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Abstract
Fusarium wilt, caused by the fungus Fusarium oxysporum Schlecht. f. sp. vasinfectum (Fov) is a destructive soil-borne cotton
disease. To profile the genes and pathways responding to Fov infection, we compared transcriptomic responses before and after
F. oxysporum inoculation in a highly resistant cotton cultivar, Yumian21, and a highly susceptible cultivar, Jimian11. Although
the overall gene expression pattern was downregulated in both cultivars, the global gene expression in the resistant cultivar was
stronger than that in the susceptible cultivar. In addition, the expressed genes of two cultivars mostly differed in “cellular
process,” “single-organism process,” “metabolic process,” and “response to stimulus” functional groups in the biological process
Gene Ontology category: the upregulated differentially expressed genes (DEG) were largely enriched in the resistant cultivar,
while the downregulated DEGs were largely enriched in the susceptible cultivar. Phenylpropanoid biosynthesis and phenylal-
anine metabolism are the key metabolic pathways in cotton in response to Fov. We found that lignin plays a potential role in
cotton resistance to Fov. Two coding genes, caffeic acid 3-O-methyltransferase and peroxidase2, as well as the two transcription
factors MYB46 and MYB86, are possibly involved in the accumulation and synthesis of lignin. Furthermore, the result showed
that the quantification of lignin could be potentially used as a selection tool to identify Fusarium wilt resistant cotton.
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Abbreviations
COG Cluster of Orthologous Groups
DEG Differentially Expressed Gene
EggNOG Evolutionary Genealogy

of Genes: Non-supervised Orthologous Groups
ELISA Enzyme-Linked Immunosorbent Assay
FC Fold Change

FDR False Discovery Rate
FPKM Fragments Per Kilobase per Million
Fov Fusarium oxysporum

Schlecht. f. sp. vasinfectum
FW Fusarium wilt
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
KOG Eukaryotic Orthologous Groups
Nr Non-redundant
PDA Potato-Dextrose Agar
POD Peroxidase
qRT-PCR Quantitative real-time PCR
TF Transcription Factors

Introduction

Cotton (Gossypium hirsutum L.) is an important industrial
crop that provides natural fibers and oilseeds (Ullah et al.
2017). Cotton Fusarium wilt (FW), caused by the soil-borne
fungus Fusarium oxysporum Schlecht. F. sp. Vasinfectum
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(Atk.) Snyd. & Hans (Fov) (Assigbetse et al. 1994), is a major
disease of cotton capable of causing significant economic loss
worldwide (Cianchetta and Davis 2015). Fov infects the roots
and rapidly colonizes the vascular system of susceptible cot-
ton hosts, causing vascular discoloration, wilting, and the
eventual death of the plant (Dowd et al. 2004). FW is difficult
to prevent because of long-term persistence of chlamydo-
spores in soil and Fov’s resting structures in host xylem ves-
sels (Mei et al. 2014). In China, the spread of FW is of great
concern due to the limited knowledge about key aspects of
disease epidemiology and the lack of effective management
models, including resistant cultivars and soil management
approaches.

Plants and their pathogens often evolve through com-
petitive interactions and form complex relationships
(Chisholm et al. 2006; Dangl and Jones 2001). The first
line of plant defense system is a physical barrier composed
of the waxy cuticle and cell wall. If the first line of defense
is breached, the plant must resort to a different set of de-
fense mechanisms, such as toxins and enzymes. Plants use
their innate immune system to fight against pathogens
(Malinovsky et al. 2014). With the primary immune sys-
tem, plants recognize microbe-associated molecular pat-
terns of potential pathogens through pattern recognition
receptors that mediate a basal defense response. Plant path-
ogens suppress this basal defense response by means of
effectors that enable them to cause disease. With the sec-
ondary immune system, plants have the ability to recognize
effector-induced perturbations of host targets through re-
sistance proteins that mediate a strong local defense re-
sponse that stops pathogen growth (Jones and Dangl
2006). Currently, the possible resistance mechanisms of
cotton’s defense against FW are poorly understood.

