Journal of Theoretical Probability (2022) 35:1049-1136
https://doi.org/10.1007/s10959-020-01072-3

®

Check for
updates

Large Deviation Properties of the Empirical Measure of a
Metastable Small Noise Diffusion

Paul Dupuis' - Guo-Jhen Wu?

Received: 1 August 2020 / Revised: 18 December 2020 / Accepted: 31 December 2020 /
Published online: 29 January 2021
© The Author(s) 2021

Abstract

The aim of this paper is to develop tractable large deviation approximations for the
empirical measure of a small noise diffusion. The starting point is the Freidlin—
Wentzell theory, which shows how to approximate via a large deviation principle the
invariant distribution of such a diffusion. The rate function of the invariant measure
is formulated in terms of quasipotentials, quantities that measure the difficulty of a
transition from the neighborhood of one metastable set to another. The theory provides
an intuitive and useful approximation for the invariant measure, and along the way
many useful related results (e.g., transition rates between metastable states) are also
developed. With the specific goal of design of Monte Carlo schemes in mind, we prove
large deviation limits for integrals with respect to the empirical measure, where the
process is considered over a time interval whose length grows as the noise decreases
to zero. In particular, we show how the first and second moments of these integrals can
be expressed in terms of quasipotentials. When the dynamics of the process depend on
parameters, these approximations can be used for algorithm design, and applications
of this sort will appear elsewhere. The use of a small noise limit is well motivated,
since in this limit good sampling of the state space becomes most challenging. The
proof exploits a regenerative structure, and a number of new techniques are needed to
turn large deviation estimates over a regenerative cycle into estimates for the empirical
measure and its moments.
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1 Introduction

Among the many interesting results proved by Freidlin and Wentzell in the 70’s and
80’s concerning small random perturbations of dynamical systems, one of particular
note is the large deviation principle for the invariant measure of such a system. Consider
the small noise diffusion

dX¢ = b(X?)dt + eo (X)dW;, X§ = x,

where X! € RYb:RY - R o : RY — R x RF (the d x k matrices) and W, € Rk
is a standard Brownian motion. Under mild regularity conditions on b and o, one has
that for any 7 € (0, 0o) the processes {X?}.-¢ satisfy a large deviation principle on
C ([0, T] : RY) with rate function

T . 1
Ir(¢) = /(; sup [(4’:7 a) = (b(¢r), &) — 3 ||0(¢>z)0!||2:| dt

aeRd

when ¢ is absolutely continuous and ¢(0) = x, and I7(¢) = oo otherwise. If
o(x)o(x)’ > 0 (in the sense of symmetric square matrices) for all x € R4, then
one can evaluate the supremum and find

"1y, -
I1($) = fo 5 (&= 6@ [0 @00 @)™ @ —bg)dr. (L)

To simplify the discussion, we will assume this non-degeneracy condition. It is also
assumed by Freidlin and Wentzell in [12], but can be weakened.
Define the quasipotential V (x, y) for x, y € R? by

Vx,y) =inf{I7(¢) : ¢(0) =x,¢(T) =y, T < o0}.

Suppose that {X¢} is ergodic on a compact manifold M C R? with invariant measure
uf € P(M). Then, under a number of additional assumptions, including assumptions
on the structure of the dynamical system X? = b(X?), Freidlin and Wentzell [12,
Chapter 6] show how to construct a function J : M — [0, oo] in terms of V, such
that J is the large deviation rate function for {4®}¢~¢: J has compact level sets, and

liminf ¢ log u®(G) > — inf J(y) for open G C M,
e—0 veG

limsup e log u®(F) < — inlfp J(y) for closed F C M.
ye

e—0

This gives a very useful approximation to u®, and along the way many interesting
related results (e.g., transition rates between metastable states) are also developed.
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The aim of this paper is to develop large deviation type estimates for a quantity that
is closely related to u?, which is the empirical measure over an interval [0, T¢]. This
is defined by

1
o= g [ s (12)
0

for A € B(M). For reasons that will be made precise later on, we will assume 7¢ — oo
as ¢ — 0, and typically 7¢ will grow exponentially in the form ¢/ for some ¢ > 0.

There is of course a large deviation theory for the empirical measure when ¢ > 0
is held fixed and the length of the time interval tends to infinity (see, e.g., [7,8]).
However, it can be hard to extract information from the corresponding rate function.
Our interest in proving large deviations estimates when ¢ — 0 and 7° — o0 is
in the hope that one will find it easier to extract information in this double limit,
analogous to the simplified approximation to uf just mentioned. These results will
be applied in [10] to analyze and optimize a Monte Carlo method known as infinite
swapping [9,15] when the noise is small. Small noise models are common in appli-
cations and are also the setting in which Monte Carlo methods can have the greatest
difficulty. We expect that the general set of results will be useful for other purposes as
well.

We note that while developed in the context of small noise diffusions, the collection
of results due to Freidlin and Wentzell that are discussed in [12] also hold for other
classes of processes, such as scaled stochastic networks, when appropriate conditions
are assumed and the finite time sample path large deviation results are available (see,
e.g., [19]). We expect that such generalizations are possible for the results we prove
as well.

The outline of the paper is as follows. In Sect. 2, we explain our motivation and
the relevance for studying the particular quantities that are the topic of the paper. In
Sect. 3, we provide definitions and assumptions that are used throughout the paper,
and Sect. 4 states the main asymptotic results as well as a related conjecture. Examples
that illustrate the results are given in Sect. 5. In Sect. 6, we introduce an important
tool for our analysis—the regenerative structure, and with this concept, we decom-
pose the original asymptotic problem into two sub-problems that require very different
forms of analysis. These two types of asymptotic problems are then analyzed sepa-
rately in Sects. 7 and 8. In Sect. 9, we combine the partial asymptotic results from
Sects. 7 and 8 to prove the main large deviation type results that are stated in Sec-
tion 4. Section 10 gives the proof of a key theorem from Section 8, which asserts an
approximately exponential distribution for return times that arise in the decomposition
based on regenerative structure, as well as a tail bound needed for some integrabil-
ity arguments. The last section of the paper, Sect. 11, presents the proof of an upper
bound for the rate of decay of the variance per unit time in the context of a special
case, thereby showing for the case that the lower bounds of Sect. 4 are in a sense
tight. To focus on the main discussion, proofs of some lemmas are collected in an
Appendix.
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Remark 1.1 There are certain time-scaling parameters that play key roles throughout
this paper. For the reader’s convenience, we record here where they are first described:
hi1 and w are defined in (4.1) and (4.2); c is introduced and its relation to 4| and w is
given in Theorem 4.3; m is introduced at the beginning of Sect. 6.2.

2 Quantities of Interest

The quantities we are interested in are the higher order moments, and in particular sec-
ond moments, of an integral of a risk-sensitive functional with respect to the empirical
measure p° defined in (1.2). To be more precise, the integral is of the form

f O, (1) pf (d) @.1)
M

for some nice (e.g., bounded and continuous) function f : M — R and a closed set
A € B(M). Note that this integral can also be expressed as

TS
1 e~ /(XD 1, (X8) dt. (2.2)
Te Jo

In order to understand the large deviation behavior of moments of such an integral,
we must identify the correct scaling to extract meaningful information. Moreover,
as will be shown, there is an important difference between centered moments and
ordinary (non-centered) moments.

By the use of the regenerative structure of { X7 };>0, we can decompose (2.2) [equiva-
lently (2.1)] into the sum of arandom number of independent and identically distributed
(iid) random variables, plus a residual term which here we will ignore. To simplify the
notation, we temporarily drop the ¢, and without being precise about how the regen-
erative structure is introduced, let Y; denote the integral of e‘éf (X1 A (X g ) over a
regenerative cycle. (The specific regenerative structure we use will be identified later
on.)

Thus, we consider a sequence {Y;}jen of iid random variables with finite second
moments and want to compare the scaling properties of, for example, the second
moment and the second centered moment of % Z';:l Y;. When used for the small
noise system, both n and moments of ¥; will scale exponentially in 1/¢, and n will be
random, but for now we assume 7 is deterministic. The second moment is

2
1 < 1 < 1 1
E<;§ Yk) =) E00 +— Y E(ViY)) = (EY)’ + —Var (1),
k=1 k=1

i,ji#]

and the second centered moment is
1 & ? | — 1
E|- Y, — EY = Var | — Y, | = —Var (Y)).
(z< 1>) (z ) L)
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When analyzing the performance of the Monte Carlo schemes, one is concerned of
course with both bias and variance, but in situations where we would like to apply the
results of this paper one assumes 7' is large enough that the bias term is unimportant,
so that all we are concerned with is the variance. However, some care will be needed to
determine a suitable measure of quality of the algorithm, since as noted ¥; could scale
exponentially with in 1/e with a negative coefficient (exponentially small), while n
will be exponentially large.

In the analysis of unbiased accelerated Monte Carlo methods for small noise systems
over bounded time intervals (e.g., to estimate escape probabilities), it is standard to
use the second moment, which is often easier to analyze, in lieu of the variance [3,
Chapter VIJ, [4, Chapter 14]. This situation corresponds to n = 1. The alternative
criterion is more convenient since by Jensen’s inequality one can easily establish a
best possible rate of decay of the second moment, and estimators are deemed efficient
if they possess the optimal rate of decay [3,4]. However, with n exponentially large this
is no longer true. Using the previous calculations, we see that the second moment of
% Z?Zl Y; can be completely dominated by (E'Y; )2, and therefore using this quantity
to compare algorithms may be misleading, since our true concern is the variance of
% Z?:l Y;.

This observation suggests that our study of moments of the empirical measure we
should consider only centered moments, and in particular quantities like

1 ¢
T*Var (/ e_%f(x)lA (x) p* (dx)) = T*Var (F / e_%f(x')lA (x7) dt) )
M

0

which is the variance per unit time. For Monte Carlo, one wants to minimize the
variance per unit time, and to make the problem more tractable we instead try to
maximize the decay rate of the variance per unit time. Assuming the limit exists, this

is defined by
: ¢ L R e
lim —elog | T°Var | — e e\ )]y (Xt)dt
e—0 T¢ Jo

and so we are especially interested in lower bounds on this decay rate.

Thus, our goal is to develop methods that allow the approximation of at least first
and second moments of (2.2). In fact, the methods we introduce can be developed
further to obtain large deviation estimates of higher moments if that were needed or
desired.

3 Setting of the Problem, Assumptions and Definitions

The process model we would like to consider is an R%-valued solution to an Itd
stochastic differential equation (SDE), where the drift so strongly returns the process
to some compact set that events involving exit of the process from some larger compact
set are so rare that they can effectively be ignored when analyzing the empirical
measure. However, to simplify the analysis we follow the convention of [12, Chapter
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6], and work with a small noise diffusion that takes values in a compact and connected
manifold M c R? of dimension r and with smooth boundary. The precise regularity
assumptions for M are given on [12, page 135]. With this convention in mind, we
consider a family of diffusion processes {X®}cc(0,00), X° € C([0,00) : M), that
satisfy the following condition.

Condition 3.1 Consider continuousb : M — R and o : M — R? x R (the d x d
matrices) and assume that o is uniformly nondegenerate, in that there is ¢ > 0 such
that for any x and any v in the tangent space of M at x, (v, o (x)o (x)'v) > c(v, v).
For absolutely continuous ¢ € C([0, T] : M) define It (¢) by (1.1), where the inverse
[o ()c)o()c)/]_1 is relative to the tangent space of M at x. Let I (¢p) = oo for all other
¢ € C([0,T] : M). Then, we assume that for each T < 00, {X7}o</<T satisfies the
large deviation principle with rate function I, uniformly with respect to the initial
condition [4, Definition 1.13].

We note that for such diffusion processes nondegeneracy of the diffusion matrix
implies there is a unique invariant measure 4° € P(M). A discussion of weak sufficient
conditions under which Condition 3.1 holds appears in [12, Sect. 3, Chapter 5].

Remark 3.2 There are several ways one can approximate a diffusion of the sort
described at the beginning of this section by a diffusion on a smooth compact man-
ifold. One such “compactification” of the state space can be obtained by assuming
that for some bounded but large enough rectangle trajectories that exit the rectangle
do not affect the large deviation behavior of quantities of interest and then extend
the coefficients of the process periodically and smoothly off an even larger rectangle
to all of R? (a technique sometimes used to bound the state space for purposes of
numerical approximation). One can then map R? to a manifold that is topologically
equivalent to a torus, and even arrange that the metric structure on the part of the
manifold corresponding to the smaller rectangle coincides with a Euclidean metric.

Define the quasipotential V (x, y) : M x M — [0, co) by
Vix,y)=inf{Ir(¢) : ¢0) =x,¢(T) =y, T < o0}. (3.1

For a given set A C M, define V(x,A) = infycqa V(x,y) and V(A,y) =
infreq V(x, y).

Remark 3.3 For any fixed y and set A, V(x,y) and V(x, A) are both continuous
functions of x. Similarly, for any given x and any set A, V (x, y) and V (A, y) are also
continuous in y.

Definition 3.4 We say that a set N C M is stable if for any x € N,y ¢ N we have
V(x,y) > 0. A set which is not stable is called unstable.

Definition 3.5 We say that O € M is an equilibrium point of the ordinary differential
equation (ODE) x; = b(x;) if b(O) = 0. Moreover, we say that this equilibrium point
O is asymptotically stable if for every neighborhood &) of O (relative to M) there
exists a smaller neighborhood &; such that the trajectories of system X, = b(x;) starting
in & converge to O without leaving £ as t — o0.
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Remark 3.6 An asymptotically stable equilibrium point is a stable set, but a stable set
might contain no asymptotically stable equilibrium point.

The following restrictions on the structure of the dynamical system in M will be
used. These restrictions include the assumption that the equilibrium points are a finite
collection. This is a more restrictive framework than that of [12], which allows, e.g.,
limit cycles. In a remark at the end of this section, we comment on what would be
needed to extend to the general setup of [12].

Condition 3.7 There exists a finite number of points {Oj}jer C M with L =
{1,2,...,1} for some |l € N, such that Ujc {O;} coincides with the w-limit set of
the ODE )‘Cl‘ = b(xt).

Without loss of generality, we may assume that O; is stable if and only if j € Ly
where Ly = {1, ..., [} for some [y < [.

Next, we give a definition from graph theory which will be used in the statement
of the main results.

Definition 3.8 Given a subset W C L = {1,...,1}, a directed graph consisting of
arrowsi — j(ie L\ W,jelL,i# j)iscalleda W-graph on L if it satisfies the
following conditions.

1. Every pointi € L \ W is the initial point of exactly one arrow.
2. For any pointi € L \ W, there exists a sequence of arrows leading from i to some
point in W.

We note that we could replace the second condition by the requirement that there
are no closed cycles in the graph. We denote by G (W) the set of W-graphs; we shall
use the letter g to denote graphs. Moreover, if p;; (i, j € L, j # i) are numbers, then
[ 1= j)eg Pij Will be denoted by 7 (g).

Remark 3.9 We mostly consider the set of {i}-graphs, i.e., G({i}) for some i € L,
and also use G (i) to denote G ({i}). We occasionally consider the set of {i, j}-graphs,
ie., G{i, j}) for some i, j € L withi # j. Again, we also use G (i, j) to denote
G({i, jD.

Definition 3.10 For all j € L, define

4 (0]) = glenGi?j) I:Z(man)egv (Oms On)] (32)
and
W(01U0) = min [Z(an)egv (Om, 0,,)] . (3.3)

Remark 3.11 Heuristically, if we interpret V (O,,, O,,) as the “cost” of moving from
O, to O,, then W (Oj) is the “least total cost” of reaching O; from every O;
with i € L\ {j}. According to [12, Theorem 4.1, Chapter 6], one can interpret
W(O0;) — mine; W(O);) as the decay rate of u®(Bs(0;)), where B5(0;) is a small
open neighborhood of O;.
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Definition 3.12 We use G (W) to denote the collection of all W-graphs on Ly =
{1,..., s} with W C L.

We make the following technical assumptions on the structure of the SDE. Let
Bs(K) denote the §-neighborhood of a set K C M. Recall that ;® is the unique
invariant probability measure of the diffusion process {X7};. The existence of the
limits appearing in the first part of the condition is ensured by Theorem 4.1 in [12,
Chapter 6].

Condition 3.13 [. There exists a unique asymptotically stable equilibrium point O
of the system x; = b(x;) such that

lim lim —elog u®(Bs(01)) =0, and
§—>0e—0

lim lim —elog u®(Bs(0;)) > 0 forany j € L\ {1}.
§—>0e—0 ’

2. All of the eigenvalues of the matrix of partial derivatives of b at Oy relative to M
have negative real parts for £ € L.
3.b:M—->Rlando : M — R? x R are C'.

Remark 3.14 According to [12, Theorem 4.1, Chapter 6] and the first part of Condi-
tion 3.13, we know that W(0;) > W(Oq) forall j € L\ {1}.

Remark 3.15 We comment on the use of the various parts of the condition. Part 1
means that neighborhoods of O capture more of the mass as ¢ — 0 than neighbor-
hoods of any other equilibrium point. It simplifies the analysis greatly, but we expect
it could be weakened if desired. Parts 2 and 3 are assumed in [6], which gives an
explicit exponential bound on the tail probability of the exit time from the domain
of attraction. It is largely because of our reliance on the results of [6] that we must
assume that equilibrium sets are points in Condition 3.7, rather than the more general
compacta as considered in [12]. Both Condition 3.7 and 3.13 could be weakened if
the corresponding versions of the results we use from [6] were available.

Remark 3.16 The quantities V (O;, O;) determine various key transition probabilities
and time scales in the analysis of the empirical measure. The more general framework
of [12], as well as the one-dimensional case (i.e., 7 = 1) in the present setting, requires
some closely related but slightly more complicated quantities. These are essentially the
analogues of V (0;, O;) under the assumption that trajectories used in the definition
are not allowed to pass through equilibrium compacta (such as a limit cycle) when
traveling from O; to O;. The related quantities, which are designated using notation
of the form ‘7(0[, 0/) in [12], are needed since the probability of a direct transition
from O; to O; without passing though another equilibrium structure may be zero,
which means that transitions from O; to O; must be decomposed according to these
intermediate transitions. To simplify the presentation, we do not provide the details of
the one-dimensional case in our setup, but simply note that it can be handled by the
introduction of these additional quantities.

@ Springer



Journal of Theoretical Probability (2022) 35:1049-1136 1057

Consider the filtration {F; };>¢ defined by F; = o (X%, s < t)forany¢ > 0. For any
d > 0 smaller than a quarter of the minimum of the distances between O; and O for
all i # j, we consider two types of stopping times with respect to the filtration {F;};.
The first type are the hitting times of {X;}, at the §-neighborhood of all equilibrium
points {0} L after traveling a reasonable distance away from those neighborhoods.
More precisely, we define stopping times by 79 = 0,

op=inf{t > 1,:X;] € UjerdB2s(0;)} and 7, =inf{r > 0,1 : X; €U dBs(0;)}.

The second type of stopping times is the return times of { X7}, to the §-neighborhood
of Oy, where as noted previously O is in some sense the most important equilibrium
point. The exact definitions are rg =0,

oy =inf{t > 7 : X{ €Ujer\(1}0Bs(0))} and 7 =inf {t >0, _, : X; € 0Bs(O1)} .
(3.4)

We then define two embedded Markov chains {Z,,},,en, = {X in }nen, With state space
UjerdBs(0;), and {Z]}en, = {X e hnen, With state space d Bs(O1).

Let p(x, 9Bs(0;)) denote the onen-step transition probabilities of {Z, },¢N, starting
from a point x € U;c1dBs(0O;), namely,

p(x,9B5(0))) = Px(Z1 € 9B5(0))).

We have the following estimates on p(x, 0B5(0})) in terms of V. The lemma is a
consequence of [12, Lemma 2.1, Chapter 6] and the fact that under our conditions
V(0;, O;) and V(0;, Oj) as defined in [12] coincide.

Lemma 3.17 Foranyn > 0, there exists 5o € (0, 1) and gg € (0, 1), such that for any
8 € (0,680) and € € (0, g9), for all x € dBs(0;), the one-step transition probability
of the Markov chain {Z, },eN on dBs(O) satisfies

e~ (V(0i.0))+n) < p(x,3Bs(0))) < e+ (V(01,05)=n)

foranyi, j e L.

Remark 3.18 According to Lemma 4.6 in [16], Condition 3.1 guarantees the exis-
tence and uniqueness of invariant measures for {Z,}, and {Z]},. We use v* €
P(U;er,dBs(0;)) and A € P(dBs(01)) to denote the associated invariant measures.

4 Results and a Conjecture

The following main results of this paper assume Conditions 3.1,3.7 and 3.13 . Although
moments higher than the second moment are not considered in this paper, as noted
previously one can use arguments such as those used here to identify and prove the
analogous results.
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Recall that {0} j¢L are the equilibrium points and that they satisfy Conditions 3.7
and 3.13. In addition, O; is stable if and only if j € Lg, where Ly = {1, ..., [} for
some [y < | = |L|, and 17 is the first return time to the §-neighborhood of O after
having first visited the §-neighborhood of any other equilibrium point.

Lemma 4.1 Foranyé € (0, 1) smaller than a quarter of the minimum of the distances
between O; and O foralli # j, any ¢ > 0 and any nonnegative measurable function
g:M—R

&

i
E;e /
0

where 1° € P(dBs(01)) is the unique invariant measure of {Z;}, = {X::}, and
u® € P(M) is the unique invariant measure of {X?};.

g(Xﬁ)dS) = Ejetf - /Mgm;f (dx),

Proof We define a measure on M by

l’ls (B):E)LF ([) ] 13 (Xf)dt)

for B € B(M), so that for any nonnegative measurable function g : M — R

/ g (1) 2° (dx) = Eye (f ] g(Xf)dt) :
M 0

According to the proof of Theorem 4.1 in [16], the measure given by 1 (B) /i* (M) is
an invariant measure of {X}},. Since we already know that ©° is the unique invariant
measure of {X?},, this means that u®(B) = i° (B) /i® (M) for any B € B(M).
Therefore, for any nonnegative measurable function g : M — R

E;e </'g(Xf)dt> Z/ g(x)lﬁ(dx).’&f(M):f g(x)llg(dX)-EAsrf_
0 M "

O

Recall the definitions of W (O ;) and W(O U Oj) in Definition 3.10, as well as the
definition of the quasipotential V (x, y) in (3.1). For any k € L, we define

hy = min V (O, O;). 4.1
k jeL\(k} ( k ]) ( )
In addition, define
= W(0,) — in W(O,UO;). 4.2
w (01) jeml\f{ll} (01 i) 4.2)
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Remark 4.2 The quantity Ay is related to the time that it takes for the process to leave
a neighborhood of Oy, and W(0O1) — W(O; U 0;) is related to the transition time
from a neighborhood of O; to one of O;. It turns out that our results and arguments
depend on which of /1 or w is larger. Throughout the paper, the constructions used in
the case when 41 > w will be in terms of what we call a single cycle, and those for
the case when 41 < w in terms of a multicycle.

