
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2021) 35:10
https://doi.org/10.1007/s10458-020-09489-0

1 3

Enabling scalable and fault‑tolerant multi‑agent systems
by utilizing cloud‑native computing

Stefan Dähling1 · Lukas Razik2 · Antonello Monti1

Accepted: 17 December 2020 / Published online: 25 January 2021
© The Author(s) 2021

Abstract
Multi-agent systems (MAS) represent a distributed computing paradigm well suited to
tackle today’s challenges in the field of the Internet of Things (IoT). Both share many simi-
larities such as the interconnection of distributed devices and their cooperation. The combi-
nation of MAS and IoT would allow the transfer of the experience gained in MAS research
to the broader range of IoT applications. The key enabler for utilizing MAS in the IoT is the
ability to build large-scale and fault-tolerant MASs since IoT concepts comprise possibly
thousands or even millions of devices. However, well known multi-agent platforms (MAP),
e. g., Java Agent DE-velopment Framework (JADE), are not able to deal with these chal-
lenges. To this aim, we present a cloud-native Multi-Agent Platform (cloneMAP) as a mod-
ern MAP based on cloud-computing techniques to enable scalability and fault-tolerance. A
microservice architecture is used to implement it in a distributed way utilizing the open-
source container orchestration system Kubernetes. Thereby, bottlenecks and single-points
of failure are conceptually avoided. A comparison with JADE via relevant performance
metrics indicates the massively improved scalability. Furthermore, the implementation of a
large-scale use case verifies cloneMAP’s suitability for IoT applications. This leads to the
conclusion that cloneMAP extends the range of possible MAS applications and enables the
integration with IoT concepts.

Keywords Cloud computing · Multi-agent systems · Internet of things

 * Stefan Dähling
 sdaehling@eonerc.rwth-aachen.de

 Lukas Razik
 lrazik@eonerc.rwth-aachen.de

 Antonello Monti
 amonti@eonerc.rwth-aachen.de

1 Institute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH
Aachen University, Mathieustraße 10, 52074 Aachen, Germany

2 Energy Systems Engineering (IEK-10), Jülich Research Centre, Jülich, Germany

http://orcid.org/0000-0002-7146-3868
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09489-0&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 2 of 27

1 Introduction

Multi-Agent Systems (MAS) have been around for decades and have been applied to vari-
ous use cases [18]. They allow for a distributed, robust and scalable design of applications
in the field of, e. g., simulation, monitoring and control. For the implementation and execu-
tion of MASs many different Multi-Agent Platforms (MAP) have been proposed. One of
the most popular MAPs is the Java Agent DEvelopment Framework (JADE) [20].

Besides the wide-spread use of MASs in the scientific community, only few real world
use cases adopt MAS based approaches [40]. Moreover, these applications often comprise
only a small number of agents. Additionally, literature shows that MAPs do not offer good
performance when it comes to large-scale and distributed MAS applications. Besides, such
platforms have single-points of failure, which may prevent them from being used in critical
real world applications [21].

Cloud computing offers techniques to achieve high scalability and fault-tolerance,
i. e., the recovery from hardware or software failures. It allows for an efficient, easy and
on-demand provisioning of resources on infrastructure, platform and application layer.
Orchestration tools such as Kubernetes in conjunction with container technology allow to
compose distributed applications consisting of many distinct components, often referred to
as microservices [15].

MAS and cloud computing, have the potential to complement each other. While cloud
computing enables resource provision and management on platform level, MAS constitutes
a paradigm for a distributed application design utilizing possibly distributed resources.

The challenges in exploiting this potential synergy are the following. First, an additional
layer between the cloud platform level (often container orchestration) and the MAS appli-
cation is required for managing the MAS and translating its requirements to the underly-
ing orchestration tool. Second, it has to implement standardized tools for MAS developers,
such as an agent management system (AMS) or the directory facilitator (DF) [14]. As a key
feature of MASs, messaging among agents has to be enabled while hiding the underlying
complexity of the network.

An emerging field of application for large-scale MASs is the Internet of Things (IoT).
In fact these approaches show strong similarities. Geographically distributed devices, or
things, are connected to the Internet and therefore able to communicate. However, many
different frameworks for IoT-devices exist, making interoperability difficult. Furthermore,
IoT devices often have restricted hardware capabilities limiting the execution of com-
plex applications. Both, MAS and IoT, consist of distributed autonomous entities able to
exchange information. Given the tremendous amount of research work done in the field of
MASs, the IoT can benefit from that experience [36].

This work proposes a cloud-native Multi-Agent Platform (cloneMAP). cloneMAP
is designed to tackle the aforementioned challenges. Its design goals are high scalabil-
ity and fault-tolerance. As a result, cloneMAP is an enabler for the combination of MAS
and the IoT. The requirements for this platform are derived from a review of literature,
identifying the shortcomings of existing platforms. Additionally, a specific use case,
called SwarmGrid-X, in the field of electrical power grids, motivated the development of
cloneMAP. Similar to the IoT in general, SwarmGrid-X introduces the requirements of
scalability and fault-tolerance. Nevertheless, cloneMAP is a general-purpose MAP and
independent of a specific use case. Therefore, our contributions are:

• Conceptualization and implementation of a MAP based on a microservice architecture,

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 3 of 27 10

• Scalability and fault-tolerance to prevent bottlenecks and single-points of failure
through the adoption of cloud computing techniques, and

• Integration of an interface between MAS and the IoT.

All three contributions open up a promising field of application. We do not aim at propos-
ing new implementation concepts for cloud computing in general but rather to apply estab-
lished concepts to the field of MASs. In order to allow researches and MAS developers to
benefit from our contributions, cloneMAP is available as open-source software.1

The remainder of this paper is organized as follows. Section 2 gives an overview about
the related work. Section 3 introduces the concept of cloneMAP in detail. In Sect. 4 we
define metrics for an evaluation of the proposed features of cloneMAP. Section 5 analyzes
the results of the defined benchmarks and compares them to the established MAP JADE.
Additionally, we implement a large-scale use case on cloneMAP to validate its functional-
ity and features. Finally, Sect. 6 provides a conclusion and an outlook of future work.

2 Literature review

This section reviews the literature regarding MAPs, an integration of MAS and the IoT as
well as cloud computing and its potential combination with MAS.

2.1 Multi‑agent systems and platforms

MASs are a distributed computing paradigm originated in the 1990s. Multiple software
entities, so-called agents, operate individually but in cooperation to solve a global task.
An agent is characterized by four main characteristics: autonomy, social ability (i. e. infor-
mation exchange with other agents), reactivity and pro-activeness [48]. Many MAPs have
been developed since then, enabling the implementation of MASs applications. An over-
view is given in [20]. To the best of our knowledge no MAP is especially designed using
cloud computing techniques, especially container orchestration.

The design of MAPs is standardized by the Foundation for Intelligent Physical Agents
(FIPA). Figure 1 shows the reference model of a MAP. It contains the AMS which man-
ages the MAS and the agent it contains. All agents are registered with the AMS and can
use it for white pages requests. The DF is an optional component that enables service dis-
covery and hence, provides agents with yellow pages functionality. The Message Transport
System (MTS) provides agents with the ability to communicate with each other. A FIPA
compliant MAP has to follow this architecture and further specifications, e.g., for message
construction.

While scientific literature provides a rich overview of different fields of applications
of MAS, a broad adoption in industry and production systems seems to be missing [21].
A lack of scalability and fault-tolerance regarding the available MAPs has been identi-
fied as main reason for this [21, 40]. In the case of power engineering an IEEE working
group has identified possible applications of MAS and provided recommendations on
their design [24, 25]. Again, fault-tolerance is reported as one of the main requirements
for MAPs. Besides, the working group also highlights the importance of interoperability

1 https ://www.fein-aache n.org/en/proje cts/clone map/.

https://www.fein-aachen.org/en/projects/clonemap/

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 4 of 27

and extensibility. They recommend to achieve these by complying with standards
defined by the FIPA [14].

The most-widely used MAP in literature is JADE. It allows the implementation of a
MAS through a FIPA compliant middleware [5]. A JADE-based MAS can be deployed
across multiple computer hosts.

In [9] the scalability of JADE is discussed. The average round-trip time (av-gRTT)
of a ping-pong benchmark is measured for 1 to 1000 sender-receiver agent pairs. The
authors conclude a linear scalability just because of a proportional increase of the
avgRTT with the number of agent pairs on one single processor core system. Never-
theless, the measurements on two different hosts (i. e. 2 cores) show greater average
avgRTT compared to the case of one host. Since no speedup measurements are per-
formed using multiple hosts and processors, no conclusions on the scalability of JADE
on a distributed/parallel computing system can be made (with respect to the scalability
definition for a multi processor system [34]). Another JADE performance study can be
found in [28], performed on a cluster of up to eight nodes. One main outcome is that the
DF should be horizontally scalable to avoid bottlenecks.

In [38] a methodology for the evaluation of MAPs with criteria, such as performance
measured as avgRTT, for MAP characterization is introduced and applied to eight dif-
ferent MAPs. JADE is identified as the one with the best messaging performance. A
comparative analysis of JADE, AgentScape [31] and MadKit [17] is performed in [4],
using different performance benchmarks. The results indicate that the messaging per-
formance of JADE is superior to the one of the other MAPs. Further, the centralized

Agent Platform

Agent Platform

Software

Agent AMS DF

Message Transport System

Message Transport System

Fig. 1 FIPA reference model [14]

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 5 of 27 10

implementation of the DF in JADE and AgentScape is identified as a potential bottle-
neck. The distributed implementation in MadKit enables higher scalability.

