and ȳ ∈ ∂Bδ(Ok) we attain the min in
(10.2). Then, q̄ j

.= V (Oj , ȳ) ≤ q j , and we need to show limε→0 ε log Exυ
ε
j = q̄ j .

Given s < q̄ j , let Dj (s) = {x : V (Oj , x) ≤ s} and assume s is large enough
that Bδ(Oj ) ⊂ Dj (s)◦. Then, Dj (s) ⊂ D◦j is closed and contained in the open set
Dj \∪l∈L\{ j}Bδ(Ol), and thus the time to reach ∂Dj (s) is never greater than υε

j . Given

η > 0, we can find a set Dη
j (s) that is contained in Dj (s) and satisfies the conditions

of [12, Theorem 4.1, Chapter 4], and also inf z∈∂Dη
j (s)

V (Oj , z) ≥ s−η. This theorem

gives the equality in the following display:

lim inf
ε→0

ε log Exυ
ε
j ≥ lim inf

ε→0
ε log Ex inf{t ≥ 0 : Xε

t ∈ ∂Dη
j (s)}

= inf
z∈∂Dη

j (s)
V (Oj , z) ≥ s − η.

Letting η ↓ 0 and then s ↑ q̄ j gives lim infε→0 ε log Exυ
ε
j ≥ q̄ j .

For the reverse inequality,we also adapt an argument from the proof of [12, Theorem
4.1, Chapter 4]. One can find T1 < ∞ such that the probability for Xε

t to reach
∪l∈L Bδ(Ol) by time T1 from any x ∈ M \ ∪l∈L Bδ(Ol) is bounded below by 1/2.
(This follows easily from the law of large numbers and that all trajectories of the
noiseless system reach ∪l∈L Bδ/2(Ol) in some finite time that is bounded uniformly
in x ∈ M \ ∪l∈L Bδ(Ol).) Also, given η > 0 there is T2 < ∞ and ε0 > 0 such that
Px {Xε

t reaches ∪k∈L\{ j}∂Bδ(Ok) before T2} ≥ exp−(q̄ j +η)/ε for all x ∈ ∂Bδ(Oj ).
It then follows from the strong Markov property that for any x ∈ M \ ∪l∈L Bδ(Ol)

Px {υε
j ≤ T1 + T2} ≥ e−

1
ε
(q̄ j+η)/2.
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Using the ordinary Markov property, we have

Exυ
ε
j ≤

∑∞
n=0(n + 1)(T1 + T2)Px {n(T1 + T2) < υε

j ≤ (n + 1)(T1 + T2)}
= (T1 + T2)

∑∞
n=0 Px {υ

ε
j > n(T1 + T2)}

≤ (T1 + T2)
∑∞

n=0

[
1− inf

x∈M\∪l∈L Bδ(Ol )
Px {υε

j ≤ T1 + T2}
]n

= (T1 + T2)

(
inf

x∈M\∪l∈L Bδ(Ol )
Px {υε

j ≤ T1 + T2}
)−1

≤ 2(T1 + T2)e
1
ε
(q̄ j+η).

Thus, lim supε→0 ε log Exυ
ε
j ≤ q̄ j + η, and letting η ↓ 0 completes the proof. ��

Remark 10.3 By the standard Freidlin–Wentzell theory, the convergence asserted in
Lemma 10.2 is uniform on ∂Bδ(Oj ). Therefore, we have the first part of Lemma 10.1.

10.2 Asymptotically Exponential Distribution

Lemma 10.4 For each j ∈ Ls there is a distribution uε on ∂B2δ(Oj ) such that

υε
j /Euευε

j
d→ Exp(1).

Proof To simplify notation and since it plays no role, we write j = 1 throughout the
proof. We call ∂Bδ (O1) and ∂B2δ (O1) the inner and outer rings of O1. We can then
decompose the hitting time as

υε
1 =

∑N ε−1
k=1 θε

k + ζ ε, (10.3)

where θε
k is the k-th amount of time that the process travels from the outer ring to the

inner ring and back without visiting ∪ j∈L\{1}∂Bδ(Oj ), ζ ε is the amount of time that
the process travels from the outer ring directly to ∪ j∈L\{1}∂Bδ(Oj ) without visiting
the inner ring, andN ε − 1 is the number of times that the process goes back and forth
between the inner ring and outer ring. (It is assumed that δ > 0 is small enough that
B2δ (O1) ⊂ M \ ∪ j∈L\{1}B2δ(Oj ).) Note that θε

k grows exponentially of the order δ,
due to the time taken to travel from the inner ring to the outer ring, and ζ ε is uniformly
bounded in expected value.

For any set A, define the first hitting time by τ (A)
.= inf

{
t > 0 : Xε

t ∈ A
}
. Con-

sider the conditional transition probability from x ∈ ∂B2δ (O1) to y ∈ ∂Bδ (O1) given
by

ψε
1 (dy|x) .= P

(
Xε

τ(∂Bδ(O1))
∈ dy|Xε

0 = x, Xε
t /∈ ∪ j∈L\{1}∂Bδ(Oj ), t ∈ [0, τ (∂Bδ (O1)))]

)
,

and the transition probability from y ∈ ∂Bδ (O1) to x ∈ ∂B2δ (O1) given by

ψε
2 (dx |y) .= P

(
Xε

τ(∂B2δ(O1))
∈ dx |Xε

0 = y
)

. (10.4)
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Then, we can create a transition probability from x ∈ ∂B2δ (O1) to y ∈ ∂B2δ (O1) by

ψε (dy|x) .=
∫

∂Bδ(O1)

ψε
2 (dy|z) ψε

1 (dz|x) . (10.5)

Since ∂B2δ (O1) is compact and {Xε
t }t is non-degenerate and Feller, there exists

an invariant measure uε ∈ P (∂B2δ (O1)) with respect to the transition probability
ψε (dy|x) . If we start with the distribution uε on ∂B2δ (O1), then it follows from the
definition ofuε and the strongMarkovproperty that the {θε

k }k<N ε are iid.Moreover, the
indicators of escape (i.e., 1{τ(∪ j∈L\{1}∂Bδ(Oj ))=τ(∪ j∈L∂Bδ(Oj ))}) are iid Bernoulli, and we
write them as Y ε

k with Puε (Y ε
k = 1) = e−hε

1(δ)/ε,where δ > 0 is from the construction,
hε
1(δ) → h1(δ) as ε → 0 and h1(δ) ↑ h1 as δ ↓ 0 with h1 = min j∈L\{1} V (O1, Oj ).

Note that N ε = inf
{
k ∈ N : Y ε

k = 1
}
. We therefore have

Puε (N ε = k) = (1− e−hε
1(δ)/ε)k−1e−hε

1(δ)/ε,

and thus

Euευε
1 = Euε

[∑N ε−1
j=1 θε

j

]
+ Euε ζ ε = Euε (N ε − 1)Euε θε

1 + Euε ζ ε,

where the second equality comes from Wald’s identity. Using
∑∞

k=1 kak−1 =
1/(1− a)2 for a ∈ [0, 1), we also have

EuεN ε =
∑∞

k=1 k(1− e−hε
1(δ)/ε)k−1e−hε

1(δ)/ε = e−hε
1(δ)/εe2h

ε
1(δ)/ε = eh

ε
1(δ)/ε,

and therefore

Euευε
1 = eh

ε
1(δ)/εEuε θε

1 + (Euε ζ ε − Euε θε
1 ). (10.6)

Next consider the characteristic function of υε
1/Euευε

1

φε(t) = Euεeitυ
ε
1/Euε υε

1 = φε
υ(t/Euευε

1),

where φε
υ is the characteristic function of υε

1 . By (10.3), we have

φε
υ(s) = Euεe

is
(∑N ε−1

k=1 θε
k+ζ ε

)
= Euεeisζ

ε

Euεe
is
(∑N ε−1

k=1 θε
k

)

= φε
ζ (s)

∑∞
k=1(1− e−hε

1(δ)/ε)k−1e−hε
1(δ)/εφε

θ (s)
k−1

= φε
ζ (s)e

−hε
1(δ)/ε(1− [(1− e−hε

1(δ)/ε)φε
θ (s)])−1,

where φε
θ and φε

ζ are the characteristic functions of θε
1 and ζ ε, respectively. We want

to show that for any t ∈ R

φε(t) = φε
υ(t/Euευε

1)→ 1/(1− i t) as ε → 0.
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We first show that φε
ζ (t/Euευε

1) → 1. By definition, φε
ζ

(
t/Euευε

1

)
= Euε cos

(
tζ ε/Euευε

1

)+i Euε sin
(
tζ ε/Euευε

1

)
.According to [12, Lemma1.9, Chap-

ter 6], we know that there exist T0 ∈ (0,∞) and β > 0 such that for any T ∈ (T0,∞)

and for all ε sufficiently small

Puε

(
ζ ε > T

) ≤ e−
1
ε
β(T−T0), (10.7)

and therefore for any bounded and continuous function f : R → R

∣∣Euε f
(
tζ ε/Euευε

1

)− f (0)
∣∣ ≤ 2 ‖ f ‖∞ Puε

(
ζ ε > T

)
+ Euε

[∣∣ f (tζ ε/Euευε
1

)− f (0)
∣∣ 1{ζ ε≤T }

]
.

The first term in the last display goes to 0 as ε → 0. For any fixed t, t/Euευε
1 → 0 as

ε → 0. Since f is continuous, the second term in the last display also converges to 0
as ε → 0. φε

ζ (t/Euευε
1) → 1 follows by taking f to be sin x and cos x .