In cotton plants, a series of metabolic changes can be
induced during the initial response to pathogen invasion.
For example, the affected cells produce secretions which
can bury or encase pathogens; they may also block ves-
sels by increasing metabolic activities, thereby limiting
the spread of pathogens (Shi et al. 1991; Shi et al. 1992;
Shi et al. 1993). Additionally, phenolic compounds such
as gossypol and its derivatives may be induced from in-
fected cells, further inhibiting the spread of F. oxysporum
(Hall et al. 2011; Mellon et al. 2014; Zhang et al. 1993).
Furthermore, many kinds of transcription factors, protein
kinases, and phytohormones are involved during the re-
sponse process of cotton plants to Fov: for example, the
cotton MAPK kinase GhMPK20 negatively regulates re-
sistance to F. oxysporum, and the expression of GhMKK6
contributes to the immune response in cotton (Wang et al.
2018; Wang et al. 2017). Notably, both salicylic acid and
jasmonic acid can contribute to the over-expression of
pathogenesis-related genes in cotton plants (Akhunov
et al. 2008).

Lignin plays important roles in the growth and devel-
opment of plants, defending against a variety of biotic and
abiotic stresses. It acts as a physical and chemical barrier
to limit pathogen colonization and restrict pathogen
growth in a wide range of plant species (Bonello and
Blodgett 2003; Hückelhoven 2007; Zhang et al. 2017).
Lignin content has been used as a biochemical marker
of an activated immune response in a multitude of species
(Adams-Phillips et al. 2010; Kishi-Kaboshi et al. 2010):
lignin content in disease-susceptible tomato varieties is
significantly lower than that in disease-resistant cultivars
(Mandal et al. 2013); the composition and accumulation
of lignin strengthens the cell walls and enhances plant
resistance to fungi in pepper plants (Novo et al. 2017);
and lignin content increases in Chinese cabbage when it is
infected by Erwinia carotovora (Zhang et al. 2007). The
lignin biosynthesis genes play significant roles in resisting
the invasion of pathogens through the salicylic acid de-
fense pathway in Arabidopsis thaliana (Tronchet et al.
2010). When rice suffers pathogen invasion, the activity
of cinnamoyl-CoA increases to positively regulate lignin
synthesis (Kawasaki et al. 2006) and OsAAE3 negatively
regulates lignin synthesis (Liu et al. 2017). In maize,
genes HCT1806, HCT4918 and ZmCCoAOMT2 are in-
volved in the resistance of various pathogens by partici-
pating in the biosynthesis of lignin (Wang et al. 2015;
Yang et al. 2017). Lignin plays a critical role in cotton
resistance to Verticillium dahliae: the resistant cotton va-
rieties show a high level of lignin deposition and lignin-
like phenolic polymers, (Smit and Dubery 1997) and the
lignin content is positively correlated with resistance to
V. dahliae (Xu et al. 2011). The GhDIR1, GbERF1-like,
GhUMC1, GhWAT and GhLAC15 genes improve cotton
resistance to V. dahliae via activating or strengthening
lignin synthesis (Guo et al. 2016; Shi et al. 2012; Tang
et al. 2019b; Zhang et al. 2019; Zhu et al. 2018). We
hypothesize that lignin synthesis-related genes contributed
to the cotton resistance to Fov through positively regulat-
ing lignin synthesis and enhancing the lignin content.

In the present study, one highly resistant cotton cultivar
Yumian21 and one highly susceptible cultivar Jimian11 were
chosen to analyze the molecular mechanism underlying cotton
response to Fov. The gene expression patterns and functions
of differentially expressed genes (DEGs) were analyzed based
on the RNA-seq data. We found that the deposition and accu-
mulation of lignin play a potential role during the response of
cotton to Fov invasion. Two coding genes: caffeic acid 3-O-
methyltransferase and peroxidase2, and two transcription fac-
tors: MYB46 and MYB86 are possibly involved in the accu-
mulation and synthesis of lignin. Lignin quantification can be
used as a selection tool to identify FW resistant cotton. The
present study can also be served as a resource for future re-
search addressing the resistance mechanism of cotton to Fov.
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Results

Resistant Phenotype of Two Cotton Cultivar after
Inoculation with Fov

When resistant and susceptible cultivars were inoculated with
F. oxysporum, the phenotype of disease began to appear in
16 days. The resistant cultivar survived well and only exhib-
ited a slightly shorter plant size (Fig. 1A and C). On the con-
trary, the susceptible cultivar showed several symptoms in-
cluding dwarfing, leaf wilting, defoliation, vascular discolor-
ation and necrosis, and death of plants (Fig. 1B and D). The
histochemical analysis of lignin in stem cross-sections showed
no significant differences of lignin staining between the resis-
tant cultivar inoculated with distilled water (Fig. S1 A), and
the susceptible cultivar inoculated with distilled water or Fov
(Fig. S1 B and D). However, the lignin staining of the resistant
cultivar inoculated with Fov was significantly darker than the
susceptible cultivar inoculated with Fov (Fig. S1 C and D).