Theorem4.3 Let T¢ = eé“for some ¢ > h1 VvV w. Givenn > 0, a continuous function
f : M — R and any compact set A C M, there exists 5o € (0, 1) such that for any

5 (0. 80)
1 r e
Eje <_/ e—éf(XJlA(xf)dz) —/ e O, () (@)
T¢ Jo M

Zirelg[f(x)JrW(X)]—W(01)+C—(h1Vw)—77,

&

liminf —¢ log
e—0

where W(x) = min e [W(O;) + V(O;, x)].

Remark 4.4 Since W (x) = min ¢, [W(O;) + V(Oj, x)], the lower bound appearing
in Theorem 4.3 is equivalent to

min <i2£ [f (x) + V(Oj,x)] + W(0;) — W(01)> +c—(h1 Vw)—n.

JeL
The next result gives an upper bound on the variance per unit time, or equivalently a
lower bound on its rate of decay. In the design of a Markov chain Monte Carlo method,

one would maximize this rate of decay to improve the method’s performance.

Theorem 4.5 Let T¢ = eécfor some ¢ > h1 VvV w. Givenn > 0, a continuous function
f : M — R and any compact set A C M, there exists 8o € (0, 1) such that for any
8 € (0, 80)

1 e 1 &
iminf — e Y - - f(X7) €
ll?l)l(l)lf elog (T Var), (TE/O e 1y (X,)dt))

minjcy (R;l) A R§2)> -7, ifh) > w

min ey, (R&l) A R;z) A R;3)) —1n, otherwise '
where

RV = inf [2 (1) +V (0, x) ]+ W (0;) = W (0n),

R =2 inf [f () +V (01,0)] .
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and for j € L\ {1}
RY = 2inf [f )+ V (0, x)]+ W (0,) =2W (01) + W(O1 U 0)),

RY =2 inf [f () +V (0;.x)] +2W (0;) —2W (01) — w.
X€E

Remark 4.6 1f one mistakenly treated a single cycle case as a multicycle case in the
application of Theorem 4.5, then the result is the same since with 71 > w, (4.2) implies
that R;.3) > R;z) forany j € L.

Remark 4.7 Although Theorems 4.3 and 4.5 as stated assume the starting distribution
A, they can be extended to general initial distributions by using results from Sect. 10,
which show that the process essentially forgets the initial distribution before leaving
the neighborhood of Oj.

Remark 4.8 In this remark, we interpret the use of Theorems 4.3 and 4.5 in the context
of Monte Carlo and also explain the role of the time scaling T°¢.

There is a minimum amount of time that must elapse before the process can visit all
stable equilibrium points often enough that good estimation of risk-sensitive integrals
is possible. As is well known, this time scales exponentially in the form of 7¢ = e¢/¢,
and the issue is the selection of the constant ¢ > 0, which motivates the assumptions
on T¢ for the two cases. However, when designing a scheme there typically will be
parameters available for selection. The growth constant in 7¢ will then depend on these
parameters, which will then be chosen to (either directly or indirectly, depending on
the criteria used) reduce the size of 7. For a compelling example, we refer to [10],
which shows how for a system with fixed well depths a scheme known as infinite
swapping can be designed so that given any @ > 0 one can design a scheme so that an
interval of length ¢%/¢ suffices.

Theorem 4.3 is concerned with bias, and for 7¢ as above will give a negligible
contribution to the total error in comparison with the variance. Thus, it is Theorem 4.5
that determines the performance of the scheme and serves as a criteria for optimization.
Of particular note is that the value of ¢ does not appear in the variational problem
appearing in Theorem 4.5.

Theorem 4.5 gives a lower bound on the rate of decay of variance per unit time.
For applications to the design of Monte Carlo schemes as in [10], there is an a priori
bound on the best possible performance, and so this lower bound (which yields an
upper bound on variances) is sufficient to determine if a scheme is nearly optimal.
However, for other purposes an upper bound on the decay rate could be useful, and
we expect the other direction holds as well.

The proofs of Theorems 4.3 and 4.5 for single cycles and multicycles are almost
identical with a few key differences. We focus on providing proofs in the single cycle
case, and then point out the required modifications in the proofs for the multicycle
case.

Theorem 4.9 The bound in Theorem 4.3 can be calculated using only stable equilib-
rium points. Specifically,
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W(x) = minjer [W(O;) + V(0;, x)]
w (0]) = mingEGs(j) I:Z(m—nz)egv (Om’ On):l

1.

2.

3. W(01 U 0;) = minge,1.) [Z(an)egv (O, 0,,)]

4. min ey (infreal f(X)+V (O, x)[+W(0;)) = minjer, (infreal f(x)+V (O}, x)]
+ W(0;)).

Remark 4.10 Theorem 4.9 says that the bound appearing in Theorem 4.3 depends on
the set of indices of only stable equilibrium points. This is not surprising, since in
[12, Chapter 6], it has been shown that the logarithmic asymptotics of the invariant
measure of a Markov process in this framework can be characterized in terms of graphs
on the set of indices of just stable equilibrium points. It is natural to ask if the same
property holds for the lower bound appearing in Theorem 4.5. Notice that part 4 of
Theorem 4.9 implies min jez. R;l) =minjeg, R;l) , so if one can prove (possibly under
extra conditions, for example, by considering a double-well model as in Sect. 11) that
min;ey R;z) = minjey, R;z), then these two equations assert the property we want

for the single cycle case, namely, minjeL(Rg.l) A R}Z)) = minjeLS(RE.I) A R§.2)). An
analogous comment applies for the multicycle case. '

Conjecture 4.11 Let T¢ = eécfor some ¢ > hyV w. Let f be continuous and suppose
that A is the closure of its interior. Then for any n > 0, there exists 5o € (0, 1) such
that for any § € (0, 8p)

1 e
iminf — e = - f(X7) €
11?1)1(1)110 elog (T Var), (TE/O e 1y (X,)dt))

minjcr (R;l) A R§2)> +n, ifh) > w
< .
~ | minjer (R;.D A R5.2) A R?S)) +1n, otherwise

In Section 11, we outline the proof of Conjecture 4.11 for a special case.

5 Examples

Example 5.1 We first consider the situation depicted in Fig. 1. Values of W (O;) are

given in the figure. If one interprets the figure as a potential with minimum zero, then

the corresponding heights of the equilibrium points are given by W (0 ;) — W (01). We

take f = 0 and A to be a small closed interval about O5. As we will see and should be

clear from the figure, this example can be analyzed using single regenerative cycles.
Recall that

R = inf [21(x) + V(0. 2)] + W(0)) = W(O1)

R® =2 inf [/ (x) + V(01,01 = hy
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0O, O, O Oy Os

Fig.1 Single cycle example

and for j > 1
R}Z) =2t [f(0) + V (0}, 0]+ (W(0;) — W(01)) — W(01) + W (01 U O)

If one traces through the proof of Theorem 4.5 for the case of a single cycle, then
one finds that the constraining bound is given in Lemma 7.23, which is in turn based
on Lemma 7.9. As we will see, in the minimization problem min j¢; (R;l) A R;z)) the
min on j turns out to be achieved at j = 5. This is of course not surprising, since A
is an interval about Os. It is then the minimum of Rgl) and Réz) which determines the
dominant source of the variance of the estimator.

We recall that { is the time for a full regenerative cycle, and that 7y is the time to first
reach the 2§ neighborhood of an equilibrium point and then reach a § neighborhood of
a (perhaps the same) equilibrium point. The quantities that are relevant in Lemma 7.9
are

71 2
sup E, (/ lA(Xf)dt> and E N5
y€3B;5(0s) 0

for R;l) and

2
71
sup Ey/ IA(Xf)dt , ExNs, and essentially ~ sup  EyNs
y€dB;s(05) 0 yedBs(0s)
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for R;.z). Decay rates are in turn determined by (see the proof of Lemma 7.23)
0and W(0O1) — W(Os) + h;
and
0, W(O1) — W(0Os) + hy and W(O1) — W(O; U Os),

respectively. Thus, for this example it is only the term W(0O1) — W (O U Os) that

distinguishes between the two. Since this is always greater than zero and it appears in

R;z) in the form —(W(01) — W(O1 U Os)), it must be the case that Réz) < Rgl).
The numerical values for the example are

(W(O01U0)),j=2,....5 =(53,5,2)
(V(0;,05), j=1,...,5) = (8,4,4,0,0)
(W(0)) = W(01), j=1,...,5 = (0,4,2,6,3)
(R{V.j=1.....5) = (8.8,6,6,3)

(R?.j=2.....5 = (12.8.6,0)

and Riz) =16—-4=12,hy =4 and w = 5 — 2 = 3. Since w < hy, it falls into

the single cycle case. We therefore find min; R;l) A R;Z) equals to 0 and occurs with
superscript 2 and at j = 5.
For an example where the dominant contribution to the variance is through the

quantities associated with R;l), we move the set A further to the right of Os. All other
quantities are unchanged save

2
T] 2 71

sup Ey</ 1,4(Xf)dt> and sup EV/ La(Xp)de |
y€dBs(0s) 0 yedBs(0s) ~ JO

whose decay rates are governed (for j = 5) by infyca[V (05, x)] and 2infycy
[V (Os, x)], respectively. Choosing A so that inf,c4[V (Os, x)] > 3, it is now the
case that Rél) < Rgz)_

Example 5.2 We consider the situation depicted in Fig. 2. In this example, we again
take f = 0 and A to be a small closed interval about O3. Since the well at Os is deeper
than that at Oy, we expect that multicycles will be needed, and so recall

RY =2 inf [f (1) +V (0, x)]+2W (0;) =2W (01) — .
X€E
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W(0,) =7

O, 0, O3 Oy Os
Fig.2 Multicycle example

The needed values are

W01V 0j),j=2,...,5 =(1,5,7,2)
(V(0;,03),j=1,....5) = (4,0,0,0,5)
(W(0)) = W(01),j=1,...,5 =(0,4,2,6,1)
(R;.“,j =1,...,5 = (4,4,2,6,6)

(R, j=2.....5) = (4,0.6,6)
RY.j=1.....9=@3.3-177

and Riz) =8—-4=4h =4andw =7 —2 = 5. Since w > h a single cycle
cannot be used for the analysis of the variance, and we need to use multicycles. We
find min R;l) A R;z) A R§.3) is equal to —1 and occurs with superscript 3 and j = 3.

6 Wald’s Identities and Regenerative Structure

To prove Theorems 4.3 and 4.5, we will use the regenerative structure to analyze
the system over the interval [0, T¢]. Since the number of regenerative cycles will be
random, Wald’s identities will be useful.

Recall that 7,/ is the n-th return time to d Bs (O1) after having visited the neighbor-
hood of a different equilibrium point, and A* € P (3 Bs(O1)) is the invariant measure
of the Markov process { X i’f Inen, With state space d Bs(O1). If we let the process { X7 };
start with A% at time O, that is, assume the distribution of X 8 is A%, then by the strong
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Markov property of {X7},, we find that {X7}, is a regenerative process and the cycles

{{Xze i 0<t<zti—1:_,} 1, —1,_,} areiid objects. Moreover, {t; },en, is a

n—

sequence of renewal times under A®.

6.1 Single cycle

Define the filtration {H,},en, where H, = Fre and F; = o ({X5; s < t}). With
respect to this filtration, in the single cycle case (i.e., when | > w), we consider the
stopping times N® (T) = inf {n € N: ¢ > T} . Note that N (T) — 1 is the number
of complete single renewal intervals contamed in [0, T].

With this notation, we can bound % fOTg e_éf (X1 A (Xf) dt from above and
below by

N&(T%)—1 T¢ 1f(XF) 1 NE(T?)
I3 —-< { 3 o I3
Z Sis o [ e D (X)) dr = o Y., S @D
where
T’f 1 £
A ﬁ/ e e (XD, (x8) dr.
T
Applying Wald’s first identity shows
NE(T*®)
i\ 7+ Z = B (N (7)) B, 62)

Therefore, the logarithmic asymptotics of Ee (fOTS et /(XD 1 (Xf) dt/T*) are
determined by those of Ej: (N®(T?))/T® and E;:Sj. Likewise, to understand
the logarithmic asymptotics of T°¢-Var;e (fOT6 e, (X£)dt/T®), it is suffi-
cient to identify the corresponding logarithmic asymptotics of Varye (N¢ (T¢)) /T¢,
Varys (S7), Eze (N® (T€)) /T® and Ej:S{. This can be done with the help of Wald’s
second identity, since

1 NS TS
T¢ - Varye (Ezn:(l )Srel>
¢ L ey e 1 ¢ A%
=277 B (5 2 0m S—TN(T)EASS

1 1 :
+2T° - Ej <FN8 (T°) Eje S5 — 7 Ene (N (T7)) EpSf)

E)e (N®(T? Var,e (N? (T®
_ o Eae (N C ))Vawsijz arye (N*(T"))

T - (EpeS5)°. 6.3)
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In the next two sections, we derive bounds on Ej;+ S7, Var;« (S7) and E; (N° (T¢)),
Varye (N¢ (T?)), respectively.

6.2 Multicycle

Recall that in the case of a multicycle, we have w > hj. For any m > 0 such that
hi+m > w and for any ¢ > 0, on the same probability space as {z;}, one can define a
sequence of independent and geometrically distributed random variables {M };n with

parameter e /¢ that are independent of {z¢}. We then define multicycles according
to
i K;
Ki=) M, #= Y rf ieN (6.4)
j=1 n=K¢_,+1

Consider the stopping times NE (T) = inf {n eN:7t > T} . Note that N¢ (T) —

n
1 is the number of complete multicycles contained in [0, 7]. With this nota-

tion and by following the same idea as in the single cycle case, we can bound

% OTS e~ f(X7) 1a (Xf) dt from above and below by

Ne(Te)-1

1 e o LT g . 1
F l; SnSF A e ¢ ([)lA(Xt)dtSE

S(TS) .
i (6.5)
=1

n

where

26
8 =/ et /D1, (X dr.
Tn—1

Therefore, by applying Wald’s first and second identities, we know that the loga-
rithmic asymptotics of Eje (fOTa (XD, (X¢)dt/T¢) are determined by those
of Eje (NS (T#))/T¢ and Eje 3‘f, and the asymptotics of 7¢-Vare (fOT£ et F(XD) 14
(X£)dt/T®) by those of Vare(N® (T®))/T¢, Var;:(S5%), Eze(N® (T%))/T* and
Ee S“f In particular, we have

1 NE(TE) A 1 A A
i (g D0 50) = e (V) S 60
and

1 NE(T®) A

£ &
T° - Var;Ls <F E 1 Sn>
ZEM (N¢ (T*))

Vare (N (T%) /. a0\2
- e (EAeS1> )

Var,e S'f +2 T
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In the next two sections, we derive bounds on E)¢ S‘f , Varye (S’f) and Eje (]\7 E(T*)),
Var; e (1\7 £(T*#)), respectively.

£ N* (T¢)and S¢ all depend on m, although
this dependence is not explicit in the notation.

Remark 6.1 Itshouldbe keptin mind that 7}

Remark 6.2 In general, for any quantity in the single cycle case, we use analogous
notation with a “hat” on it to represent the corresponding quantity in the multicycle
version. For instance, we use 7/ for a single regenerative cycle, and 7: for a multi-
regenerative cycle.

7 Asymptotics of Moments of Sf and 3‘1‘:

In this section, we will first introduce the elementary theory of an irreducible finite
state Markov chain {Z,,},,cn, with state space L, and then state and prove bounds for
the asymptotics of moments of S{ and S 1.

For the asymptotic analysis, the following useful facts will be used repeatedly.

Lemma 7.1 For any nonnegative sequences {ag}.- and {bg}.~o, we have

lim inf —¢log (azby) > liminf —eloga, + lim inf —¢ log b,, (7.1)
£—0 =0 =0

lim sup —¢ log (as + b;) < min {lim sup —¢ log ag, lim sup —e log b, } ,

£—0 e—>0 e—0

lim i(r)lf —elog (ag + be) = min {lim i(I)lf —elogag, lim i(l’)lf —elog bs} . (1.2)
E—> E—> E—>

7.1 Markov Chains and Graph Theory

In this subsection, we state some elementary theory for finite state Markov chains taken
from [1, Chapter 2]. For a finite state Markov chain, the invariant measure, the mean
exit time, etc., can be expressed explicitly as the ratio of certain determinants, i.e.,
sums of products consisting of transition probabilities, and these sums only contain
terms with a plus sign. Which products should appear in the various sums can be
described conveniently by means of graphs on the set of states of the chain. This
method of linking graphs and quantities associated with a finite state Markov chain
was introduced by Freidlin and Wentzell in [12, Chapter 6].

Consider an irreducible finite state Markov chain {Z, },,cn, with state space L. For
any i, j € L, let p;; be the one-step transition probability of {Z,}, from state i to
state j. Write P;(-) and E; () for probabilities and expectations of the chain started at
state i at time 0. Recall the notation 7 (g) = ]_[(i_)j)eg Dij-

Lemma 7.2 The unique invariant measure of {Z,},enN can be expressed
deG(i) 7 (g)
2 jeL (decm ™ (8))

Ai =
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Proof See Lemma 3.1, Chapter 6 in [12]. O

To analyze the empirical measure, we will need additional results, including repre-
sentations for the number of visits to a state during a regenerative cycle. Write

T, =inf{n>0:2, =i}
for the first hitting time of state i, and write

Tﬁﬁinf{nz 1:Z,=i}.
Observe that Ti+ = T; unless Zo = i, in which case we call Ti+ the first return time
to state i.

Let N =inf{ln e Ng: Z, e L\ {l}}and N =inf{n e N: Z, = 1,n > N}. N is
the first time of visiting a state other than state 1, and N is the first time of visiting state
1 after N. For any j € L, let N; be the number of visits (including time 0) of state j
before N, i.e., N; = [{n € Ng:n < N and Z, = j}|. We would like to understand
EiNjand E;Njforany j € L. These quantities will appear later on in Subsection 7.2.
The next lemma shows how they can be related to the invariant measure of {Z,},,.

Lemma7.3 [. Forany j € L\ {1}

2 eeG, ) T (8)

EjNj =
Y deG(l)’T (8)

and EjNj = A;j (E.,'Tl + ElTj) .

2. Foranyi,jelL,j#i

1
P(Ti<T)= ——M .
' ( / ! ) Ai (E,Tl +E,'Tj)
3. Forany j € L
|
E|N; = —.
I—pui

Proof See Lemma 3.4 in [12, Chapter 6] for the first assertion of part 1 and see Lemma
2.7 1in [1, Chapter 2] for the second assertion of part 1. For part 2, see Corollary 2.8 in
[1, Chapter 2]. For part 3, since E{N; = Z?il Py (Nj > Z) , we need to understand
Py (N = E), which means we need to know how to count all the ways to get N; > £
before returning to state 1.

We first have to move away from state 1, so the types of sequences are of the form

Ll Lk ko kg, 1
~———

i times
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for somei,q € Nand k1 # 1,--- ,k; # 1. When j = 1, we do not care about
ki, ks, ..., kg, and therefore

. i—1 o .
Py (Ny >i)=p;; and E;N| = Zi:l Py (N >2i) = T
For j € L\ {1}, the event {N; > £} requires that within k1, k2, ..., k;, we
1. first visit state j before returning to state 1, which has corresponding probability
P(T; <TH),
2. then start from state j and again visit state j before returning to state 1, which has
corresponding probability Pj(Tj+ < Ty).
Step 2 needs to happen at least £ — 1 times in a row, and after that we do not care.
Thus,

00 .
Pi(Nj= )= " (pr) " P(T; < T7) (PT < 1))
1 —
= Py (T < T7") (Py(T;F < Ti)* !
1 —pn
and
Zoo P (N >E) 1 P (Tj <T1+) 1 Aj (ElTj-l—EjTl)
1 i = = =
=1 J 1—pn Pj(Tl <Tj+) I —pi A (ElTJ'+EjT1)
. 1 Aj
S l-pur’
The third equality comes from part 2. O

To apply the preceding results using the machinery developed by Freidlin and
Wentzell, one must have analogues that allow for small perturbations of the transition
probabilities due to the fact that initial conditions are to be taken in small neighbor-
hoods of the equilibrium points. The addition of a tilde will be used to identify the
corresponding objects, such as hitting and return times. Take as given a Markov chain
{Z,z},,eN0 on a state space X = U;cr &}, with X; N A} =0 (i # j), and assume there
isa € [1, 00) such that for any i, j € L and j # i, the transition probability of the
chain from x € &; to X; (denoted by p (x, X;)) satisfies the inequalities

a'pii<p (x, X;) < apij (7.3)

for any x € X;. Write Py (-) and E, (-) for probabilities and expectations of the chain
started at x € X at time 0. Write

T; =inf{n > 0: Z, € X}}
for the first hitting time of X;, and write

T =inf(n>1:Z, € &}
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Observe that Ti+ = T, unless Zo € A}, in which case we call 7~"i+ the first return time
to ;. Recall that [ = |L]|.

Remark 7.4 Observe that given j € L and for any x € X;, 1 — p (x, X,) =
ZkeL\{j} p (x, Xy) . Therefore, we can apply (7.3) to obtain

—1
a” Yy Pik < 1= p (%, X)) < aXpepy Pike

Lemma 7.5 I. Consider distincti, j,k € L. Then, for x € X,
a P (T < T) < Py < T) <d P(T) < TH).
2. Foranyi €L, j € L\{i}andx € &j,

a TP (T; < T < PU(Ty < T <a® PR (T < TF).

1

Proof For part 1, see Lemma 3.3 in [12, Chapter 6]. We only need to prove part 2.
Note that by a first step analysis on {Z,,},en,, foranyi € L, j € L\ {i}and x € A},

P(Tj < T = p (v, X)) + de\{l_ j}/x Py(Tj < T)p (x,dy)
’ k
41—2
<api+ ),y (@ PU(T; < 1)) @p)
O . \ 5.
<a (sz +Zk€L\{i,j} Py (T] < Tz)sz)
=a* P (T; < TT).