It remains to show that for any t ∈ R

e−hε
1(δ)/ε

(
1−

[
(1− e−hε

1(δ)/ε)φε
θ (t/Euευε

1)
])−1 → 1/(1− i t)

as ε → 0. Observe that

e−hε
1(δ)/ε

(
1−

[
(1− e−hε

1(δ)/ε)φε
θ (t/Euε υε

1 )
])−1 =

(
1− φε

θ (t/Euε υε
1 )

e−hε
1(δ)/ε

+ φε
θ (t/Euε υε

1 )

)−1
,

so it suffices to show that φε
θ (t/Euευε

1) → 1 and [1−φε
θ (t/Euευε

1)]/e−h
ε
1(δ)/ε →−i t

as ε → 0.
For the former, note that by (10.6)

0 ≤ Euε

(
tθε

1/Euευε
1

) ≤ t Euε θε
1(

eh
ε
1(δ)/ε − 1

)
Euε θε

1

→ 0

as ε → 0, and so tθε
1/Euευε

1 converges to 0 in distribution. Moreover, since eix is
bounded and continuous, we find φε

θ (t/Euευε
1)→ 1. For the second part, using

x − x3/3! ≤ sin x ≤ x and 1− x2/2 ≤ cos x ≤ 1

for x ∈ R we find that

0 ≤ 1− Euε cos
(
tθε

1/Euευε
1

)
e−hε

1(δ)/ε
≤ Euε

(
tθε

1/Euευε
1

)2
2e−hε

1(δ)/ε

and

Euε

(
tθε

1/Euευε
1

)
e−hε

1(δ)/ε
− Euε

(
tθε

1/Euευε
1

)3
3!e−hε

1(δ)/ε
≤ Euε sin

(
tθε

1/Euευε
1

)
e−hε

1(δ)/ε
≤ Euε

(
tθε

1/Euευε
1

)
e−hε

1(δ)/ε
.
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From our previous observation regarding the distribution of ζ ε and (10.6)

Euε

(
tθε

1/Euευε
1

)
e−hε

1(δ)/ε
→ t as ε → 0.

In addition, since θε
1 can be viewed as the time from the outer ring to the inner ring

without visiting ∪ j∈L\{1}∂Bδ(Oj ) plus the time from the inner ring to the outer ring,
by applying (10.7) to the former and using [6, Theorem 4 and Corollary 1] under
Condition 3.13 to the later, we find that

Puε

(
θε
1/Euε θε

1 > t
) ≤ 2e−t (10.8)

for all t ∈ [0,∞) and ε sufficiently small. This implies that

Euε

(
θε
1/Euε θε

1

)2 = 2
∫ ∞

0
t2Puε

(
θε
1/Euε θε

1 > t
)
dt ≤ 4

∫ ∞

0
t2e−t dt = 8

and similarly Euε

(
θε
1/Euε θε

1

)3 = 3
∫∞
0 t3 ≤ 36. Then combinedwith (10.6), we have

0 ≤ Euε

(
tθε

1/Euευε
1

)2
2e−hε

1(δ)/ε
≤ t2Euε

(
θε
1/Euε θε

1

)2
2e−hε

1(δ)/ε(eh
ε
1(δ)/ε − 1)2

→ 0

and

0 ≤ Euε

(
tθε

1/Euευε
1

)3
3!e−hε

1(δ)/ε
≤ t3Euε

(
θε
1/Euε θε

1

)3
3!e−hε

1(δ)/ε(eh
ε
1(δ)/ε − 1)3

→ 0.

Therefore, we have shown that for any t ∈ R

1− φε
θ (t/Euευε

1)

e−hε
1(δ)/ε

= 1− Euε cos
(
tθε

1/Euευε
1

)
e−hε

1(δ)/ε
− i

Euε sin
(
tθε

1/Euευε
1

)
e−hε

1(δ)/ε
→−i t .

��
Remark 10.5 From the proof of Lemma 10.4, we actually know that

φε
υ(t/Euευε

1) → 1/(1− i t)

uniformly on any compact set in R as ε → 0.

10.3 Tail Probability

The goal of this subsection is to prove the following.
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Lemma 10.6 For each j ∈ Ls there is a distribution uε on ∂B2δ(Oj ) and c̃ > 0 such
that for any t ∈ [0,∞), Puε (υε

j /Euευε
j > t) ≤ e−c̃t (here, υε

j and uε are defined as
in the last subsection).

Proof As in the last subsection, we give the proof for the case j = 1. To begin, we
note that for any α > 0 Chebyshev’s inequality implies

Puε

(
υε
1/Euευε

1 > t
) = Puε (eαυε

1/Euε υε
1 > eαt ) ≤ e−αt · Euεeαυε

1/Euε υε
1 .

By picking α = α∗ .= 1/8, it suffices to show that Euεeα∗υε
1/Euε υε

1 is bounded by a
constant. We will do this by showing how the finiteness of Euεeα∗υε

1/Euε υε
1 is implied

by the finiteness of Euεeα∗θε
1 /Euε υε

1 and Euεeα∗ζ ε/Euε υε
1 .

Using (10.8), we find that for any α > 0

Puε (eαθε
1 /Euε θε

1 > t) ≤ 2e−
1
α
log t = 2t−

1
α

for all t ∈ [1,∞) and ε sufficiently small. Then, (10.6) implies Euευε
1 ≥(

eh
ε
1(δ)/ε − 1

)
Euε θε

1 and therefore

Euεeα∗/Euε υε
1 θε

1 ≤
∫ 1

0
Puε

(
exp
(
α∗θε

1/[(ehε
1(δ)/ε − 1)Euε θε

1 ]
)

> t
)
dt

+
∫ ∞

1
Puε

(
exp
(
α∗θε

1/[(ehε
1(δ)/ε − 1)Euε θε

1 ]
)

> t
)
dt

≤ 1+ 2
∫ ∞

1
t−(eh

ε
1(δ)/ε−1)/α∗dt

= 1+ 2[(ehε
1(δ)/ε − 1)/α∗ − 1]−1 = 1+ 2α∗[ehε

1(δ)/ε − α∗ − 1]−1.

To estimate ζ ε, we use that by (10.7) there are T0 ∈ (0,∞) and β > 0 such that

for any t ∈ (T0,∞) and for all ε sufficiently small Puε (ζ ε > t) ≤ e− 1
ε
β(t−T0), so that

for any α > 0 Puε

(
eαζ ε

> t
) ≤ e

− 1
ε
β
(
1
α
log t−T0

)
for any t ≥ eαT0 . Given n ∈ N, for

all sufficiently small ε we have α∗/Euευε
1 ≤ 1/n, and thus

Puε

(
eα∗ζ ε/Euε υε

1 > t
)
≤ Puε

(
eζ ε/n > t

)
≤ e−

1
ε
β(n log t−T0).

Hence for any n such that eT0/n ≤ 3/2 and (−βn + 1) log (3/2)+ βT0 < 0, and for
ε small enough that α∗/Euευε

1 ≤ 1/n, we have

Euε eα
∗ζ ε/Euε υε

1 ≤
∫ ∞
0

Puε

(
eα
∗ζ ε/Euε υε

1 > t
)
dt ≤ 3/2+

∫ ∞
3
2

Puε

(
eα
∗ζ ε/Euε υε

1 > t
)
dt

≤ 3/2+
∫ ∞
3
2

e− 1
ε β(n log t−T0)dt = 3/2+ e

1
ε βT0 (βn/ε − 1)−1 (3/2)

1
ε (−βn+ε)

= 3/2+ (βn/ε − 1)−1e 1
ε [(−βn+ε) log(3/2)+βT0] ≤ 3/2+ (βn/ε − 1)−1 ≤ 2.
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We have shown that for such α∗, Euεeα∗ζ ε/Euε υε
1 and Euεeα∗θε

1 /Euε υε
1 are uniformly

bounded for all ε sufficiently small. Lastly, using the same calculation as used for the
characteristic function

Euε eα∗υε
1/Euε υε

1 = Euε eα∗ζ ε/Euε υε
1 · e−hε

1(δ)/ε
(
1−

[
(1− e−hε

1(δ)/ε)Euε eα∗θε
1 /Euε υε

1

])−1

≤ 2e−hε
1(δ)/ε

(
1−

[
(1− e−hε

1(δ)/ε)

(
1+ 2α∗

eh
ε
1(δ)/ε − α∗ − 1

)])−1

= 2e−hε
1(δ)/ε

(
e−hε

1(δ)/ε − 2α∗

eh
ε
1(δ)/ε − α∗ − 1

+ 2α∗

eh
ε
1(δ)/ε − α∗ − 1

e−hε
1(δ)/ε

)−1

= 2

(
1− 2α∗ eh

ε
1(δ)/ε − 1

eh
ε
1(δ)/ε − α∗ − 1

)−1
≤ 2/(1− 4α∗) = 4.

��

10.4 General Initial Condition

This subsection presents results that will allow us to extend the results in the pre-
vious two subsections to arbitrary initial distribution λε ∈ P(∂Bδ (O1)). Under our
assumptions, for any j ∈ Ls we observe that the process model

dXε
t = b

(
Xε
t

)
dt +√εσ

(
Xε
t

)
dWt (10.9)

has the property that b(x) = A(x − Oj )[1+ o(1)] and σ (x) = σ̄ [1+ o (1)], where
o(1) → 0 as

∥∥x − Oj
∥∥→ 0, A is stable and σ̄ is invertible. By an invertible change

of variable, we can arrange so that Oj = 0 and σ̄ = I , and to simplify we assume this
in the rest of the section.

Since A is stable, there exists a positive definite and symmetric solution M to the
matrix equation AM + MAT = −I (we can in fact exhibit the solution in the form
M = ∫∞0 eAt eA

T tdt). To prove the ergodicity, we introduce some additional notation:
U (x)

.= 〈x, Mx〉, Bi .= {x : U (x) < b2i } and Si (ε) .= {x : U (x) < a2i ε}, for i = 1, 2,
where 0 < a1 < a2, 0 < b0 < b1 < b2. If ε0 = (b20/a

2
2)/2, then with cl denoting

closure, cl(S2(ε0)) ⊂ B0, and we will assume ε ∈ (0, ε0) henceforth. For a use later
on, we will also assume that a21 = 2 supx∈B2 tr[σ(x)σ (x)T M].
Remark 10.7 The sets B1 and B2 will play the roles that Bδ(O1) and B2δ(O1) played
previously in this section. Although elsewhere in this paper as well as in the reference
[12] these sets are taken to be balls with respect to the Euclidean norm, in this sub-
section we take them to be level sets of U (x). The shape of these sets and the choice
of the factor of 2 relating the radii play no role in the analysis of [12] or in our prior
use in this paper. However, in this subsection it is notationally convenient for the sets
to be level sets of U , since U is a Lyapunov function for the noiseless dynamics near
0. After this subsection, we will revert to the Bδ(O1) and B2δ(O1) notation.