The Quality of Sequencing and Validation by qRT-PCR

The 12 libraries were sequenced using the Illumina HiSeq X
Ten sequencing platform. As shown in Table S1,115,754,914
to 160,378,098 clean reads were obtained for the resistant
cultivar, and 122,188,604 to 159,256,750 clean reads for the
susceptible cultivar. A total of 102,783,932 to 143,330,164
mapped reads were obtained from the resistant cultivar and
113,234,260 to 139,348,730 mapped reads were obtained

from the susceptible cultivar. The comparison efficiency
range was between 83.92% and 93.30%. The Q30 base per-
centage of each sample was between 92.46% and 95.18%.
The GC content was between 43.71% and 45.37% in the 12
libraries. A total of 76,467 expressed genes were identified
and annotated by blasting the sequences against seven public
databases. A total of 26,264 (34.3%), 28,084 (36.7%), 18,063
(23.6%), 40,402 (52.8%), 51,819 (67.8%), 68,987 (90.2%)
and 43,424 (56.8%) unigenes had significant hits (E value ≤
10−5) in the COG, GO, KEGG, KOG, Swiss-Prot, EggNOG
and Nr databases, respectively (Table S2).

We compared RNA-Seq data with real-time RT-PCR data
for 18 randomly selected DEGs that showed up-regulation or
down-regulation in response to Fov infection according to
RNA-Seq (Excel S1). The results of the qRT-PCR data for
these 18 genes were consistent with those obtained via RNA-
seq analysis, which indicated that the changes in expression
detected by RNA-seq were accurate (Fig. S2).

Patterns of Gene Upland Cotton in Response to
Infection by Fov

In our experiment, a false discovery rate (FDR) < 0.05 and
fold change (FC) =1.5 were used as the thresholds for
assessing significant differences in gene expression. A total
of 1055 DEGs were detected in the resistant cultivar, includ-
ing 477 (45%) upregulated genes and 578 (55%) downregu-
lated genes. A total of 995 DEGs were identified in the sus-
ceptible cultivar, including 369 (37%) upregulated genes and

Fig. 1 Disease symptoms on the
Yumian21 resistant cultivar and
the Jimian11 susceptible cultivar
inoculated with Fusarium
oxysporum. (A) the Yumian21
inoculated with distilled water;
(B) the Jimian11 inoculated with
distilled water; (C) the Yumian21
inoculated with F. oxysporum;
(D) the Jimian11 inoculated with
F. oxysporum
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626 (63%) downregulated genes (Fig. 2A). Genes were most-
ly downregulated rather than upregulated when both cultivars
were inoculated with Fov. In addition, the number of down-
regulated genes (578) in the resistant cultivar was less than
that (626) in the susceptible cultivar. A total of 146 genes were
either up-regulated or down-regulated in resistant and suscep-
tible cultivar: 27 DEGs were upregulated in both cultivars;
103 DEGs were downregulated in both cultivars; ten DEGs
were upregulated in the resistant cultivar but downregulated in
the susceptible cultivar; and six DEGs were upregulated in the
susceptible cultivar but downregulated in the resistant cultivar
(Fig. 2B). The concrete DEGs of the resistant cultivar and the
susceptible cultivar after treatment with Fov are listed in Excel
S2 and S3, respectively.

Functional Classification of DEGs

A total of 1055 DEGs were divided into three main GO cate-
gories: biological process, cellular components, andmolecular
functions for the resistant cultivar. Most of the GO terms were
assigned to biological process (56.13%), followed by cellular
component (31.30%) and molecular functions (12.57%). Of
995 DEGs in the susceptible cultivar, 54.82%, 32.36% and
12.82% were assigned to biological process, cellular compo-
nent and molecular function GO terms, respectively (Excel S4
and S5). The greatest proportion of the GO categories
consisted of biological process in both resistant and suscepti-
ble cultivars.

In the resistant cultivar, 2887 upregulated and 3237 down-
regulated DEGs were attributed to 19 groups of the biological
process category. Among them, 349 (12.08%) upregulated
and 399 (12.32%) downregulated genes were involved in

“cellular process”; 343 (11.88%) upregulated and 412
(12.73%) downregulated genes were involved in “single-or-
ganism process”.