The same authors present a more scalable MAP, called Magentix, that has been
developed on Operating System (OS) level [3]. The MAP can be distributed on differ-
ent machines. The AMS and DF are implemented in a distributed fashion. Each agent is
executed as three OS threads, one for sending of messages, receiving of messages and for
the agent behavior. A comparison with JADE shows that the messaging performance is
improved. However, for a large-scale MASs the number of agents might exceed the num-
ber of available Central Processing Units (CPUs). The necessary scheduling of threads
performed by the OS might impose performance issues. The performance of Magentix
assessed by means of a comparison with JADE. An experiment, similar to the ping-pong
benchmark, reveals that Magentix executes roughly six times faster compared to JADE for
up to 1000 agents [3].

In [40] fault-tolerance is analyzed as an important performance indicator. Therefore, dif-
ferent levels of fault-tolerance (MAP vs. agent level) are introduced. While a fault on agent
level is caused by the agent behavior itself and possibly results in a malfunctioning agent,
a fault on platform level is caused by the platform or the hardware the platform is running
on. As a result the latter should also be handled by the MAP. One MAP that offers fault-
tolerance on platform level is SAGE [1]. Fault-tolerance is achieved by means of a decen-
tralized architecture. The platform service of SAGE can be distributed over multiple hosts.
In case one host fails the rest of the platform can still continue its operation. However, the
recovery of single agents in case of a failure is not handled by SAGE. The authors of [1]
also perform a comparison with JADE. The ping-pong benchmark shows that SAGE per-
forms roughly twice as fast as JADE for up to 400 agents.

Based on the literature review the main requirements for cloneMAP are scalability and
fault-tolerance. Scalability refers to the performance of the messaging among agents for
large-scale MASs as well as the distributed implementation of platform components, i. e.,
the AMS and the DF. Fault-tolerance is addressed on platform level, enabling the recovery
from faults of platform components. Additionally, cloneMAP supports the MAS developer
in implementing fault-tolerance on agent level as well. Section 3 explains in detail how the
requirements for cloneMAP are mapped to the architectural design.

In this paper we use JADE as term of comparison for cloneMAP due to its widespread
use and because it is typically adopted for comparison by developers of MAPs who claim
better scalability (e. g. [1, 3]).

2.2 MAS and the internet of things

In the following, the relation between MASs and the IoT is covered. The IoT consists of
devices which can interact with their environment by means of sensors and actors. These
devices are equipped with an interface to a common communication network, e. g., the
Internet. Devices can then interact with each other or any remote service. Literature pro-
vides many examples for possible applications of the IoT [22, 41].

However, simply connecting devices to a common infrastructure does not automatically
enable them to interact and cooperate. The MAS paradigm has been proposed to overcome
this limitation and to allow for interoperability among devices [16, 29]. Every device is
represented by one intelligent agent that is able to process the device’s sensor data, interact
with other agents, reason about its environment and make decisions on the control of the
device’s actuators. This architectural model is the Internet of Agents [33] or agent-based

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 6 of 27

IoT [36] in literature. A combination of IoT and MAS requires the implementation of large-
scale MASs [37]. Other work has been done towards the integration of MAS and IoT [12,
13, 46], dealing with the modeling of the MAS architecture for IoT use cases. However,
these examples use JADE for the implementation of MASs, comprising the discussed limi-
tations. These limitations are identified as a major hindrance for the usage of MAS technol-
ogy in industrial cyber-physical systems [21]. The combination of MAS and IoT requires
not only research on the architectural models of MASs, also research on the implementa-
tion of agents, i. e., the MAP, is essential. We contribute to this by the presentation of
cloneMAP’s architecture and the demonstration of its capabilities.

Regarding the implementation of MASs for the IoT, the design choice is between
two main concepts: embedding the agents in the devices or executing agents outside the
devices, e. g., on a cloud-platform [21, 46]. Additionally, the concept of mobile agents
exists [2]. Mobile agents are able to migrate from one hardware to another. Hence, they can
move among different IoT devices and execute close to the environment they interact with.
However, executing agents on IoT devices, either stationary or mobile, has some disadvan-
tages [35]. IoT devices typically have limited computing resources limiting the complexity
of agent algorithms that can be implemented on them. Mobile agents require IoT devices
to be able to execute their code which requires a substantial level of interoperability among
devices.

We believe that the execution outside the devices on a platform with shared resources
has several benefits. Using shared cloud resources (i. e. computational performance, stor-
age, etc.) allows for higher resource demands and a more efficient resource allocation. Fur-
ther, agents executed outside the devices add another abstraction layer to IoT applications.
In this sense, agents are logical entities that can interact with one, multiple or even no
device. This way a system consisting of several components that logically belong together
can be represented and controlled by a single agent according to its logical functionality.
Executing agents directly on IoT devices would make this abstraction more difficult since
it implies a fixed mapping between IoT devices and the agents they host. Lastly, the execu-
tion of agents in a cloud platform eliminates the need for interoperability directly among
IoT devices. The devices only interact with the platform and possibly execute small tasks
locally. Based on these considerations we decided to implement cloneMAP as a platform
independent from the IoT devices but designed for a cloud environment. A similar percep-
tion can be found in [35] where agents are described as microservices running in a cloud
environment.

2.3 Cloud computing

The term cloud computing appears in many areas besides information technology such
as politics, economics, etc. We adopt the National Institute of Standards and Technology
(NIST) definition of cloud computing [27]. Here, the cloud computing model has three ser-
vice models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS).

The IaaS layer deals with the provision of computing resources, typically through Vir-
tualMachines (VMs) [43]. The PaaS layer provides certain services, that can be utilized for
application development and deployment. It is the layer on which cloneMAP is located.
Container orchestration is one of the key concepts of many cloud platforms (e. g. Docker
Swarm and Kubernetes) located at PaaS layer. SaaS refers to the provision of cloud-based
applications.

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 7 of 27 10

Orchestration in the cloud refers to the coordination of containerized services in order to
maintain the desired state of the cloud system and to handle faults [8, 45]. This is why orches-
tration is actively used by cloneMAP. It enables the execution of applications which consist of
many distinct and loosely coupled pieces, so-called microservices. The microservice architec-
ture is the counter part of monolithic applications. Instead of one large application built from
one code base, many small microservices are used. Microservices are often stateless. Stateless
applications can be easily scaled horizontally by starting several instances. Moreover, a state-
less application can be simply restarted in case of a fault since there is no state that would be
lost. The described methods are associated with so called cloud-native applications. While the
term is often used with different meanings, some key characteristics have been identified [7,
15]. They have in common, that cloud-native applications exploit the features of cloud infra-
structure to achieve high availability, scalability and fault-tolerance. In that sense, simply mov-
ing a monolithic application to cloud infrastructure does not comply with the idea of cloud-
native applications. We adopt the cloud-native design pattern for cloneMAP as described in
Sect. 3.

Kubernetes is a container orchestration tool developed open-source by a large community
around the Cloud Native Computing Foundation. Thus, it is well-established in industry but
also object of many research activities related to cloud computing over the last years [6, 32],
especially regarding orchestration improvements [26, 30]. Kubernetes is developed in the Go
programming language and supports the widely-used Docker Engine. Kubernetes and Docker
are used for the deployment of cloneMAP.

2.4 Combination of cloud computing and MAS

The weaknesses of existing MAPs with respect to fault-tolerance and scalability call for new
implementation paradigms. As outlined in Sect. 2.3, cloud-computing techniques offer meas-
ures to achieve scalability and fault-tolerance. Therefore, a combination of MAS and cloud-
computing is identified as a promising solution [42]. MASs running on a cloud system can
make use of its capabilities, i. e., dynamic scalability and fault-tolerance. This matches the
idea of cloneMAP.

In [23] a MAS is used for distributed control in smart microgrids in form of a cloud ser-
vice. The solution is evaluated by a cloud service providing control for voltage stability with
the aid of the MAS executed on JADE. The importance of scalability is addressed but the
evaluation is performed on a single node. Hence, no conclusion can be made on scalability
beyond one computing node. Similarly, in [39] the Elastic-JADE approach is presented which
is based on so-called scalable multi agents using cloud resources but with no study on the
scalability of JADE itself. Elastic-JADE deploys JADE to a cloud environment and enables
dynamic provision of new machines that extend the JADE platform. However, just moving
an application to the cloud does not increase its scalability. Architectural problems remain the
same, whether the application is executed on local hardware or in the cloud. That is why we
decided to implement a novel MAP that is based on a cloud-native design and hence, fully
exploits the advantages of a cloud environment.

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 8 of 27

3 cloneMAP concept

Based on the literature review cloneMAP’s major design goals are high scalability and
fault-tolerance. It follows a modular design and builds upon the container orchestration
system Kubernetes. First we motivate the choice of the programming language and the use
of Kubernetes. Subsequently the architecture of the platform is described in detail.