In addition to the restrictions a1 < a2 and a22ε0 ≤ b20, we also assume that a1, a2
and ε0 > 0 are such that if φx is the solution to the noiseless dynamics φ̇ = b(φ)
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with initial condition x , then: (i) for all x ∈ ∂S2(ε), φx never crosses ∂B1; (i) for all
x ∈ ∂S1(ε), φx never exits S2(ε).

The idea that will be used to establish asymptotic independence from the starting
distribution is the following.We start the process on ∂B1.With some small probability,
it will hit ∂B2 before hitting ∂S2(ε). This gives a contribution to ψε

2 (dz|x) defined in
(10.4) that will be relatively unimportant. If instead it hits ∂S2(ε) first, then we do a
Freidlin–Wentzell type analysis and decompose the trajectory into excursions between
∂S2(ε) and ∂S1(ε), before a final excursion from ∂S2(ε) to ∂B2.

To exhibit the asymptotic independence from ε, we introduce the scaled process
Y ε
t = Xε

t /
√

ε, which solves the SDE

dY ε
t =

1√
ε
b(
√

εY ε
t )dt + σ(

√
εY ε

t )dWt .

Let S̄1 = ∂S1(1) and S̄2 = ∂S2(1). Let ωε(w|x) denote the density of the hitting
location on S̄2 by the process Y ε, given Y ε

0 = x ∈ S̄1. The following estimate is
essential. The density function can be identified with the normal derivative of a related
Green’s function, which is bounded from above by the boundary gradient estimate
and bounded below by using the Hopf lemma [13].

Lemma 10.8 Given ε0 > 0, there are 0 < c1 < c2 <∞ such that c1 ≤ ωε(w|x) ≤ c2
for all x ∈ S̄1, w ∈ S̄2 and ε ∈ (0, ε0).

Next let pε(u|w) denote the density of the return location for Y ε on S̄2, conditioned
on visiting S̄1 before ∂B2/

√
ε, and starting at w ∈ S̄2. The last lemma then directly

gives the following.

Lemma 10.9 For ε0 > 0 and c1, c2 as in the last lemma c1 ≤ pε(u|w) ≤ c2 for all
u, w ∈ S̄2 and ε ∈ (0, ε0).

Let rε(w) denote the unique stationary distribution of pε(u|w), and let pε,n(u|w)

denote the n-step transition density. The preceding lemma, [14, Theorem 10.1 Chap-
ter 3], and the existence of a uniform strictly positive lower bound on rε(u) for all
sufficiently small ε > 0 imply the following.

Lemma 10.10 There is K <∞ and α ∈ (0, 1) such that for all ε ∈ (0, ε0)

sup
w∈S̄2

∣∣pε,n(u|w)− rε(u)
∣∣ /rε(u) ≤ Kαn .

Let ηε(dx |w) denote the distribution of Xε upon first hitting ∂B2 given that Xε

reaches ∂S1(ε) before ∂B2 and starts at w ∈ ∂S2(ε).

Lemma 10.11 There is κ > 0 and ε0 > 0 such that for all ε ∈ (0, ε0)

sup
x∈∂B1

Px
{
Xε reaches ∂B2 before S2(ε)

} ≤ e−κ/ε.
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Lemma 10.12 There are η̄ε(dz) ∈ P(∂B2), sε that tends to 0 as ε → 0 and ε0 > 0,
such that for all A ∈ B(∂B2), w ∈ ∂S2(ε) and ε ∈ (0, ε0)

η̄ε(A)[1− sεK/(1− α)] ≤ ηε(A|w) ≤ η̄ε(A)[1+ sεK/(1− α)],

where K and α are from Lemma 10.10.

Proof of Lemma 10.11 Recall that a21 = 2 supx∈B2 tr[σ(x)σ (x)T M]. We then use that
AM + MAT = −I to get that with U (x)

.= 〈x, Mx〉,

〈DU (x), b(x)〉 ≤ −εa21 (10.10)

for x ∈ B2 \ S2(ε), and

〈DU (x), b(x)〉 ≤ −1

8
b20 (10.11)

for B2 \ (B0/2). By Itô’s formula

dU (Xε
t ) =

〈
DU (Xε

t ), b(X
ε
t )
〉
dt + ε

2
tr[σ(Xε

t )σ (Xε
t )

T M]dt
+√ε

〈
DU (Xε

t ), σ (Xε
t )dWt

〉
. (10.12)

Starting at x ∈ ∂B1, we are concerned with the probability

Px
{
U (Xε

t ) reaches b
2
2 before a

2
2ε
}

,

where U (x) = b21. However, according to (10.12) and (10.11), reaching b22 before
b20/4 is a rare event, and its probability decays exponentially in the form e−κ/ε for
some κ > 0 and uniformly in x ∈ ∂B1. Once the process reaches B0/2, (10.12) and
(10.10) imply U (Xε

t ) is a supermartingale as long as it is in the interval [0, b20], and
therefore after Xε

t reaches B0/2, the probability that U (Xε
t ) reaches a

2
2ε before b20 is

greater than 1/2. ��
Proof of Lemma 10.12 Consider a starting position w ∈ ∂S2(ε), and recall that
ηε(dz|w) denotes the hitting distribution on ∂B2 after starting at w. Let θε

k denote
the return times to ∂S2(ε) after visiting ∂S1(ε), and let qε

n(w) denote the probability
that the first k for which Xε visits ∂B2 before visiting ∂S1(ε) during [θε

k , θε
k+1] is n.

Then by the strong Markov property and using the rescaled process∫
∂B2

g(z)ηε(dz|w) =
∑∞

n=0

∫
∂B2

g(z)qε
n(w)

∫
∂S2(ε)

ηε(dz|u)J ε(u)pε,n(
√

εu|√εw)du,

where J ε(u) is the Jacobian that accounts for the mapping between ∂S2(ε) and ∂S2(1)
and is given by u/

√
ε. We next use that uniformly in w ∈ ∂S2(ε)

pε,n(
√

εu|√εw) ≤ rε(
√

εu)[1+ Kαn]
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to get

∑∞
n=0

∫
∂B2

g(z)qε
n(w)

∫
∂S2(ε)

ηε(dz|u)J ε(u)pε,n(
√

εu|√εw)du

≤
(∑∞

n=0

∫
∂B2

g(z)qε
n(w)

∫
∂S2(ε)

ηε(dz|u)J ε(u)rε(
√

εu)du

)
[1+ Kαn]

=
∫

∂B2
g(z)

∫
∂S2(ε)

ηε(dz|u)J ε(u)rε(
√

εu)du
[
1+ K

∑∞
n=0 q

ε
n(w)αn

]
.

Now, use that K
∑∞

n=0 αn = K/(1 − α) < ∞ and supw∈∂S2(ε)
supn∈N0

qε
n(w) → 0

as ε → 0 to get the upper bound with

η̄ε(dz)
.=
∫

∂S2(ε)

ηε(dz|u)J ε(u)rε(
√

εu)du.

When combined with the lower bound which has an analogous proof, Lemma 10.12
follows. ��

10.5 Times to Reach Another Equilibrium Point after Starting with General Initial
Distribution

Lemma 10.13 For each j ∈ Ls, there exist c̃ > 0 and ε0 ∈ (0, 1) such that for any
distribution λε on ∂Bδ(Oj ),

Pλε (υε
j /Eλευε

j > t) ≤ e−c̃t

for all t > 0 and ε ∈ (0, ε0).

Proof We give the proof for the case j = 1. We first show for any r ∈ (0, 1) there is
ε0 > 0 such that for any ε ∈ (0, ε0) and λε, θε ∈ P(∂Bδ(O1))

Eλευε
1/Eθευε

1 ≥ r . (10.13)

We use that υε
1 can be decomposed into ῡε

1 + υ̂ε
1 , where ῡε

1 is the first hitting time
to ∂B2δ(O1). Since by standard large deviation theory the exponential growth rate of
the expected value of υε

1 is strictly greater than that of ῡε
1 (uniformly in the initial dis-

tribution) Eλε ῡε
1 (respectively, Eθε ῡε

1) is negligible compared to Eλευε
1 (respectively,

Eθευε
1), and so it is enough to show Eλε υ̂ε

1/Eθε υ̂ε
1 ≥ r . Owing to Lemma 10.11 (and

in particular because κ > 0), the contribution to either Eλε υ̂ε
1 or Eθε υ̂ε

1 from trajec-
tories that reach ∂B2δ(O1) before ∂S2(ε) can be neglected. Using Lemma 10.12 and
the strong Markov property gives

inf
w1,w2∈∂S2(ε)

Ew1 υ̂
ε
1

Ew2 υ̂
ε
1
≥ [1− sεK/(1− α)]
[1+ sεK/(1− α)] ,
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and the lower bound follows since sε → 0.
We next claim that a suitable bound can be found for Pλε (υ̂ε

1/Eλευε
1 > t). Recall

that uε ∈ P(∂B2δ(O1)) is the stationary probability for ψε defined in (10.5). Let βε

be the probability measure on ∂Bδ(O1) obtained by integrating the transition kernel
ψε
1 with respect to u

ε, and note that integratingψε
2 with respect to βε returns uε. Since

the diffusion matrix is uniformly nondegenerate, by using well-known “Gaussian
type” bounds on the transition density for the process [2], there are K ∈ (0,∞) and
p ∈ (0,∞) such that

Px
{
Xε

θ ∈ A|Xε
θ ∈ ∂B2δ(O1)

} ≤ Km(A)/ε p

for all x ∈ ∂Bδ(O1), wherem is the uniformmeasure on ∂B2δ(O1) and θ = inf{t > 0 :
Xε
t ∈ ∂B2δ(O1)∪S2(ε)}. Together with Lemmas 10.11 and 10.12 , this implies that for

all sufficiently small ε > 0 and any bounded measurable function h : ∂B2δ(O1) → R,

∫
∂B2δ(O1)

∫
∂Bδ(O1)

h(y)ψε
2 (dy|x)λε(dx) ≤ 2

∫
∂B2δ(O1)

∫
∂Bδ(O1)

h(y)ψε
2 (dy|x)βε(dx)

≤ 2
∫

∂B2δ(O1)

h(y)uε(dy).