In the susceptible cultivar, the upregulated DEGs were dis-
tributed into 18 groups of the biological process category. Of
1932 upregulated genes, 264 genes (13.66%)were involved in
“metabolic process,” followed by 262 genes (13.56%) in-
volved in “cellular process.” The downregulated DEGs were
distributed into 16 groups of the biological process category.
Of 3667 downregulated genes, 471 (12.84%) were involved
in “cellular process”, followed by 469 genes (12.78%) in-
volved in “single-organism process”.

In “biological process” GO categories, the number of up-
regulated genes in the resistant cultivar was significantly
higher than that in the susceptible cultivar (Fig. 3). The upreg-
ulated DEGs were mostly enriched in four functional groups:
the “cellular process” group (349 DEGs in resistant, 262 in
susceptible), “single-organism process” group (343 in resis-
tant, 257 in susceptible), “metabolic process” group (329 in
resistant, 264 in susceptible), and “response to stimulus”
group (307 in resistant, 223 in susceptible). In contrast, the
number of downregulated genes in the susceptible cultivar
was significantly higher than that in the resistant cultivar
(Fig. 3). The downregulated DEGs were mostly enriched in
“cellular process” (399 in resistant, 471 in susceptible), “sin-
gle-organism process” (412 in resistant, 469 in susceptible),
“metabolic process” (389 in resistant, 446 in susceptible), and
“response to stimulus” (358 in resistant, 408 in susceptible).
The resistant cultivar and the susceptible cultivar mostly dif-
fered in “cellular process,” “single-organism process,” “meta-
bolic process,” and “response to stimulus” functional groups:
the upregulated DEGs were largely enriched in the resistant

Fig. 2 Differentially expressed gene (DEG) analysis of the Yumian21
resistant cultivar and the Jimian11 susceptible cultivar inoculated with
Fusarium oxysporum . (A) total number of upregulated and

downregulated DEGs in the resistant and susceptible cultivars; (B)
Venn diagrams of DEGs in the resistant and the susceptible cultivars
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cultivar; the downregulated DEGswere largely enriched in the
susceptible cultivar.

KEGG Enrichment Analysis of Cotton Infection of Fov

For the resistant cultivar, 207 DEGs (87 upregulated vs 120
downregulated) were identified in the 74 KEGG pathway by
BLAST analysis against the KEGG database. The DEGs were
significantly enriched in the first 20 pathways with the lowest
p value when the resistant cultivar was inoculated with Fov
(Fig. 4, the specific data was listed in Excel S6). The top three
highly enriched pathways with the largest enrichment factors,
the largest number of DEGs, and the lowest p value were
phenylpropanoid biosynthesis (ko00940), phenylalanine me-
tabolism (ko00360), and pentose and glucuronate interconver-
sions (ko00040) in the resistant cultivar. For the susceptible
cultivar, 210 DEGs (88 upregulated vs 122 downregulated)
were activated in the 84 KEGG pathway. The 20 with the
most reliable pathway functional enrichment of the suscepti-
ble cultivar after inoculation with Fov is shown in Fig. S3
(Specific data in Excel S7). The top three highly enriched
pathways were phenylpropanoid biosynthesis (ko00940),
phenylalanine metabolism (ko00360), and flavonoid biosyn-
thesis (ko00941); the phenylpropanoid biosynthesis
(ko00940) and phenylalanine metabolism (ko00360) path-
ways were the most noteworthy KEGG pathways in both
cultivars. These results showed phenylpropanoid biosynthesis
and phenylalanine metabolism are the key metabolic path-
ways in cotton in response to Fov.

Transcription Factors (TFs) Involved in Cotton
Infection of Fov

We investigated the distribution of transcription factors when
two cultivars of cotton were infected with Fov. We found that
the DEGs have transcription factors belong to AP2/ERF,MYB,
NAC, bHLH, bZIP and WRKY families (Table 1). The num-
bers of upregulated TFs (30) exceeded downregulated TFs (15)
in the resistant cultivar. However, the number of downregulated
TFs (28) exceeded upregulated TFs (11) in the susceptible cul-
tivar. We found most TFs belong to AP2/ERF and MYB (18
and 24, respectively). In the AP2/ERF family, twelve genes
were upregulated, while one was downregulated in the resistant
cultivar. However, only two genes were upregulated, while
three were downregulated in the susceptible cultivar. In the
MYB family, twelve genes were upregulated and four were
downregulated in the resistant cultivar. Two genes were upreg-
ulated and twelve were downregulated in the susceptible culti-
var. In the resistant cultivar, the total number of upregulated
genes (24) of these two families was significantly higher than
total downregulated genes (5). In the susceptible cultivar, the
total number of upregulated genes (4) of these two families was
significantly lower than total downregulated genes (15).