3.1 Go programming language

Go is a compiled language which was developed especially for networked servers [10] and
therefore is predestined for cloud computing. It provides native support for concurrency.
Concurrency in Go is realized with green threads, or goroutines in Go terminology. Green
threads are not managed by the OS but by a scheduler which is part of the Go runtime
library and operates on application level. This scheduler takes care of scheduling the green
threads to OS threads whose number typically equals the number of available CPUs. They
are more lightweight in stack size and scheduling time compared to OS level threads and
hence, introduce less overhead. Comparisons to other programming languages, like Java
[44], indicate the benefits.

One main advantage of MASs is the fact that agents can be executed individually and
therefore concurrently. This enables the exploitation of multi-core and distributed hard-
ware. However, especially in large-scale MASs the number of agents typically exceeds
the number of available CPUs drastically. Hence, with a large number of agents a parallel
execution of all agents is not possible. Therefore, using OS level threads for agent concur-
rency, i. e., one thread per agent, leads to considerable overhead for scheduling. Since green
threads are more lightweight their use for agent concurrency introduces less overhead.

The widespread use of Go in the area of cloud computing and the available concurrency
feature motivate its use for cloneMAP.

3.2 Kubernetes and Docker

Besides an appropriate programming language for the development also the deployment
of cloneMAP is of importance in order to achieve its design goals. As already outlined in
Sect. 2.3 container technology is one of the main trends in cloud computing. A container
does not only contain the application it is built for but also all its dependencies. This way
the use of containers offers high portability and reduces the dependency on specific infra-
structure. We use Docker as the most widely used container engine.

Kubernetes is a container orchestration tool. It enables its user to combine several com-
puting nodes to one cluster and to execute containers on that cluster. The deployment unit
in Kubernetes are so-called Pods, which consist of one or multiple containers. Pods are
assigned a network name by means of a DNS and can be addressed by other Pods using
that network name. The user can execute multiple instances of the same Pod, e.g., in order
to handle more requests simultaneously. A Kubernetes Service is used to cluster these
Pods and to load-balance incoming requests among them. The Kubernetes user specifies
a desired state of the cluster, regarding the different resource types like Pods and Services.
Kubernetes takes action to drive the actual cluster state to the desired state and to maintain
it. For example Kubernetes automatically restarts failed Pods.

The choice to use Kubernetes for the deployment of cloneMAP is motivated by its fea-
tures that support the execution of microservice-based applications. The different parts of

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 9 of 27 10

the MAP are mapped to Kubernetes Pods as described below. The concept of Kubernetes
Services is used to scale single MAP parts horizontally.

3.3 Overview

The conceptualization of cloneMAP is based on the FIPA reference architecture introduced
in Sect. 2.1. That means that cloneMAP implements the AMS, the DF and a MTS. In addi-
tion further components extend the functionality of cloneMAP. Agents use the FIPA Agent
Communication Language to construct their messages. While the concept of cloneMAP
follows the FIPA specifications, it is not fully FIPA compliant. The reason for this is that
cloneMAP uses the JSON format for the encoding of messages which is not included in
FIPA specifications. JSON is chosen over other formats like XML because it is lightweight
and popular in web applications.

The FIPA reference architecture is complemented by a cloud-native design of cloneMAP
to fulfill the identified requirements. That means that the above listed components of the
MAP are developed and deployed as distinct applications, or microservices. Each micros-
ervice offers a representational state transfer (REST) Application Programming Interface
(API) for interaction with other services. Further, these microservices are designed to be
stateless. In order to achieve statelessness we utilize distributed storages (etcd and Cassan-
dra DB; see Fig. 3). Microservices store their state in these storages. Therefore, microser-
vices can be scaled horizontally. The statelessness of the microservices eliminates the need
for synchronization among the single instances. This is completely handled by the distrib-
uted storages which use well established algorithms. Moreover, the microservices are fault-
tolerant as a stateless microservice can simply be restarted in case of a failure.

In order to manage the microservice Kubernetes is used. Each microservice is deployed
as a Pod with a single Docker container. Kubernetes enables the horizontal scaling, i.e., the
execution of multiple instances of a Pod, and the automatic restart in case of a failure. Fig-
ure 2 shows the resulting cloud stack for cloneMAP. Figure 2 also shows the architecture
of JADE in the same model. While JADE can also be distributed over several computing
nodes, it remains a single monolithic application on each node. Central components like
the AMS and the DF are available on the main JADE container.

Figure 3 shows cloneMAP’s overall architecture. The microservice approach leads to a
modular architecture. The core module implements the AMS and the MTS, while the DF
module implements the DF. Two additional modules are provided by cloneMAP: Logging

IaaS

PaaS

SaaS

machine provision
(VM or bare metal)

Container Orchestration (Kubernetes)

Core DF Logger IoT ...

MAS Application (Agent Behavior)
(Agency containers)

machine provision
(VM or bare metal)

Java Virtual Machine

JADE Main Cont. JADE Cont. 1..n

MAS Application (Agent Behavior)
(Part of JADE containers)

Fig. 2 Cloud stack of cloneMAP and comparison to JADE

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 10 of 27

and State and IoT-Interface The four modules and their components are explained in more
detail in the following. Some important aspects are compared to the architecture of JADE.

3.4 Core

The core module comprises two components: the AMS and a variable number of agencies
containing the agents.

The AMS has the task to manage the lifecycle of a MAS and its agents. Hence, it is
responsible for MAS and agent creation, manipulation and termination. In order to allow
the AMS to be stateless, an etcd cluster is used to store the configuration of the MAS and
the agents, i. e., the AMS’s state. Etcd2 is a distributed key-value store suitable for storing
such configuration data. The AMS provides an API to create and terminate a MAS and to
retrieve configuration information.

Agencies are the deployment units for agents. An agency is a container with one agency
process and a predefined but configurable number of agents, executed in separate green

core

DF

Logging and State

IoT-Interface

AMSAMS

Agency containerAgency container

Service RegistryService Registry

LoggerLogger

Message BrokerMessage Broker

etcdetcd

CassandraCassandra

AgencyAgency

AgentAgent

config

config

address

storage

logging

service

msg

storage

storage

msg

Fig. 3 Modular architecture of cloneMAP

2 https ://etcd.io/.

https://etcd.io/

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 11 of 27 10

threads. The agency is responsible for starting and terminating agents. Moreover, it peri-
odically monitors the agents’ status and restarts them in case of errors.

When the AMS is requested by the user to create a new MAS, the procedure depicted
in Fig. 4 is executed. The number of agencies to be created results from the total number
of agents in the MAS and the number of agents per agency, as defined by the user. By
choosing the number of agents per agency, the user can control the level of distribution. If
more agents are located in a single agency the effect of a fault of one agency will be more
severe as a large number of agents is affected. However, locating only a small number of
agents in an agency leads to a large number of agencies and therefore, to more computa-
tional overhead. The AMS invokes the Kubernetes API to deploy a StatefulSet of agencies
with the calculated number of instances. Pods in StatefulSets have a stable network name
which consists of the specified name of the set and a unique ID. Even if the agency has to
be restarted by Kubernetes, in case of a failure, the same network name is assigned to the
agency Pod again. This results in a unique and stable network address for each agency.
The AMS assigns agents to the executed agencies and stores the respective address of each
agent. The assignment to agencies happens based on the ID of agents. This can be further
improved in the future by locating agents, that frequently interact with each other, within
the same agency in order to minimize message exchange among agencies. After their crea-
tion, the agencies request their configuration, i. e., a list of agents they should contain, from
the AMS and start the corresponding agents.

Messaging among agents is handled using Go channels. Each agent has one channel for
incoming messages. For the communication among agents within the same agency, agents
append messages directly to their peer’s inbox. Messages directed to agents in other agen-
cies are added to an agency’s outbox which is also implemented as a Go channel. The AMS
is used as white pages to retrieve the addresses of other agencies. Subsequently the sending
agency takes care of sending this message to the remote agency which then routes the mes-
sage to the receiver agent. The handling of incoming and outgoing messages between agen-
cies is handled by multiple green threads. Their number is adjusted dynamically according
to the number of agents and the total number of agencies in the MAS.

In JADE agents are deployed in so-called JADE containers which are one JAVA appli-
cation. The AMS is only present on the main container and not horizontally scalable.
JADE uses one thread per agent. For a large MASs where the number of agents massively

determine number of agencies

startstart agencies

ok

start MAS

ok

get configuration

configuration

start

get configuration

configuration

User AMS Kubernetes Agency Agent

Fig. 4 MAS starting sequence

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 12 of 27

exceed the number of available CPUs this leads to considerable overhead compared to
green threads, as discussed before. Moreover, JADE dedicates five threads per container
(so-called deliverer) to sending of messages [4]. For local agents these threads add the
message directly to the receiver’s inbox. For agents within another container the message is
added to the inbox via a remote procedure call. While this mechanism for message sending
is similar as for cloneMAP, the fixed number of deliverer threads might impose scalability
issues for applications that involve massive communication among agents.

3.5 Directory facilitator

The DF module provides yellow pages functionality. Agents use the DF to register, dereg-
ister and request services. Each service contains a description revealing information about
the kind of service that is offered. Agents can register one, multiple or no services with the
DF. Requests to the DF can be used to search for agents which offer the requested service.
For this purpose the search request is compared to the description of registered services in
order to find suitable agents.