The first inequality comes from the use of (7.3) and part 1; the last equality holds since
we can do a first step analysis on {Z,},,. Similarly, we can show the lower bound. O

Let N = inf{n € Ny : Zn € Ujen\(nd;} and N = inflneN:Z,eX,n> 1\7}.
For any j € L, let N ; be the number of visits (including time 0) of state X’; before

N, ie., Nj ={neNy:n< N and Z, € X;}|. We would like to understand Ex1\7j
forany j € L and x € &7 or X;.

Lemma7.6 Forany j € L and x € X)

I—
a' YeopT @

ExNj < .
ZZEL\{]} P1e deG(l) 7 (8)

Moreover, forany j € L\ {1}

o0
> sup P (Njzt) <a
=1 )CEXJ‘

a1 2geGa1p ™ (8)
2 eec) T (&)
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and
0

Z sup Py (Nl zk) < ;.
=1 ¥ ZzeL\{u Pie

Proof For any x € X, note that for any £ € N, by a conditioning argument as in the
proof of Lemma 7.3 (3), we find that for j € L \ {1}

SUp,c x, Py(T; < f"1+)

~ ~ - -1
PN 2 0) < (supyen, PU(TS < 7))

T l=supyey, p (v, X
and

Pe(Ny = 0) < (supyex, p 0, XD)
Thus, for any x € X and for j € L\ {1}

SUPye v, Py(fj < f‘1+) 1

o
ExN; =) Pu(N; > ) < : -
; I—supyex, POV, 1) 1 —supycy, Py(Tj‘" <T)

SUp,cx, Py(fj < T{")

(infyexj (I=p(Q, Xl») (infye x; Py(fl < TJ'JF))

41 P\(T; < T)")
=da
ey PO Pi(Th < Tj+)
a7 a7 Yeech T (®)

ZEEL\{I} Pie A ZeeL\{l} Pie deG(l) m(g)

The second inequality is from Remark 7.4 and Lemma 7.5 (2); the third equality comes
from Lemma 7.3 (2); the last equality holds due to Lemma 7.2. Also,

1 1
L—sup,cy, p(y. X1)  infyex, (1= p (v, &)

o0
ENy =) PN =0 <
=1

.
ZeeL\{l} Ple

The last inequality is from Remark 7.4. This completes the proof of part 1.
Turning to part 2, since for any £ € N

O —1
supx€X1 Px (Nl = E) S (SupyEXl P (ya Xl)) )
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we have

o0
- 1
sup Py(Ny > ¢) < < .
;xe){l * L—supyex, P (s X1) 7 Dper\1y Pt

a

Furthermore, we use the conditioning argument again to find that for any j € L \ {1}
and £ e N

sup,cy; Pe(Nj = 0) < (supyey, Py(T;" < T

This implies that

oo
ZSpreX_, Py (N; = £)
=1
oo

A AN 1
D _Gupyey, Py(TF < T =
(=1

IA

1- SupyEXj Py(T,+ < Tl)
1 4l-1 1
. = = <a —
lnfye)(j Py(Ty < Tj+) Pi(T < Tj )
e 2 eeG, T (8)
> eccy T (&)

-1
=a* A(E\T; +E;T)) =

We use Lemma 7.5 (2) to obtain the second inequality and Lemma 7.3, parts (2) and
(1), for the penultimate and last equalities. O

7.2 Asymptotics of Moments of Sf

Recall that {X®}.c0,00) C C([0,00) : M) is a sequence of stochastic processes
satisfying Conditions 3.1, 3.7 and 3.13. Moreover, recall that S{ is defined by

.[S
St = /O et (D1, (X9 . (7.4)

As mentioned in Section 6, we are interested in the logarithmic asymptotics of Ej;s S}
and Ej: (S f )2. To find these asymptotics, the main tool we will use is Freidlin—Wentzell
theory [12]. In fact, we will generalize the results of Freidlin—Wentzell to the following:
For any given continuous function f : M — R and any compact set A C M, we will
provide lower bounds for

Ty .
liminf —elog| sup E. / et T XD 1, (x5) ds (7.5)
e—0 2€dBs(01) 0
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and

e 2

TI .

lim inf —e& log sup E; / e_éf(xf)lA (X5)ds . (7.6)
e=>0 2€dB5(01) 0

As will be shown, these two bounds can be expressed in terms of the quasipotentials
V(0;, O;) and V (0O;, x).

Remark 7.7 In the Freidlin—Wentzell theory as presented in [12], they only consider
bounds for

li}€11_>i(1)1f —elog (Sup,cyp,0,) E=T1) -

Thus, their result is a special case of (7.5) with f = 0 and A = M. Moreover, we
generalize their result further by considering the logarithmic asymptotics of higher
moment quantities such as (7.6).

Before proceeding, we recall that L = {1,...,[} and for any § > 0, we define
70 =0,

op=inf{t > 7, : X} € Ujer8B25(0))} and 7, = inf{r > on—1:X7 € UjerdBs5(0))}.
Moreover, 7§ = 0,
or=inf{t > t°:X; € UjeL\“}aBg(Oj)} and 7, = inf {t >o0,_:X] € 835(01)}.

In addition, {Z, }neN, = {X7, }neN, is aMarkov chainon UjeLE)Bg (0j)and {Z}},en,
={X i;; }nen, is a Markov chain on 9 Bs(O1). Itis essential to keep the distinction clear:
when there is an ¢ superscript the chain makes transitions between neighborhoods of
distinct equilibria, while if absent such transitions are possible, but for stable equilibria
there will be many more transitions between the § and 28 neighborhoods.

Following the notation of Subsect. 7.1, let N = inf fn € No : Z, €
U.,.GL\{”aBa(o,-)}, N = inf{n > N : Z, € 0Bs(01)}, and recall F; = o ({X:; s <
t}). Then, since {7, },¢N, are stopping times with respect to the filtration {F;};>0, F=,
are well-defined for any n € Ny and we use G, to denote F7,. One can prove that
N and N are stopping times with respect to {G, },en. For any j € L, let N; be the
number of visits of {Z,},en, to dBs(O;) (including time 0) before N.

The proofs of the following two lemmas are given in Appendix.

Lemma 7.8 Given§ > 0 sufficiently small, for any x € d Bs(O1) and any nonnegative
measurable function g : M — R,

143 T
E. (/ 1 g(Xﬁ)ds> < Z[ sup Ey (f lg(X?)ds>:| - ExN;.
0 JeL y€dBs(0}) 0
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Lemma 7.9 Given§ > O sufficiently small, for any x € d Bs(O1) and any nonnegative
measurable function g : M — R,

2
7y 7l 2
E, / g (X5)ds EZZ sup E, (/ g(XSg)ds) -E(N;
0 ieL LyeaBs(o)) 0

2
T
+20) | sup E,(/ g(ng)ds) - EN;
et LyedBs(0)) 0

o0
sup Py (k< Nj). 7.7
k=1 YE€9Bs(0))

Although as noted the proofs are given in Appendix, these results follow in a
straightforward way by decomposing the excursion away from O; during [0, 7],
which only stops when returning to a neighborhood of Oy, into excursions between
any pair of equilibrium points, counting the number of such excursions that start near
a particular equilibrium point, and using the strong Markov property.

Remark 7.10 Following an analogous argument as in the proof of Lemmas 7.8 and
7.9, we can prove the following: Given § > 0 sufficiently small, for any x € dBs(O1)
and any nonnegative measurable function g : M — R,

Ty 71
Ex (/ 3(X§)ds> SZjeL\{l}|: sup  E, (/ g(Xﬁ)ds):| - ExNj
% yedBs(0;) 0

0

2
Ty 7 2
E (/ 4 (Xi)ds) <D e [ sup  Ey </ g (Xi)d5> } -ExN;
of ’ y€dBs(0;) 0

2
7
+2leeL\{1}|: sup Ey(/o g(Xﬁ)ds):| - ExN;

YEdB5(0;)

22y sup Py(k=Nj).
Y€IBs(0;)

The main difference is that if the integration starts from oy (the first visiting time of
U jer\(119Bs(0;)), then any summation appearing in the upper bounds should sum
over all indices in L \ {1} instead of L.

Owing to its frequent appearance but with varying arguments, we introduce the
notation
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%) .
IG1 1: £ A) = / e HID L (X0)ds, (78)

141
and write 1°(¢; f, A) if t; = 0 and 1 = so that, e.g., S| = I°(t; f, A).

Corollary 7.11 Given any measurable set A C M, a measurable function f : M — R,
j € Lands > 0, we have

lim inf —¢ log sup  E I°(zf; f, A)
e=>0 2€9B;5(01)

> min { liminf —¢ log sup E;N; |+ liminf —¢log sup  EI°(t1; fLA) ] ¢,
JeL | =0 2€9B5(01) e=>0 2€3B5(0;)

and

lim inf —¢ log sup  E.I°(ty; f, A)* | > min (1%;1) A 1%5.2)) ,
e=0 z€9B5(01) JeL

where

RY = lim inf —elog sup  E I%(ty; f, A)2 + lim inf —¢ log sup  E;N;
! £=0 2€0B5(0;) =0 2€0B5(01)

and

R? = 21im inf —elog sup  E I%(t1; f, A) | + liminf —& log sup  E;N;
/ £=0 2€B5(0;) =0 2€0B5(01)

. . o
+ h;nﬁlgf —elog (ZZ:I su P, (Z < Nj)) .

p
2€9B5(0))

Proof For the first part, applying Lemma 7.8 with g(x) = et 0] 4 (x) and using
(7.1) and (7.2) completes the proof. For the second part, using Lemma 7.9 with g(x) =

et 14 (x) and using (7.1) and (7.2) again completes the proof. O
Remark 7.12 Owing to Remark 7.10, we can modify the proof of Corollary 7.11 and

show that given any set A C M, a measurable function f : M — R, j € L and
s >0,

lim inf —¢ log sup  EzI°(o5.1(: f. A)
e—~>0 2€dBs(01)

> min_ {liminf —elog sup  E;N; | +liminf —¢log sup  E;I(tq; f, A) .
Jel\{1} | =0 2€9B5(0) e=>0 2€3B5(0;)
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Moreover,

liminf —¢lo su E.I°(cS, 78 f,A)? ] > min (Ié(.l)/\li’(.z)),
£=0 g<zeaB£ol> oo jeb\y \J T

where the definitions of ﬁ;l) and 12’5.2) can be found in Corollary 7.11.

We next consider lower bounds on

lim inf —¢ log sup  E I°(zry; f,A)| and
e=>0 2€9B5(0))

lim inf —¢ log sup  EI°(ty; f, A)?
=0 z€9Bs(0))

for j € L. We state some useful results before studying the lower bounds. Recall also
that 71 is the time to reach the §-neighborhood of any of the equilibrium points after
leaving the 2§-neighborhood of one of the equilibrium points.

Lemma 7.13 For any n > 0, there exists 5o € (0, 1) and g9 € (0, 1), such that for all
8 € (0, 6p) and € € (0, &)

1 n
sup E,t1 < et and sup E; (rl)2 <ect.
xeM xXeM

Proof If x is not in Uy B2s(O;), then a uniform (in x and small &) upper bound on
these expected values follows from the corollary to [12, Lemma 1.9, Chapter 6].

If x € Ujer B2s(0Oj), then we must wait till the process reaches Ujecy 0 B25(0;),
after which we can use the uniform bound (and the strong Markov property). Since
there exists § > 0 such the lower bound P, (inf{r > 0 : X7 € U;c10B2s(0;)} <
1) > e~ "/2 s valid for all x € Ujer B2s(0;) and small ¢ > 0, upper bounds of the
desired form follow from the Markov property and standard calculations. O

For any compact set A C M, we use U4 to denote the first hitting time
P4 =inf{r >0:X] € A}.

Note that ¥4 is a stopping time with respect to filtration {F; };>¢. The following result
is relatively straightforward given the just discussed bound on the distribution of 7y,
and follows by partitioning according to 7y > T and t; < T for large but fixed 7.

Lemma 7.14 For any compact set A C M, j € L and any n > 0, there exists
8o € (0, 1) and go € (0, 1), such that for all ¢ € (0, e9) and 6 € (0, §)

sup P, (94 < 1p) < e ¢ (el V(00)]=m)
z€9B;5(0;)
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Lemma 7.15 Given a compact set A C M, any j € L and n > 0, there exists
8o € (0, 1), such that for any § € (0, 8p)

7
lim inf —¢ log sup E, [/ 14 (Xf) ds] > inf V (Oj, x) -7
e—~>0 2€dB5(0)) 0 xeA

and

7 2
limi(r)lf—slog< sup E; </ L4 (X;:)ds) ) > inf V (0j,x) —n.
0

E—> 26335(0_,') X€EA

Proof The idea of this proof follows from the proof of Theorem 4.3 in [12, Chapter
4]. Since 1¥(1; 0, A) = [, 14 (X£) ds, for any x € 9B5(0;),

E I%(11;0, A)
= E [I°(11: 0, A) 1y, <} | = Ex [Ex [I°(z15 0, A)| Fo, | Lo, <r1}]

=E; [(Eng I¢(11: 0, A))l{ﬂAfrl}] = SUPyeya EyTi - SUP.eypy0;) Pr (P4 = T1).
The inequality is due to Exg I¢(71;0,A) < EX§ TI < SUPyega E,71. We then apply
A A

Lemmas 7.13 and 7.14 to find that for the given n > 0, there exists §o € (0, 1) and
go € (0, 1), such that for all € € (0, g9) and § € (0, &),

/2 ; .
E.I°(11:0,A) < sup Eyry - sup  Po (04 < 1) <e' e (heaV(00)=n/2),
yeIA 2€0B5(0;)

Thus,
lim inf —e log (8up.cs5,(0,) E<1° (7130, 4)) = inf V (0;,%) = n.
This completes the proof of part 1.
For part 2, following the same conditioning argument as for part 1 with the use of

Lemmas 7.13 and 7.14 gives that for the given n > 0, there exists 59 € (0, 1) and
go € (0, 1), such that for all € € (0, g9) and § € (0, §p),

/2 1(inf .
E I°(11;0,A)° < sup Ey (11)>+ sup P, (94 <71) < ¢ e ¢ infreaV(0;0)=n/2),
yEIA 2€0Bs(0;)

Therefore,
. . 2 .
11£Il)l(r)lf —c¢log (SupzeaBg(O_/) E.I°(11;0, A) ) > ;relg Vv (Oj, x) — 1.
O
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Lemma7.16 Given compact sets A1, Ay C M, j € L and n > 0, there exists
8o € (0, 1), such that for any § € (0, 8p)

T T1
lim inf —¢ log sup E, [(/ 1, (Xf) ds) (/ 14, (Xf) ds)]
e=0 2€dB5(0)) 0 0

> max {xlenlg1 |4 (Oj, ),xiél/fz V(Oj,x)} — 1.

Proof We set 94, =inf {r > 0: X{ € A;} fori =1,2. Forany x € 9Bs(0;), using
a conditioning argument as in the proof of Lemma 7.15 we obtain that for any n > 0,
there exists §g € (0, 1) and g9 € (0, 1), such that for all € € (0, g9) and § € (0, §¢),

([ i) ([ )
[(/ / Lay (XE) 14, (X f)dsdz>1{m1m2§n}]
:EXK Xy o, U / Tay (X) 14, (X f)dserHﬁAlwAzfn}}

= SUPycha,u94, Ey (T)*- SUPzeaBs(0;) Pz (94, < 11,04, < T1)

n/2 .
<e ¢ -min {supzeaBa(Oj) P, (ﬁAl < rl) s SUPze B, (0) P, (ﬁAz < rl)} , (1.9

The last inequality holds since fori = 1, 2
SUP_capy(0,) Pz (94, < 71,04, < T1) < SUP.cypy0,) P (P4, < 1)

and owing to Lemma 7.13, for all ¢ € (0, &)

2 n/2 2 n/2
SUPyega, Ey (T1)7 < e’ and supycyq, Ey (11)" < e .

Furthermore, for the given n > 0, by Lemma 7.14, there exists §; € (0, 1) such
that for any § € (0, §;)

lign_j(r)lf —elog (supZEE)Bg(Oj) P (94, < ‘L’1)> > inf V (0j,x) —n/2

XEA;
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fori = 1, 2. Hence, letting 69 = 81 A 82, for any § € (0, §p)

T] 71
lim inf —¢ log (supzeaBa(oi)EzK/O 14, (Xﬁ)ds> (/0 14, (Xﬁ)ds>]>

.. .
> lim inf —¢ log (625 min IsupzeaBa(Oj) P, (19,4, < rl) »SUPe3 By (0;) P, (z?Az < rl)])

e—0

> —1n/2 4+ max {lign_)i(t)lf —¢elog (supzeaga(oj) P, (19A1 = Tl)) )

hgl_)l(l)lf —& log (SupZEBB{S(O]') PZ (ﬁAZ < TI))}

> max {ianEA1 \% (Oj,x),infxeA2 \% (Oj,x)} —-n.

The first inequality is from (7.9). O

Remark 7.17 The next lemma considers asymptotics of the first and second moments
of a certain integral that will appear in a decomposition of S§. It is important to note
that the variational bounds for both moments have the same structure as an infimum
over x € A. While one might consider it possible that the variational problem for
the second moment could require a pair of parameters (e.g., infimum over x, y € A),
the infimum is in fact achieved on the “diagonal” x = y. This means that the biggest
contribution to the second moment is likewise due to mass along the “diagonal.”

Lemma 7.18 Given a compact set A C M, a continuous function f : M — R, j € L
and n > 0, there exists 8y € (0, 1), such that for any é € (0, §)

lim inf —¢ log sup  E I°(zy; f, A) | > inf [f x)+V (OJ-,x)] -
e>0 2€8B5(0}) xeA

and

liminf —elog | sup E.I°(ti; £, A)? | = inf [2f (x) + V (0}, x)] = n.
e—0 16335(0/') xX€eA

Proof Since a continuous function is bounded on a compact set, there exists m €
(0, 00) such that —m < f(x) <mforallx € A. Forn e Nandk € {1,2,...,n},
consider the sets

. 2k —1)m 2km
An,kz{xeA:f(x)e|:—m+T,_m+Ti“_

Note that A, x is acompact set for any n, k. Inaddition, forany n fixed, | J;_; An x = A.
With this expression, for any x € 9B5(0;) andn € N

n
E;I°(uis foA) <) Exl™(vi: fo Au)

n . B
= Zk:l Exl‘s(‘[l; O, An,k)e E(F,,‘k Zm/n)‘
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The second inequality holds because by definition of A, x, forany x € A, x, f(x) >
Fux —2m/n with Fy, j = SUPyea, f o).

Next, we first apply (7.2) and then Lemma 7.15 with compact sets A, ; for k €
{1,2,...,n}to get

liminf —slog | sup E.I°(ty; f, A)
e=0 2€0Bs(0;)

. . . & _l(Fnk_zﬂ)
>  min hml(l’)lf —elog sup E I°(71;0,App)e V7"
E—>

kefl,...,n} 2€3B5(0;)
. o . 2m
= min lim inf —¢ log sup  E I1°(1130, Api) | + Fok ¢ — —
ke{l,...,n} e—0 z€dBs(0;) "
>  min sup f (x)+ inf V(O' x) 2’"
= kell..... n) xEAl;),k XEAL k ] n n .

Finally, we know that V (0 Iz x) is bounded below by 0, and then we use the fact that
for any two functions f, g : RY — R with g being bounded below (to ensure that
the right hand side is well defined) and any set A C RY, infreq (f (x) + g (1)) <
Sup,cq f (x) +infrea g (x) to find that the last minimum in the previous display is
greater than or equal to

min }{ inf [f(x)+V(0.,~,x)]}:;relg[f(x)—}-V(Oj,x)].

ke{l,..., X€A k
Therefore,
. . & 3 Zm
lim inf —¢ log sup  EI°(ti; f,A) ) = inf [f(x) +V (0, x)] —n——.
=0 z€dBs(0;) red "

Since n is arbitrary, sending n — oo completes the proof for the first part.
Turning to part 2, we follow the same argument as for part 1. For any n € N, we
use the decomposition of A into (Ji_; A« to have that for any x € 9Bs(0;),

2
n
Exls(rl; fa A)z < Ex (Zlg(fl; fa An,k))
k=1

=Y Y E[I(s f, A I (s £ Ano)].

k=1 t=1

Recall that F, x is used to denote supyc, , f (v). Using the definition of A, x gives
that forany £, £ € {1, ..., n}
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Ey [18(7:1; fs An,k)le(fl; f’ An,(i)]

< sup  E [I°(t150, Ap i) IF (1150, Ay )] e
2€0B5(0))

( Fo i+ Fn, liﬂ)

Applying (7.2) first and then Lemma 7.16 with compact sets A, ; and A, ¢ pairwise
forallk, ¢ € {1,2,...,n} gives that

liminf —elog | sup E.If(ti; f, A)?
e=0 2€9B5(0;)

> min liminf —glog sup E, [15(11; s An)If(1s f, An,g)]

k,te{l,..., n} e—>0 ZEBBS(OJ')
. . 4m
>  min max { inf V(OJ, ) inf V(Oj,x) +Fox+ Fooeg —n——
k,te{l,...,n} XEAL K X€An n
> min 4 sup [2f (0] + inf v(o x) b - _dm
~ kellon) XEAI:k i T~
4m
>  min inf |2 V(0;, -n—-—
- ke{l,l...,n} {XéAn.k [ Fe+ ( ! x)]} 7 n
4m
= inf (2 V(0;, -n—-—.
inf [2f () +V (0, x)] —n——
Sending n — oo completes the proof for the second part. O

Our next interest is to find lower bounds for

o
liminf —¢ log sup E;N; | and liminf —¢ log Z sup P, (E < Nj) .
60 2€dB5(01) e~>0 1= 2€9B5(0))

We first recall that N; is the number of visits of the embedded Markov chain {Z,,},, =
{X3,}n t03B5(0)) w1thm one loop of regenerative cycle. Also, the definitions of G (i)
and G(i, j) forany i, j € L with i # j are given in Definition 3.8 and Remark 3.9.

Lemma 7.19 Forany n > 0, there exists 5o € (0, 1), such that for any § € (0, 8o) and
forany j € L

ligrl)i(r)lf —c¢log (Sup26335(0|) EzNj) > _(eHLli\I{ll} V (01, Op)+W (Oj) — W (0y) —n,

where

w (OJ) = ggg?j) [Z(man)egv (Om, On)] .