Genes Related to Disease Resistance

We found that two genes: caffeic acid 3-O-methyltransferase
( e vm . TU .G h _A0 9G1 0 5 3 ) a n d P e r o x i d a s e 2
(evm.TU.Gh_D09G1208) were likely involved in resistance

Fig. 3 Comparison of the biological process in GO classification of the resistant and the susceptible cultivars inoculated with Fusarium oxysporum. The
x-axis represents the number of DEGs and the y-axis represents specific function groups
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to Fov in cotton. First, we screened 1328 upregulated DEGs in
cellular process, metabolic process, response to stimulus and
single-organism process functional groups of classification in
the resistant cultivar. Second, we screened 7 upregulated
DEGs in phenylpropanoid biosynthesis (ko00940) and phe-
nylalanine metabolism (ko00360) based on the analysis of the
KEGG enrichment pathway. The result demonstrated that
c a f f e i c a c i d 3 - O - m e t h y l t r a n s f e r a s e
( e vm . TU .G h _A0 9G1 0 5 3 ) a n d P e r o x i d a s e 2
(evm.TU.Gh_D09G1208) were significantly upregulated in
the resistant cultivar, but not in the susceptible cultivar
(Table 2). We found that two transcription factors MYB46

( e v m . T U . G h _ D 1 3 G 2 2 6 1 ) a n d M Y B 8 6
(evm.TU.Gh_D08G1266) were involved in resistance.
Among 1328 upregulated DEGs in cellular process, metabolic
process, response to stimulus, and single-organism process
functional groups, 24 TFs belong to MYB family in the resis-
tant cultivar. MYB46 (evm.TU.Gh_D13G2261) and MYB86
(evm.TU.Gh_D08G1266) were uniquely upregulated in the
resistant cultivar, but not in the susceptible cultivar
(Table 2). When the gene expression levels were normalized
to the susceptible cultivar at 0 h, a relative high expression
level of caffeic acid 3-O-methyltransferase, Peroxidase 2,
MYB46 and MYB86 genes were observed in the resistant cul-
tivar treated with Fov (Table 2). No major shifts in expression
levels of these genes were observed in the susceptible cultivar
(Table 2) Interestingly, these two genes and two transcription
factors are involved in the process of lignin synthesis, the
activation of peroxidase activity, and the positive regulation
of secondary cell wall biogenesis in GO second level annota-
tion. This indicates that lignin synthesis may play potential
roles in defending against Fov.

POD Activity and Lignin Content of Cotton Inoculated
by Fov

There was no significant difference of lignin concentration in
the resistant cultivar treated with Fov (72.8μg/L) or distilled

Fig. 4 Pathway functional
enrichment of DEGs in the
Yumian21 resistant cultivar
inoculated with Fusarium
oxysporum. The x-axis represents
the enrichment factor (rich factor)
which is the ratio of the fore-
ground value (the number of
DEGs) and the background value
(total gene amount). The y-axis
shows the pathway names. A
larger value of the rich factor in-
dicates a higher enrichment value.
The color indicates the p value, A
lower p value refers to a more
significant enrichment. Point size
indicates DEG number and larger
dots refer to higher numbers of
DEGs

Table 1 Number of differentially expressed transcription factors in the
resistant and susceptible cultivars inoculated with F. oxysporum

TF
family

Resistant cultivar Susceptible cultivar

Upregulated Downregulated Upregulated Downregulated

AP2/ERF 12 1 2 3

MYB 12 4 2 12

NAC 1 2 1 1

bHLH 2 4 4 8

bZIP 1 2 0 4

WRKY 2 2 2 0
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water (67.8μg/L) at 0 h. The lignin concentration of Fov treat-
ments increased to 89.4 μg/L, 101.8 μg/L, 98.8 μg/L and 106
μg/L at 12 h, 24 h, 48 h and 96 h, respectively. The lignin
concentration showed a statistically significant change be-
tween 12 h and > 24 h timepoints (P < 0.01) in the resistant
cultivar inoculated with Fov. Although the lignin concentra-
tion increased with the relative expression level of four genes,
no strong correlation (P < 0.05) was found between lignin
concentration with caffeic acid 3-O-methyltransferase (r =