Using the last display for the first inequality, (10.13) for the second, that ῡε
1 is small

compared with υ̂ε
1 for the third and Lemma 10.6 for the last, there is ε1 > 0 such that

Pλε (υ̂ε
1/Eλευε

1 > t) = Eλε (PXε
ῡε
1
(υ̂ε

1/Eλευε
1 > t)) ≤ 2Puε (υε

1/Eλευε
1 > t)

≤ 2Puε (υε
1/Eβευε

1 > t/2) ≤ 2Puε (υε
1/Euευε

1 > t/4) ≤ 2e−c̃t/4

for all ε ∈ (0, ε1) and t ≥ 0.
Since as noted previously Eλευε

1 ≥ Eλε ῡε
1 and since by [6, Theorem4 andCorollary

1], there exists ε2 ∈ (0, 1) such that Pλε (ῡε
1/Eλε ῡε

1 > t) ≤ 2e−t/2 for any t > 0 and
ε ∈ (0, ε2), we conclude that for any t > 0 Pλε (ῡε

1/Eλευε
1 > t/2) ≤ Pλε (ῡε

1/Eλε ῡε
1 >

t/2) ≤ 2e−t/2. The conclusion of the lemma follows from these two bounds and

Pλε (υε
1/Eλευε

1 > t) ≤ Pλε (ῡε
1/Eλευε

1 > t/2)+ Pλε (υ̂ε
1/Eλευε

1 > t/2).

��
Lemma 10.14 For any j ∈ Ls and any distribution λε on ∂Bδ(Oj ), υε

j /Eλευε
j

converges in distribution to an Exp(1) random variable under Pλε . Moreover,
Eλεeitυ

ε
j /Eλε υε

j → 1/(1− i t) uniformly on any compact set in R.

Proof We give the proof for the case j = 1. Recall that Euεeitυ
ε
1/Euε υε

1 → 1/(1− i t)
uniformly on any compact set in R as ε → 0 from Remark 10.5. We would like to
show that Eλεeitυ

ε
1/Eλε υε

1 → 1/(1−i t) uniformly on any compact set inR. Since υε
1 =

ῡε
1 + υ̂ε

1 with ῡε
1 the first hitting time to ∂B2δ(O1), we know that Eλε ῡε

1/Eλευε
1 → 0
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and thus Eλε υ̂ε
1/Eλευε

1 → 1. Observe that

Eλεeitυ
ε
1/Eλε υε

1 = Eλε

[
eit ῡ

ε
1/Eλε υε

1 · EXε(ῡε
1)

(
eit υ̂

ε
1/Eλε υε

1

)]
,

Eλε

[
EXε(ῡε

1)

(
eit υ̂

ε
1/Eλε υε

1

)]
≤ [1+ sεK/(1− α)]
[1− sεK/(1− α)] Euεeitυ

ε
1/Eλε υε

1 → 1/(1− i t)

and

Eλε

[
EXε(ῡε

1)

(
eit υ̂

ε
1/Eλε υε

1

)]
≥ [1− sεK/(1− α)]
[1+ sεK/(1− α)] Euεeitυ

ε
1/Eλε υε

1 → 1/(1− i t).

Since Eλε ῡε
1/Eλευε

1 → 0 and eix is a bounded and continuous function, a conditioning
argument gives

∣∣∣Eλεeitυ
ε
1/Eλε υε

1 − Eλε

[
EXε(ῡε

1)

(
eit υ̂

ε
1/Eλε υε

1

)]∣∣∣ ≤ Eλε

∣∣∣eit ῡε/Eλε υε
1 − 1

∣∣∣→ 0.

We conclude that Eλεeitυ
ε
1/Eλε υε

1 → 1/(1− i t) uniformly on any compact set in R. ��

10.6 Return Times (Single Cycles)

In this subsection, we will extend all the three results to return times for the single
cycle case (i.e., when h1 > w).

Lemma 10.15 There exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0) and any distribu-
tion λε on ∂Bδ(O1),

lim
ε→0

ε log Eλε τ ε
1 = min

y∈∪k∈L\{1}∂Bδ(Ok )
V (O1, y).

Proof We have Eλε τ ε
1 = Eλευε

1 + Eλε (τ ε
1 − υε

1), and by Lemma 10.2 we know that

lim
ε→0

ε log Eλευε
1 = min

y∈∪k∈L\{1}∂Bδ(Ok )
V (O1, y).

Moreover, observe that W (Oj ) > W (O1) for any j ∈ L \ {1} due to Remark 3.14.
Note that υε

1 as defined in (10.1) coincides with σε
0 defined in (3.4). We can therefore

apply Remark 7.22 with f = 0, A = M and η = [min j∈L\{1}W (Oj ) − W (O1)]/3,
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we find that there exists δ1 ∈ (0, 1) such that for any δ ∈ (0, δ1)

lim inf
ε→0

−ε log

(
sup

z∈∂Bδ(O1)

Ez
(
τ ε
1 − υε

1

))

≥ min
j∈L\{1}W (Oj )−W (O1)− min

j∈L\{1} V (O1, Oj )− η

= − min
j∈L\{1} V (O1, Oj )+ 2η.

On the other hand, by continuity of V (O1, ·), for this given η, there exists δ2 ∈ (0, 1)
such that for any δ ∈ (0, δ2)

min
y∈∪k∈L\{1}∂Bδ(Ok )

V (O1, y) ≥ min
j∈L\{1} V (O1, Oj )− η.

Thus, for any δ ∈ (0, δ0) with δ0
.= δ1 ∧ δ2

lim sup
ε→0

ε log Eλε (τ ε
1 − υε

1) ≤ lim sup
ε→0

ε log

(
sup

z∈∂Bδ(O1)

Ez(τ
ε
1 − υε

1)

)

≤ min
j∈L\{1} V (O1, Oj )− 2η ≤ min

y∈∪k∈L\{1}∂Bδ(Ok )
V (O1, y)− η

= lim
ε→0

ε log Eλευε
1 − η

and

lim
ε→0

ε log Eλε τ ε
1 = lim

ε→0
ε log Eλευε

1 = min
y∈∪k∈L\{1}∂Bδ(Ok )

V (O1, y).

��
Lemma 10.16 Given δ > 0 sufficiently small, and for any distribution λε on ∂Bδ(O1),

there exist c̃ > 0 and ε0 ∈ (0, 1) such that

Pλε (τ ε
1 /Eλε τ ε

1 > t) ≤ e−c̃t

for all t ≥ 1 and ε ∈ (0, ε0).

Proof For any t > 0, Pλε (τ ε
1 /Eλε τ ε

1 > t) ≤ Pλε (υε
1/Eλε τ ε

1 > t/2) + Pλε ((τ ε
1 −

υε
1)/Eλε τ ε

1 > t/2). It is easy to see that the first term has this sort of bound due to
Lemma 10.13 and Eλε τ ε

1 ≥ Eλευε
1 .

It suffices to show that this sort of bound holds for the second term, namely, there
exists a constant c̃ > 0 such that

Pλε

(
(τ ε

1 − υε
1)/Eλε τ ε

1 > t
) ≤ e−c̃t

for all t ∈ [0,∞) and ε sufficiently small. By Chebyshev’s inequality,

Pλε

(
(τ ε

1 − υε
1)/Eλε τ ε

1 > t
) = Pλε (e(τ ε

1−υε
1 )/Eλε τ ε

1 > et ) ≤ e−t Eλεe(τ ε
1−υε

1 )/Eλε τ ε
1 ,

123



1120 Journal of Theoretical Probability (2022) 35:1049–1136

and it therefore suffices to prove that Eλεe(τ ε
1−υε

1 )/Eλε τ ε
1 is less than a constant for all

ε sufficiently small. Observe that

τ ε
1 − υε

1 =
∑

j∈L\{1}
∑N j

k=1 υε
j (k),

where N j is the number of visits of ∂Bδ(Oj ), and υε
j (k) is the k-th copy of the first

hitting time to ∪k∈L\{ j}∂Bδ(Ok) after starting from ∂Bδ(Oj ).

If we consider ∂Bδ(Oj ) as the starting location of a regenerative cycle, as was done
previously in the paper for ∂Bδ(O1), then there will be a unique stationary distribution,
and if the process starts with that as the initial distribution, then the times υε

j (k) are
independent from each other and from the number of returns to ∂Bδ(Oj ) before first
visiting ∂Bδ(O1). While these random times as used here do not arise from starting
with such a distribution, we can use Lemma 10.12 to bound the error in terms of a
multiplicative factor that is independent of ε for small ε > 0, and thereby justify
treating N j as though it is independent of the υε

j (k).
Recalling that l

.= |L|,

Eλεe(τ ε
1−υε

1 )/Eλε τ ε
1 = Eλε

∏
j∈L\{1} e

(∑N j
k=1 υε

j (k)

)
/Eλε τ ε

1

≤
∏

j∈L\{1}

⎛
⎝Eλε

⎡
⎣e
(∑N j

k=1 υε
j (k)

)
(l−1)/Eλε τ ε

1

⎤
⎦
⎞
⎠

1/(l−1)
,

where we use the generalized Hölder’s inequality for the last line. Thus, if we can

show for each j ∈ L \ {1} that Eλε exp[(∑N j
k=1 υε

j (k))(l − 1)/Eλε τ ε
1 ] is less than a

constant for all ε sufficiently small, then we are done.
Such an estimate is straightforward for the case of an unstable equilibrium, i.e.,

for j ∈ L\Ls, and so we focus on the case j ∈ Ls\{1}. For this case, we apply
Lemma 10.13 to find that there exists c̃ > 0 and ε0 ∈ (0, 1) such that for any j ∈ L
and any distribution λ̃ε on ∂B(Oj ),

Pλ̃ε (υ
ε
j /Eλ̃ε υ

ε
j > t) ≤ e−c̃t (10.14)

for any t > 0 and ε ∈ (0, ε0). Hence, given any η > 0, there is ε̄0 ∈ (0, ε0) such that
for all ε ∈ (0, ε̄0) and any j ∈ L \ {1}

Eλε

[
eυε

j (l−1)/Eλε τ ε
1

]
≤ 1+

∫ ∞

1
Pλε (e(l−1)υε

j /Eλε τ ε
1 > t)dt

≤ 1+
∫ ∞

1
Pλε

(
υε
j /Eλευε

j > log t · Eλε τ ε
1 /((l − 1)Eλευε

j )
)
dt

≤ 1+
∫ ∞

1
t−c̃Eλε τ ε

1 /((l−1)Eλε υε
j )dt

= 1+
(
c̃Eλε τ ε

1 /((l − 1)Eλευε
j )− 1

)−1 ≤ 1+ e−
1
ε
(h1−h j−η),
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where the last inequality comes from Lemmas 10.2 and 10.15, and by picking the
range of ε small if it needs to be.