Proof According to Lemma 3.17, we know that for any > 0, there exist §o € (0, 1)
and g9 € (0, 1), such that for any § € (0, dp) and € € (0, &g), for all x € dBs(0;),
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the one-step transition probability of the Markov chain {Z,}, on dBs(O;) satisfies
the inequalities

e—%(V(OiaO_j)+7]/4lil) < p(x,aBg(Oj)) < e—%(v(oi,Oj)_n/4171)' (710)

We can then apply Lemma 7.6 with p;; = e=1V(01.0)) and q = x4 (0 obtain
that

su E.N; < e’ deG(j)n o
8BP Nj = -Lvo.00 Y 7 (8)
2€3Bs(01) ZZEL\{l}e geGM)
1
e:! deG(j)” ®)

e—% minger\(13 V(O1,0¢) deG(l) b (g)

Thus,

lim inf —¢ log sup  E;N;
e=0 2€dB5(01)

> — min V (0q, Op) — lim inf —e 1
> knLn\I{ll} (01, Oy) n+lgl_gg 80g<

2 T (8)
deG(l) 7 (8)

Hence, it suffices to show that

M) > W (0) ~ W (0.

e—0

liminf —¢ I
1m 1inf —¢ log (dec(l)” (2)

Observe that by definition forany j € L and g € G (j)
_1 1
T (g) = H(m—)n)egpmn = l_[(m—wl)ege ¢ V(O On) = exp {_EZ(m—)n)EgV (Om, On) 1

which implies that

Do) T (g))

liminf —¢1
iminf —¢log (dec(l)” @)

=0

1
> i lim inf —¢ 1 —— V (O, O
> ggg?j) _1£rL161 glog (exp{ SZ(m—m)eg (Om n)}):|

1
— rnin) |:lim sup —e log <exp {_EZ(m—)n)EgV (Om, 0n)}>]

geG( e—0
= ggg?j) _Z(m%n)egv (Om’ 0”)] - gglGiI(ll) I:Z(mﬁn)egv (Om’ 0”)]

=W (0;)— W (0).
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The inequality is from Lemma 7.1; the last equality holds due the definition of W (0 j).
(]

Recall the definition of W (O U O;) in (3.3). In the next result, we obtain bounds
on, for example, a quantity close to the expected number of visits to Bs(O;) before
visiting a neighborhood of Oy, after starting near O;.

Lemma 7.20 For any n > 0, there exists §o € (0, 1), such that for any § € (0, &)

o]

liminf —¢ lo su P, <Np)|>— min V(01,00 —n
£—0 £ <;Z€33£0|) ‘ eeL\(1)

and forany j € L\ {1}

o0

lim inf —¢ log Z sup P, (E < Nj) > W(O1U0;) —W(01) —n.
e—=>0 11 2€9B5(0))

Proof We again use that by Lemma 3.17, for any n > 0 there exist §p € (0, 1) and
€o € (0, 1), such that (7.10) holds for any § € (0, ép), e € (0, g9) and allx € dBs(O;).
Then, by Lemma 7.6 with p;; = e"1V(01:0)) and g = e /4

00 1

e&
sup Py (Np1 >¥0) <
1= X€0B;5(0;)

zeL\{l}eiév(O"OO

and forany j € L\ {1}

> h 7T (8)
sup Py (Nj =€) < eé”—zgeG(l’” &
1 x€dBs(0;) 2 ey T (&)
Thus,
o0
lim inf —¢ log Z sup P, (¢ < Njp)
£=0 11 2€9B;5(01)
1
> —lim sup —¢ lo ( eiEV(Ol’Ol)) —
- s—>0p £ Z:eeL\{l} 1
and

oo
lim inf —¢ log sup P, (£ <N;
e=0 (; 2€dB5(0)) :( j))

deG(l,j) 4 (g)) B

> liminf —¢ log
e—>0 < 2 eecy T (&)
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Following the same argument as for the proof of Lemma 7.19, we can use Lemma 7.1
to obtain that

1
. —el (§ : ng(Ol,Oe)) > _ in V(0,0
n;]_f(l)lp elog cerny - zé’i‘\?u (01. On)

and
ST
lim inf —¢ log Lgeca ™ (8)
0 2 eecy T (&)

= min [SonegV On 00)] = min [0, 0,V (On. 00)].

Recalling (3.2) and (3.3), we are done. O

As mentioned at the beginning of this subsection, our main goal is to provide lower
bounds for

7y .
lim inf —é¢ log sup E, / et/ (XD) 14 (Xf) ds
=0 2€8B5(01) 0

and

& 2

Tl .

lim inf —¢ log sup E, / e~/ (XD) L4 (X5)ds
e=0 2€3B5(01) 0

for a given continuous function f : M — R and compact set A C M. We now

state the main results of the subsection. Recall that 71 = minger\(1; V (O1, Oy),
. £ _1p(oye ..

Sy = fOTI e e (XD, (Xf) ds and W (Oj) = mlngeG(j)[Z(m—ﬂz)eg V (O, O]

and the definitions (7.8).

Lemma 7.21 Given a compact set A C M, a continuous function f : M — R and
n > 0, there exists 8o € (0, 1), such that for any 6 € (0, §y)

lim inf —¢ lo su E.S¢ Zmin{inf X)+V(0i,x)|+W(0; }
mr=eve| g, 51 = s 0 001 w0

—W(01) —hy —n.

Proof Recall that by Lemma 7.18, we have shown that for the given n, there exists
81 € (0, 1), such that for any § € (0,61) and j € L

NSRS

lim inf —¢ log sup  E I°(zy; f, A) | > inf [f x)+V (Oj,x)] -
e—0 16838(01') xXeA
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In addition, by Lemma 7.19, we know that for the same 7, there exists 8, € (0, 1),
such that for any § € (0, 63)

limi(I)lf —clog (supzeaga(ol) EZN]-) > —[Hzi\l?l} V (01, 0p) +W (Oj) — W (01) —n/2.
E—> €

Hence, for any § € (0, §p) with §o = §1 A &2, we apply Corollary 7.11 to get

liminf —elog [ExI¢(tf; f, A
1;11_)18 80g[x (1 f )]

> min  liminf —¢ log sup  E;I%(ty; f, A) | + liminf —e log sup E; (Nj)
jeL | e=0 2€0B5(0;) e—>0 2€3B5(01)

> min { in

mip 08 (70 0,:0)]4 W (@)} = 00 =i =1

where 77 is the time for a regenerative cycle and 1y is the first visit time of neighbor-
hoods of equilibrium points after being a certain distance away from them. O

Remark 7.22 According to Remark 7.12 and using the same argument as in
Lemma 7.21, we can find that given a compact set A C M, a continuous function
f:M — Randn > 0, there exists §o € (0, 1), such that for any é € (0, dp)

liminf —glog| sup E.I°(0;. (5 f, A)
e—0 z€dB;s(01)

> min {inf [f(x)+v(0,-,x)]+w(0j)} —W (01 —hi —n.

T jeL\{l1} |xeA

Lemma 7.23 Given a compact set A C M, a continuous function f : M — R and
n > 0, there exists 8o € (0, 1), such that for any § € (0, §y)

- 2 : (6] (@)
llgll)l(l)lf —elog [supzeaBS(Ol) E.(S)) ] > 1}16121 (Rj A R; ) —h1 —n,
where S¢ = [¢1 e=+/ (XD 1, (X¢) ds and hy = mingep\(1) V (01, Op), and

R;” = inf [2f (x)+ V(0. x)]+ W (0;) — W (O1)

R® =2inf [f (¥) +V (01, 0)] = hy
and for j € L\ {1}

RY =2 inf [/ (x) +V (05, x)] + W (0;) =2W (O + W(01 U 0)).
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Proof Following a similar argument as for the proof of Lemma 7.21, given any n > 0,
owing to Lemmas 7.18, 7.19 and 7.20, there exists §o € (0, 1) such that for any
6 € (0,8p) and forany j € L

l1m 1nf —¢elog

4>.|3

sup  E I%(ty; f, A)) > 1nf [f x)+V (OJ,x)]
2€0B5(0;)

e—>0 2€8B5(0))

hm 1nf —¢elog
z€dBs(01)

lim inf —¢ log ( sup  E I%(z1; f, A)2> > ing [2f (x)+V (0j.x)] - %’

sup  E N,) > —h + W (0;) — W (0) — g,

n
lim inf —¢ log sup P.L<Np|>-h ——,
=0 <; z€dBs(0y) ) 4

and forany j € L\ {1},

liminf—elog [ Y52, sup P (¢ < N;)| = W(0i1U0/)—W©)-"1
e=0 2€0B5(0) ' ' 4

Hence, for any § € (0, §p) we apply Corollary 7.11 to get

lim inf —& log sup E, (Sf)2 > min (R(]) A R(z))
e—0 2€dBs(01) JjeL

where

R;l) = liminf —¢ log sup  E.I°(ti; f, A)* | + liminf —¢ log sup E;N;
e=>0 2€0B5(0)) e=0 2€0B5(0))

> inf [2f () +V (0}, x)] + W (0;) = W (01) — Iy —n=R"—h -y
and

R(z) = 211m1nf —elog sup  E I°(t1; f, A)
z2€dB5(01)

+ lim inf —¢ log sup  E Ni | +liminf —elog [ >52, sup P, (£ < Np)
e=0 2€0B5(01) e=>0 2€dB5(01)

. n n n
2(;23 [f (@) +V (01,01 - Z) +(-ti=2)+(-m-3)
=21nf [f (1) +V (01,01 = 2 = = R —hi =1
X€E
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and for j € L\ {1}

R? = 21im inf —clog sup  E I%(t1; f, A)
! e=0 2€9B5(0)

+ lim inf —¢ log sup  E;Nj | +liminf—elog(>92; sup P (£ <N;)
e—>0 2€3B5(01) e=>0 2€0B5(0;)

. n U
> 2(;23 [f ) +V(0j.x)] - Z) + (—h1 +W(0j)—W () - Z)
+(worvop-won-7)
=2 igg[f(x)-f-V(Oj,x)]-l—W(Oj)—2W(01)+W(01 U0j)—hi—n

:R}Z)—hl - .

7.3 Asymptotics of Moments of 318
Recall that
N f;’g 1 &
e = / e XD 1, (X8 dt,
T

where ff is amulticycle defined according to (6.4) and with {Mf }ien being a sequence
of independent and geometrically distributed random variables with parameter e ~""/¢
for some m > 0 such that m + hy > w. Moreover, {M!} is also independent of {z,;}.
Using the independence of {M?} and {z,;}, and the fact that {z;} and {S};} are both iid

under Pye, we find that {S'ﬁ} is also iid under Pys and
Ej S5 = E;eMS - Eje S8 (7.11)

and

Varye 8§ = Eje MY - Varye (S7) + Varze (M5) - (Ej=57)?
< E}&"Mi - Eje (Sf)z + Var,e (M?) . (E)&?Sf)z (7.12)

On the other hand, since M is geometrically distributed with parameter e™/¢ this
gives that

EjME = e and Varye (M) = e & (1 —e ¢). (7.13)

Therefore, by combining (7.11), (7.12) and (7.13) with Lemma 7.21 and
Lemma 7.23, we have the following two lemmas.
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Lemma 7.24 Given a compact set A C M, a continuous function f : M — R and
n > 0, there exists 8y € (0, 1), such that for any § € (0, §y)

lim inf —¢ log Eje S§

e—0

> min { inf v (0;, W (0;)t —W(0y) — hy) — 1.
_rjne]?{;léA[f(x)—i- (0j.x)] + (1)} (O1) —(m+hi)—n

Lemma 7.25 Given a compact set A C M, a continuous function f : M — R and
n > 0, there exists 8y € (0, 1), such that for any 5 € (0, §y)

lim inf —e log Var;« (§¢) > min (R;l) ARD A Rf*’”)) —m+hy) -,

e—0

where R;l) and R;z) are defined as in Lemma 7.23, and
Rf’”“ =2 inf [/ @)+ V(0),x)] +2W (0;) —2W (O1) — (m + hy).
X

Later on, we will optimize on m to obtain the largest bound from below. This will
require that we consider first m > w — ki, so that as shown in the next section N*(7°¢)
can be suitably approximated in terms of a Poisson distribution, and then sending
ml w—hy.

8 Asymptotics of Moments of N%(T¢) and N%(T¢)

Recall that the number of single cycles in the time interval [0, 7¢] plus one is defined
as

NS(Ts)iinf{neN:t,f>Tg},

where the 77 are the return times to Bs(O;) after ever visiting one of the §-
neighborhood of other equilibrium points than Oj. In addition, A° is the unique
invariant measure of {Z}, = {X % }n- The number of multicycles in the time interval
[0, T¢] plus one is defined as

N®(T¢) =inf {n e N: £ > T*},

where 7 are defined as in (6.4).
In this section, we will find the logarithmic asymptotics of the expected value and

the variance of N¢ (T¢) with T¢ = ¢+¢ for some ¢ > h1 in Lemmas 8.2 and 8.4 under
the assumption that 7; > w (i.e., single cycle case), and the analogous quantities

for N¢ (T?%) with T* = ¢ for some ¢ > w in Lemmas 8.19 and 8.21 under the
assumption that w > h; (i.e., multicycle case).
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Remark 8.1 While the proofs of these asymptotic results are quite detailed, it is essen-
tial that we obtain estimates good enough for a relatively precise comparison of the
expected value and the variance of N¢ (T'¢), and likewise for N°¢ (T*¢). For this, the key
result needed is the characterization of N (T¢) (and N¢ (T¢)) as having an approxi-
mately Poisson distribution. These follow by exploiting the asymptotically exponential
character of t° (and 7,}), together with some uniform integrability properties.

Lemmas 8.2 and 8.4 below are proved in Sect. 8.3.

Lemma8.2 Ifh; > wand T® = eécfor some ¢ > hjy, then there exists 5y € (0, 1)
such that for any § € (0, 8p)

E)e (N®(T® 1
lim inf —¢ log e (VC(TT)) > c.

e—0 T¢ E)\e 'L'ls

Corollary8.3 Ifh| > wand T¢ = e%"for some ¢ > hy, then there exists 8o € (0, 1)
such that for any § € (0, 8p)

E: (N*(T7) _ o

liminf —¢1 ,
12138 ¢ log Ts > s

where 35 = minyEUkeL\(l}aBa(Ok) V(O1,y).

Lemma84 Ifh| > wand T = eFC for some ¢ > hy, then for any n > 0, there
exists 6o € (0, 1) such that for any § € (0, &p)

Var;s (N¢ (T¢
liminf — log Y2 V- T7)

e—0 T¢

—.

Before proceeding, we mention a result from [11] and define some notation which
will be used in this section. Results in Section 5 and Section 10 of [11, Chapter XI]
say that for any ¢ > 0, the first and second moment of N¢ (f) can be represented as

00 ) [}

Epe (N*0) =)~ P (t; <1) and Exs (N ()" =)~ @n+1) P (15 <1).
8.1)

Let I'* = T°/Ejet{ and y* = (€)= with some ¢ € (0, 1) which will be cho-

sen later. Intuitively, I'® is the typical number of regenerative cycles in [0, T¢] since

Ej:1{ is the expected length of one regenerative cycle. To simplify notation, we pre-

tend that (1 +2y°) "¢ and (1 — 2y%) I'® are positive integers so that we can divide
E;: (N® (T?)) into three partial sums which are

o0 (1+42y4)T¢

‘Bl = Zn:(]+2y5)l—‘5+l PAE ('L’;:: < Tg) s ‘132 = Zn=(172y5)r‘5 P)Ls (‘L’; < Ts)

and

q33 - Z(I—ZVS)FS_I P (frf < Tg) . 8.2)

n=0
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Similarly, we divide E;e (N¢ (T¢))? into

%) (142y4)re
K= Y @ADPe( =T, = Y @+ DPe(f <T)
n=(142y&)Ie+1 n=(1-2y*)I¢
and
) (1=2y5)T—1
Ry = . 4 @n+1) P (8 < T9). (8.3)
n=

The next step is to find upper bounds for these partial sums, and these bounds will help
us to find suitable lower bounds for the logarithmic asymptotics of Eye (N¢ (T¢)) and
Var,: (N¢ (T?)). Before looking into the upper bound for partial sums, we establish
some properties.

Theorem 8.5 If h| > w, then for any § > 0 sufficiently small,
limoelog Ejety = »s and t [Ejetf LY Exp(1).
£—>

Moreover, there exists gy € (0, 1) and a constant ¢ > 0 such that
Pye (rf/E)»srf > t) <e @
foranyt > 0 and any € € (0, &9).

Remark 8.6 For any § > 0, 55 < h;.

The proof of Theorem 8.5 will be given in Section 10. In that section, we will first
prove an analogous result for the exit time (or first visiting time to other equilibrium
points to be more precise) and then show how one can extend those results to the return
time. The proof of the following lemma is straightforward and hence omitted.

Lemma8.7 Ifh > wand T® = esC for some ¢ > hy, then for any n > 0, there
exists 6o € (0, 1) such that for any § € (0, &),

hi —n > lim —glog'® > hy — ¢ — 1.
e—0

Lemma 8.8 Define Z{ = t{/Ej:t{. Then, for any § > 0 sufficiently small,

o there exists some &g € (0, 1) such that sup,¢ g ¢ Exe (Zf)3 < 00,
o there exists some gy € (0, 1) such thatinf ¢ ¢y Varye (Z7) > 0and E)e (Zf)z =
Eje (rf)z / (E)Lel'f)z — 2ase — 0.

Proof For the first part, we use Theorem 8.5 to find that there exists &g € (0, 1) and a
constant ¢ > 0 such that

Py (Zlg > t) = Pje (‘L’f/E)LS‘L'fj > t) < e ¢!
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for any t > 0 and any ¢ € (0, g9). Therefore, for ¢ € (0, &9)
3 0o [e9) N
Ex (27) = 3/ 2P (28 > 1)dt < 3/ t2e % dt < oo.
0 0

For the second assertion, since supg_,_, Exe (le)3 < oo, it implies that
2 . .
{(Zf) Jo<e<e, and {Zf }0<e<go are both uniformly integrable. Moreover, because

Z7 —d> Exp(l) as ¢ — 0 from Theorem 8.5 and since for X 4 Exp(l), EX =1
and EX?% = 2, we obtain

E)Ls (Tf/EAng)z = E)\s (Zf)z — 2 and E)LSZIE — 1.

as & — 0. This implies Varye(Z{) — 1 as ¢ — 0. Obviously, there exists some
€0 € (0, 1) such that infz¢ (g ¢,) Varye (Zf) > 1/2 > 0. This completes the proof. O

Remark 8.9 Throughout the rest of this section, we will use C to denote a constant in
(0, 0o) which is independent of ¢ but whose value may change from use to use.

8.1 Chernoff Bound

In this subsection, we will provide upper bounds for

o0 o0
Py = > Pie (tf < TF) and R = > Qn+1) Py (zf < T°)
n=(142y)e+1 n=(142y)re+1

via a Chernoff bound. The following result is well known, and its proof is standard.

Lemma 8.10 (Chernoff bound) Let X1, ..., X, be an iid sequence of random vari-
ables. For any a € R and for any t € (0, 00)

n
P(Xi++X,<a)< (Ee—’Xl) e,

Recall that I'* = T¢/E;e1{ and y°® = (') =% with some £ € (0, 1) which will be
chosen later.

Lemma 8.11 Given any § > 0 and any £ > 0, there exists gy € (0, 1) such that for
any ¢ € (0, g9)

P;e (flf < Ta) < e—n(Ff)*ZZ
forany n > (1 4+2y*®) I'é. In addition,

(I;l < C (FS)ZZ e*(FS)I*M and ml < C (l—ws)1+2€ 67(F8)172£ +C (l—,g)4€ e,(rE)l—Zé.
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Proof Givend > 0, £ > 0 and ¢ € (0, 1), we find that forn > (1 + 2y¢) I'¢

3 £ __ L€ L
P (v < T%) = Py (rl + (7 — 7 )E"; ~ + (75—t 1) < l—-s)
“h
o (FHE o )
= E)\S‘L’IS - 1—|—2)/€

o
< (E)Lge_yszlg) e ligys ,
where Z{ = 1{/E;st{. We use the fact that {t; — 7;_,},en are iid and apply

Lemma 8.10 (Chernoff bound) witha = n/ (1 + 2y¥) and t = y? for the last inequal-
ity. Therefore, in order to verify the first claim, it suffices to show that

<EA€€7V€Zf) e$ <o = m 7
We observe that for any x > 0, e < 1 —x 4 x?/2, and this gives
Bree 5 < 1= By (v 2) + B (V°20) 2= 1=y 4+ () Bae (20)7 /2.

Moreover, since we can apply Lemma 8.8 to find E)¢ (Z’f)2 — 2 as e — 0, there

exists &g € (0, 1) such that for any ¢ € (0, g9), Eje (Zf)2 < 9/4. Thus, for any
¢ € (0, &o)

(Exse_yng) e < exp {7/8/(1 +29°) 4 log(1 — ° + (9/8) (yf)z)} .
Using a Taylor series expansion, we find that for all [x| < 1
J/0+x)=1—-x+0 (xz) and log (1 +x) = x —x2/2+ O (x3>,
which gives

Yo /(1 +2y°) +log(1 — y° + (9/8) (v°)")
=" —2(¥°) 1=+ O/8) ()1 = [=¥" + 9/8) (v°) TP/2 + O((*))
= —11/8) (v*)* + 0((»*))) = - (»*)".

for all ¢ € (0, &9). We are done for part 1.
For part 2, we use the estimate from part 1 and find

il il . —(142y5) (%)
> ohgsrys Y enr ST
n=(14+2y)Te+1 n=(14+2y)Te+1 I—e= 9
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Sincee™ < 1—x+x2/2f0ranyx € R, wehavel —e™* > x—x2/2 >x—x/2=x/2
forall x € (0, 1), and thus 1/(1 —e™) <2/x forall x € (0, 1). As a result,

0 e (27T (%) 2

Z Py (r, <T°) < o = 2
n=(1+2y5)re+1 I —e=9 )

ENTE (1,€)2
e~ 2O ()

<2(rf)* e ™

This completes the proof of part 2.
Finally, for part 3, we use the fact that for x € (0, 1), and for any k € N,

Zzo:k nx" = kxk(l — .X')_l +xk+1(1 _ x)—z < (k(1 — x)_l + (- x)_z)xk_

Using the estimate from part 1 once again, we have

o0 o0 N
_ &
nPe (r,f < TS) < E ne ")
n=(1+2y¢)le+1 n=(142y¢)re

_ (U2 (1- efmz)‘z (27T )
T\ 2 e r9?