0.514), Peroxidase 2 (r = 0.526), MYB46 (r = 0.221) and
MYB86 (r = 0.609) genes. The lignin concentration of distilled
water treatments was 70.3 μg/L, 75.5 μg/L, 76.9 μg/L and
82.7 μg/L at 12 h, 24 h, 48 h and 96 h, respectively. The
concentration of lignin in the Fov treatment was significantly
higher than that in the water treatments (Fig. 5A). In the sus-
ceptible cultivar, the lignin concentration of distilled water
treatments was 68 μg/L, 70.9 μg/L, 77.8 μg/L, 78.9 μg/L
and 83.9 μg/L at 0 h, 12 h, 24 h, 48 h and 96 h, respectively.

Table 2 Comparisons of the relative expression pattern of four genes related to lignin synthesis in the resistant and susceptible cultivars

Gene ID Gene name Resistant cultivar Susceptible cultivar

Relative expression level Relative expression level

12 h 24 h 48 h 96 h 12 h 24 h 48 h 96 h

evm.TU.Gh_A09G1053 caffeic acid 3-O-methyltransferase 3.2 8.0 4.7 4.5 1.1 0.9 0.9 1.0

evm.TU.Gh_D09G1208 Peroxidase 2 6.7 7.1 3.1 2.8 0.9 0.9 1.1 0.8

evm.TU.Gh_D13G2261 MYB46 3.8 9.8 5.3 3.4 1.2 0.8 1.0 1.1

evm.TU.Gh_D08G1266 MYB86 3.9 2.9 3.7 3.5 0.8 1.0 1.2 1.0

Fig. 5 Lignin concentration and peroxidase activity in the Yumian21
resistant cultivar (A and C) and Jimian11 susceptible cultivar (B and D)
inoculated with F. oxysporum and distilled water. The error bars represent

the standard deviation (SD) of lignin content or peroxidase activity in
response to infection at 0 h,12 h, 24 h, 48 h, and 96 h after mock- and
F. oxysporum – inoculation
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The lignin concentration of Fov treatments was 71.1 μg/L,
72.5 μg/L, 83 μg/L, 82.1 μg/L and 85.4 μg/L at 0 h, 12 h,
24 h, 48 h and 96 h, respectively (Fig. 5B). No significant
change was found in the susceptible cultivar treated with dis-
tilled water or Fov.

As one of the key enzymes in the antioxidant system in
plants, peroxidase (POD) plays an important role in the im-
mune defense mechanism, and its expression is induced by
fungi. At the same time, it is also an important control enzyme
in the lignin synthesis pathway. In this research, there was no
significant difference of POD activity in the resistant cultivar
treated with Fov (39 mU/L) or distilled water (36.1 mU/L)
before Fov inoculation. The POD activity of Fov treatments
increased to 59.8 mU/L, 63.1 mU/L, 49.6 mU/L and 43.2 mU/
L at 12 h, 24 h, 48 h and 96 h, respectively. In the resistant
cultivar inoculated with Fov, the POD activity showed a sta-
tistically significant change over 12 h, 24 h, 48 h and 96 h
timepoints (P < 0.01) and it reached the highest level at 24 h.
The relative expression level of Peroxidase 2 gene was highly
correlated with the POD activity (r = 0.969, P < 0.05) The
POD activity of distilled water treatments was 38.5 mU/L,
46.1 mU/L, 42.4 mU/L and 35.8 mU/L at 12 h, 24 h, 48 h
and 96 h, respectively. The activity of POD in the Fov treat-
ment was significantly higher than that in the distilled water
treatments (Fig. 5C). In the susceptible cultivar, The POD
activity of distilled water treatments was 34.4 mU/L,
37.7 mU/L, 43 mU/L, 42.2 mU/L and 38.5 mU/L at 0 h,
12 h, 24 h, 48 h and 96 h, respectively. The POD activity of
Fov treatments was 36.3 mU/L, 39.5 mU/L, 47.5 mU/L,
44.6 mU/L and 40 mU/L at 0 h, 12 h, 24 h, 48 h and 96 h,
respectively (Fig. 5D). No significant change was observed in
the susceptible cultivar treated with distilled water or Fov.