By using induction and a conditioning argument, it follows that for any η > 0, for
any j ∈ L \ {1} and for any n ∈ N,

Eλε

[
e

(∑n
k=1 υε

j (k)
)
(l−1)/Eλε τ ε

1

]
≤
(
1+ e−

1
ε
(h1−h j−η)

)n
.

This implies that

Eλε

⎡
⎣e
(∑N j

k=1 υε
j (k)

)
(l−1)/Eλε τ ε

1

⎤
⎦ ≤ Eλε

[(
1+ e−

1
ε
(h1−h j−η)

)N j
]

.

The next thing we need to know is the distribution of N j , i.e., Pλε (N j = n) for
n ∈ N. Following a similar argument as in the proof of Lemma 7.3 and the proof of
Lemma 7.6, for sufficiently small ε > 0 we find

Pλε (N j = n) ≤
(
1 ∧ e−

1
ε
(W (Oj )−W (O1∪Oj )−h1−η)

)
(1− q j )

n−1q j ,

where

q j
.= inf x∈∂Bδ(Oj ) Px (T̃1 < T̃+j )

1− supy∈∂Bδ(Oj )
p(y, ∂Bδ(Oj ))

≥ e−
1
ε
(W (O1)−W (O1∪Oj )−h j+η). (10.15)

Therefore,

Eλε

⎡
⎣e
(∑N j

k=1 υε
j (k)

)
(l−1)/Eλε τ ε

1

⎤
⎦

≤ Eλε

[(
1+ e−

1
ε
(h1−h j−η)

)N j
]
=
∑∞

n=1
(
1+ e−

1
ε
(h1−h j−η)

)n
Pλε (N j = n)

≤
∞∑
n=1

(
1 ∧ e−

1
ε
(W (Oj )−W (O1∪Oj )−h1−η)

) (
1+ e−

1
ε
(h1−h j−η)

)n
(1− q j )

n−1q j

=
(
1 ∧ e− 1

ε
(W (Oj )−W (O1∪Oj )−h1−η)

)
q j

(
1+ e− 1

ε
(h1−h j−η)

)

1−
(
1+ e− 1

ε
(h1−h j−η)

)
(1− q j )

≤
(
1 ∧ e− 1

ε
(W (Oj )−W (O1∪Oj )−h1−η)

) (
1+ e− 1

ε
(h1−h j−η)

)

−e− 1
ε
(h1−h j−η)/q j + 1

≤
(
1 ∧ e− 1

ε
(W (Oj )−W (O1∪Oj )−h1−η)

) (
1+ e− 1

ε
(h1−h j−η)

)

−e− 1
ε
(h1+W (O1∪Oj )−W (O1)−2η) + 1

.
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The second equality holds since h1 > w ≥ h j and (10.15) imply (1 − q j )(1 +
e− 1

ε
(h1−h j−η)) < 1 for all ε sufficiently small; the last inequality is from (10.15).
Then, we use the fact that for x ∈ (0, 1/2), 1/(1− x) ≤ 1+ 2x to find that

Eλε

⎡
⎣e
(∑N j

k=1 υε
j (k)

)
(l−1)/Eλε τ ε

1

⎤
⎦

≤
(
1 ∧ e−

1
ε
(W (Oj )−W (O1∪Oj )−h1−η)

) (
1+ e−

1
ε
(h1−h j−η)

)

×
(
1+ 2e−

1
ε
(h1+W (O1∪Oj )−W (O1)−2η)

)

≤
(
1 ∧ e−

1
ε
(W (Oj )−W (O1∪Oj )−h1−η)

) (
1+ 5e−

1
ε
(h1+W (O1∪Oj )−W (O1)−2η)

)

≤ 1 · 6 = 6. (10.16)

The third inequality holds due to the fact that W (O1) ≥ W (O1 ∪ Oj ) + h j and the
last inequality comes from the assumption that h1 > w and by picking η to be smaller
than (h1 − w)/2. This completes the proof. ��
Lemma 10.17 Given δ > 0 sufficiently small, and for any distribution λε on ∂Bδ(O1),
τ ε
1 /Eλε τ ε

1 converges in distribution to anExp(1) randomvariable under Pλε .Moreover,

Eλε (eit(τ
ε
1 /Eλε τ ε

1 )) → 1/(1− i t) uniformly on any compact set in R.

Proof Note that

Eλε

(
eit(τ

ε
1 /Eλε τ ε

1 )
)
= Eλε

(
eit(υ

ε
1/Eλε τ ε

1 )EXε(υε
1 )

(
eit((τ

ε
1−υε

1 )/Eλε τ ε
1 )
))

.

Since

Eλε

(
eit(υ

ε
1/Eλε τ ε

1 )
)
= Eλε

(
eit(Eλε υε

1/Eλε τ ε
1 )(υ

ε
1/Eλε υε

1)
)

and we know that Eλευε
1/Eλε τ ε

1 → 1 from the proof of Lemma 10.15, by applying

Lemma 10.14 we have Eλε (eit(υ
ε
1/Eλε τ ε

1 )) → 1/(1 − i t) uniformly on any compact
set in R. Also
∣∣∣Eλε

(
eit(τ

ε
1 /Eλε τ ε

1 )
)
−Eλε

(
eit(υ

ε
1/Eλε τ ε

1 )
)∣∣∣≤Eλε

∣∣∣EXε(υε
1 )

(
eit((τ

ε
1−υε

1 )/Eλε τ ε
1 )
)
− 1
∣∣∣ ,

where the right hand side converges to 0 using Eλε (τ ε
1 − υε

1)/Eλε τ ε
1 → 0 and the

dominated convergence theorem. The convergence of τ ε
1 /Eλε τ ε

1 to an Exp(1) random

variable under Pλε and uniform convergence of Eλε (eit(τ
ε
1 /Eλε τ ε

1 )) to 1/(1 − i t) on
compact set in R follows. ��

10.7 Return Times (Multicycles)

In this subsection, we will extend all the three results to multi-regenerative cycles
(when w ≥ h1). Recall that the multicycle times τ̂ ε

i are defined according to (6.4)

123



Journal of Theoretical Probability (2022) 35:1049–1136 1123

where {Mε
i }i∈N is a sequence of independent and geometrically distributed random

variables with parameter e−m/ε for some m > 0 such that m + h1 > w. In addition,
{Mε

i } is independent of {τ ε
n }.

Lemma 10.18 There exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0) and any distribu-
tion λε on ∂Bδ(O1),

lim
ε→0

ε log Eλε τ̂ ε
1 = m + min

y∈∪k∈L\{1}∂Bδ(Ok )
V (O1, y).

Proof Since {Mε
i } is independent of {τ ε

n } and EλεMε
i = em/ε, we apply Lemma 10.15

to complete the proof. ��

Lemma 10.19 Given δ > 0, for any distribution λε on ∂Bδ(O1), there exist c̃ > 0
and ε0 ∈ (0, 1) such that

Pλε (τ̂ ε
1 /Eλε τ̂ ε

1 > t) ≤ e−c̃t

for all t ≥ 1 and ε ∈ (0, ε0).

Proof We divide the multicycle into a sum of two terms. The first term is the sum of
all the hitting times to∪ j∈L\{1}∂Bδ(Oj ), and the second term is the sum of all residual
times. That is, τ̂ ε

1 = υ̂ε
1 + (τ̂ ε

1 − υ̂ε
1), where

υ̂ε
1 =

∑Mε
1

i=1 υε
1(i) and τ̂ ε

1 − υ̂ε
1 =

∑Mε
1

i=1

(∑
j∈L\{1}

∑N j

k=1 υε
j (i, k)

)
.

As discussed many times, it suffices to show that there exist c̃ > 0 and ε0 ∈ (0, 1)
such that

Pλε

(
υ̂ε
1/Eλε τ̂ ε

1 > t
) ≤ e−c̃t and Pλε

(
(τ̂ ε

1 − υ̂ε
1)/Eλε τ̂ ε

1 > t
) ≤ e−c̃t

for all t ≥ 1 and ε ∈ (0, ε0).
The first bound is relatively easy since υε

1(i) is a sum of approximate exponentials
with a tail bound of the given sort, and since the sum of geometrically many indepen-
dent and identically distributed exponentials is again an exponential distribution.

For the second bound, we use Chebyshev’s inequality again as in the proof of
Lemma 10.16 to find that it suffices to prove that Eλεe(τ̂ ε

1−υ̂ε
1 )/Eλε τ̂ ε

1 is less than a
constant for all ε sufficiently small. Nowdue to the independence ofMε

1 and {υε
j (i, k)},

123



1124 Journal of Theoretical Probability (2022) 35:1049–1136

we have

Eλεe(τ̂ ε
1−υ̂ε

1 )/Eλε τ̂ ε
1

=
∞∑
i=1

⎛
⎝Eλε

⎡
⎣∏

j∈L\{1} e

(∑N j
k=1 υε

j (k)

)
/Eλε τ̂ ε

1

⎤
⎦
⎞
⎠

i

· Pλε (Mε
1 = i)

= e−m/ε · Eλε

⎡
⎣∏

j∈L\{1} e

(∑N j
k=1 υε

j (k)

)
/Eλε τ̂ ε

1

⎤
⎦

·
∞∑
i=1

⎛
⎝Eλε

⎡
⎣∏

j∈L\{1} e

(∑N j
k=1 υε

j (k)

)
/Eλε τ̂ ε

1

⎤
⎦ (1− e−m/ε)

⎞
⎠

i−1
. (10.17)

To do a further computation, we have to at least make sure that

Eλε

⎡
⎣∏

j∈L\{1} e

(∑N j
k=1 υε

j (k)

)
/Eλε τ̂ ε

1

⎤
⎦ (1− e−m/ε) < 1. (10.18)

To see this, we first use the generalized Hölder’s inequality to find

Eλε

⎡
⎣∏

j∈L\{1} e

(∑N j
k=1 υε

j (k)

)
/Eλε τ̂ ε

1

⎤
⎦

≤
∏

j∈L\{1}

⎛
⎝Eλε

⎡
⎣e
(∑N j

k=1 υε
j (k)

)
(l−1)/Eλε τ̂ ε

1

⎤
⎦
⎞
⎠

1/(l−1)
.