In case agents represent objects, which are connected in a single connected graph struc-
ture, the cloneMAP DF offers a topological search. The MAS developer can specify a MAS
topology, i. e., a graph consisting of nodes and edges. Agents are attached to a node and
edges indicate a direct connection between nodes with a weight. An agent can then request
all services within a certain distance. The distance of two agents is calculated as the sum of
all edge weights for the shortest path (i. e. the minimum sum of its edge weights) between
the agents in the topology graph. The topological search allows agents to search for local
agents with a small distance. This feature is important for the use case SwarmGrid-X as
described in Sect. 4.1.

Similar to the core module, the DF consists of a stateless frontend, the service registry,
that offers a REST API for the agents and a distributed backend. The same etcd cluster, as
for the AMS, is reused as backend for the registered services. The service registry can be
scaled horizontally due to its statelessness. Kubernetes load-balances incoming requests
among all instances of the DF.

Requests to the DF result in interaction between the service registry and the etcd back-
end. Hence, the answer time is increased compared to an implementation without a back-
end, e. g., as for JADE. In order to cope with this challenge, the service registry contains
a local cache, i. e., a copy, of all registered services. The etcd watcher feature is used to
update the local cache whenever a key in the etcd cluster changes, i. e., a service is regis-
tered, altered or deregistered. In these cases, the service registry forwards the update to the
etcd backend which then informs all instances of the service registry about the changes.
Subsequently, these update their local cache. In case services are requested, the service
registry uses its local cache to search for services that match the request. Hence, no direct
interaction with etcd is necessary at request time. Since registration and deregistration are
typically expected to happen less often than search requests for services this procedure
increases the overall performance of the DF as the interaction between etcd and the service
registry is minimized.

Similar to the AMS the DF in JADE is usually only present in the JADE main container.
However, JADE offers a functionality for a distributed DF: federation. The user can start
multiple DFs and federate them. DFs forward requests to the DFs they are federated with.
However, each DF still only manages the services of those agents which registered with it.
Hence, the DF remains a single-point of failure at least for a part of the MAS. Moreover,

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 13 of 27 10

forwarding requests to multiple DF instances produces more traffic and as a result limits
scalability. An additional feature of JADE is the possibility to deploy a fault-tolerant plat-
form. In this setup multiple main containers are started and the DF and AMS are replicated
in each main container instance. However, only one main container is active while the oth-
ers are kept updated but remain dormant. In case the active main container terminates with
an error, another replica becomes the active main container. While this depicts a fault-tol-
erance mechanism on platform level, it does not increase the scalability of JADE since only
one main container’s components, i.e., AMS and DF, are active at a time. A topological
search as offered by cloneMAP is not available in JADE.

3.6 Logging and state

The logging and state module has two tasks: offer logging capabilities for agents and offer
backup capability for agents’ states. Again, a stateless frontend providing a REST API is
combined with a distributed storage. In contrast to the core and the DF modules, which use
etcd, a Cassandra database.3 It is deployed to a variable number of separate Pods. Both,
logging and state information, are time series data. NoSQL databases, such as Cassandra,
have proven to be convenient for storing this kind of data [47].

The logging functionality provides an easy way of debugging during the MAS develop-
ment and analyzing during its operation. Agents can add log messages to different topics
such as messaging, errors or status. The MAS developer or user can request and filter these
messages for debugging or to analyze the agents’ behaviors.

The state storage functionality can be used to store the state of agents. cloneMAP is
able to automatically restart agents that were terminated due to errors, e. g., hardware fail-
ures. In case of a failure, Kubernetes takes care of restarting the affected agencies. These
would then repeat the sequence shown in Fig. 4 and start the agents. The agency itself has
no other state information except for its configuration which is retrieved from the AMS.
However, for an agent to continue working as intended, also the state of the agent before
termination is required. The state of an agent is defined by the MAS developer. It might
contain the most recent sensor values obtained from a device or information retrieved from
other agents. As agents store their state, either periodically or manually triggered by the
MAS developer, it can be restored after the restart and agents can continue to work from
that point.

The best strategy for updating the state stored in the Cassandra database highly depends
on the concrete MAS application. It is not restricted by cloneMAP itself. In case an agent’s
state changes directly before a failure happens, the stored state might not be the most recent
one. Additional recovery strategies may be necessary that ensure a consistent agent state in
the MAS application layer. It should be noted that, typically, one main motivation for using
MAS is the ability to implement fault-tolerant behavior, i. e., to implement an applica-
tion that can continue to operate even if single agents fail. Automatically restarting failed
agents is an additional measure for fault-tolerance introduced by cloneMAP. In that sense
cloneMAP offers fault-tolerance on platform level by means of Kubernetes’ functionality
of restarting failed Pods. In addition it offers a mechanism that supports the implementa-
tion of fault-tolerance also on agent level. The developer of a concrete MAS application
can then utilize this mechanism, i.e., the state storage functionality.

3 http://cassa ndra.apach e.org/.

http://cassandra.apache.org/

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 14 of 27

Also JADE provides a mechanism for fault-tolerance on agent level, namely virtual rep-
licated agents. In this concept, agents can be replicated, i. e., executed several times, and
a virtual agent takes care of routing messages to the instances. The state of all instances
has to be synchronized which causes overhead. As the target of cloneMAP are large-scale
MAS this approach is not suitable. The replication of a large number of agents and the nec-
essary synchronization among instances requires additional effort and therefore, imposes
performance issues. In cloneMAP each agent is only executed once and restarted only if
necessary, i. e., an error occurred. JADE’s fault-tolerance mechanism depends on the syn-
chronization of an agent’s state among all its instances. Hence, the same considerations as
for cloneMAP apply in case an agent fails before it is able to perform the synchronization
after the state changes.

3.7 IoT‑interface

The fourth module of cloneMAP is the IoT-Interface. It represents the connection of the
agents to the outside world. As explained before the core module enables inter-agent com-
munication. However, typical MAS applications involve the monitoring and/or control of
(distributed) devices. Hence, agents also need an interface for agent-device communication.

The IoT-Interface consists of a message broker implementing a communication proto-
col. We chose Message Queuing Telemetry Transport (MQTT) for this purpose since it is
widely used in the area of IoT-devices. It offers a publish-subscribe mechanism for com-
munication. cloneMAP uses the Eclipse Mosquitto implementation.4 Due to the modular
approach also other messaging mechanisms for interaction with devices can be used with
cloneMAP. cloneMAP offers an interface to MQTT for the implementation of agents. For
other messaging mechanisms a corresponding interface has to be implemented.

Using a publish-subscribe message broker allows to model different communication
patterns between IoT-devices and agents in cloneMAP. A 1:1 communication between
agents and devices as well as any n:m pattern are possible. As described in the literature
review we see agents as another abstraction layer for the IoT. Flexible communication pat-
terns allow for an effective communication of a single agent with multiple devices or vice
versa. Agents can also use the message broker to communicate among each other in cases
where peer-to-peer messaging is not suitable.

4 Evaluation methodology

We define four performance indicators and respective benchmarks to demonstrate cloneM-
AP’s scalability and compare it to JADE. All benchmarks are executed on the same multi-
node cluster as specified in Sect. 4.6. For both platforms, the benchmarks are implemented
with no specific optimizations but as little code as possible to execute the same behavior.
In the case of JADE, the procedures found in the documentation were used to implement
the agent behavior. The choices achieve a comparison that is as fair as possible. In addition
to these benchmarks, assessing general platform features, we analyze the performance of
cloneMAP for the specific use case SwarmGrid-X in the area of electrical power grids.

4 https ://mosqu itto.org/.

https://mosquitto.org/

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 15 of 27 10

4.1 Use case SwarmGrid‑X

The application of MASs for the control of power grids is currently an active field of
research. The increase of renewable power resources and the coupling with other sectors,
e. g., heat and mobility, poses challenges that may be resolved through the flexibility of
some of the new components via intelligent EMS. MASs are proposed in literature as a
framework for this task. In the distribution grid control concept SwarmGrid-X, agents are
assigned to flexible components and decide how to use the available flexibility concern-
ing different objectives. This decision making is achieved by negotiations among power
consumer agents and producer agents trying to balance power as locally as possible. Nego-
tiation partners find each other by means of a swarm concept, utilizing the DF. For this
purpose the topological search as introduced before is used. Consumer agents request pro-
ducer agents close to their location from the DF. The local agents one agent communicates
with are referred to as its swarm. The inherent structure of the power grid, based on the
different voltage levels, is mirrored in the MAS by a holonic architecture. SwarmGrid-X,
is able to mitigate voltage band violations and to provide additional flexibility to superor-
dinate levels, i. e., the transmission system. A more detailed description and evaluation of
SwarmGrid-X can be found in [11]. Given the scale of SwarmGrid-X comprising possibly
several thousand agents, it is an appropriate IoT use case to assess cloneMAP.