Discussion

We found 1055 DEGs in the resistant cultivar and 995 DEGs
in the susceptible cultivar. The global gene expression in the
resistant cultivar is stronger than that in the susceptible culti-
var. Interestingly, more downregulated genes were identified
than upregulated genes in both cultivars after inoculation by
Fov. Xu et al. found the same pattern with cotton inoculated
with Verticillium wilt (Xu et al. 2011). However, the propor-
tion of downregulated genes in the resistant cultivar (55%)
was less than that in the susceptible cultivar (63%).
Although the developmental processes of two cultivars were
all affected by Fov invasion, the resistant cultivar was less
affected than the susceptible cultivar.

GO classification showed that cellular process, single-
organism process, metabolic process and response to stimulus
were the main enriched GO terms of the biological process
group and all of them were involved in response to Fov infec-
tion. By further analysis of the KEGG pathway, we found that

in both cultivars the most significantly enriched KEGG path-
ways were “phenylpropanoid biosynthesis,” followed by
“phenylalanine metabolism.” This indicates that these path-
ways are the key metabolic pathways in cotton in response
to FW. Phenylpropanoids can function as inducible antimicro-
bial compounds as well as signaling molecules in plant–
pathogen responses (Dixon 2001; Naoumkina et al. 2010).
Phenylpropanoid metabolism has been well documented as
the most important plant metabolic pathway during plant de-
fense against biotic stress (Cass et al. 2015; La Camera et al.
2004). The phenylpropanoid pathway contains multiple
branches, and lignin biosynthesis is a downstream branch of
this pathway; specifically, the pathway synthesizes
monolignols, which are substrates of lignin polymerization
(Boerjan et al. 2003; Mottiar et al. 2016). In resistant cotton,
genes involved in the phenylpropanoid pathway and lignin
accumulation were significantly induced after V. dahliae in-
fection (Xu et al. 2011). Overexpression of GhLac1 and
GhLac15, genes related to phenylpropanoid pathway and lig-
nin biosynthesis, was found to enhance V. dahliae resistance
(Hu et al. 2018; Zhang et al. 2018; Zhang et al. 2019).
Consistently, we found that genes in the “phenylpropanoid
biosynthesis” pathway can promote lignin biosynthesis, there-
fore enhancing cotton resistance to Fov.

Plant defense-associated genes are normally regulated by
transcription factors. TFs can coordinate and control the activ-
ity of multiple stress response genes and establish a complex
regulatory network to regulate physiological and metabolic
responses to cope with disease stress (Buscaill and Rivas
2014; Nakashima et al. 2009). Our results indicate that six
TF families (AP2/ERF, MYB, NAC, bHLH, bZIP and
WRKY) are activated in cotton plants following Fov infec-
tion. In A. thaliana, the majority of F. oxysporum-responsive
TFs also belong to the ERF, MYB, NAC, bHLH, and WRKY
families (Zhu et al. 2012). Studies showed that MYB genes
are involved in a plant’s response to stress, such as drought
and cold and pathogen (Erpen et al. 2018; Liu et al. 2016).
When cotton plants were infected by Fov, most of the MYB
genes were upregulated in the resistant cultivar but downreg-
ulated in the susceptible cultivar. MYB families may play a
potential role in the regulation of defense gene expression
when upland cotton is attacked by Fov.