< (4(r0) P 4 a () ) e
We are done. m]

Remark8.12 1f 0 < ¢ < 1/2, then *PB; and 9R; converge to 0 doubly exponentially
fast as ¢ — 0 in the sense that for any k € (0, c0)

lim i(r)lf —c¢log [(Fs)k e_(rs)l_n] = oo.
£—>

8.2 Berry-Esseen Bound

In this subsection, we will provide upper bounds for

(14+2y5)re (14+2y4)re
Po= > Pe(rf=TH)and% = Y Qn4 )P (rf <TF)
n=(1-2y®)Ir¢ n=(1-2y®)re

via the Berry—Esseen bound.
We first recall that I'* = T¢/E$.t{. The following is Theorem 1 in [11, Chapter
XVL5].

Theorem 8.13 (Berry—Esseen) Let { X, },cn be independent real-valued random vari-
ables with a common distribution such that

E(X)=0,0?=EX)>>0, p=E|X;]? < .
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Then, for all x € Randn € N,

X1+ + Xy
PN =) o)

where ® () is the distribution function of N (0, 1) .

3p
o3yn’

Corollary 8.14 For any ¢ > 0, let {Xfl }neN be independent real-valued random vari-
ables with a common distribution such that

2. 2 . 3
E(X{)=0, (c°)" =E(X{)" >0, p° = E|X{|" < 0.
Assume that there exists gg € (0, 1) such that
A A2 .- 2
P = SUPec(ge P° < 00 and 6% = infec(0,e0) (0F)” > 0.

Then forall x € R,n € Nand ¢ € (0, &9),

&

‘P(Xf+~-~+X,ﬁ 3p 3p
atn RSN =N

Lemma 8.15 Given any § > 0 and any £ > 0, there exists gy € (0, 1) such that for
any ¢ € (0, &9) and k € Ny, 0 < k <2y°r®

§x>—d>(x) <

k 30
Pie (Toe, , <T?)<1—® +
b (e <) (am) 63T +k

and
k 3p
Pye ri_ngscb( >+ ,
(s ) ot JTE — k)  63JTF —k
where (0€)2 = Ee (fi)z, P = SUP.c(0.ey) Er |%§|3 < o0 and 6% =

infee(0,60)(0)* > O with X§ = tf /Ef, 7§ — 1.

Proof For any n € N, we define X;, = 27 — Ej. Z{ with 2} = (t; —t}_|)/Ej.7}.
Obviously, E;sZ° = 1 and E;sX{ = 0 and if we apply Lemma 8.8, then

we find that there exists some &y € (0,1) such that sup,c( ) Exe (21)3 <
oo and 1nf€e(0 £0) VarAs (27) > 0. Since Z{ > 0, Jensen’s inequality implies

(EAst) < Eje (Zf) , and therefore

p= 4suPse(0,so) (E)ug (Zf)3 + (E)»ng)3) = 8supse(0,so) Eje (Zf)3 < 00,
and
6% = infee(0,69) Ene (%i)z =infge(0,¢y) Vare (Zlg) > 0.
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Therefore, we can use Corollary 8.14 with the iid sequence {%fl }n oy to find that for
any k € Npand 0 < k < 2y°T'*

P)‘.S (TFS+k < Tﬁ) = P)ﬁ”’ (Zf + -+ ZliSJrk < Fs)

::fas <
of/Te +k ofTe+k

51—d>< ‘ )+A r_
o¢JTE +k 63JT¢ +k

and similarly

k 35
Pie (the_, <T?) < ® + .
i (T ) <oe re—k) 63JT% —k

m}

Lemma 8.16 Given any § > 0 and any £ € (0, 1/2), there exists gy € (0, 1) such that
1
forany e € (0, g9), Pr < C (reyz=t 4 2e)l-t.

Proof We rewrite 13, as

2y°re 2y ETE
P2 = Zk:l Py (tfe g < T°) + P (e < T°) + Zk:l Pie (g = T°).

Then, we use the upper bounds from Lemma 8.15 to get
2pfTe

k 35
P2 = ,; [CD (05«/1"5 = k) LS k}

2yfT®

k 30
+1+Z[1—q>( )+A L }
Pt otJTe +k 63T +k
2yfTe
_ 2.

4p k k
VTE +1429°T° | ———— || - —————— ) |.
=y VAT ; [ <gm) (a\/F—Hc)}

The sum of the first three terms is easily bounded above by C (I'® )%—e +2(r5' 4
We will show that the last term is bounded above by a constant to complete the proof.

To prove this, we observe that for any k < 2y°I"®, we may assume k < I'¥/2 by
taking ¢ sufficiently small. Then, we apply the Mean Value Theorem and find

k k
< sup ¢ (x) ( - )
xe[mk 3k ] ot JI'¢ —k ot JIé+k

o€JTE  6EJTE
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r2
where ¢ (x) = e~ 7 /+/2m and since 0 < k < I'¥/2, we have

e ][ 2]

otTE +k ot JTE —k ot JTE oe/TE

2
Additionally, because ¢ (x) = e~ 2 /+/2m is a monotone decreasing function on
[0, 00), we find that

e
x € [(/2/3k)(c°T?), (V2k)(0°/T?)] implies ¢ (x) <e 3¢ /27,

Also, /1 +x — «/1 —x < 2x forall x € [0,1] and k < I'?/2 and a little algebra
give k//T¢ —k — k//T¢ + k < 4k*/T¢/T¢. Therefore, we find

= (e (ﬁ) o (1)

se k2 2 epe  pk 2 a2
ZQ}/ r 3(05)21_5 4k - 4 2y¢T / (1 +x) ¢ 307 dx
otle/Te ~ ofl® k=1 2n e

2

2 .
(1 A e e < LB (14 xH)?
- FF 37 (05)2 re - Ie ’

where X ~ N (0,3 (6¢)> "¢ /2). Finally, since E (1+ X'*)2 <242E (XZ) =2+
3(0%)? T, this implies that

2yer k . 6 i
(=)~ g ) | S 2+ 3(0) ) = 12418577,

/;[ <vm> <ofm>]—r8( ()°r) < P
(8.4)

where the last inequality is from

3 R
x| Y3 = pi/3,

2,12
SUPsc(0,60) O = SUPee(0,e0) (Exe(X9)9) 2 < SUPge (0,e0) (£

Since according to Lemma 8.15 ,5]/ 3 is finite, we are done. O

Lemma 8.17 Given any § > 0 and any £ € (0, 1/2), there exists g € (0, 1) and a
constant C < 0o such that for any € € (0, &g), Ry < 4 (2=t + ¢ (r#)?1-9

Proof The proof of this lemma is similar to the proof of Lemma 8.16. We rewrite 3
as

%, = ZZ”T (B = 2641) P (e < T+ (4 1) e (o < )
+Z (2T° + 2k + 1) Pae (theyy < T°).
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Then, we use the upper bounds from Lemma 8.15 to get

2y€re . k 3,(3 .
Ry " (2rF-2k+1) [@ (ag re-k) +a3m} +(2re 4+ 1)

2y°T¢ k 3p
+ 2F€+2k+1[1—<b< >+ ]
Zk=1 ( ) ofJTe+k/)  63JTe +k

The next thing is to pair all the terms carefully and bound these pairs separately.
We start with

2y¢T¢ e k 2y°T¢ . k
Do, r —2k+1)¢<m)— o, @re+2e+n)e s
2y¢T*® k k
<o+ [cp (i)_cp(i)} <cre,
( )Zkzl ot JTE —k ot JTE + k

We use (8.4) for the last inequality. The second pair is

zysl—vs 3ﬁ 2ysl—~s 3ﬁ
Doy @ErE-2kl) sy (AT 2h ) e

k=1 63T —k 63JTe +k
6p ~—2y°T¢ 30 —2y°r¢ 1 1
_ % Te —k +/T¢ k) i
63 Zk:l (‘/ VT k) + 63 L—k=1 (JFE —k * JTE + k)
6/\ 2y6TE 3A 2yEE 3_
< A_,O 14 ) /_ZFS + A_,O Y o) < Cyars /Té + Cysl-‘s < C (Fs)z L ’
63 Lk=1 63 k=1

where the first inequality holds due to k < I'* /2. The third term is

2yfTE
S ert 2k 1)+ 200+ 1)
=4y® ()’ +2p°T% +4 (yT%)’ + 2y T° + (20" + 1)
<4y" (M) +C (%) =4 (1) + c (re)*" 9,
where the inequality holds since for £ € (0, 1/2), 2 — 2¢ > 1 and this implies that

(2T¢ + 1) < C (y°T¢)>. Lastly, combining all the pairs and the corresponding upper
bounds, we find that for any ¢ € (0, 1/2),

PRy <[4 (D) + (0P ert 1o () <a () o (0,

where C is a constant which depends on £ only (and in particular is independent of
e). O

8.3 Asymptotics of Moments of N¢(T¢)
In this subsection, we prove Lemmas 8.2 and 8.4.
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Proof of Lemma 8.2 First, recall that

Bie (N (1)) = Yo Poe (5 = %) = P+ F2 + %,

where the 3; are defined in (8.2). We can simply bound ‘B3 from above by
(1 —2y®)Té. Applying Lemma 8.11 and Lemma 8.16 for the other terms, we have
for any £ € (0, 1/2) that
ey1— 1_ _
B (N (1)) = € (0P e 0 () 2 (09) ) + (1 - 29 1

1-2¢

= T¢/Epett +C (1) 4 € (1f)2 e~

On the other hand, from the definition of N¢ (T¢), Eje tjfje(Tg) > T*¢. Using Wald’s
first identity, we find

NE(T?)
EAST]%S(TS) = Eje Zn:l (T'f — 'L';_l) = Eje (Ns (TE)) . E)\s‘ff.

Hence,

E;: (N¢ (T?)) 1 1 1_p 20 _(peyl-2e
< - <F[C(FE)2 +C(rf) e T

0 =
T¢ E)\E‘Ef

Therefore,

Eys (N°(T7)) 1
T¢ Ee ‘L'f

lim inf —¢ log
e—0

PR i e 5=t e\20 —(reyl-2
le?l)l(l)lf £log|:T8 (C(F )2 +(F) e .

It remains to find an appropriate lower bound for the liminf.
We use (7.2), Lemma 8.7 and Remark 8.12 to find that for any > 0, there exists
80 € (0, 1) such that for any é € (0, o) and any £ € (0, 1/2)

.. 1 1y 20 _(1"8)1—2( ..
hzn;gf —c¢log [F (C (FS) 2"+ (FS) e > llgrilgfg log T*
. 1 . f— 1 Fg 1/278’1. . f— 1 ( 1_,6 20 ,(1’*8)1722)
+m1n{ im inf —¢ og (I'%) iminf —¢ log ()" e
>c+min{(l/2—=€)(hy —c—mn), 00} =c+ (1/2=4)(h —c—n).
We complete the proof by sending £ to 1/2. O

Proof of Lemma 8.4 Recall that
Exe (N*(T9))* = 3" @+ 1) Py (5 < 1) = By + %o + %
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where the R; are defined in (8.3). We can bound fR3 from above by

(1-2y5)re—1
S e =4yt () ()

Applying Lemma 8.11 and Lemma 8.17, we have for any £ € (0, 1/2) that
E)@ (N'S (TS))Z < C (F5)1+2l e_(l-\a)l—ze

+4() T o (M) =4yt 4 () ()
< (Fg)Z +C (1.,5)2(176) +C (FS)HM ei(FS)lfzz'

2(1—0)

As in the proof of Lemma 8.2 E;¢ (N¢ (T¢)) > I'®. Thus, for any £ € (0, 1/2)
Var,e (N (1)) = Eye (N° (°))? = (1)

e L R R B U

= € (r*)2170 4 o () H2 e

Again we use (7.2), Lemma 8.7 and Remark 8.12 to find that for any n > 0, there
exists g € (0, 1) such that for any 6 € (0, §p) and for any ¢ € (0, 1/2),

. Varys (N° (T*))
liminf —¢log ——————

e—0 T¢
> liminf ¢ log 7% 4+ min ilim inf —e log (F‘E)z(l_l) ,liminf —¢ log ((I"‘E)HM ef(rs)liy)}
e—0 e—0 e—0

>c+min{2(1 =0 (1 —c—n), 000 =2(1 =€) (h —n) + (20— D c.
We complete the proof by sending £ to 1/2. O

8.4 Asymptotics of Moments of NE (1)

The proof of the following result is given in Section 10.

Theorem 8.18 If w > hy, then given any m > 0 such that m + h| > w and for any
8 > 0 sufficiently small,

é}i_l)t%)slog Ejet{ =m+ s5 and tf | Eje T 4 Exp(1).
Moreover, there exists &g € (0, 1) and a constant ¢ > 0 such that
P (t5/Esetf > 1) < e
foranyt > 0 and any ¢ € (0, &9).
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Notice that Theorem 8.18 is a multicycle version of Theorem 8.5, which is the
key to the proofs of the asymptotics of moments of N¢(7'¢), namely, Lemma 8.2 and
Lemma 8.4. Given Theorem 8.18, the proofs of the following analogous results follow
from essentially the same arguments as those of Lemma 8.2 and Lemma 8.4.

Lemma 8.19 Suppose that w > h;, m+h| > w, and that T® = e%“’for some ¢ > Ww.
Then, there exists 8y € (0, 1) such that for any § € (0, 8p)

Ej(N® (T?)) 1
— —| = c.
T¢ E)Lstf

liminf —¢ log
e—0

Corollary 8.20 Suppose thatw > hy, m+h| > w and that T® = e:TCforsome c>w.
Then, there exists 8y € (0, 1) such that for any § € (0, 8p)

. E;e(N* (T%))
llirggf —elog T >m + 5.

Lemma 8.21 Suppose that w > hy1, m + h; > w and that T® = eé"for some ¢ > w.
Then, for any n > 0, there exists 8y € (0, 1) such that for any § € (0, &p)

Varye (N¢ (T¢
lim inf —810gM >m+hy —.
e—0 T¢

9 Large Deviation Type Upper Bounds

In this section, we collect results from the previous sections to prove the main results
of the paper, Theorems 4.3 and 4.5 , which give large deviation upper bounds on the
bias under the empirical measure and the variance per unit time. We also give the proof
of Theorem 4.9, which shows how to simplify some expressions appearing in the large
deviation bounds. Before giving the proof of the first result, we establish Lemmas 9.1
and 9.2 for the single cycle case, and Lemmas 9.3 and 9.4 for the multicycle case,
which are needed in the proof of Theorem 4.3. Recall that for any n € N

o .
St ﬁ/ et TN 1, (X dt. 9.1)
r?

n—1

Lemma9.1 Ifh; > w, A C M is compact and T® = eécfor some ¢ > hy, then for
any n > 0, there exists 6o € (0, 1) such that for any § € (0, o)

lim inf —¢ log
e—0

E)eN°® (T*
AT()Emsls—f e D1 (0 1° ()
M

z;relg[f(x)—i—W(x)]—W(01)+c—h1—n.
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Proof To begin, by Lemma 4.1 with g (x) = e’%f(x) 14 (x), we know that for any &
sufficiently small and ¢ > 0,

rf .
Eje S8 = Eje (/ (XD, (Xf,)ds> = Ejet! / e H @, () 1 (dx) .
0 M

This implies that

E)s (N®(T?
‘ e (N
Té

S - /M e H O 1, (0 1 (dx)

Eje (N (T°)) 1
T¢ E;e ‘L'lg

= E)\SS‘I9 . ‘

Hence, by (7.1), Lemmas 7.21 and 8.2, we find that given > 0, there exists §g € (0, 1)
such that for any § € (0, &p)

Eye (N*(T9))

lim inf —¢ log 7%

e—0

EjeSE — / e # T 1, (x) 1 (dx)
M
E;e (N€ (T9)) 1
Te Epetl
> irelg[f(x)JrW(X)]— W (O1) +c—hy —n.
X

> lim inf —¢ log E)+ S + lim inf —¢ log
e—>0 e—>0

O

In the application of Wald’s identity, a difficulty arises in that, owing to the ran-
domness of N¢ (T¥?), vag(Tg) need not have the same distribution as S7. Nevertheless,
such minor term can be dealt with by using technique in, for example, [18, Theorem
3.16]. The proof of the following lemma can be found in Appendix.

Lemma9.2 Ifh; > w, A C M is compact and T® = eécfor some ¢ > hy, then for
any n > 0, there exists 5o € (0, 1) such that for any é € (0, §p)

Eje Sye e
lim inf —¢ log )
e—0 €

= irelg[f(x)+W(x)]—W(01)+c—h1—n-

We have similar results for multicycles. To be specific, we have the following two
lemmas.

Lemma 9.3 Suppose thatw > hy,m+h; > w, A C M is compact and that T® = eéc
for some ¢ > w. Then, for any n > 0, there exists 5o € (0, 1) such that for any
8 € (0, 80)

EjeN® (T%)
T€
> inf [/ (¥) + W ()] = W (O) +c = (m+hi) —n.

lim inf —¢ log
e—0

E;:S] — / e H 1, (1) uf (d)
M
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Lemma 9.4 Suppose thatw > hy,m+h; > w, A C M is compact and that T® = e%c
for some ¢ > w. Then, for any n > 0, there exists 5o € (0, 1) such that for any
8 € (0, 80)

Qe
ErSe ey
&

limi(l)lf—elog > in£ [f(X)+WX)]—-W(O1)+c—m+hy) —n.
E—> xe

Proof of Theorem 4.3 If h| > w, then recall that

1 NE(TO)-1 1 T L p(xe . 1 NETE)
Flo e VuEas g s

where S} is defined in (9.1). Then, we apply Wald’s first identity to obtain

NeTH-1 ) NE(TE) .
Ei <Zn=1 Sn) = Ex (Zn=1 Sn) — EaeSyerey

= Eje (N°(T°)) Exe S| — Ene Sye (e

&

T
Bie (e [ OO (ar) = [ MOt @
T® 0 M
Exe (N° (T)
TS

E)\E SA]S\IS(TS)
Te

<

E,\sSf—'/ et O, (0) 1 (dx)| +
M

Therefore, by Lemmas 9.1 and 9.2 we have that for any n > 0, there exists §p € (0, 1)
such that for any § € (0, dp),

liminf —¢ log

1 o ¢ 1
- _Ef Xl —_ _gf( )
m ir Eje <T8 /() e/ )lA (Xf) a’t) /M e 14 () uf (dx)

zggg[f(x)vLW(x)]—W(01)+c—h1—17.

The argument for 1 < w is entirely analogous but uses by Lemmas 9.3 and 9.4. O

The following lemma bounds quantities that will arise in the proof of Theorem 4.5.
Its proof is given in Appendix.

Lemma 9.5 Recall the definitions R\> = 2infyca [f (x) + V (01, x)] — h1, and
for j e L\ {1}, R;Z) = 2infrea [f @)+ V (05, x)] + W (0;) — 2W (01) +
W (01U 0;) with hy = mingep\j1y V(O1, Op). Then, 2infiea [f (x) + W (x)] —
2W (01) — hy > minjep R}”.
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Proof of Theorem 4.5 We begin with the observation that is for any random variables
X,Y and Z satisfying0 <Y —-Z <X <Y,

Var (X) = EX? — (EX)? < EY?> — (E (Y — Z))?
= Var(Y)+2EY -EZ — (EZ)?> < Var(Y) + 2EY - EZ.

When 4| > w, since

1

1 NE&(T?) . . 1 Té¢ ,lf xe . 1 NE(T®) .
0 < FZHZI Sn - FSNé(Ts) =< F‘/O e ¢ ( f)lA (X[)d[ < F Zn:] Sn,

we have

1 T
Var)e | —
(= /0
1 NE(TE) 1 NeTe) L\ ExeSyere
< Var,e <F Zn:l Sn) + 2FE;¢ (F Zn:l Sn) T,

and with the help of (7.2)

1 [ .
lim inf —¢ log (Varxe (F/o e /XD, (x) dt) T":)
1 NE(T®
> min {hggf —¢log |:Varke <F an(l ) Sﬁ) Tg} :
. 1 Neey .\ EneSyerey
11?1)1(1)11“ —elog |:E,\e (F Zn:l Sn) TT .

We complete the proof in the case of single cycle by showing both terms are bounded
below by min ey (R;l) A R;.z)) — n, where we recall

&

| et (XD, (X?) dt)

&

Rj.” =infyea [2f (1) + V (05, x)] + W (0;) — W (01),
R = 2infrea [f (1) + V (01,01 = hi,

andfor j € L\ {1}
RP = 2infeca [f (1) + V (0. %)+ W (0;) —2W (01) + W (01U 0}).

For the second term, we apply Wald’s first identity, Lemma 7.21, Corollary 8.3
and Lemma 9.2 to find that given n > 0, there exists §o € (0, 1), such that for any
8 € (0, do)
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imi ! NET?) e E)‘ES;VE(TS) €
hgri)l(r)lf —elog |:E;Ls <E Zn:l Sn> TT

1 NE(T?)
im inf —e log T¢ + lim inf —¢ log Eye [ — ¢
zllgn_:(t)l elogT® + 121)1(1)1 clog Ej ( Z Sn>

Te Lan=1
Ee Sye ey
TS
> —c+ (infrea [f (x) + W ()] = W (O1) — hi —n/3) + s
+ (infxea [f (X) + W ()] = W (O1) + (¢ — h1) —n/3)
> 2infrea [f (x) + W ()] =2W (O1) —h1 — 7

+ lim inf —¢ log
e—0

> minjep R;-z) —n > minjeL(R;U A R;z)) - .
The third inequality holds by choosing § sufficiently small 25 > h{ — n/3. The fourth

inequality is from Lemma 9.5.
Turning to the first term, we can bound the variance by (6.3):

1 Ne(T?) E;e (N (T9)) Var,« (N° (T°)) 2
Var; s <F > S,j) T8 <2 Vare S + 2~ (Eje S5)

n=1 Te Te
Eye (N*(T*)) 2, Vare (N®(T°)) 2
e T 2 (87) S (EsS5)”.