In [11] SwarmGrid-X is studied as part of a simulation model using the simula-
tor DistAIX [19]. Besides its functionality [11] also proves SwarmGrid-X’s scalabil-
ity. In this work the SwarmGrid-X concept is implemented utilizing cloneMAP. For
this purpose the described behavior of producer and consumer agents is transferred
to cloneMAP. Agents are executed within agencies as described in Sect. 3.4. The
cloneMAP DF is utilized for the introduced swarm forming, the logging and state
module is used by agents to store their state and the IoT-Interface is the connection to
the controllable grid components, i. e., the IoT devices. The implementation of agent
behaviors is done as close as possible to the implementation presented in [11]. The main
difference between the DistAIX and the cloneMAP implementations is that agents are
executed with a fixed time step in the simulation but continuously and asynchronously
in cloneMAP. As a result the outcome of SwarmGrid-X implemented with cloneMAP is
non-deterministic. The actions of agents in a MAS obviously depend on interaction (i. e.
messaging) with other agents which is one source of non-deterministic behavior: due to
the IP-based communication, messages might be received in different order for multi-
ple executions of the same scenario. Also the scheduling of agents to the CPU can dif-
fer. Despite the differences among multiple executions, SwarmGrid-X leads to a similar
overall behavior in all executions. Agents try to balance power as locally as possible.
Even if non-deterministic effects affect the negotiations their outcome is always similar.

We use DistAIX for the simulation of the agents’ physical environment, i. e., the
electrical grid and components. Agents communicate with their components via MQTT.
DistAIX is executed in real-time for this purpose. The setup enables the assessment of
cloneMAP and SwarmGrid-X under real-world conditions. The physical environment
is replaced by a simulation. Such a setup is referred to as a Software-in-the-Loop setup.

SwarmGrid-X is evaluated for different scenario sizes. We use the electrical grid
introduced in [11] as base scenario. It consists of two low voltage grids connected to a
common medium voltage grid. N copies of the grid are connected at the point of com-
mon coupling with the overlaying grid to scale the scenario size. A single copy of the
grid comprises 588 agents. The number of agents for N copies is

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 16 of 27

4.2 Benchmark 1: round‑trip time

The first benchmark aims to assess the performance of the messaging among agents. Simi-
lar tests have been defined in [9]. An even number of agents is executed and distributed
evenly among all computing nodes. Pairs of two agents are generated in a random way. The
two agents of a pair sequentially exchange messages. The agent initiating the communica-
tion, measures the round-trip time (RTT), i. e., the time span between the sending of a mes-
sage and receiving of its peer’s answer. This is done for 1000 messages in a row. Since the
creation and termination of agents takes additional time, messages are already exchanged
before and also after the actual measurement is performed. This ensures that the measure-
ment of RTTs is performed under full load condition for every agent pair.

The decision making process of agents generally involves different steps. First agents
have to learn about possible communication partners with the help of the DF. After that
they exchange information with other agents and reason about it. Depending on the appli-
cation this might happen multiple times iteratively until a decision is made. While the rea-
soning of the agents is implemented by the MAS developer, the messaging and the DF are
part of the platform.

Hence, the scalability of messaging is crucial for any large-scale MAS application as
it is a core functionality needed for the interaction between the agents and therefore needs
to scale with their number. The time required for decision making strongly depends on the
speed of the communication. The scalability of messaging is evaluated by performing mul-
tiple measurements with an increasing number of agents, and therefore, communication
effort. For all these measurements the avgRTT is analyzed as a metric for the messaging
performance which indicates the latency in the interaction between agents. This can be piv-
otal for the performance of the whole MAS, when the interactions are time-sensitive. The
avgRTT for the SwarmGrid-X use case with different scenario sizes is measured, too. This
enables the reader to set the results of the generic benchmark into the context of a realistic
use case.

4.3 Benchmark 2: directory facilitator

As outlined in the literature review, the DF has been identified as bottleneck and therefore,
a scalability limitation for large-scale MAS. In the described use case SwarmGrid-X, the
DF has to serve requests from possibly several thousand agents. Similar to the messaging
also the DF answer time influences the required time for decision making.

We analyze the performance of the DF by putting it under heavy load with a varying
number of agents. Each agent performs the same sequence of requests: first a service is
registered, then a search request is sent for eight times and finally the registered service is
deregistered again. To ensure that the DF is under full load during the entire time, agents
send search requests before and after the actual measurement. Every agent measures the
total time that is required for the described sequence. The number of search requests is
higher than the number of registrations and deregistrations since for most MAS applica-
tions it can be assumed that agents register a limited amount of services but repeatly search
for services of other agents. In the case of SwarmGrid-X we measure the average answer
time for search requests and relate this to the results of the benchmark.

(1)A(N) = N ⋅ 585 + N ⋅ 2 + 1.

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 17 of 27 10

4.4 Benchmark 3: CPU utilization

Besides the performance of the messaging, also the performance of the MAP for a given
number of agents and a given agent task is of importance. Hence, we analyze how much
a certain computation exhausts the available computing resources, i. e., the CPU. In order
to simulate an agent behavior from a computational point of view, every agent performs
a summation of float values for a predefined portion of the execution time and idles for
the rest of it. The period T is divided in two phases Trun and T − Trun . For Trun the agent
performs the float summation looping through two arrays of floating point values. Subse-
quently, for T − Trun it sleeps. This results in the relative load factor � =

Trun

T
 which ensures

that the applications generate the same load even if the required time for one float sum-
mation differs between Java and Go applications. The motivation behind our measuring
method (instead of letting the applications execute a fixed number of float summations
between each message exchange) is that we do not want to determine the FLOPS perfor-
mance of the different programming languages but compare the performance of the differ-
ent MAPs implementations. Additionally, each agent pair as defined in Sect. 4.2 exchanges
one message every second.

The average CPU utilization of all computing nodes is measured over time for a fixed
number of agents. The factor � is varied to achieve different load scenarios.

In the context of cloud computing, CPU utilization is an important metric as more
CPU power translates to higher costs in case of public cloud infrastructure. An application
which requires less resources can be executed on smaller and therefore, cheaper (virtual)
machines. But also for private or on-premise infrastructure reduced hardware requirements
are beneficial.

4.5 Benchmark 4: fault‑tolerance

The last benchmark aims at analyzing the fault-tolerance capability of cloneMAP and
comparing its performance with the one of JADE. For this purpose benchmark 1 is
repeated. Within an agent pair the agent initializing communication counts the number of
received messages. This is defined as the agent’s state. This state is stored every 25 ms.
For cloneMAP this is done by means of the module Logging and State (see Sect. 3.6).
In the case of JADE each agent creates one replicated agent. Storing the state means
that it is synchronized among the original agent instance and its replica. We evaluate the
avgRTT for varying MAS sizes. The factor favg by which the avgRTT obtained in bench-
mark 1 is increased reveals the additional overhead that is generated by the fault-tolerance
functionality.

In addition we demonstrate the importance of the fault-tolerance capability with the aid
of the SwarmGrid-X use case. According to the SwarmGrid-X concept, power consum-
ers and producers negotiate the amount of consumed and produced power with the goal to
balance power as locally as possible. These negotiations result in contracts between agents
which define their behavior. The list of all contracts is defined as the agent’s state. When-
ever the state of an agent changes it is stored in the Cassandra DB.

During a simulation of the single-copy scenario we artificially introduce a failure of
three of the agencies, which leads to a restart of the agency containers and hence, the
agents executed in these agencies. To simulate the failure we manually terminate the
agency containers. This might correspond to a software failure leading to a termination of

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 18 of 27

the containers or a hardware failure of the machines the agencies are executed on. Note that
Kubernetes would also restart the containers if the cluster was overloaded and the contain-
ers slow to respond. In that case the Kubernetes cluster needs to be extended by adding
more nodes to it. Kubernetes can then schedule containers that are not responding to the
new nodes.

The three terminated agencies comprise about 27% of all agents in the scenario. We
compare the overall behavior of the power grid with and without the failure. For this pur-
pose the active power exchange at the point of common coupling is evaluated. The active
power depicts the overall behavior of the entire system. This allows to conclude implica-
tions of the fault-tolerance capability for the overall functionality of SwarmGrid-X. Addi-
tionally, the average time between the failure and the restart of the agents is analyzed for
varying scenario sizes.

4.6 Hardware configuration

All presented benchmarks are executed on the same hardware setup for both cloneMAP
and JADE. It consists of three physical machines with two Intel Xeon E5-2650 v2 each,
leading to a total number of 16 cores per machine each with 64 GB of main memory.
Hyper-Threading is disabled to ensure an equal number of physical cores and total numbers
of vCPUs (virtual CPUs of all VMs). On every physical machine 4 VMs are executed,
each with 4 vCPUs and 12 GB of main memory. This leads to a virtual twelve node cluster.
All three physical machines are connected by GBit-Ethernet. All host and guest machines
use Ubuntu 16.04.6 with a 4.4.0 Linux Kernel as OS.

We used the tool kubeadm to set up a single master Kubernetes cluster. Calico is used
as network plugin for Kubernetes. The used Kubernetes version is 1.13.4 and Go version
1.11.2 was used to build all cloneMAP components. The Kubernetes master node is not
used for hosting cloneMAP components. The two used distributed storages, etcd and Cas-
sandra DB, are executed with three instances each in all benchmarks. In case of JADE all
twelve nodes are used for the benchmarking MASs. We use JADE 4.5.0 and Java SE Runt-
ime Environment 1.8.0. The executed agents are distributed equally among all nodes for
all benchmarks. Each virtual node executes exactly one container, either for a cloneMAP
agency or for JADE.