Moreover, sincem+h1 > w and Eλε τ̂ ε
1 = Eλε τ ε

1 · EλεMε
1 = em/εEλε τ ε

1 , by the same
argument that gives (10.16), for any η > 0 and j ∈ L \ {1}

Eλε

⎡
⎣e
(∑N j

k=1 υε
j (k)

)
(l−1)/Eλε τ̂ ε

1

⎤
⎦

≤
(
1 ∧ e−

1
ε
(W (Oj )−W (O1∪Oj )−h1−η)

) (
1+ 5e−

1
ε
(m+h1+W (O1∪Oj )−W (O1)−2η)

)
.

Therefore,

Eλε

⎡
⎣∏

j∈L\{1} e

(∑N j
k=1 υε

j (k)

)
/Eλε τ̂ ε

1

⎤
⎦ (1− e−m/ε) ≤

∏
j∈L\{1} s

1/(l−1)
j ,

123



Journal of Theoretical Probability (2022) 35:1049–1136 1125

with

s j
.=
(
1 ∧ e−

1
ε
(W (Oj )−W (O1∪Oj )−h1−η)

)

·
(
1+ 5e−

1
ε
(m+h1+W (O1∪Oj )−W (O1)−2η)

)
(1− e−m/ε).

Using (a ∧ b)(c + d) ≤ ac + bd for positive numbers a, b, c, d,

s j ≤
(
1+ 5e−

1
ε
(m+W (Oj )−W (O1)−3η)

)
(1− e−m/ε) ≤ 1− e−m/ε/2,

where we use W (Oj ) > W (O1) for the second inequality and pick the range of ε

small if it needs to be. Thus, (10.18) holds, and by (10.17)

Eλεe(τ̂ ε
1−υ̂ε

1 )/Eλε τ̂ ε
1 ≤ e−m/ε · 2

∞∑
i=1

(
1− e−m/ε/2

)i−1 = 2e−m/ε

1− (1− e−m/ε/2
) = 4.

We complete the proof. ��
Lemma 10.20 Given δ > 0, for any distribution λε on ∂Bδ(O1), τ̂ ε

1 /Eλε τ̂ ε
1 converges

in distribution to an Exp(1) random variable under Pλε .

Proof Let M be a geometrically distributed random variables with parameter p ∈
(0, 1) and assume that it is independent of {τ ε

n }. Then, Eλε

(∑M
n=1 τ ε

n

)
= Eλε τ ε

1 /p

and

Eλεe
it
((

p
∑M

n=1 τ ε
n

)
/Eλε τ ε

1

)

=
∞∑
k=1

(
Eλεeit(pτ

ε
1 /Eλε τ ε

1 )
)k

(1− p)k−1 p = pEλεeit(pτ
ε
1 /Eλε τ ε

1 )

1− (1− p)Eλεeit(pτ
ε
1 /Eλε τ ε

1 )
.

Given any fixed t ∈ R, consider

fε(p) = pEλεeit(pτ
ε
1 /Eλε τ ε

1 )

1− (1− p)Eλεeit(pτ
ε
1 /Eλε τ ε

1 )
and f (p) = 1

1− i t
.

According to Lemma 10.17, Eλεeit(τ
ε
1 /Eλε τ ε

1 ) → 1/(1−i t) uniformly on any compact
set in R. This implies that

fε(p) = pEλεeit(pτ
ε
1 /Eλε τ ε

1 )

1− (1− p)Eλεeit(pτ
ε
1 /Eλε τ ε

1 )
→ p/(1− i tp)

1− (1− p)/(1− i tp)
= 1

1− i t
= f (p)

uniformly on p ∈ (0, 1). Therefore, if we consider pε .= e−m/ε → 0, it follows from
the uniform (in p) convergence that

Eλεeit(τ̂
ε
1 /Eλε τ̂ ε

1 ) = fε(p
ε)→ f (0) = 1

1− i t
.
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Fig. 3 Asymmetric well for lower bound

We complete the proof. ��

11 Sketch of the Proof of Conjecture 4.11 for a Special Case

In this section, we outline the proof of the upper bound on the decay rate (giving a
lower bound on the variance per unit time) that complements Theorem 4.5 for a special
case. Consider U : R → R shown as in Fig. 3.

In particular, assume U is a bounded C2 function satisfying the following condi-
tions:

Condition 11.1 • U is defined on a compact interval D
.= [x̄L , x̄R] ⊂ R and extends

periodically as a C2 function.
• U has two local minima at xL and xR with values U (xL) < U (xR) and [xL −

δ, xR + δ] ⊂ D for some δ > 0.
• U has one local maximum at 0 ∈ (xL , xR).
• U (xL) = 0, U (0) = hL and U (xR) = hL − hR > 0.
• inf x∈∂D U (x) > hL .

Consider the diffusion process {Xε
t }t≥0 satisfying the stochastic differential equa-

tion

dXε
t = −∇U

(
Xε
t

)
dt +√2εdWt , (11.1)

123



Journal of Theoretical Probability (2022) 35:1049–1136 1127

where W is a one-dimensional standard Wiener process. Then, there are just two
stable equilibrium points O1 = xL and O2 = xR , and one unstable equilibrium point
O3 = 0. Moreover, one easily finds that V (O1, O2) = hL and V (O2, O1) = hR, and
these give that W (O1) = V (O2, O1), W (O2) = V (O1, O2) and W (O1 ∪ O2) = 0
(since Ls = {1, 2}, this implies that Gs(1) = {(2 → 1)} and Gs(2) = {(1 → 2)}).
Another observation is that h1

.= min
∈M\{1} V (O1, O
) = V (O1, O3) = hL in this
model.

If f ≡ 0, then one obtains

R(1)
1

.= inf
y∈A V (O1, y)+W (O1)−W (O1) = inf

y∈A V (O1, y);

R(2)
1

.= 2 inf
y∈A V (O1, y)− h1 = 2 inf

y∈A V (O1, y)− hL ;

R(1)
2

.= inf
y∈A V (O2, y)+W (O2)−W (O1) = inf

y∈A V (O2, y)+ hL − hR;

R(2)
2

.= 2 inf
y∈A V (O2, y)+W (O2)− 2W (O1)+ 0−W (O1 ∪ O2)

= 2 inf
y∈A V (O2, y)+ hL − 2hR .

Let A ⊂ [0, x̄R] and assume that it contains a nonempty open interval, so that
we are computing approximations to probabilities that are small under the stationary
distribution (the case of bounded and continuous f can be dealt with by approximation,
as in the case of the upper bound on the decay rate). We first compute the bounds one
would obtain from Theorem 4.5.
Case I. If xR ∈ A, then inf y∈A V (O1, y) = hL and inf y∈A V (O2, y) = 0. Thus, the
decay rate of variance per unit time is bounded below by

min
j=1,2

[
R(1)
j ∧ R(2)

j

]
= min {hL , hL − 2hR} = hL − 2hR .

Case II. If A ⊂ [0, xR − δ] for some δ > 0 and δ < xR, then inf y∈A V (O1, y) = hL
and inf y∈A V (O2, y) > 0 (we denote it by b ∈ (0, hR]). Thus, the decay rate of
variance per unit time is bounded below by

min
j=1,2

[
R(1)
j ∧ R(2)

j

]
= min {hL , hL + 2 (b − hR)} = hL + 2 (b − hR) .

Case III. If A ⊂ [xR+δ, x∗]withU (x∗) = hL for some δ > 0 and δ < x∗−xR, then
inf y∈A V (O1, y) = hL + inf y∈A V (O2, y) and inf y∈A V (O2, y) > 0 (we denote it
by b ∈ (0, hR]). Thus, the decay rate of variance per unit time is bounded below by

min
j=1,2

[
R(1)
j ∧ R(2)

j

]
= min {hL + b, hL + 2 (b − hR)} = hL + 2 (b − hR) .

Case IV. If A ⊂ [x∗ + δ, x̄R] with U (x∗) = hL for some δ > 0 and x∗ > xR, then
inf y∈A V (O1, y) = hL + inf y∈A V (O2, y) and inf y∈A V (O2, y) > 0 (we denote it
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by b̄ > hR). Thus, the decay rate of variance per unit time is bounded below by

min
j=1,2

[
R(1)
j ∧ R(2)

j

]
= min

{
hL + b̄, hL +

(
b̄ − hR

)} = hL +
(
b̄ − hR

)
.

To find an upper bound for the decay rate of variance per unit time, we recall that

1

T ε

N ε(T ε)−1∑
j=1

∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt ≤ 1

T ε

∫ T ε

0
1A
(
Xε
t

)
dt ≤ 1

T ε

N ε(T ε)∑
j=1

∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt

with τ ε
j being the j-th regenerative cycle. In Case I, one might guess that

∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt (11.2)

has approximately the same distribution as the exit time from the shallow well, which
has been shown to asymptotically have an exponential distribution with parameter
exp(−hR/ε). Additionally, since the exit time from the shallower well is exponen-
tially smaller than τ ε

j , it suggests that the random variables (11.2 ) can be taken as
independent of N ε (T ε) when ε is small. We also know that

EN ε
(
T ε
)
/T ε ≈ 1/Eτ ε

1 ≈ exp (−hL(δ)/ε) ,

where hL(δ) ↑ hL as δ ↓ 0 and ≈ means that quantities on either side have the
same exponential decay rate. Using Jensen’s inequality to find that E[N ε(T ε)]2 ≥
[EN ε(T ε)]2 and then applying Wald’s identity, we obtain

T εVar

(
1

T ε

∫ T ε

0
1A
(
Xε
t

)
dt

)

≈ 1

T ε
E

[∑N ε(T ε)

j=1

∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt − EN ε

(
T ε
)
E

(∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt

)]2

= 1

T ε
E

(∑N ε(T ε)

j=1

∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt

)2

− 1

T ε
(E(N ε(T ε)))2

(
E

(∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt

))2

= 1

T ε
EN ε

(
T ε
)
E

(∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt

)2

− 1

T ε

[
EN ε

(
T ε
)]2
(
E

(∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt

))2

+ 1

T ε

(
E
[
N ε
(
T ε
)]2 − EN ε

(
T ε
))(

E

(∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt

))2

≥ EN ε (T ε)

T ε
Var

(∫ τ ε
j

τ ε
j−1

1A
(
Xε
t

)
dt

)

≈ exp (−hL(δ)/ε) · exp(2hR/ε) = exp((2hR − hL(δ)) /ε). (11.3)
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Letting δ → 0, we see that the decay rate of variance per unit time is bounded above
by hL − 2hR , which is the same as lower bound found for Case I.