If we use Corollary 8.3 and Lemma 7.23, then we know that given > 0, there exists
80 € (0, 1), such that for any § € (0, &)

lim inf —¢ log
e—0

E;e (N®(T?)) 2
[T (50
L E;s (N°(T®)) . . 2
> llgrilélf —c¢log e + llggf —clog E;¢ (S‘f)
: (1) )
> R AR —n.
> '}2?( i ;)=

In addition, we can apply Lemmas 7.21 and 8.4 to show that given > 0, there exists
8o € (0, 1), such that for any § € (0, &p)

Var,s (N¢ (T*
liminf —¢ log [M (EAsSf)z]
e—0 T®

Var: (N¢ (T%))
T

> lim inf —¢ log
e—0 €

+ 2lim inf —¢ log Ej¢ S}
e—=0
zZirellj‘[f(x)—FW(x)]—ZW(Ol)—h1 =N
X

> P > N N
Ijnem R] n Ijnem(R] A\ Rj ) 1.

The second last inequality comes from Lemma 9.5.
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Hence, we find that given n > 0, there exists § € (0, 1), such that for any
8 € (0,68

L U VT o) e - pD) B
hgl)l(r)lf —elog (Var,\s (F anl Sn) T ) > I}IEIE(Rj A Rj )—n,
and we are done for the single cycle case.
For multicycle case, by using a similar argument and applying Lemmas 7.24, 7.25,
8.21, 9.4 and Corollary 8.20, we find that

1 e 1 13
liminf —e log [ Varye [ — S, (x5)dt ) T¢
iminf —e og( ar;, (TE/O e 4 (X7)

. (€)) 2 (3,m)
ZI;I]EIB(RJ /\Rj /\Rj ) —n,

with

RO™ =2 inf [f (1) +V (0, x)] +2W (0;) =2W (O1) — (m + ).

We complete the proof by sending m | w — h;. O

Proof of Theorem 4.9 Parts 1, 2 and 3 are from Theorem 4.3, Lemma 4.3 (b) and The-
orem 6.1 in [12, Chapter 6], respectively.

We now turn to part 4. Before giving the proof, we state a result from [12]. The result
is Lemma4.3 (c¢) in [12, Chapter 6], which says that for any unstable equilibrium point
O, there exists a stable equilibrium point O; suchthat W(0;) = W(0;)+V (0;, O;).

Now, suppose that min ey (infyea [f x)+V (Oj, x)] + W (Oj)) is attained at
some £ € L such that Oy is unstable (i.e., £ € L\ Ly). Then, since there exists a stable
equilibrium point O; (i.e., i € Ly) such that W(O,) = W(O;) + V(O;, O¢) we find
min (ggg [f @) +V(0j,x)]+W (oj))

jeL
= ;Ielg [f () +V (O, )]+ W (0p) = ;22 [f )+ V (Op, )1+ V(0i, Op) + W(0i)

2 inf [f (@) +V (01, )] + W(0;) = min (;22 [f )+ V(0. x)]+W (0,-))

JjeL \x€A

> min (inf [f ) +V (0, x)]+ W(OJ-)>.

The first inequality is from a dynamic programming inequality. Therefore, the mini-

. . . . . 1
mum is also attained ati € Ly and minjcp Rj ) — min;ey, R; ). O

10 Exponential Return Law and Tail Behavior

In this section, we give the proof of Theorem 8.5, which was the key fact needed to
obtain bounds on the distribution of N¢(7°¢), and the related multicycle analogy. A
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result of this type first appears in [6], which asserts that the time needed to escape from
an open subset of the domain of attraction of a stable equilibrium point that contains
the equilibrium point has an asymptotically exponential distribution. [6] also proves
a nonasymptotic bound on the tail of the probability of escape before a certain time
that is also of exponential form. Theorem 8.5 is a more complicated statement, in that
it asserts the asymptotically exponential form for the return time to the neighborhood
of O1. To prove this, we build on the results of [6] and decompose the return time into
times of transitions between equilibrium points. This in turn will require the proof of
anumber of related results, such as establishing the independence of certain estimates
with respect to initial distributions.

The existence of an exponentially distributed first hitting time is a central topic
in the theory of quasistationary distributions. For a recent book length treatment of
the topic, we refer to [5]. However, so far as we can tell the types of situations, we
encounter are not covered by existing results, and so as noted we develop what is
needed using [6] as the starting point. See Remark 3.15.

For any j € L, define v? as the hitting time of d Bs(Oy) for some k € L\ {j},i.e.,

vi = inf {r > 0: X7 € Uger\(j30Bs(0p) } - (10.1)

We will prove the following result for first hitting times of another equilibrium point,
and later extend to return times.

Lemma 10.1 Forany j € L, there exists 5o € (0, 1) such that for any § € (0, 8o) and
any distribution 1° on dBs(0),

d
lim elog Ejevé = min V(0;,y) and v/ Eev5 — Exp(l).
e—0 & J y€Uker\(j}9Bs(Ok) / J J P

Moreover, there exists &g € (0, 1) and a constant ¢ > 0 such that
Pe (ng-/E;Ls vl > t) <e

foranyt > 0 and any € € (0, &9).

The organization of this section is as follows. The first part of Lemma 10.1 that is
concerned with mean first hitting times is proved in Section 10.1, while the second
part that is concerned with an asymptotically exponential distribution but when starting
with a special distribution is proved in Section 10.2. The last part of the lemma, which
focuses on bounds on the tail of the hitting time of another equilibrium point but
when starting with a special distribution, is proved in Section 10.3. We then extend the
second and third parts of Lemma 10.1 to general initial distributions in Section 10.4
and Section 10.5. The last two subsections then extend all of Lemma 10.1 to return
times for single cycles and multicycles, respectively.

@ Springer



Journal of Theoretical Probability (2022) 35:1049-1136 1107

10.1 Mean First Hitting Time

Lemma 10.2 For any § > O sufficiently small and x € dBs(O;) with j € Ly

lim ¢log E, v = min V(O;,y). (10.2)
e—0 £ Ex J Y€Uker\(j}9Bs(Ok) AR

Proof For the given j € L, let D; denote the corresponding domain of attraction. We
claim there is k € L \ L such that

;= inf V(0i,y)=V(0;, Op).
qj yéng (0j,y) (0}, Or)

Since V (0}, -) is continuous and d D is compact, there is a point y* € 9 D; such that
qj = V(0;,y"). If y* € Uger\ 1, Ok, then we are done. If this is not true, then since
y* & (Uker,Di) U (Uger\ L, Ok), and since the solution to ¢> = b(¢), $(0) = y* must
converge to Ugey Ok ast — 00, it must in fact converge to a point in Uz, Ok, say
Oy. Since such trajectories have zero cost, by a standard argument for any ¢ > 0 we
can construct by concatenation a trajectory that connects O; to Oy in finite time and
with cost less than ¢; + €. Since ¢ > 0 is arbitrary, we have g; = V(O;, Ox).

There may be more thanone / € L \ Ly such that O; € 9D and q; = V(0Oj, O)),
but we can assume that for some k € L \ Lg and y € dBs(Oy) we attain the min in
(10.2). Then, g; = V(0j, y) < q;, and we need to show lim,_,¢ ¢ log EXU; =q;.

Given s < gj, let Dj(s) = {x : V(0O;,x) < s} and assume s is large enough
that Bs(O;) C Dj(s)°. Then, D;(s) C D? is closed and contained in the open set
D;\Uer\(j}Bs(0;), and thus the time to reach d D (s) is never greater than Uj. Given

n > 0, we can find a set D"(s) that is contained in D (s) and satisfies the conditions
of [12, Theorem 4.1, Chapter 4], and also infzeau'?(s) V(0j, z) = s —n. This theorem
J

gives the equality in the following display:

liminf ¢ log Exv§ > liminf ¢ log E, inf{t > 0: X € dD"(s)}
0 J e—0 J

E—>

= inf V(O0j,z)>s—n.
zefiD']?(s)

Letting n | 0 and then s 1 g; gives liminf,_¢ ¢ log Exvj >q;.

For the reverse inequality, we also adapt an argument from the proof of [12, Theorem
4.1, Chapter 4]. One can find 77 < oo such that the probability for X? to reach
Urer Bs(O;) by time T1 from any x € M \ Uz Bs(O;) is bounded below by 1/2.
(This follows easily from the law of large numbers and that all trajectories of the
noiseless system reach Ujcz Bs/2(0O;) in some finite time that is bounded uniformly
inx € M\ Ujer Bs(0y).) Also, given n > 0 there is 7> < oo and g9 > 0 such that
P {X] reaches Ugep\(j0 B5(Ox) before To} > exp —(g; +n)/¢ forall x € dBs(0;).
It then follows from the strong Markov property that for any x € M \ Ujcr Bs(Oy)

PV < Ty + Do) = e+ @0 2,
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Using the ordinary Markov property, we have

Exvj < :io(n + D(T1 + D) Pe{n(T1 + To) < vj < (n+ D(T1 + Tn)}

o0
=M +T) )~ Pelvs >n(Ti+T2)
n
o0
<(M+T I inf PV <T1 +T
=+ Z)ano[ cani™ s o0 {v; =T+ 2}]

—1
=T +T7T») ( P{v; < T + T2}>

inf
xeM\Ujer Bs(Oy)

< 2Ty + Ty)et @),

Thus, lim sup,_, elog E U;? < gj +n, and letting | 0 completes the proof. O

Remark 10.3 By the standard Freidlin—Wentzell theory, the convergence asserted in
Lemma 10.2 is uniform on d Bs (O ). Therefore, we have the first part of Lemma 10.1.

10.2 Asymptotically Exponential Distribution

Lemma 10.4 For each j € Lg there is a distribution u® on dBys(O;) such that
vE/Eyevf 5 Bxp(l).

Proof To simplify notation and since it plays no role, we write j = 1 throughout the
proof. We call 9 Bs (O1) and 0 Bys (O1) the inner and outer rings of O1. We can then
decompose the hitting time as

&

NE—1
=) G+ (10.3)

where 6} is the k-th amount of time that the process travels from the outer ring to the
inner ring and back without visiting U er\(1;0 B5(0;), ¢° is the amount of time that
the process travels from the outer ring directly to Ujep\(1y0 Bs(O ;) without visiting
the inner ring, and A/® — 1 is the number of times that the process goes back and forth
between the inner ring and outer ring. (It is assumed that § > 0 is small enough that
Bos (01) C M\ Ujep\(11B25(0;).) Note that Olf grows exponentially of the order §,
due to the time taken to travel from the inner ring to the outer ring, and ¢ ¢ is uniformly
bounded in expected value.

For any set A, define the first hitting time by 7 (A) = inf {r > 0: X{ € A}. Con-
sider the conditional transition probability from x € dBys (O1)toy € dBs (O1) given
by

Yi (dylx) = P <X§(335(01)) edylXg =x, Xj ¢ Ujer\(119B5(0;), t € [0, 7(3Bs (01)))]>,
and the transition probability from y € dBs (O1) to x € dBs;s (O1) given by

¥5 (dx|y) = P (xi(agzs(ol)) € dx|X§ = y) : (10.4)
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Then, we can create a transition probability from x € dBas (O1) toy € dBs (O1) by

¥ (dylx) = / WS (dyl2) v (dzlx) . (10.5)

9Bs(01)

Since dBys (O1) is compact and {X7}; is non-degenerate and Feller, there exists
an invariant measure u® € P (dBys (01)) with respect to the transition probability
¥ (dy|x) . If we start with the distribution u* on d Bys (O1), then it follows from the
definition of #® and the strong Markov property that the {6} }; - »= are iid. Moreover, the
indicators of escape (i.€., 1{z(Ujcp\(1)0B5(0,)=1(U;cdBs5(0,))}) are iid Bernoulli, and we

write them as Y7 with Py (Y; = 1) = e /¢ \where § > 0is from the construction,
hi(8) — h1(8) ase — Oand h1(8) 1 hyas$ | 0 with iy = minjer\(1) V(O01, O)).
Note that V¢ = inf {k eN: Y,f = 1} . We therefore have

Pug(/\/'a — k) — (1 _ e—hf(&)/s)k—le—hf(a)/a’
and thus

NE—1
Eyvf = Eye [Z}.Zl 9;} + Ept® = Eue (N = DE6f + Eye°,

where the second equality comes from Wald’s identity. Using Z,fil ka1 =
1/(1 —a)?*fora € [0, 1), we also have

EpoN® = Z::l k(1 — e~Hi@/eyk=1,=h{@)/e _ ,~hi@®)/e 2h®)/e _ Hi@®)/e
and therefore
Euevf = MO E0f 4 (B — Efe6f). (10.6)
Next consider the characteristic function of v{/Eye vf
¢F (1) = Eyee ™1/ BVl = 68 (1 Ee0f),
where ¢, is the characteristic function of vj. By (10.3), we have
#5(5) = Eoe (ST o) _p e g is(SI7 )

o0 £ —1 —ht —
=¢)§(S) Zk:l(l _efhl(ts)/é‘)k le hl(s)/€¢g(s)k 1

= ¢L()e MO/ (1 —[(1 — MO )pE ()] 7!,

where ¢; and c/)g are the characteristic functions of 0] and ¢, respectively. We want
to show that for any t € R

¢° (1) = ¢°(t/Eyevf) — 1/(1 —it) as & — O.
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We first show that qb;(t/Euevf) — 1. By definition, qbg (t/EusUf)

= Eye 0s (10 / EyeUf)+i Eye sin (187 / Eyevf) . According to [12, Lemma 1.9, Chap-
ter 6], we know that there exist Ty € (0, oo0) and 8 > 0 such that for any 7 € (T, 00)
and for all ¢ sufficiently small

Pue (¢5 > T) < e=ePT=T0), (10.7)
and therefore for any bounded and continuous function f : R — R

|Eue f (185 /Euevf) — £ (O] <211 flloo Pus (£° > T)
+ Eue [| £ (12°/ Euevf) = [ (O)] Tize<ry] -

The first term in the last display goes to 0 as ¢ — 0. For any fixed ¢, t/Eevj — 0 as
& — 0. Since f is continuous, the second term in the last display also converges to 0
ase — 0. ¢>23 (t/E,sv7) — 1 follows by taking f to be sinx and cos x.

It remains to show that for any t € R

e @/ (1 - [(1 —e_hgl(a)/g)¢g(t/EueU‘f)]> — 1/(1 —if)
as ¢ — 0. Observe that

e e -1 1 — ¢t/ Eye UF) -
hi(8)/¢e _ _ h5(8) /ey 4€ cuE — 0 1 & Ut
MO (1= [(1 = MO g1/ E )] (76—/1‘1’(6)/8 + G5 (1) Eye 0! )) ,
so it suffices to show that ¢f (t/ Eysvf) — 1and [1 — @ (1/ Eyev§)]/e M1®/e — —iz
ase — 0.
For the former, note that by (10.6)

tEusef
(ehi ®)e _ 1) 00

— 0

0 < Eye (107 /Eyevy) <
as ¢ — 0, and so t@f / Eusvf converges to 0 in distribution. Moreover, since e is
bounded and continuous, we find qbg (t/Eys uf ) — 1. For the second part, using

x—x3/3! <sinx <xand 1 —x%/2 <cosx < 1
for x € R we find that

o = L= Eucos (0] /Egvi) _ Ew (105 ) Eevf)?
= HON =T MG

and

Eue (105 /Eevf)  Eye (105 /Eevf)’ _ Ewsin (167 /Erv}) _ Eue (165 /Eue )
O e O O ST o
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From our previous observation regarding the distribution of ¢¢ and (10.6)

E,. (tef/Eus Uf)

—tase — 0.
O

In addition, since 6{ can be viewed as the time from the outer ring to the inner ring
without visiting U\ (1)0 Bs(O;) plus the time from the inner ring to the outer ring,
by applying (10.7) to the former and using [6, Theorem 4 and Corollary 1] under
Condition 3.13 to the later, we find that

Py (05 /Eucf > 1) <2¢7" (10.8)

for all ¢ € [0, o0) and ¢ sufficiently small. This implies that
) o o
Ey (07 /Eue6)” = 2/ 12 Pye (05 ) Eue0f > t)dt < 4/ rPe'dt =38
0 0

and similarly E e (GIS/EMsOiE)3 =3 fooo 3 < 36. Then combined with (10.6), we have

Eu (167/Ewvi)’ _ PEw (6/Ew6;)’

0<
- 2e—hi(®)/e - ze*h?(S)/s(ehi(é)/s _ 1)2

and

3 3
0 < Eus (l@f/Euan) - t3Eu£ (ng/EuaGf)
ST RO = 31 M0/ (O _1)3

Therefore, we have shown that for any r € R

1 — ¢5(t/Eusvf) 1 — Eyecos (160§ /Eyevf)  Eye sin (16f / Eyevf) _
e ROV Y -

Remark 10.5 From the proof of Lemma 10.4, we actually know that
¢S (t/Eyevy) — 1/(1 —it)
uniformly on any compact set in R as ¢ — 0.

10.3 Tail Probability

The goal of this subsection is to prove the following.
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Lemma 10.6 Foreach j € L there is a distribution u® on 9 Bys(O ) and ¢ > 0 such
that for any t € [0, 00), Py (vj/Eus U}? > 1) < e (here, vj and u® are defined as
in the last subsection).

Proof As in the last subsection, we give the proof for the case j = 1. To begin, we
note that for any o > 0 Chebyshev’s inequality implies

Py (V] /Eys v} > t) = Pye (XU Eue v 5 o0ty < o= L E oV Buc i
By picking & = o* = 1/8, it suffices to show that E,ee® Vi/Eu “18‘ is bounded by a
constant. We will do this by showing how the finiteness of E¢e® Vi/Eu T is implied
by the finiteness of Eyee® ?1/Eu Vi and E,ee® ¢/ Eurvi
Using (10.8), we find that for any o > 0
Pur (9T EaO] 5 1y < 2pmulog! — 04~
for all + € [1,00) and ¢ sufficiently small. Then, (10.6) implies Eusvf >
(ehf(‘”/ & _ 1) E,+6; and therefore
* £ 1 &
Eyee® /Euvige < / Py (exp (a*ef/[(eh1<3>/5 — 1)Eu89f]) > t) dt
0
o0 &
+f Py (exp (a*@f/[(ehl(s)/s - l)Eust]) > t) dt
1
1+ 2/00 (1O b gy
1

142["D7 — 1yja* — 117" =1+ 205 ["1D/F — o* — 1771

IA

To estimate ¢, we use that by (10.7) there are Ty € (0, 00) and 8 > 0 such that

forany t € (T, oo) and for all ¢ sufficiently small Py (¢¢ > t) < e‘éﬁ(’_TO), so that
R _1g(1100s—

for any o > 0 Pye (g“§ > t) <e 8’8(“ log 1 To) for any t > ¢*70. Given n € N, for

all sufficiently small ¢ we have o*/E - Uf < 1/n, and thus

P, (eoz*{S/Eusvf > t) < Py (egf/n - t) < e—%ﬁ(nlogt—To).

Hence for any n such that eTo/n < 3/2 and (—Bn + 1)log (3/2) + BTy < 0, and for
& small enough that o™/ E,sv{ < 1/n, we have

00 00
Eugea*é's/EugUf 5/ P,e (eo‘*é—s/Eu‘gul6 > l‘) dt < 3/2-’-‘/3 P,e (ea*;s/Eusvle > l‘) dt
0 3
2

o0 1
<352 +/3 e~ #BOIRI=T0) gy — 373 4 2B (gnse — 1)=! (3/2)7 (“BnHO)
2

=3/24 (Bnje — 1)~ e =Pnte)loe3/+6T0] < 33 4 (pnse — 1)~ <2.
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We have shown that for such o, E,ce® ¢ /Euvi and E,ce® 01/ Eue Vi gre uniformly
bounded for all ¢ sufficiently small. Lastly, using the same calculation as used for the
characteristic function

X —1
Eyee® Vi Ecv] _ g o0 IEsV] | mhi0)/e (1 _ [(1 — e MOy L o O Ee uf])

E . 2 * -1
<2 —hi ) /e <1 — (1 —e hl(a)/s) (1 W —o* —1):|>
e el o

-1
— 2o M ®e (g hi@)e _ 2o i 2o AOT
JOe _ gk _ 1 O _gr _ |

meE _ 1\
o120 =5 T ) <2/(1—4a") =4
SO e 1) = :

10.4 General Initial Condition

This subsection presents results that will allow us to extend the results in the pre-
vious two subsections to arbitrary initial distribution A* € P(dBs (0O1)). Under our
assumptions, for any j € L we observe that the process model

dX; =b(X])dt + Jeo (X])dW, (10.9)

has the property that b(x) = A(x — O;)[1 +o(1)] and o (x) = o[1 + o (1)], where
o(l) > Oas ”x - 0j H — 0, A is stable and ¢ is invertible. By an invertible change
of variable, we can arrange so that O; = 0 and 0 = I, and to simplify we assume this
in the rest of the section.

Since A is stable, there exists a positive definite and symmetric solution M to the
matrix equation AM + MAT = —I (we can in fact exhibit the solution in the form
M= fooo eAteA’ty t). To prove the ergodicity, we introduce some additional notation:
U(x) = (x, Mx), B; = {x : U(x) < b}}and Si(e) = {x : U(x) < a’e}, fori = 1,2,
where 0 < a1 < a2, 0 < by < by < by. If &g = (b}/a3)/2, then with cl denoting
closure, cl(S>(g9)) C By, and we will assume ¢ € (0, gg) henceforth. For a use later
on, we will also assume that a12 =2 SUp,¢p, trlo (x)o ()T M.

Remark 10.7 The sets B and B will play the roles that Bs(O1) and B5(0O) played
previously in this section. Although elsewhere in this paper as well as in the reference
[12] these sets are taken to be balls with respect to the Euclidean norm, in this sub-
section we take them to be level sets of U (x). The shape of these sets and the choice
of the factor of 2 relating the radii play no role in the analysis of [12] or in our prior
use in this paper. However, in this subsection it is notationally convenient for the sets
to be level sets of U, since U is a Lyapunov function for the noiseless dynamics near
0. After this subsection, we will revert to the Bs(0O1) and B,s(01) notation.

In addition to the restrictions a; < ap and a%eo < b(z), we also assume that a;, as
and &g > 0 are such that if ¢* is the solution to the noiseless dynamics ¢ = b(¢)
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with initial condition x, then: (i) for all x € 05, (¢), ¢* never crosses d By; (i) for all
x € 051(¢), ¢ never exits Sy (¢).