5 Evaluation

5.1 Benchmark 1: round‑trip time

Figure 5 shows the avgRTT and the 95th percentile of all messages for the execution of
benchmark 1. JADE performs slightly better for small use cases with less than 100 agents.
However, the difference is below 1 ms and therefore negligible. For both, JADE and
cloneMAP, the slope of the curves increases starting from a MAS size of fifty agents. The
reason for this is, that the test setup has a total number of 48 CPU cores. As a result, up to
this number the execution of agents can be completely parallelized.

For larger MASs, cloneMAP shows much better performance compared to JADE. The
avgRTT at 10,000 agents is 11 ms in the case of cloneMAP. In the case of JADE it is more
than 20 times higher (222 ms). Moreover, the factor between the avgRTT of cloneMAP and
JADE increases with the number of agents. This is different for the other MAPs claiming

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 19 of 27 10

scalability, where the factors remain roughly constant for different MAS sizes. As a result
the scaling factor of cloneMAP is much larger compared to the one for Magentix and
SAGE, based on the literature review, for large MASs containing several thousand agents.
One reason for the constant scaling factors in other MAPs could be a similar execution
model for agents. As in JADE agents are executed in separate OS threads. In contrast to
this agents in cloneMAP are executed in green threads which are much more lightweight
and reduce the overhead especially for large MASs. An execution of JADE with more than
10,000 agents failed for 10 consecutive executions.5 The results show that the messaging of
cloneMAP is much more scalable to higher numbers of agents.

Figure 5 also shows the avgRTT for SwarmGrid-X (SG-X) implemented with
cloneMAP. They are slightly increased compared to the RTTs in the dedicated benchmark.
For example the average RTT for the scenario with 1,175 agents is 10 ms while it is only
3.5 ms for the RTT benchmark with 1000 agents. Two reasons can be identified for this.
First, in the RTT benchmark no sophisticated agent behavior as for SwarmGrid-X is exe-
cuted. Hence, the overall CPU utilization for SwarmGrid-X is much higher for a similar
scenario size. Second, the measured RTT for SwarmGrid-X also includes computations
an agent has to perform before sending an answer. Despite the increased RTTs the results
remain one order of magnitude below 1second. Therefore, the functionality of SwarmGrid-
X is not affected by message delays for all scenario sizes.

100 101 102 103 104

103

104

105

106

number of agents

R
T
T

in
s

cloneMAP avg cloneMAP 95th
JADE avg JADE 95th
SG-X avg

Fig. 5 Benchmark 1: RTT for varying number of agents

5 Exemplary error message: Error serving H-Commandjade.core.messaging.Messag-
ing/3: jade.core.NotFoundException: getContainerID()failed to find agent
ag3824@192.168.0.151:1099/JADE.

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 20 of 27

5.2 Benchmark 2: directory facilitator

The results for the DF benchmark can be seen in Fig. 6. For cloneMAP the results are
shown for a single instance of the DF and for a certain number of instances leading to ideal
results. In the case of 10 agents the JADE DF performs better compared to cloneMAP. The
cloneMAP DF has to perform two requests for registration and deregistration, one from
the agent to the service registry and one from the service registry to the etcd backend.
This leads to an overhead that increases the execution time. For larger MASs this overhead
is less critical as the backend is distributed and can serve more requests. As a result, the
execution time increases much more for the JADE DF with a growing number of agents.

In addition to the backend, also the service registry can be scaled horizontally. A com-
parison of execution times for a single instance and for multiple instances reveals that scal-
ing the DF further decreases the execution time. However, the different kinds of requests
scale differently. While the registration and deregistration requests invoke also the etcd
backend, scaling is limited by its performance. Searching for services uses only the local
cache of a service registry. Hence, the parallel execution of this action within different
instances does not interfere. For 1000 agents the ideal number of service registries is five.
The average execution time for a search request with a single instance is 441 ms while the
execution time with five instances is 110 ms (JADE: 3808 ms). For registration requests,
the average execution time with one instance is 915 ms and for five instances 382 ms
(JADE: 1268 ms). These examples show that using a local cache in every service registry
enables a better scalability. As search requests are more frequent in typical MAS applica-
tion, the overhead for registration and deregistration is acceptable and the optimization for
search requests is beneficial.

The answer times for search requests in SwarmGrid-X are also depicted in Fig. 6. Note
that these are the times of only one single operation while in the benchmark a sequence of

101 102 103

104

105

106

107

108

number of agents

av
g
ex

ec
ut
io
n
ti
m
e
in

s

cloneMAP cloneMAP scaled
JADE SG-X (search)

Fig. 6 Benchmark 2: execution time of DF request sequence and answer time of search requests in the case
of SG-X

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 21 of 27 10

ten operations is executed. The answer times are in a similar range for all scenario sizes
and do not increase significantly. In contrast to the dedicated DF benchmark the DF is not
fully utilized in the use case. The benchmark represents the worst case behavior since all
agents are requesting the DF simultaneously. Requests to the DF occur occasionally in the
case of SwarmGrid-X. Hence, it is able to maintain small reaction times for all scenario
sizes. Similar to the results for the message RTTs, the DF answer times do not violate the
requirements of SwarmGrid-X and therefore, do not disturb its operation.

5.3 Benchmark 3: CPU utilization

The CPU utilization for three cases of � is depicted in Fig. 7. In all cases the utilization is
substantially lower for cloneMAP. We identified two main reasons for this. First, JADE is
written in Java and hence, is compiled to byte code which requires a Java Virtual Machine
to be executed. Go on the other side produces native machine code. Second, the use of
green threads for concurrent execution of agents proves to be more efficient. Instead, JADE
uses one thread per agent. For large MASs this adds a substantial overhead, as the OS has
to take care of scheduling with the corresponding context switching.

5.4 Benchmark 4: fault‑tolerance

Figure 8 shows the factor favg by which the avgRTT of benchmark 1 is increased if agents
store, or synchronize, their state. For JADE favg decreases until a MAS size of 20 agents.
Up to this point the total number of agents, i.e., the original agents and their replicas, is
smaller than the total number of available CPUs. Hence, JADE can parallelize all agents
and the relative overhead introduced by the fault-tolerance mechanism decreases. For

0 10 20 30 40 50 60

20

30

40

50

60

time in second

C
P
U

un
ti
liz

at
io
n
in

%

cloneMAP (α = 0.005) JADE (α = 0.005)
cloneMAP (α = 0.01) JADE (α = 0.01)
cloneMAP (α = 0.02) JADE (α = 0.02)

Fig. 7 Benchmark 3: CPU utilization for different load scenarios

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 22 of 27

greater MAS sizes the factor increases. For a MAS size of 1000 agents, the avgRTT
exceeds 25 ms which is the state synchronization rate. As a result the MAP is overloaded
and the increase of favg is stronger.

For cloneMAP favg increases with increasing MAS size. More agents increase the pres-
sure on the Logging and State module what worsens the overall performance. However,
the rate by which favg increases is smaller for MAS sizes larger than 20 compared to JADE.
Note that favg as depicted in Fig. 8 reveals the relative increase of the avgRTT. Since the
absolute value of the avgRTT of cloneMAP in benchmark 1 is much smaller for large
MASs compared to JADE, also the absolute increase of the avgRTT in this benchmark is
smaller. For example, for a MAS size of 500 agents the avgRTT in benchmark 1 is 2.92 ms
for cloneMAP. With fault-tolerance enabled it increases to 4.16 ms which equals a favg of
1.43. The avgRTT of JADE for the same scenario is 6.69 ms without and 10.37 ms with
fault-tolerance leading to a favg of 1.55. While the relative increase factors of cloneMAP
and JADE seem similar, the absolute increase is 1.24 ms for cloneMAP and 3.68 ms for
JADE.

For the demonstration of the fault-tolerance capability of cloneMAP three simulations
are executed. Figure 9 shows the active power exchange P at the point of common coupling
with the overlaying grid for the execution without a failure, with a failure and no recovery
and with a failure but with recovery of failed agents. The vertical dashed line highlights the
point in time when the failure of the three agencies is introduced.

Comparing the results for a simulation without failure against those obtained with fail-
ure and without recovery, yields that at the beginning the overall system behavior is similar
in both cases. However, after the failure both curves for active power begin to deviate.
Because SwarmGrid-X aims at balancing power as locally as possible, if agents fail and are
not executed anymore their energy resources cannot adapt their behavior according to the
rest of the system. In the simulated scenario the load, i. e., power consumption, decreases
over time while the power generation increases due to photovoltaic (PV) systems. As a

100 101 102 103

1.2

1.4

1.6

1.8

2

2.2

number of agents

f
av

g

cloneMAP JADE

Fig. 8 Benchmark 4: factor between avgRTT in benchmark 4 and benchmark 1

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 23 of 27 10

result storages have to change their behavior from discharging in the beginning, to support
the loads, to charging in order to store the renewable power exceed. The inability of flex-
ibility providers to react in the described manner leads to the offset between both cases.

In the case of a recovery from the introduced failure, agents are restarted and hence, can
continue to interact with the rest of the MAS. As a result the flexibility providers can react
to the changes in the system and adapt their behavior. Therefore, Fig. 9 shows that the sys-
tem behavior in case of a recovery is much closer to the one without the introduced failure.