For the other three Cases II, III and IV, the process spends only a very small
fraction of the time while in the shallower well in the set A. In fact, using the stopping
time arguments of the sort that appear in [12, Chapter 4], the event that the process
enters A during an excursion away from the neighborhood of xR can be accurately
approximated (as far as large deviation behavior goes) using independent Bernoulli
random variables {Bε

i }with success parameter e−b/ε, and when this occurs the process
spends an order one amount of time in A before returning to the neighborhood of xR .
There is, however, another sequence of independent Bernoulli random variables with
success parameter e−hR/ε, and the process accumulates time in A only up till the time
of first success of this sequence.

Then, Var(
∫ τ ε

j

τ ε
j−1

1A
(
Xε
t

)
dt) has the same logarithmic asymptotics as

Var(
∑Rε

i=1 1{Bε
i =1}), where Rε is geometric with success parameter e−hR/ε and inde-

pendent of the {Bε
i }. Straightforward calculation using Wald’s identity then gives the

exponential rate of decay 2hR−2b for Cases II, III and hR−b̄ for Case IV, so according
to (11.3), we obtain

T εVar

(
1

T ε

∫ T ε

0
1A
(
Xε
t
)
dt

)
≥ EN ε

(
T ε
)

T ε
Var

(∫ τ ε
j

τ ε
j−1

1A
(
Xε
t
)
dt

)
≈ e[(2(hR−b)−hL (δ))/ε]

for Cases II and III and

T εVar

(
1

T ε

∫ T ε

0
1A
(
Xε
t
)
dt

)
≥ EN ε

(
T ε
)

T ε
Var

(∫ τ ε
j

τ ε
j−1

1A
(
Xε
t
)
dt

)
≈ e

[(
(hR−b̄)−hL (δ)

)
/ε
]

for Case IV.
Letting δ → 0, this means that the decay rate of variance per unit time is bounded

above by hL +2 (b − hR) for Case II and III, and by hL + (b̄−hR) for Case IV which
is again the same as the corresponding lower bound.
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12 Appendix

Proof of Lemma 7.8 Given a function g, we define the notation

I (t1, t2; g) .=
∫ t2

t1
g(Xε

s )ds,

for any 0 ≤ t1 ≤ t2. By definition, τ ε
1 = τN and observe that

I (0, τN ; g) =
∑N


=1 I (τ
−1, τ
; g) =
∑∞


=1 I (τ
−1, τ
; g) · 1{
≤N }

=
∑∞


=1 I (τ
−1, τ
; g) · 1{

≤N̂

} +
∑∞


=1 I (τ
−1, τ
; g) · 1{N̂+1≤
≤N
}

+
∑

j∈L\{1}
∑∞


=1

(
I (τ
−1, τ
; g) · 1{N̂+1≤
≤N ,Z
−1∈∂Bδ(Oj )

}
)

.

Since N̂ and N are stopping times with respect to the filtration {Gn}n, it implies that
{
 ≤ N̂ } = {N̂ ≤ 
− 1}c ∈ G
−1 and {N̂ + 1 ≤ 
 ≤ N , Z
−1 ∈ ∂Bδ(Oj )} ∈ G
−1.
Let

S1 =
∞∑


=1
I (τ
−1, τ
; g) · 1{


≤N̂
} and

S j =
∞∑


=1

(
I (τ
−1, τ
; g) · 1{N̂+1≤
≤N ,Z
−1∈∂Bδ(Oj )

}
)

for all j ∈ L \ {1} . We find

Ex (S1) =
∑∞


=1 Ex

(
Ex

[
I (τ
−1, τ
; g) · 1{


≤N̂
}
∣∣∣∣G
−1

])

=
∑∞


=1 Ex

(
1{


≤N̂
}EZ
−1 [I (0, τ1; g)]

)

≤ supy∈∂Bδ(O1)
Ey [I (0, τ1; g)] ·

(∑∞

=1 Px (N̂ ≥ 
)

)
.

In addition, for j ∈ L \ {1} ,

Ex
(
S j
) =∑∞


=1 Ex

(
I (τ
−1, τ
; g) · 1{N̂+1≤
≤N ,Z
−1∈∂Bδ(Oj )

}
)

=
∑∞


=1 Ex

(
Ex

[
I (τ
−1, τ
; g) · 1{N̂+1≤
≤N ,Z
−1∈∂Bδ(Oj )

}
∣∣∣∣G
−1

])

=
∑∞


=1 Ex

(
1{

N̂+1≤
≤N ,Z
−1∈∂Bδ(Oj )
}EZ
−1 [I (0, τ1; g)]

)

≤ supy∈∂Bδ(Oj )
Ey [I (0, τ1; g)] ·

(∑∞

=1 Ex

(
1{

N̂+1≤
≤N ,Z
−1∈∂Bδ(Oj )
}
))

.
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It is straightforward to see that N̂ = N1. This implies that
∑∞


=1 Px (N̂ ≥ 
) = Ex N̂ =
Ex N1. Moreover, observe that for any j ∈ L \ {1}∑∞


=1 1{N̂+1≤
≤N ,Z
−1∈∂Bδ(Oj )
} =

N j , which gives that
∑∞


=1 Ex (1{N̂+1≤
≤N ,Z
−1∈∂Bδ(Oj )}) = Ex N j . Hence,

Ex (I (0, τN ; g)) =
∑

j∈L Ex
(
S j
) ≤∑

j∈L
[
supy∈∂Bδ(Oj )

Ey (I (0, τ1; g))
]
· Ex N j .

��

Proof of Lemma 7.9 Let l = |L|. For any j ∈ L and n ∈ N, ξ
( j)
1 = inf{k ∈ N0 :

Zk ∈ ∂Bδ(Oj )}, ξ
( j)
n = inf{k ∈ N : k > ξ

( j)
n−1 and Zk ∈ ∂Bδ(Oj )}, i.e., ξ ( j)

n is the

n-th time of hitting ∂Bδ(Oj ). Moreover, we define N ( j) = inf{n ∈ N : ξ
( j)
n ≥ N },

recalling that N
.= inf{n ≥ N̂ : Zn ∈ ∂Bδ(O1)} and N̂

.= inf{n ∈ N : Zn ∈
∪ j∈L\{1}∂Bδ(Oj )}. Since ξ

( j)
n is a stopping time with respect to {Gn}n, we can define

the filtration {G
ξ

( j)
n
}, and one can verify that N ( j) is a stopping time with respect to

{G
ξ

( j)
n
}n . As in the proof just given, for any function g and for any 0 ≤ t1 ≤ t2 we

define I (t1, t2; g) .= ∫ t2t1 g(Xε
s )ds. With this notation and since by definition τ ε

1 = τN ,
we can write

I (0, τN ; g) =
∑

j∈L
∑∞


=1 I (τξ
( j)



, τ
ξ

( j)

 +1; g) · 1{
≤N ( j)−1}.

Since (x1 + · · · + xl)2 ≤ l(x21 + · · · + x2l ) for any (x1, . . . , xl) ∈ R
l and l ∈ N,

I (0, τN ; g)2 ≤ l
∑

j∈L
(∑∞


=1 I (τξ
( j)



, τ
ξ

( j)

 +1; g) · 1{
≤N ( j)−1}

)2
.

Now for any j ∈ L , each square term from the right can be written an addition
of two sums, where the first sum is summation of I (τ

ξ
( j)



, τ
ξ

( j)

 +1; g)2 · 1{
≤N ( j)−1}

over all 
, and the second sum is twice of summation of I (τ
ξ

( j)



, τ
ξ

( j)

 +1; g) ·

1{
≤N ( j)−1} I (τξ
( j)
k

, τ
ξ

( j)
k +1; g) · 1{
≤N ( j)−1} over k, 
 with k < 
. For the expected

value of the first sum, note that {
 ≤ N ( j) − 1} = {N ( j) ≤ 
}c ∈ G
ξ

( j)



, we have

∞∑

=1

Ex

[
I (τ

ξ
( j)



, τ
ξ

( j)

 +1; g)21{
≤N ( j)−1}

]

=
∞∑


=1
Ex

[
1{
≤N ( j)−1}Ex

[
I (τ

ξ
( j)



, τ
ξ

( j)

 +1; g)2

∣∣∣G
ξ

( j)



]]

≤ sup
y∈∂Bδ(Oj )

Ey I (0, τ1; g)2
∑∞


=1 Px (N
( j) − 1 ≥ 
)

= sup
y∈∂Bδ(Oj )

Ey I (0, τ1; g)2Ex (N j ).
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The last equality holds since N ( j) − 1 = N j (recall that N j is the number of visits
of {Zn}n∈N0 to ∂Bδ(Oj ) before N including the initial position) this implies that∑∞


=1 Px (N ( j) − 1 ≥ 
) =∑∞

=1 Px (N j ≥ 
) = Ex (N j ).

Turning to the expected value of the second sum, by conditioning on G
ξ

( j)



gives

∞∑

=2


−1∑
k=1

Ex

[
I (τ

ξ
( j)



, τ
ξ

( j)

 +1; g) · 1{
≤N ( j)−1} I (τξ

( j)
k

, τ
ξ

( j)
k +1; g) · 1{k≤N ( j)−1}

]

≤ sup
y∈∂Bδ(Oj )

Ey (I (0, τ1; g))
∞∑


=2


−1∑
k=1

Ex

[
1{
≤N ( j)−1} I (τξ

( j)
k

, τ
ξ

( j)
k +1; g) · 1{k≤N ( j)−1}

]
.