The idea that will be used to establish asymptotic independence from the starting
distribution is the following. We start the process on d B;. With some small probability,
it will hit 9 B, before hitting 95, (¢). This gives a contribution to 5 (dz|x) defined in
(10.4) that will be relatively unimportant. If instead it hits S, (¢) first, then we do a
Freidlin—Wentzell type analysis and decompose the trajectory into excursions between
0S5, (¢) and 985 (¢), before a final excursion from 0S5, (¢) to 9 B.

To exhibit the asymptotic independence from &, we introduce the scaled process
Yf = X¢/./e, which solves the SDE

1
dyf = ﬁb(\/ng)dt + o (VeY)dw;.

Let S; = 8S1(1) and S; = 8S>(1). Let »°(w|x) denote the density of the hitting
location on S, by the process Y¢, given Y =x € S1. The following estimate is
essential. The density function can be identified with the normal derivative of a related
Green’s function, which is bounded from above by the boundary gradient estimate
and bounded below by using the Hopf lemma [13].

Lemma 10.8_ Given gy > 0, thereare 0 < c; < ¢3 < o0 suchthatc; < o (wlx) < ¢
forallx € S|, w € Sy and € € (0, ).

Next let p_g (u|w) denote the density of the return location for Y¢ on S», conditioned
on visiting S; before 3 B, /+/¢, and starting at w € S,. The last lemma then directly
gives the following.

Lemma 10.9 For ey > 0 and cy, ¢y as in the last lemma ¢; < p®(u|lw) < ¢ for all
u,w € Sy and e € (0, &g).

Let ¢ (w) denote the unique stationary distribution of p®(u|w), and let p®" (u|w)
denote the n-step transition density. The preceding lemma, [14, Theorem 10.1 Chap-
ter 3], and the existence of a uniform strictly positive lower bound on ¢ (u) for all
sufficiently small ¢ > 0 imply the following.

Lemma 10.10 There is K < oo and a € (0, 1) such that for all ¢ € (0, &g)

sup |p" (ulw) — rfw)| /rf(u) < Ka".

wES2

Let n®(dx|w) denote the distribution of X* upon first hitting d B> given that X*®
reaches 957 (¢) before d B, and starts at w € 35, (¢).

Lemma 10.11 There is k > 0 and gy > 0 such that for all ¢ € (0, )

sup Py {X"3 reaches 0 By before 82(8)} < e /e,
x€dB;

@ Springer



Journal of Theoretical Probability (2022) 35:1049-1136 1115

Lemma 10.12 There are n°(dz) € P(dBy), s¢ that tends to 0 as ¢ — 0 and g9 > 0,
such that for all A € B(0B3), w € 952(¢) and € € (0, &)

7° (A —s°K/(1 —a)] < n(Alw) < (AL +5°K/(1 — )],

where K and o are from Lemma 10.10.

Proof of Lemma 10.11 Recall that al2 =2sup,p, trlo (x)o (x)T M]. We then use that
AM + MAT = —T to get that with U (x) = (x, Mx),

(DU (x), b(x)) < —eai (10.10)

for x € By \ Sz(¢), and
[
(DU(x),b(x)) < —gbo (10.11)
for By \ (Bo/2). By It&’s formula

dU(X{) = (DU(X?), b(X{))dt + %tr[a(Xf)a(Xf)TM]dt
+ e (DU(X]), o (X))dW;). (10.12)

Starting at x € d B1, we are concerned with the probability
Py {U(Xf) reaches b3 before a%s} ,

where U(x) = b%. However, according to (10.12) and (10.11), reaching b% before
b% /4 is a rare event, and its probability decays exponentially in the form e /¢ for
some k > 0 and uniformly in x € 9 B;. Once the process reaches By/2, (10.12) and
(10.10) imply U (X?) is a supermartingale as long as it is in the interval [0, b(z)], and
therefore after X{ reaches By/2, the probability that U (X¢) reaches a3e before b3 is
greater than 1/2. O

Proof of Lemma 10.12 Consider a starting position w € 9S,(¢), and recall that
n®(dz|w) denotes the hitting distribution on d B, after starting at w. Let 0,f denote
the return times to S, (¢) after visiting S (¢), and let g/ (w) denote the probability
that the first k for which X¢ visits d B, before visiting dS; (&) during [6¢, 91§+1] is n.
Then by the strong Markov property and using the rescaled process

ﬁ s =3 fa _ 8@a;w) ﬁ 0 (dzlu) I () p™" (Veul Vew)du,
aBy ) 0

Sa(e)

where J¢ (u) is the Jacobian that accounts for the mapping between S, (¢) and 0S5, (1)
and is given by u/./¢. We next use that uniformly in w € S, (¢)

P (Veulew) < rf(Vew)[l + Ka"']
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to get
>, / 2(2)q5 (w) / 7 (dz)u)JE () p*" (VVeulew)du
=Y JoaB, 352 (e)
= (Zoio_/ g(z)qﬁ(w)f ns(dzlu)Js(u)rg(\/Eu)du> [1+Ka"]
=9 JaB, 352 (e)

- e (dz|u)J® (u)r® dul 1+ k57 ],
/BBzg(Z) fBSz(&)n (el -G (\/EM) u[ + Zn:O G (W)t ]

Now, use that K ) ooy = K /(1 — &) < 00 and SUP, 4., (e) SUPneN, 4n (W) — 0
as ¢ — 0 to get the upper bound with

i°(dz) = / n*(dz|u)J* (u)r® (Veu)du.
3S2(¢)

When combined with the lower bound which has an analogous proof, Lemma 10.12
follows. O

10.5 Times to Reach Another Equilibrium Point after Starting with General Initial
Distribution

Lemma 10.13 For each j € L, there exist ¢ > 0 and ey € (0, 1) such that for any
distribution A* on 9B5(0),

Pe (vjs./EAe vf >t)<e @

forallt > 0and ¢ € (0, &).

Proof We give the proof for the case j = 1. We first show for any r € (0, 1) there is
€o > 0 such that for any ¢ € (0, &9) and A%, 6% € P(dBs(01))

E)\svf/Egsvf >r. (10.13)

We use that v{ can be decomposed into 0] + Of, where v is the first hitting time
to d B2s(01). Since by standard large deviation theory the exponential growth rate of
the expected value of v{ is strictly greater than that of 0§ (uniformly in the initial dis-
tribution) Ejs U} (respectively, Ege U7) is negligible compared to Ej;evf (respectively,
Epevy), and so it is enough to show Ej;e 0] / Ege U] > r. Owing to Lemma 10.11 (and
in particular because x > 0), the contribution to either E;:0{ or Eg: 0} from trajec-
tories that reach d Bp5(01) before S, (¢) can be neglected. Using Lemma 10.12 and
the strong Markov property gives

o Ewd _ [-sK/(1-a)]
inf — > ,
w1, wr€dSH(€) szvf [1+s*K/(1 —a)]

@ Springer



Journal of Theoretical Probability (2022) 35:1049-1136 117

and the lower bound follows since s — 0.

We next claim that a suitable bound can be found for Py (0] /E;ev] > t). Recall
that u® € P(dB2s(01)) is the stationary probability for ¢ defined in (10.5). Let g°
be the probability measure on 9 Bs(O1) obtained by integrating the transition kernel
Y with respect to u®, and note that integrating /5 with respect to 8° returns u°®. Since
the diffusion matrix is uniformly nondegenerate, by using well-known “Gaussian
type” bounds on the transition density for the process [2], there are K € (0, co) and
p € (0, 00) such that

P {X§ € AIX§ € 9Bys(01)} < Km(A)/e?

forall x € dBs(O1), where m is the uniform measure on d Bys(01) and 6 = inf{r > O :
X7 € 0B25(01)US,(e)}. Together with Lemmas 10.11 and 10.12, this implies that for
all sufficiently small ¢ > 0 and any bounded measurable function 2 : d B25(01) — R,

/ / h(y)¥5 (dy|x)A* (dx) <2 / h(y)¥5 (dy|x)B° (dx)
9B25(01) J9Bs(01) 0B25(01) J3Bs(01)

<2 / h(yue (dy).
0B25(01)

Using the last display for the first inequality, (10.13) for the second, that v} is small
compared with Of for the third and Lemma 10.6 for the last, there is &1 > 0 such that

P)Ls(l’)f/E)LSUf >1) = E)\S(ngg (IA)l/E)Ls‘Uf >1)) < ZPMS(UT/EASUf > 1)
Ul

< 2Py (VS /Egev > 1/2) < 2Pye (VS /Eyevf > 1/4) < 214

forall e € (0,e1) and ¢t > 0.

Since as noted previously Ej:v{ > Ej:Uf and since by [6, Theorem 4 and Corollary
1], there exists & € (0, 1) such that P,\s(ﬁf/E,\eDf >1) < 2¢71/2 for any r > 0 and
e € (0, &2), we conclude that forany t > 0 Pye (U7 /Ejsv] > t/2) < Py (0] /Epe0] >
t/2) < 2¢~'/%. The conclusion of the lemma follows from these two bounds and

P)LS(Uf/E)LsUf >1) < P)Ls(l_}f/E)LSUf > t/2) + P)LS(I/)I/E)LSUf >t/2).
O

Lemma 10.14 For any j € L and any distribution 1* on dBs(0O;), UJS./E,\aUJS.
converges in distribution to an Exp(l) random variable under Py:. Moreover,
Epee Ui/ BV 1/(1 — it) uniformly on any compact set in R.

Proof We give the proof for the case j = 1. Recall that E,ee/™Vi/Eu Vi — 1/(1 —ir)
uniformly on any compact set in R as ¢ — 0 from Remark 10.5. We would like to
show that Ejee!'V1/E:Vl — 1/(1—it) uniformly on any compact set in R. Since v =
0} + 0] with 0] the first hitting time to 9 B2s(01), we know that Ee 0] /Ejevf — 0
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and thus Eje 07 /E;sv] — 1. Observe that

; & & e E & e NE &
E)\gg”vl/E?»“’l = Ej¢ |:€”U1/E)‘€U1 'EXS(fJf) (elwl/E)”gul):I ,

([ it0EEpe vt [1+s°K/(1—a)] itVE ) Eye vt .
A e G 1)]5[1—S€K/(1—a)]Eu£e A

and

SN 06 [I—SSK/(l—Ol)] itvE Ese Uf .
Ese [E e ( ”UI/EA“’I):I > E.e itv]/Ejev] 1/(1 —ip).
e | Exe ey \€ 2 0K/ —a) ¢ — 1/ =i1)

Since Ej: v /Ejsv] — Oand ¢'* is abounded and continuous function, a conditioning
argument gives

ill_)E/E)LEUf -1

e — 0.

E,\seit“f/E‘wf — Eje [EXS(DE) (eitﬁf/EAan>:H < Ej
1 =

We conclude that Ejee''V1/Ex VT — 1/(1 — ir) uniformly on any compact set in R. O

10.6 Return Times (Single Cycles)

In this subsection, we will extend all the three results to return times for the single
cycle case (i.e., when i1 > w).

Lemma 10.15 There exists 5o € (0, 1) such that for any § € (0, 8o) and any distribu-
tion \f on 0Bs(0y),

lirrbslogEAsrf = V(01 y).

min
e Y€Uker\(1)0 Bs(Ok)

Proof We have E;:1{ = E;ev] + E;s(t{ — v{), and by Lemma 10.2 we know that

lim ¢ log Ejevf = min V (01, ).
e—0 y€Uger (130 B5(Ox)

Moreover, observe that W(0;) > W(Oy) for any j € L\ {1} due to Remark 3.14.
Note that uf as defined in (10.1) coincides with crg defined in (3.4). We can therefore
apply Remark 7.22 with f =0, A = M and n = [min;cz\(1y W(O;) — W(01)]/3,
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we find that there exists §; € (0, 1) such that for any § € (0, §1)

z€dBs(01)

lim inf —¢ log ( sup  E(tf — v"f))
E—>
> min W(O;) — W(0O1) — min V (01, O;) —
sy WO = WloD = i, 1
=— min V(01 O;) +2n.
JEL\{1}

On the other hand, by continuity of V (O1, -), for this given 7, there exists d; € (0, 1)
such that for any § € (0, 63)

min V(O1,y) > min V(01, 0j) —n.
YeUrer\(11d Bs (Op) =i S

Thus, for any 6 € (0, §p) with §o = 81 A &2

e—0

lim sup ¢ log E¢ (r{ — v]) < limsup¢ log < sup  E (x{ — Uf))
e—0

z€0B;s(01)
< min V(01,0 )—2n < min V(O1,y) —n
JEL\{1

Y€Uker\(1}0Bs(Or)
= lim elog Ejevy — 1
e—0

and

lim ¢ log E;\prl = hm elog E;stl = min V(O1,y).
e—0 —0

Y€Uker\(1}0 Bs (Ok)

O

Lemma 10.16 Given § > O sufficiently small, and for any distribution A* on d Bs(Oy)
there exist ¢ > 0 and g9 € (0, 1) such that

P)LE(Tf/E)Le‘ElS > t) E e_a
forallt > 1and ¢ € (0, &).
Proof For any t > 0, Pys(t{/Exst{ > t) < Pis(v]/Epety > t/2) + Pis((z]
&

v)/Ejet{ > t/2). It is easy to see that the first term has this sort of bound due to
Lemma 10.13 and Ejet{ > Ejevy.

It suffices to show that this sort of bound holds for the second term, namely, there
exists a constant ¢ > 0 such that

Pie ((tf = U§)/Epeti > 1) < e
forall ¢ € [0, oo) and ¢ sufficiently small. By Chebyshev’s inequality,

Py ((xf = v))/Esetf > 1) = P (T VD Ereti o oty < o7 By e VD Bre T
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and it therefore suffices to prove that Eje (7 —V1/Ex¢Ti g Jess than a constant for all

¢ sufficiently small. Observe that

N;
& .6 __ J g
h—-—u= Z.jeL\{l} Zk:l Yj &),

where N; is the number of visits of 9Bs(0O;), and U; (k) is the k-th copy of the first
hitting time to Ugep\ ()0 Bs(Oy) after starting from d Bs(O;).

If we consider d Bs (O) as the starting location of a regenerative cycle, as was done
previously in the paper for d B; (O1), then there will be a unique stationary distribution,
and if the process starts with that as the initial distribution, then the times v¢ (k) are
independent from each other and from the number of returns to d B5(O ;) before first
visiting d Bs(O1). While these random times as used here do not arise from starting
with such a distribution, we can use Lemma 10.12 to bound the error in terms of a
multiplicative factor that is independent of & for small ¢ > 0, and thereby justify
treating N; as though it is independent of the U; (k).

Recalling that [ = |L|,

N; ,

€ & € 25k E;etf

Ekae(rlfvl)/E)hsn = Eje 1_[ e L\(1} e(zkfl v ( ))/ AET)
J

< v, 1/U-1)
Y. uj(k))(l—l)/E»Ae w

< &

—HjeL\{l} B e

where we use the generalized Holder’s inequality for the last line. Thus, if we can
show for each j € L \ {1} that Ej exp[(Z,](V":"1 U]'S-(k))(l — 1)/Ejet{] is less than a
constant for all ¢ sufficiently small, then we are done.

Such an estimate is straightforward for the case of an unstable equilibrium, i.e.,
for j € L\Lg, and so we focus on the case j € Lg\{l}. For this case, we apply
Lemma 10.13 to find that there exists ¢ > 0 and g9 € (0, 1) such that for any j € L
and any distribution Af on dB(O i)

P (V§/Ez S > 1) < e (10.14)

for any # > 0 and ¢ € (0, &9). Hence, given any n > 0, there is &y € (0, &¢) such that
forall ¢ € (0, &) andany j € L\ {1}

& & o0 _ & e
e I:evj(l—l)/E;Lsrl] < 1+/ Pre (VBT L g
1

o
<1 +/ Py <U§/E)L£U; > IOg[ . E)Lel'f/((l — l)E)Lan)) dt
1

o8] -
1+/ BT (=D Ese ) 5,
1

IA

1+ (CExtf /(U = DB = 1) < 14 em =l
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where the last inequality comes from Lemmas 10.2 and 10.15, and by picking the
range of ¢ small if it needs to be.

By using induction and a conditioning argument, it follows that for any n > 0, for
any j € L\ {1} and for any n € N,

g [o(E )] (1 tion)”

This implies that
(} v u€(k))(l—1)/E et N;
E)e|e = < E): |:(1 +67é(hlihrn)) ]].

The next thing we need to know is the distribution of Nj, i.e., Pye(N; = n) for
n € N. Following a similar argument as in the proof of Lemma 7.3 and the proof of
Lemma 7.6, for sufficiently small ¢ > 0 we find

P (Nj =n) < (1 Ae S(W(O ) =W (01U0;)~h;— n)) (1— qj)"_lqj

where

infresBs(0)) P(T < 7~",~+)

qj = : >e
I —supyeyps0;) P(y: 9Bs(0)))

—E(WOD=W(O1U0)=hj+m  (10.15)

Therefore,

(E N S(k))(lfl)/E 7
v e
E)»s e = .

< Eje |: l —{—e_*(hl h/—'))) ] = ZOO (1 +e—%(h1—h_i_7)))n Pie(Nj =n)

n=1

oo
52(1/\6 LHW(0))=W(01V0))~h1— n)) (1_|_e—%(h1—hj—n)>"(1_qj)n—lq]

n=1

( o~ LW(0)=W(01V0)~hi— n)) (1+efg<h1 hj— n))

1— (l + e*%(hlfhj*'))) (1—g))
(1 A o= LV(0)=W(01U0))~h; - ,7)> (1 +g—é(h1—h,~—n)>
—e‘%(hl—hj—n)/qj +1
(1 A e*é(W(Oﬂ*W((JlU0j>*h17n)> (1 Lk h,ﬂy)>

_e,é(hlJrW(O]UOj)fW(Ol)*277) +1

=

=<
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The second equality holds since 41 > w > hj and (10.15) imply (1 — g;)(1 +

e m=h; ~M) < 1 for all & sufficiently small; the last inequality is from (10.15).
Then, we use the fact that for x € (0, 1/2), 1/(1 — x) < 1 4 2x to find that

(ZNf F(k))(l D/Eyett
U - 2E
E)_E e k=1"%j 1
< (1 A e—g(W(O,-)—W(oluoj)—hl—n)) (1 + e—é(%n—h,-—n))
« (1 + 26—;(h1+W(01u0,)—W<01>—2n>>
- (1 A e%(W(OhW(oluoj)fhlw)) (1 + Se*%(hH‘W(OIUOj)*W(Ol)*271))

<1l-6=6. (10.16)

The third inequality holds due to the fact that W(0O1) > W(O; U O;) + h; and the
last inequality comes from the assumption that #; > w and by picking 7 to be smaller
than (h; — w)/2. This completes the proof. O

Lemma 10.17 Given § > O sufficiently small, and for any distribution A on 3 Bs(01),
rf /Eje rf converges in distribution to an Exp(1) random variable under P,:. Moreover,

E;: (ei’(flg/Ele ’f)) — 1/(1 — it) uniformly on any compact set in R.

Proof Note that
Eje (eit(ff/Eksrf)> = Eje (en(vf/EWf)EXG(Uf) (en(uf_uf)/g”f))) .
Since
Eye (eit(vf/Ekerf)) = Eje (eit(Exsuf/Exnf)(Uf/EAEUIS))
and we know that E;sv{/Eet{ — 1 from the proof of Lemma 10.15, by applying

Lemma 10.14 we have Eje (¢! (Vi/E 1)) — 1/(1 — it) uniformly on any compact
set in R. Also

‘Ekg (e”(ff/Ex”f)) —Ej (eif(UT/EA”f)) ‘ <Eje

’

Exs(ve) (eit((rf—vf)/Elsrf)> —1
1

where the right hand side converges to 0 using E;s(tf — vf)/Eet{ — 0 and the
dominated convergence theorem. The convergence of 77/ E;e{ to an Exp(1) random

variable under Pj: and uniform convergence of E;e (e'! (/B i)y (o 1 /(1 —it) on
compact set in R follows. O

10.7 Return Times (Multicycles)

In this subsection, we will extend all the three results to multi-regenerative cycles
(when w > hp). Recall that the multicycle times ff are defined according to (6.4)
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where {M¢{};cn is a sequence of independent and geometrically distributed random
variables with parameter e ™/¢ for some m > 0 such that m + hi; > w. In addition,
{M¢} is independent of {z}}.

Lemma 10.18 There exists 5o € (0, 1) such that for any § € (0, 8o) and any distribu-
tion \f on 9Bs(0y),

lim elog Exe Ty = m + mi

n V(0y,y).
e—>0 Y€Uger\(1)dB5 (Ox)

Proof Since {M} is independent of {7} and E;-M{ = e™/¢, we apply Lemma 10.15
to complete the proof. O

Lemma 10.19 Given § > 0, for any distribution \* on dBs(0), there exist ¢ > 0
and gy € (0, 1) such that

P)Lx(fls/E)LSff >1) < e_a
forallt > 1and ¢ € (0, &).

Proof We divide the multicycle into a sum of two terms. The first term is the sum of
all the hitting times to U e\ (10 Bs(O ), and the second term is the sum of all residual
times. That is, 7] = 0 + (f} — 0f), where

Mé ME N
ne 1 e, s np ¢ (R
= Zi:l v () and 7 — vy = Zi:l <ZJEL\{1} Zk:l Yj (l’k)> '

As discussed many times, it suffices to show that there exist ¢ > 0 and g9 € (0, 1)
such that

Py (l’)f/E)LS‘Ele > t) < e " and Py ((ff — ﬁf)/E)LSff > t) <e ¥

forallt > 1 and ¢ € (0, gg).

The first bound is relatively easy since v{ (i) is a sum of approximate exponentials
with a tail bound of the given sort, and since the sum of geometrically many indepen-
dent and identically distributed exponentials is again an exponential distribution.

For the second bound, we use Chebyshev’s inequality again as in the proof of
Lemma 10.16 to find that it suffices to prove that Ejee™i —V1/Ei Tl g less than a
constant for all ¢ sufficiently small. Now due to the independence of Mf and {Uj (i, k)},

@ Springer



1124 Journal of Theoretical Probability (2022) 35:1049-1136

we have

Eye el =00/ Exe
i

> (ZNf' v?(k))/E s
_ Z ) k=1Yj 2T P (ME — i
T = Bl T e Pre (M =1)
=

N, .
— e MmE E., (Zk:l Uj(k)>/Exer]
- £ H./eL\{l} ¢

i—1
0 (ZN-’ u?(k))/E e
. . k=1"j A0 _ —mfe
; E;e ]_[jeL\me (1 —e™™/%) . (10.17)
To do a further computation, we have to at least make sure that
(Z"Nil v (k))/ Breti ~mfe 0.18
E;e HjeL\{”e 1—e ey <1, (10.18)
To see this, we first use the generalized Holder’s inequality to find
N:
(Zkil v§ (k)>/EA€ i
B | e ®
/(-1

N.