However, still some deviations between the two curves exist. One reason for this is,
that multiple executions of the exact same scenario always yield slightly different results
due to the mentioned non-deterministic effects. Another reason for small deviations,
even in case of the recovery, is that minor inconsistencies between the state of an agent
before and after the restart can occur. If the agency fails during the manipulation of an
agent’s state, e. g., while adding or changing a contract with another agent, that state is
not yet stored with the logging and state module. After the restart the information about
that manipulation is missing. SwarmGrid-X is not optimized for the use of the described
recovery mechanisms of cloneMAP. Further measures on application level are neces-
sary to prevent such situations. However, the goal of this paper is not the demonstration
of fault-tolerance of a specific MAS application, i. e., SwarmGrid-X, but the demon-
stration of fault-tolerance mechanisms provided by the platform cloneMAP. The results

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−100

−50

0

time in hours

P
in

kW

P (no failure) P (failure)
P (failure and recovery)

Fig. 9 Demonstration of fault-tolerance with SwarmGrid-X with agencies failure at 0.4 h

Table 1 SwarmGrid-X restart
time in milliseconds for different
scenario sizes N

N Agents Logger
instances

Avg restart time Avg state
loading
time

1 588 2 1452 68
2 1175 3 1919 52
5 2936 5 2483 80
10 5871 8 2770 107

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 24 of 27

indicate that even for an application, which does not ensure state consistency, the recov-
ery mechanisms of cloneMAP improve fault-tolerance substantially.

Table 1 shows the average time required for restarting the agents for different sce-
nario sizes N. The restart time is the time between the failure and a proper operation of
the agents. The state loading time reveals the time needed to load the previously stored
state and apply it to the agent’s knowledge.

The time required for the restoring of the state depicts only a small portion of the
overall restart time. Both times increase for increasing scenario sizes. However, the total
restart time remains in the order of a few seconds and hence, is sufficient for the use
case SwarmGrid-X. The largest part of the restart time is consumed by the detection of
the failure by Kubernetes and the subsequent restart of the failed container. This time
can not be influenced by cloneMAP.

6 Conclusions

This work presents cloneMAP as a MAP that is based on cloud computing techniques
that achieve scalability and fault-tolerance. These features are deemed crucial for the
adoption of the MAS paradigm in real world and large-scale applications which are
common, e. g., in the IoT.

cloneMAP is implemented on top of the widely used container orchestration system
Kubernetes using Go as a modern programming language especially designed for scal-
able network and cloud services. The cloud-native design of cloneMAP eliminates sin-
gle-points of failure. The use of distributed data storage and stateless frontends enables
horizontal scalability and fault-tolerance. Modern features offered by Go such as green
threads allow an efficient execution of concurrent agent tasks. The benchmarks show
cloneMAP’s improved scalability and fault-tolerance features compared to JADE. The
performance assessment of the implementation of the use case SwarmGrid-X indicates
the suitability of cloneMAP in real world applications.

Hence, we regard cloneMAP as the next step towards a broader adoption of MASs
also outside scientific research, i. e., in real-life and industrial applications. In combina-
tion with the IoT many possible fields of application exist. cloneMAP’s presented fea-
tures enable this combination. Moreover, the modular microservice architecture allows
for a comparatively easy extension of cloneMAP. New modules adding further function-
ality can be included by adopting their REST API. Therefore, also existing software can
be reused, e.g., other message brokers connecting agents to IoT devices. Further, this
flexibility allows users of cloneMAP to adjust the platform to their needs, deploying
only those modules which provide the required functionality. In the future, more real
world use cases have to be implemented using cloneMAP to demonstrate its potentials.

Acknowledgements We gratefully acknowledge the financial support provided by the German Federal Min-
istry of Economic Affairs and Energy in the research Project AGENT under Grant Number 03ET1495A
and the German Federal Ministry of Education and Research in the research project ENSURE under Grant
Number 03SFK1CO.

Funding Open Access funding enabled and organized by Projekt DEAL.

Conflict of interest The authors declare that they have no conflict of interest.

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 25 of 27 10

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Ahmad, H., Suguri, H., Ali, A., Malik, S., Mughal, M., Shafiq, M., et al. (2005). Scalable fault tol-
erant Agent Grooming Environment: SAGE,. https ://doi.org/10.1145/10824 73.10828 16.

 2. Alami-Kamouri, S., Orhanou, G., & Elhajji, S (2016) Overview of mobile agents and security. In
2016 international conference on engineering MIS (ICEMIS) (pp. 1–5). https ://doi.org/10.1109/
ICEMI S.2016.77453 71.

 3. Alberola, J., Such, J., Botti, V., Espinosa, A., & García-Fornes, A. (2013). A scalable multiagent
platform for large systems. Computer Science and Information Systems, 10(1), 51–77. https ://doi.
org/10.2298/CSIS1 11029 039A.

 4. Alberola, J. M., Such, J. M., Garcia-Fornes, A., Espinosa, A., & Botti, V. (2010). A performance
evaluation of three multiagent platforms. Artificial Intelligence Review, 34(2), 145–176. https ://doi.
org/10.1007/s1046 2-010-9167-9.

 5. Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing multi-agent systems with JADE
(Vol. 7). New York: Wiley.

 6. Bernstein, D. (2014). Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud Com-
puting, 1(3), 81–84.

 7. Brunner, S., Blöchlinger, M., Toffetti, G., Spillner, J., & Bohnert, T. M. (2015). Experimental eval-
uation of the cloud-native application design. In 2015 IEEE/ACM 8th international conference on
utility and cloud computing (UCC) (pp. 488–493). https ://doi.org/10.1109/UCC.2015.87.

 8. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Borg, omega, and kuber-
netes. ACM Queue, 14(1), 10:70–10:93. https ://doi.org/10.1145/28984 42.28984 44.

 9. Cortese, E., Quarta, F., & Vitaglione, G. (2002) Scalability and performance of JADE message
transport system. In AAMAS workshop on AgentCities. Bologna

 10. Donovan, A. A., & Kernighan, B. W. (2015). The go programming language. Boston: Addison-
Wesley Professional.

 11. Dähling, S., Kolen, S., & Monti, A. (2018). Swarm-based automation of electrical power distribu-
tion and transmission system support. IET Cyber-Physical Systems: Theory and Applications, 3(4),
212–223. https ://doi.org/10.1049/iet-cps.2018.5001.

 12. Fortino, G. (2016). Agents meet the IoT: Toward ecosystems of networked smart objects. IEEE Sys-
tems, Man, and Cybernetics Magazine, 2(2), 43–47. https ://doi.org/10.1109/MSMC.2016.25574 83.

 13. Fortino, G., Guerrieri, A., Russo, W., & Savaglio, C. (2014) Integration of agent-based and cloud
computing for the smart objects-oriented IoT. In Proceedings of the 2014 IEEE 18th international
conference on computer supported cooperative work in design (CSCWD) (pp. 493–498). https ://
doi.org/10.1109/CSCWD .2014.68468 94

 14. Foundation for Intelligent Physical Agents: Standard FIPA Specifications. http://www.fipa.org/
repos itory /stand ardsp ecs.html. Accessed on 23 October 2020

 15. Gannon, D., Barga, R., & Sundaresan, N. (2017). Cloud-native applications. IEEE Cloud Comput-
ing, 4(5), 16–21. https ://doi.org/10.1109/MCC.2017.42509 39.

 16. Giordano, A., Spezzano, G., & Vinci, A. (2016) Smart agents and fog computing for smart city
applications. In: E. Alba, F. Chicano, G. Luque (Eds.), Smart cities, Lecture Notes in Computer
Science (pp. 137–146). Springer

 17. Gutknecht, O., & Ferber, J. (2000) MadKit: A generic multi-agent platform. In Proceedings of
the fourth international conference on Autonomous agents, AGENTS ’00 (pp. 78–79). Barcelona:
Association for Computing Machinery. https ://doi.org/10.1145/33659 5.33704 8.

 18. Iglesias, C. A., Garijo, M., & González, J. C. (1998). A survey of agent-oriented methodologies. In:
International workshop on agent theories, architectures, and languages (pp. 317–330). Springer.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1082473.1082816
https://doi.org/10.1109/ICEMIS.2016.7745371
https://doi.org/10.1109/ICEMIS.2016.7745371
https://doi.org/10.2298/CSIS111029039A
https://doi.org/10.2298/CSIS111029039A
https://doi.org/10.1007/s10462-010-9167-9
https://doi.org/10.1007/s10462-010-9167-9
https://doi.org/10.1109/UCC.2015.87
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1049/iet-cps.2018.5001
https://doi.org/10.1109/MSMC.2016.2557483
https://doi.org/10.1109/CSCWD.2014.6846894
https://doi.org/10.1109/CSCWD.2014.6846894
http://www.fipa.org/repository/standardspecs.html
http://www.fipa.org/repository/standardspecs.html
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1145/336595.337048

 Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

10 Page 26 of 27

 19. Kolen, S., Dähling, S., Isermann, T., & Monti, A. (2018). Enabling the analysis of emergent behav-
ior in future electrical distribution systems using agent-based modeling and simulation. Complex-
ity,. https ://doi.org/10.1155/2018/34693 25.

 20. Kravari, K., & Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial Societies
and Social Simulation, 18(1), 11.

 21. Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. (2016). Smart
agents in industrial cyber-physical systems. Proceedings of the IEEE, 104(5), 1086–1101. https ://
doi.org/10.1109/JPROC .2016.25219 31.

 22. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things:
Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things
Journal, 4(5), 1125–1142.