Now, since for any k ≤ 
 − 1, i.e., k + 1 ≤ 
, I (τ
ξ

( j)
k

, τ
ξ

( j)
k +1; g) ∈

G
ξ

( j)
k +1 and 1{
≤N ( j)−1} ∈ G

ξ
( j)



, we have

Ex

[
1{
≤N ( j)−1} I (τξ

( j)
k

, τ
ξ

( j)
k +1; g) · 1{k≤N ( j)−1}

]

= Ex

[
I (τ

ξ
( j)
k

, τ
ξ

( j)
k +1; g) · 1{τξ

( j)
1

<N ,...,τ
ξ
( j)



<N }
]

= Ex

[
EZ

ξ
( j)
k+1

[
1{τ

ξ
( j)
1

<N ,...,τ
ξ
( j)

−k

<N }
]
1{τ

ξ
( j)
k+1

<N } I (τξ
( j)
k

, τ
ξ

( j)
k +1; g) · 1{τξ

( j)
1

<N ,...,τ
ξ
( j)
k

<N }
]

= Ex

[
EZ

ξ
( j)
k+1

[
1{
−k≤N ( j)−1}

]
1{τ

ξ
( j)
k+1

<N } I (τξ
( j)
k

, τ
ξ

( j)
k +1; g) · 1{k≤N ( j)−1}

]

≤ supy∈∂Bδ (Oj )
Py(
− k ≤ N ( j) − 1)Ex

[
I (τ

ξ
( j)
k

, τ
ξ

( j)
k +1; g) · 1{k≤N ( j)−1}

]

= supy∈∂Bδ(Oj )
Py
(

− k ≤ N j

)
Ex

[
Ex

[
I (τ

ξ
( j)
k

, τ
ξ

( j)
k +1; g)

∣∣∣G
ξ

( j)
k

]
· 1{k≤N ( j)−1}

]

≤ supy∈∂Bδ (Oj )
Ey (I (0, τ1; g)) · supy∈∂Bδ (Oj )

Py
(

− k ≤ N j

) · Px (k ≤ N j
)
.

This gives that the expected value of the second sum is less than or equal to

(
supy∈∂Bδ(Oj )

Ey I (0, τ1; g)
)2∑∞


=2
∑
−1

k=1 supy∈∂Bδ(Oj )
Py
(

− k ≤ N j

) · Px (k ≤ N j
)

=
(
supy∈∂Bδ(Oj )

Ey I (0, τ1; g)
)2∑∞

k=1 supy∈∂Bδ(Oj )
Py
(
k ≤ N j

) · Ex N j .

Therefore, putting the estimates together gives

Ex I (0, τ
ε
1 ; g)2 ≤ 2l

∑
j∈L

[
sup

y∈∂Bδ(Oj )

Ey I (0, τ1; g)
]2
· Ex N j ·

∞∑

=1

sup
y∈∂Bδ(Oj )

Py
(

 ≤ N j

)

+ l
∑
j∈L

[
sup

y∈∂Bδ(Oj )

Ey I (0, τ1; g)2
]
· Ex N j .

��

Proof of Lemma 9.2 The main idea of the proof comes from [18, Theorem 3.16].
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Given any ε > 0, we define gε (t)
.= Eλε Sε

N ε(t) for any t ≥ 0. Conditioning on τ ε
1

yields

gε (t) =
∫ ∞

0
Eλε [Sε

N ε(t)|τ ε
1 = x]dFε (x) ,

where Fε (·) is the distribution function of τ ε
1 . Note that

Eλε

[
Sε
N ε(t)|τ ε

1 = x
]
=
{

gε (t − x) if x ≤ t
Eλε

[
Sε
1 |τ ε

1 = x
]
if x > t

,

which implies

gε (t) =
∫ t

0
gε (t − x) dFε (x)+ hε (t) ,

with

hε (t) =
∫ ∞

t
Eλε

[
Sε
1 |τ ε

1 = x
]
dFε (x) .

Since Eλε Sε
1 =

∫∞
0 Eλε

[
Sε
1 |τ ε

1 = x
]
dFε (x) < ∞, we have hε (t) ≤ Eλε Sε

1 for all
t ≥ 0.Moreover, if we applyHölder’s inequality first and then the conditional Jensen’s
inequality, we find that for all t ≥ 0,

hε (t) ≤
(∫ ∞

t

(
Eλε

[
Sε
1 |τε

1 = x
])2 dFε (x)

) 1
2
(∫ ∞

t
12dFε (x)

) 1
2

≤ (1− Fε (t)
) 1
2

(∫ ∞
t

Eλε [(Sε
1
)2 |τε

1 = x]dFε (x)

) 1
2 ≤ (1− Fε (t)

) 1
2 (Eλε

(
Sε
1
)2

)
1
2 .

Given 
 ∈ (0, c− h1) letU ε .= e
/εEλε τ ε
1 . According to Theorem 8.5, there exists

ε0 ∈ (0, 1) and a constant c̃ > 0 such that

1− Fε
(
U ε
) = Pλε (τ ε

1 /Eλε τ ε
1 > e
/ε) ≤ e−c̃e
/ε

for any ε ∈ (0, ε0). Also by Theorem 8.5, U ε < T ε for all ε small enough. Hence,
for any t ≥ U ε,

1− Fε (t) ≤ 1− Fε
(
U ε
) ≤ e−c̃e
/ε

and hε (t) ≤ e−c̃e
/ε/2(Eλε

(
Sε
1

)2
)
1
2 .

By Proposition 3.4 in [18], we know that for any ε > 0, for t ∈ [0,∞)

gε (t) = hε (t)+
∫ t

0
hε (t − x) daε (x) ,
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where

aε (t)
.=
∫ ∞

0
Eλε

[
N ε (t) |τ ε

1 = x
]
dFε (x) = Eλε

(
N ε (t)

)
.

This implies

Eλε Sε
Nε(T ε)

T ε
= hε

(
T ε
)

T ε
+ 1

T ε

∫ T ε−Uε

0
hε
(
T ε − x

)
daε (x)+ 1

T ε

∫ T ε

T ε−Uε
hε
(
T ε − x

)
daε (x) ,

≤ Eλε Sε
1

T ε
+ e−c̃e
/ε/2(Eλε

(
Sε
1
)2

)
1
2
aε
(
T ε −Uε

)
T ε

+ Eλε Sε
1
aε
(
T ε
)− aε

(
T ε −Uε

)
T ε

,

where we use hε (t) ≤ Eλε Sε
1 to bound the first term and the third term, and hε (t) ≤

e−c̃e
/ε/2(Eλε

(
Sε
1

)2
)1/2 for any t ≥ U ε for the second term.

To calculate the decay rate of the first term, we apply Lemma 7.21 to find that for
any η > 0, there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0)

lim inf
ε→0

−ε log
Eλε Sε

1

T ε
≥ inf

x∈A [ f (x)+W (x)]−W (O1)+ c − h1 − η. (12.1)

For the decay rate of the second term, given any δ > 0

lim inf
ε→0

−ε log

(
e−c̃e
/ε/4(Eλε

(
Sε
1

)2
)
1
2
aε (T ε −U ε)

T ε

)

= c̃

4
lim inf

ε→0
εe
/ε + lim inf

ε→0
−ε log

(
(Eλε

(
Sε
1

)2
)
1
2
aε (T ε −U ε)

T ε

)
= ∞, (12.2)

where the last equality holds since 
 > 0 implies lim infε→0 εe
/ε = ∞ and also
because Lemma 7.23 and Corollary 8.3 ensure that

lim infε→0−ε log((Eλε

(
Sε
1

)2
)1/2aε(T ε−U ε)/T ε) is boundedbelowbya constant.

For the last term, note that for any ε fixed, the renewal function aε (t) is subadditive
in t (see for example Lemma 1.2 in [17]), so we have aε (T ε) − aε (T ε −U ε) ≤
aε (U ε) . Thus, we apply by Lemma 7.21, Corollary 8.3 and Theorem 8.5 to find that
for any η > 0, there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0),

lim inf
ε→0

−ε log

(
Eλε Sε

1
aε (T ε)− aε (T ε −U ε)

T ε

)

≥ lim inf
ε→0

−ε log Eλε Sε
1 + lim inf

ε→0
−ε log

aε (U ε)

U ε
+ lim inf

ε→0
−ε log

U ε

T ε

≥ inf
x∈A [ f (x)+W (x)]−W (O1)+ (c − h1 − 
)− η. (12.3)

Since (12.3) holds for all 
 > 0, by sending 
 to 0, we know that (12.3) holds with

 = 0.
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Putting the bounds (12.1), (12.2) and (12.3) with 
 = 0 together gives that for any
η > 0, there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0),

lim inf
ε→0

−ε log
Eλε Sε

N ε(T ε)

T ε
≥ inf

x∈A [ f (x)+W (x)]−W (O1)+ c − h1 − η.

��
Proof of Lemma 9.5 By the definition of W (x),

2 inf
x∈A[ f (x)+W (x)] − 2W (O1)− h1

= 2 inf
x∈A[ f (x)+min

j∈L
(
V (Oj , x)+W

(
Oj
))] − 2W (O1)− h1

= min
j∈L {2 inf

x∈A
[
f (x)+ V

(
Oj , x

)]+ 2W
(
Oj
)− 2W (O1)− h1}.

Define Q j
.= 2 infx∈A

[
f (x)+ V

(
Oj , x

)] + 2W
(
Oj
) − 2W (O1) − h1. Then, it

suffices to show that Q j ≥ R(2)
j for all j ∈ L.

For j = 1, Q1 = 2 inf x∈A [ f (x)+ V (O1, x)] − h1 = R(2)
1 . For j ∈ L \ {1},

Q j ≥ R(2)
j if and only if W

(
Oj
)− h1 ≥ W

(
O1 ∪ Oj

)
. Recall that

W
(
Oj
) = min

g∈G( j)

[∑
(m→n)∈gV (Om, On)

]
and

W
(
O1 ∪ Oj

) = min
g∈G(1, j)

[∑
(m→n)∈gV (Om, On)

]
.

Therefore, for any g̃ ∈ G ( j) such that W
(
Oj
) = ∑

(m→n)∈g̃ V (Om, On) , if we
remove the arrow starting from 1, and assume that it goes to i, then it is easy to see
that ĝ

.= g̃ \ {(1, i)} ∈ G(1, j). Since V (O1, Oj ) ≥ h1, we find that

W
(
Oj
)− h1 =

∑
(m→n)∈g̃ V (Om, On)− h1

=
∑

(m→n)∈ĝ V (Om, On)+ V (O1, Oj )− h1

≥ min
g∈G(1, j)

[∑
(m→n)∈gV (Om, On)

]
= W

(
O1 ∪ Oj

)
.

��
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