Sl u?(k))(tfl)/EAs 2
< s < !
[ | B | ¢

Moreover, sincem +hy > wand Eye T} = Ejet{ - EjM{ = eM/EE, . 77, by the same
argument that gives (10.16), forany n > Oand j € L\ {1}

N.
>t v?(k))(l—l)/Eefs
Ee e< k=1Y; S

< (1 A e—g(W(O_,-)—W(oluo,»)—hl—n)) (1 n 56—%(m+h1+W(01UO_,-)—W(01)—217)).

Therefore,

.
(Zkil uj(k))/EAsff e 1/a-1)

. || — < :
Bl 1 e ® (1= < HjeL\{l}Sf ’
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with
5j = (1 A e—é(W(O,-)—W(oluon—m—m)

. (1 + 56—g<m+h1+w<01uoj)—W(oo—Zn)) (1 —e™/®).
Using (a A b)(c + d) < ac + bd for positive numbers a, b, c, d,
sj < (1 +5€fg<m+w<0,->fW(01>73n>) (1—e™e)y <1 —e™me),

where we use W(0;) > W(0O,) for the second inequality and pick the range of ¢
small if it needs to be. Thus, (10.18) holds, and by (10.17)

o —
Ekge(f]g_ﬁf)/E)"gf]S < e—m/s .2 Z (1 _ e_m/g/z)i—l _ 2e mfe .
= - 1= (1=em)2)

We complete the proof. O

Lemma 10.20 Given § > 0, for any distribution A* on d B5(01), T / E;¢T| converges
in distribution to an Exp(1) random variable under Pje.

Proof Let M be a geometrically distributed random variables with parameter p €
(0, 1) and assume that it is independent of {z,;}. Then, E)- (Zanl r,f) = Eyt{/p
and

E)\seit((p YL frf)/E)ﬁ Tf)

i . o K
— Z (E)Leell(pl'l /E)\STI)) (1 _ p)kflp —

k=1

pEASeit(prf/E)‘srf)

1—(1— p)E)Lgeit(prf/EAsfls).

Given any fixed ¢ € R, consider

pE)LSeit(p‘L’lg/E;LsTf)

1-1- p)Ekseit([)tf/E;\arf

fe(p) = ) and f(p) =

1—it

According to Lemma 10.17, Ejeei!(ti/Exe ) 1/(1—it) uniformly on any compact
set in R. This implies that

pEss el ri/Earti) p/(L—itp)
1 — (1 — p)Ejeei!(PTi/Eseti) 1—1—=p)/Ad—itp) 1—it

fe(p) = = f(p)

m/e

uniformly on p € (0, 1). Therefore, if we consider p® = ¢~"/¢ — 0, it follows from

the uniform (in p) convergence that

Ewﬂwwﬂ=ﬁwﬁef@=l m
—1
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Fig.3 Asymmetric well for lower bound
We complete the proof. O

11 Sketch of the Proof of Conjecture 4.11 for a Special Case

In this section, we outline the proof of the upper bound on the decay rate (giving a
lower bound on the variance per unit time) that complements Theorem 4.5 for a special
case. Consider U : R — R shown as in Fig. 3.

In particular, assume U is a bounded C? function satisfying the following condi-
tions:

Condition 11.1 e U isdefined on a compact interval D = [xy, Xg] C R and extends
periodically as a C? function.
o U has two local minima at x; and xg with values U (x;) < U(xg) and [x; —
8,xr + 8] C D for some § > 0.
e U has one local maximum at 0 € (xp, Xg).
o U(xy)=0,UQ©) =hpand U(xg) =hy —hgr > 0.
[ ] iIlfxeaD U()C) > hL.

Consider the diffusion process { X7 };>o satisfying the stochastic differential equa-
tion

dX; = —VU (X])dt +v2edW;, (11.1)
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where W is a one-dimensional standard Wiener process. Then, there are just two
stable equilibrium points O1 = x; and O, = xp, and one unstable equilibrium point
03 = 0. Moreover, one easily finds that V(O1, O2) = hy and V (O3, O1) = hg, and
these give that W(0O1) = V (02, O1), W(0O3) = V(01, Oz) and W (O1 U O2) =0
(since Ly = {1, 2}, this implies that G4(1) = {(2 — 1)} and Gs(2) = {(1 — 2)}).
Another observation is that 21 = minge Aq\(1) V (01, O¢) = V (01, O3) = hy inthis
model.
If f = 0, then one obtains

R{" = inf V(O1,y) + W(01) — W(O)) = inf V(O1. y);
yeA yeA

R =2inf V(O1,y) —hi =2inf V (01, ) = h;
yeA yEA

RY = inf V(02,y) + W(02) — W(Oy) = inf V(02.y) +hy — hg:
yeA yeA
RY =2 inf V (02,y) + W (02) = 2W (01) +0 — W (01 U 02)
ye

=2inf V (02, y) + hy — 2hg.
yeA

Let A C [0, xg] and assume that it contains a nonempty open interval, so that
we are computing approximations to probabilities that are small under the stationary
distribution (the case of bounded and continuous f can be dealt with by approximation,
as in the case of the upper bound on the decay rate). We first compute the bounds one
would obtain from Theorem 4.5.

Case L. If xg € A, theninfycq V(O1,y) = hp andinf,eq V (02, y) = 0. Thus, the
decay rate of variance per unit time is bounded below by

min [R(.” A R@] = min{hy. h —2hg) = hy — 2hp.
j=12L" J
CaseIL. If A C [0, xg — &] for some § > O and § < xg, theninfycq V(O1,y) = hy
and infyeq V (O2,y) > 0 (we denote it by b € (0, hgr]). Thus, the decay rate of
variance per unit time is bounded below by

min, [R;” A R;z)] —min{h, hy +2(b —hg)) = h +2 (b —hg).

Caselll.If A C [xg +38, x*]withU (x*) = hy forsome § > 0and§ < x* —xg, then

infyea V(O01,y) = hp +infyea V (02, y) and infyes V (02, y) > 0 (we denote it
by b € (0, hg]). Thus, the decay rate of variance per unit time is bounded below by

min [Rj.“ AR?’] —min{hy +b,hy +2(b —hg)) =hr +2 (b —hg).
J=1,

CaseIV.If A C [x™* + 8, xg] with U(x*) = hy, for some § > 0 and x* > xp, then
infyea V(O1,y) = hp +infyeq V (02, y) and infye4 V (02, y) > 0 (we denote it
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by b > hpg). Thus, the decay rate of variance per unit time is bounded below by

mlln2 [R(l) A R(z)] =min{hy +b.hy + (b —hg)} =hr + (b — hg).
2

To find an upper bound for the decay rate of variance per unit time, we recall that

NE(T®)—1 NE(T*®)

AR TS AR o Y

with rj‘? being the j-th regenerative cycle. In Case I, one might guess that

&

/r’ 14 (X) dr (11.2)

£
Jj—1

has approximately the same distribution as the exit time from the shallow well, which
has been shown to asymptotically have an exponential distribution with parameter
exp(—hg/e). Additionally, since the exit time from the shallower well is exponen-
tially smaller than 1:;, it suggests that the random variables (11.2 ) can be taken as
independent of N¢ (T¢) when ¢ is small. We also know that

EN? (Tg) /T ~ 1/Et{ = exp(—hr(8)/e),
where hy(8) 1 hp as § | 0 and & means that quantities on either side have the

same exponential decay rate. Using Jensen’s inequality to find that E[N¢(T¢)]*> >
[EN?(T?)]? and then applying Wald’s identity, we obtain

1
T¢Var (Tefo 14 (Xf)dt)
1 NF T%) i ?
~ [ ( / — EN°(T £)E</1 1A(Xf)dt>:|
2
1 NE(TS
= ( / ) ——(E(NE(TE))) ( (
1 g P
_TSENS(TS)E</T?11 (Xf)d) _7 [EN®(T7)] <E(

3o ot oo - @) (7 oo
e D)

Jj-1

~ exp (—hp,(8)/¢) - exp(2hg /€) = exp(Rhg — hi(8)) /e). (11.3)

)
)
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Letting 6 — 0, we see that the decay rate of variance per unit time is bounded above
by hy — 2hg, which is the same as lower bound found for Case I.

For the other three Cases II, III and IV, the process spends only a very small
fraction of the time while in the shallower well in the set A. In fact, using the stopping
time arguments of the sort that appear in [12, Chapter 4], the event that the process
enters A during an excursion away from the neighborhood of xr can be accurately
approximated (as far as large deviation behavior goes) using independent Bernoulli
random variables { B} } with success parameter e~b/¢ and when this occurs the process
spends an order one amount of time in A before returning to the neighborhood of xg.
There is, however, another sequence of independent Bernoulli random variables with
success parameter e "k/¢ and the process accumulates time in A only up till the time
of first success of this sequence.

Then, Var( f:! 14 (Xf) dr) has the same logarithmic asymptotics as
i1

Var(ZiR:1 Iy Bf=1 }), where R? is geometric with success parameter e "r/¢ and inde-
pendent of the {B;}. Straightforward calculation using Wald’s identity then gives the
exponential rate of decay 24 g —2b for Cases II, IIl and / g — b for Case IV, so according
to (11.3), we obtain

1 EN® (T 7
T¢Var (Ts/ 14 (xf)dt) > %Var (/ T4 (Xf)dt) ~ ol @Ur=b)=h1 (8)/e]
0 74

for Cases II and III and

Y

T¢ ENS TS Tt -
TSVar<;S/(; 14 (xf)d:) %Var (/, 14 (xf)d;) ~ ol(r=D)=h1(8))/¢]
T

for Case IV.

Letting 6 — 0, this means that the decay rate of variance per unit time is bounded
above by iy, +2 (b — hg) for Case Il and I1I, and by iy + (b — hpg) for Case IV which
is again the same as the corresponding lower bound.
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12 Appendix

Proof of Lemma 7.8 Given a function g, we define the notation

n
I(t1,0;8) = / g(X{)ds,
1
forany 0 < t; < t». By definition, t{ = 7y and observe that

oo
It t:8) =Y

=1

10ty =Y

(=1
= Z:l I(te—1, 70 8) - 1{451\7} + ZZI I(te—1,70; 8) - 1{N+1555N}

o0
+ ZjeL\{l} ZZ:I <I(n‘1’ w8 ]{N+1565N,ZzleBBa(0j)]>'

I(te—1,te; 8) - Lie<ny

Since {\Al and N are stopping times with respect to the filtration {Gn1}n, it implies that
{U<N}={N=<t-1})eGrrand{N+1=<€<N,Zi_1 €3Bs(0;)} € Gg1.
Let

oo
S1=2 It mg) 1, ) and
=1
oo

6;= Z (I(TE—I’ w 8) - 1[1\7+1§£5N,2“5333(0,-)}>
=1

forall j € L\ {1}. We find

o0
E.(&)=)  E (E [l(u_l, w8 ) gHD
e .
=), Ex(1 (=) E7ea 1O 715 )]
(0.¢] ~
= spycamop By 1O 7)1 (D0 PN 2 0)).
In addition, for j € L \ {1},
e .
Ey (61) = Zz=1 Ex [ I(te-1,te; 8) - 1{N+1§£5N,Zg_16635(0j)]
o0
=), E: (E [l(rz_l, w8 N iceen 2, 1 eoi0) ‘ gHD

o0
= B (1 (#1ze=n 20 scomiop) Bz 1O g)])

o0
= SUPyeyg;0) Ey (0, 715 &)1 - (Zgzl Ex <1{N+1§Z§N,Z[|€835(0j)}>> :
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Itis straightforward to see that N = Nj.Thisimplies that Z?’;l P, (1\7 > () = Ex1\7 =
E, N1. Moreover, observe that forany j € L\ {1} Z?‘;l 1 {

N-+1=E=N.Z;-1€085(0,)]

N, which gives that Y 72 E(1, E.N,. Hence,

N+15£§N,Ze,leaBa(oj)}) =
Ec(Q.mnigd = Ex(8)) =Y [supseonyop By (10,71 9) |- EuN;.
a

Proofof Lemma7.9 Let! = |L|. Forany j € Landn € N, &/ = inf{k € Ny :
Zi € 9B5(0)}, & = inflk e N: k > £ and Z; € 9B5(0))}, i.e., & is the
n-th time of hitting d Bs(O ;). Moreover, we define N = inf{n € N : E,Ej) > N},
recalling that N = inf{n > N : Z, € 3Bs(0O;)} and N = inf{n € N : Z, €
Ujer\(1y90Bs(0;)}. Since E,(,j) is a stopping time with respect to {G, },,, we can define
the filtration {G_(;)}, and one can verify that N/) is a stopping time with respect to

{gg(,») Jn- As in the proof just given, for any function g and for any 0 < #; < £, we

define I (11, 12; g) = l? g(X$)ds. With this notation and since by definition tf =1y,
we can write

o0
10, Tn: g) = ZjeL 215:1 Ity T3 8) " Hesnt )

Since (x; + - - - + x7)2 §l(x12—|—-~-+x12) for any (x1, ..., x7) eR'and! € N,

o2 0o . 2
10, ty; 8)" <1 ZjeL (Zézl I(rsé,-), Te) g I{ZSN(./')_I}) .

Now for any j € L, each square term from the right can be written an addition
of two sums, where the first sum is summation of I(tgé,-), ng(j)ﬂ; g)2 . 1{Z§N(j)_1}

over all ¢, and the second sum is twice of summation of I(‘L’E(j), Tg(-"’+1;g) :
14 14
I{ZSN(f)—l}I(TgkU)’ rék(,-)H; 8) - Lyg<nGr—1y over k, £ with k < ¢. For the expected

value of the first sum, note that {¢ < NU) — 1} = (N < ¢)¢ e QE(_;), we have
L

o0
)
1321: Ey [I(rép, Te) g) 1{@1\/0)_1}]

o0
= ZZ; E, [1{E§N(j>—1}Ex [l(fgéj), T p g)z‘ g&@]]

< s EJOmigry PN -1z 0
Yy€9Bs5(0;) -

= sup  E, 10,715 8)°Ex(N)).
Yy€dBs(0;)
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The last equality holds since N/) — 1 = N; (recall that N; is the number of visits
of {Zn}nen, to 9Bs(0;) before N including the initial position) this implies that
Y2 PN =12 0) = 302, Po(Nj = ) = Ex(N)).
Turning to the expected value of the second sum, by conditioning on G L) gives
4

oo £—1

;; Ey [I(Tél(j), 0415 &) Neano -y (70, T 15 8) - 1{k§N(j)—l}]

oo £—1
< sup E,(10,11:0) )Y Ex [1{51\/(/)_1}1(%0), T, 8) 1{k§N(.i)_1}] :
y€dB5(0)) (=2 k=1 Lo

Now, since for any £k < ¢ — 1, ie, k +1 < ¢ I(t.(h,T.(h,,:8) €
&7 g7+

gékg)H and 1{£§N(/)—1} € ggéj), we have

E, [1{[51\/(/)_1}[(@;./), Te) 4y g) - 1{k§N(f’—1}]

= Ex [Esz(i)l [l{e—ksN(i)_l}:| I(Tséi)fm[(téi‘”’ fslinﬂ:g) : 1{ngm_1}]

< Supyeypy0;) Py —k < NY — DE, [I(Ték(”’ AU g l{k§N<j>,1}]

= SUPyespy0;) Py (6 —k < Nj)E, [Ex [l(fgk(jn T4y g)) gsk(”] . 1{k§N(f>—1}]

< SUPyeops0,) Ey (10, 715 8)) - supyeypy(0;) Py (€ —k < Nj) - Py (k < Nj).
This gives that the expected value of the second sum is less than or equal to

2 00 -1
(S“Pye335<0_,-> EyI(0, 73 g>) D imn Dy SUPyeaBs(0) Py (€ =k < Nj) - Py (k < Nj)

2 00
= (supyeaBa(Oj) EyI(O, 71, g)) Zk:] SupyEBBs(Oj) Py (k < N]) . ExN]

Therefore, putting the estimates together gives

2 o
E 10, 7f:8)* <21y { sup  Ey1(0, 71; g)] CE:Nj-Y sup Py (E<N))
J€EL Yy€dBs(0;) (=1 YE€IBs(0))

+1) | sup  EyI(0,11:9)* | ExNj.
jeL Y€dBs(0j)

Proof of Lemma 9.2 The main idea of the proof comes from [18, Theorem 3.16].
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Given any ¢ > 0, we define g (1) = E)¢ vag(t) for any ¢ > 0. Conditioning on 7
yields

o0
g (1) = / EpelSie |75 = xJdF* (1),
0

where F* (-) is the distribution function of zj. Note that

o .
e s _ _ gf(t—x)ifx <t
Eje I:SNS(t)h'] —x] = {E}Ls [Sﬂflg =x] ifx >t

which implies
t
g @) =/ g (t—x)dF* (x)+h* (1),
0
with
o0
h%):/ Eje [S{IT] = x]dF*® (x).
t

Since EjeS] = fooo E;e [S‘f|rf = x] dF?® (x) < oo, we have h® (1) < E; S for all
t > 0. Moreover, if we apply Holder’s inequality first and then the conditional Jensen’s
inequality, we find that for all # > 0,

1 1
& o0 e _ 2 3 2 0 2 e 2
he (1) < (Exe [S{1Tf = x])"dF?® (x) 1#dF® (x)
t t

1
2

€ 3 * e\2 | & e & 1 £\2, 1
<(1-F* )2 (/t Exe[(S])” Irf = x1dF (x)> < (1=F°(1))2 (Ex (5)))2.

Givenl € (0, ¢ —hy) let Ue = /¢ E;e 71 . According to Theorem 8.5, there exists
go € (0, 1) and a constant ¢ > 0 such that

1— F¢ (US) = Py (1{ /E)s 1 > ety < G

for any ¢ € (0, &9). Also by Theorem 8.5, U? < T*¢ for all ¢ small enough. Hence,
forany r > U?,

L= F 0 = 1= FF(U%) = e and b (1) < e P (E (57))2

By Proposition 3.4 in [18], we know that for any ¢ > 0, for ¢ € [0, c0)

t

gt (1) =h* (1) +/ h® (t — x)da® (x),
0
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where
a® (1) i/o Eje [N° (1) It} = x]dF® (x) = Ez (N° (1)).

This implies

E;LsS;VE(Tg) he (Tg) | Té_UeE ] e
T® T T +F/0 h® (T — x)da® (XH_F/LUS b (T% — x)da® (x),

a® (T%) —a® (T® — U?)

Te + E)»‘SST Te )

col/E (Tt -U*®
et g, (Sf)z)%ia ( )

e
- Eje Sy
B

where we use hf (1) < Eje S‘f to bound the first term and the third term, and 4° (¢) <
e~ 2 (Eye (S’f)z)l/2 for any ¢t > U* for the second term.

To calculate the decay rate of the first term, we apply Lemma 7.21 to find that for
any n > 0, there exists 69 € (0, 1) such that for any 6 € (0, §p)

E)LeSf

hm 1nf —¢elog

> irelg [f )+ W] =W(O)+c—hr—n. (12.1)

For the decay rate of the second term, given any § > 0

~,l/e T¢ —
liminf —¢ log (e“” A (55 ( )

= $liminf ee?/* + liminf —elog | (Eje (SS) )2 @ US) =00, (12.2)
4 =0 e—0 T ’ '

where the last equality holds since £ > 0 implies lim inf,_.o e/ = oo and also
because Lemma 7.23 and Corollary 8.3 ensure that
liminfe_.o —& log((Eje (Sf)z)l/za“/‘ (T¢—U?)/T?)is bounded below by a constant.
For the last term, note that for any ¢ fixed, the renewal function a® (¢) is subadditive
in t (see for example Lemma 1.2 in [17]), so we have a® (T¢) — a® (T* — U?) <
a® (U?) . Thus, we apply by Lemma 7.21, Corollary 8.3 and Theorem 8.5 to find that
for any n > 0, there exists §p € (0, 1) such that for any § € (0, §p),

o pat (T%) —a® (I* - U")
liminf —elog | E;: S|
e—0 T®

8( & &

lim inf —¢ log —
+liminf —clog 7

> liminf —& log E¢ S + lim inf —¢ log
e—>0 e—0
> ing [f )+ WE)]—=W(O1)+(c—h =0 —n. (12.3)
Xe

Since (12.3) holds for all £ > 0, by sending £ to 0, we know that (12.3) holds with
£ =0.
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Putting the bounds (12.1), (12.2) and (12.3) with £ = 0 together gives that for any
n > 0, there exists §p € (0, 1) such that for any § € (0, §p),

E)\.SSé\S &
liminf —e log ——— T > Snf [ £ (x) + W (x)] = W (O1) +¢ — hy — 1.
e—0 £ xeA

Proof of Lemma 9.5 By the definition of W (x),
2 inf‘[f (x) + W (x)] —2W (01) — hy
xXe
=2inf [f (x) + min (V(Oj,x)+ W (0))] —2W (O1) — h
x J

= min{2 inf [f @)+ V (0, x)]+2W (0;) —2W (O1) — h1}.
Jj€E X€

Define Q; = 2infyea [f (x) + V (0}, x)] +2W (0;) — 2W (01) — hy. Then, it
suffices to show that Q; > R;z) forall j € L.

For j = 1, 01 = 2infrea [f (¥) + V (01, )] —hy = R{P. For j € L\ {1},
Q; = R ifand only if W (0;) — hy = W (01 U 0;) . Recall that

w (0]) = gIenGi?j) I:Z(m—m)egv (Om, On)] and

w (01 U Oj) = gerg%? 7 [Z(m—)ﬂ)ESV (Omv On)] .

Therefore, for any g € G (j) such that W (0;) = 3, yez V (Om, On) , if we
remove the arrow starting from 1, and assume that it goes to i, then it is easy to see
that ¢ = g\ {(1,1)} € G(I, j). Since V(O1, O;) > hy, we find that

W(0;)—hi=) V (O, Op) — Iy

(m—n)eg

=y .V (O, 0) + V(01, 0)) — Iy
(m—n)eg

> mi V0,0]:WOUO.
_gerg%{{j)[z(m_)n)eg (O, On) (01U 0j)
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