 23. Marchi, S. B. D., Ponci, F., & Monti, A. (2013). Design of a MAS as cloud computing service to
control smart micro grid. IEEE PES ISGT Europe, 2013, 1–5. https ://doi.org/10.1109/ISGTE urope
.2013.66953 81.

 24. McArthur, S. D. J., Davidson, E. M., Catterson, V. M., Dimeas, A. L., Hatziargyriou, N. D., Ponci, F.,
et al. (2007). Multi-agent systems for power engineering applications-part I: Concepts, approaches, and
technical challenges. IEEE Transactions on Power Systems, 22(4), 1743–1752. https ://doi.org/10.1109/
TPWRS .2007.90847 1.

 25. McArthur, S. D. J., Davidson, E. M., Catterson, V. M., Dimeas, A. L., Hatziargyriou, N. D., Ponci, F.,
et al. (2007). Multi-agent systems for power engineering applications-Part II: Technologies, standards,
and tools for building multi-agent systems. IEEE Transactions on Power Systems, 22(4), 1753–1759.
https ://doi.org/10.1109/TPWRS .2007.90847 2.

 26. Medel, V., Rana, O., Bañares, J. Á., & Arronategui, U. (2016). Modelling performance and resource
management in Kubernetes. In 2016 IEEE/ACM 9th international conference on utility and cloud
computing (UCC) (pp. 257–262). IEEE.

 27. Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. USA: NIST, Gaithersburg.
 28. Mengistu, D., Tröger, P., Lundberg, L., & Davidsson, P. (2008). Scalability in distributed multi-agent

based simulations: The JADE case. In 2008 Second international conference on future generation com-
munication and networking symposia (Vol. 5, pp. 93–99). https ://doi.org/10.1109/FGCNS .2008.158.

 29. Mzahm, A. M., Ahmad, M. S., & Tang, A. Y. C. (2013). Agents of things (AoT): an intelligent opera-
tional concept of the internet of things (IoT). In 2013 13th international conference on intellient sys-
tems design and applications (pp. 159–164). https ://doi.org/10.1109/ISDA.2013.69207 28.

 30. Netto, H. V., Lung, L. C., Correia, M., Luiz, A. F., & de Souza, L. M. S. (2017). State machine replica-
tion in containers managed by Kubernetes. Journal of Systems Architecture, 73, 53–59.

 31. Oey, M., van Splunter, S., Ogston, E., Warnier, M., & Brazier, F. M. (2010) A framework for devel-
oping agent-based distributed applications. In 2010 IEEE/WIC/ACM international conference on
web intelligence and intelligent agent technology (Vol. 2, pp. 470–474). https ://doi.org/10.1109/
WI-IAT.2010.134.

 32. Pahl, C. (2015). Containerization and the PaaS Cloud. IEEE Cloud Computing, 2(3), 24–31.
 33. Pico-Valencia, P., Holgado-Terriza, J. A., & Senso, J. A. (2019). Towards an internet of agents model

based on linked open data approach. Autonomous Agents and Multi-Agent Systems, 33(1), 84–131.
https ://doi.org/10.1007/s1045 8-018-9399-7.

 34. Quinn, M. J. (2003). Parallel programming in C with MPI and OpenMP. New York: McGraw-Hill
Education Group.

 35. Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., & Al-Hammadi, Y. (2018) IoT applications:
From mobile agents to microservices architecture. In 2018 International conference on innovations in
information technology (IIT) (pp. 117–122). https ://doi.org/10.1109/INNOV ATION S.2018.86059 67.

 36. Savaglio, C., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M., & Fortino, G. (2020). Agent-based
internet of things: State-of-the-art and research challenges. Future Generation Computer Systems, 102,
1038–1053. https ://doi.org/10.1016/j.futur e.2019.09.016.

 37. Schatten, M., Ševa, J., & Tomičić, I. (2016). A roadmap for scalable agent organizations in the internet
of everything. Journal of Systems and Software, 115, 31–41. https ://doi.org/10.1016/j.jss.2016.01.022.

 38. Shakshuki, E. (2005). A methodology for evaluating agent toolkits. In International conference on
information technology: Coding and computing (ITCC’05)—Volume II (Vol. 1, pp. 391–396). https ://
doi.org/10.1109/ITCC.2005.15.

 39. Siddiqui, U., Tahir, G. A., Rehman, A. U., Ali, Z., Rasool, R. U., & Bloodsworth, P. (2012). Elastic
JADE: Dynamically scalable multi agents using cloud resources. In 2012 Second international confer-
ence on cloud and green computing (pp. 167–172). https ://doi.org/10.1109/CGC.2012.60.

https://doi.org/10.1155/2018/3469325
https://doi.org/10.1109/JPROC.2016.2521931
https://doi.org/10.1109/JPROC.2016.2521931
https://doi.org/10.1109/ISGTEurope.2013.6695381
https://doi.org/10.1109/ISGTEurope.2013.6695381
https://doi.org/10.1109/TPWRS.2007.908471
https://doi.org/10.1109/TPWRS.2007.908471
https://doi.org/10.1109/TPWRS.2007.908472
https://doi.org/10.1109/FGCNS.2008.158
https://doi.org/10.1109/ISDA.2013.6920728
https://doi.org/10.1109/WI-IAT.2010.134
https://doi.org/10.1109/WI-IAT.2010.134
https://doi.org/10.1007/s10458-018-9399-7
https://doi.org/10.1109/INNOVATIONS.2018.8605967
https://doi.org/10.1016/j.future.2019.09.016
https://doi.org/10.1016/j.jss.2016.01.022
https://doi.org/10.1109/ITCC.2005.15
https://doi.org/10.1109/ITCC.2005.15
https://doi.org/10.1109/CGC.2012.60

Autonomous Agents and Multi-Agent Systems (2021) 35:10

1 3

Page 27 of 27 10

 40. Stanković, R., Štula, M., & Maras, J. (2017). Evaluating fault tolerance approaches in multi-agent
systems. Autonomous Agents and Multi-agent Systems, 31(1), 151–177. https ://doi.org/10.1007/s1045
8-015-9320-6.

 41. Strasser, T. I., Andrén, F. P., Vrba, P., Šuhada, R., Moulis, V., Farid, A. M., & Rohjans, S. (2018) An
overview of trends and developments of internet of things applied to industrial systems. In IECON
2018—44th annual conference of the IEEE industrial electronics society (pp. 2853–2860).

 42. Talia, D. (2012). Clouds meet agents: Toward intelligent cloud services. IEEE Internet Computing,
16(2), 78–81. https ://doi.org/10.1109/MIC.2012.28.

 43. Tanenbaum, A. S., & Bos, H. (2014). Modern operating systems (4th ed.). Upper Saddle River, NJ:
Prentice Hall Press.

 44. Togashi, N., & Klyuev, V. (2014) Concurrency in Go and Java: Performance analysis. In 2014 4th
IEEE international conference on information science and technology (pp. 213–216). https ://doi.
org/10.1109/ICIST .2014.69203 68.

 45. Tosatto, A., Ruiu, P., & Attanasio, A. (2015) Container-based orchestration in Cloud: State of the art
and challenges. In 2015 Ninth international conference on complex, intelligent, and software intensive
systems (pp. 70–75). IEEE

 46. van Moergestel, L., van den Berg, M., Knol, M., van der Paauw, R., van Voorst, K., Puik, E., Telgen,
D., & Meyer, J. (2016). Internet of smart things, a study on embedding agents and information as a
service. In ICAART

 47. Veen, J. S. V. D., Waaij, B. V. D., & Meijer, R. J. (2012) Sensor data storage performance: SQL or
NoSQL, physical or virtual. In 2012 IEEE Fifth international conference on cloud computing (pp.
431–438). https ://doi.org/10.1109/CLOUD .2012.18.

 48. Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The Knowledge
Engineering Review, 10(2), 115–152. https ://doi.org/10.1017/S0269 88890 00081 22.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s10458-015-9320-6
https://doi.org/10.1007/s10458-015-9320-6
https://doi.org/10.1109/MIC.2012.28
https://doi.org/10.1109/ICIST.2014.6920368
https://doi.org/10.1109/ICIST.2014.6920368
https://doi.org/10.1109/CLOUD.2012.18
https://doi.org/10.1017/S0269888900008122

	Enabling scalable and fault-tolerant multi-agent systems by utilizing cloud-native computing
	Abstract
	1 Introduction
	2 Literature review
	2.1 Multi-agent systems and platforms
	2.2 MAS and the internet of things
	2.3 Cloud computing
	2.4 Combination of cloud computing and MAS

	3 cloneMAP concept
	3.1 Go programming language
	3.2 Kubernetes and Docker
	3.3 Overview
	3.4 Core
	3.5 Directory facilitator
	3.6 Logging and state
	3.7 IoT-interface

	4 Evaluation methodology
	4.1 Use case SwarmGrid-X
	4.2 Benchmark 1: round-trip time
	4.3 Benchmark 2: directory facilitator
	4.4 Benchmark 3: CPU utilization
	4.5 Benchmark 4: fault-tolerance
	4.6 Hardware configuration

	5 Evaluation
	5.1 Benchmark 1: round-trip time
	5.2 Benchmark 2: directory facilitator
	5.3 Benchmark 3: CPU utilization
	5.4 Benchmark 4: fault-tolerance

	6 Conclusions
	Acknowledgements
	References