Lignin may play a key role in cotton resistance to Fov.
Physiological and biochemical studies have shown that the
Fusarium-resistant watermelon varieties have strong cell
structures, such as thickened xylem, to prevent entry of the
pathogen (Tang et al. 2019a). As the major end product of the
phenylpropanoid pathway, lignin is essential in the formation
of cell walls, which forms a physical barrier that increase the
resistance to pathogen infection. Caffeic acid O-
methyltransferase is a methylase in the lignin specific path-
way. It catalyzes the multi-step methylation of hydroxylated
monomer lignin precursor and plays a major role in lignin
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biosynthesis (O'Malley et al. 1993). Two genes, caffeic acid 3-
O-methyltransferase (evm.TU.Gh_A09G1053) and
Peroxidase 2 (evm.TU.Gh_D09G1208), were found upregu-
lated in the resistant cotton cultivar but not in the susceptible
cultivar. Strong downregulation of caffeic acid 3-O-
methyltransferase decrease lignin content in Alfalfa (Guo
et al. 2001), maize (Pichon et al. 2006) and Leucaena
(Rastogi and Dwivedi 2006). Peroxidase helps polymerize
monolignols into lignin and enhances cell wall during patho-
gen attack and damage (Marjamaa et al. 2009). Gayoso et al.
found that POD activity was upregulated in a resistant tomato
cultivar infected by Verticillium wilt (Gayoso et al. 2010). As
a key gene in l ignin synthesis , the peroxidase2
(evm.TU.Gh_D09G1208) coding gene was activated and up-
regulated in resistant cotton during Fov infection.
Transcription factors can also regulate lignin synthesis, for
example: the R2R3-MYB transcription factor regulates lignin
biosynthesis through binding to the AC element (Rogers et al.
2005), which exists in the promoter region of gene in most
phenylpropanoid pathways (Hatton et al. 1995).We found that
transcription factors MYB46 (evm.TU.Gh_D13G2261) and
MYB86 (evm.TU.Gh_D08G1266) were upregulated in the re-
sistant cultivar, but not in the susceptible cultivar. Among
transcription factors regulating phenylpropanoid and lignin
biosynthesis, MYB46 and MYB86 are transcriptional activa-
tors of the lignin biosynthetic pathway during secondary cell
wall formation in Arabidopsis (Taylor-Teeples et al. 2015;
Zhong et al. 2007). In this study, DEGs analysis showed that
two genes related to lignin biosynthesis and two transcription
factors were upregulated in the resistant cotton cultivar. These
observations were also confirmed by qRT-PCR analysis.
However, the defense response of plant to biotic stress is a
systematic network, which involves many pathways and
genes (Dangl and Jones 2001). Lignin synthesis is related to
many genes controlling a few pathways, not only two genes
and two TF. We believe other pathways and genes may also
play important roles in the cotton immune defense mechanism
to Fov invasion.

Based on DEG analysis, GO classification, KEGG enrich-
ment, and TFs analysis, we concluded that lignin is possibly
involved in upland cotton’s response to FW. To further con-
firm this, we measured POD activity and lignin content before
and after F. oxysporum inoculation in the resistant cultivar and
susceptible cultivars. Results showed that both POD activity
and lignin content were significantly induced in the resistant
cotton.

Breeding and utilizing FW-resistant cotton cultivars has
proven to be the most cost-effective control method for this
disease. Lignin related genes could be good targets for cotton
disease resistance breeding. Lignin content of crops could also
be modified by transgenic approaches: the manipulation of
lignin biosynthesis at the regulatory level, controlling
monolignol biosynthetic enzymes, or the modification of

lignin polymer structure (Frei 2013). Liu et al. suggest several
candidate genes for the genetic modification of lignin towards
breeding rice with high lodging resistance (Liu et al. 2018).
The over-expression of caffeic acid 3-O-methyltransferase
( e vm . TU .G h _A 0 9G 1 0 5 3 ) a n d p e r o x i d a s e 2
(evm.TU.Gh_D09G1208) genes would be able to facilitate
the breeding of FW resistant cotton. Additionally, our data
suggests the potential use of lignin quantification as a selec-
tion tool to identify FW resistant cotton. Lignin content has
been used as a biochemical indicator to measure immune ac-
tivation response (Adams-Phillips et al. 2010; Kishi-Kaboshi
et al. 2010). High lignin concentration has been found associ-
ated with disease resistance in tomato (Mandal et al. 2013),
rice (Liu et al. 2018) and soybean (Peltier et al. 2009). The
near infrared spectroscopymethod is a promising tool for low-
cost, and high-throughput lignin analysis of a large number of
samples.

Materials and Methods

Plant Materials and Inoculation

The Jimian11 susceptible cultivar has been set as the suscep-
tible standard control in China’s national cotton disease and
pest resistance evaluation programs since 2009 (GB/22101.4–
2009). The Yumian21 cultivar is currently served as a resistant
control to FOV in national cotton regional trials in China (Mei
et al. 2014). The cultivars were delinted with sulfuric acid and
sterilized with 0.1% HgCl for 10–15 min, and grown in ster-
ilized soil (vermiculite: nutritive soil = 1:1) at 25 °C tempera-
ture, 70% relative humidity with a photoperiod 16 h light and
8 h dark. In this study, “R” indicates resistant cultivar
Yumian21, “S” indicates susceptible cultivar Jimian11,
“CK” indicates the control, and “I” indicates inoculation.

The highly aggressive strain of the defoliating fungus
F. oxysporum was incubated on potato-dextrose agar (PDA)
media for two weeks and then cut into small pieces (1-2 cm)
before transference into 250 mL conical flasks containing
110mL of liquid Czapekmedium. Each flask containing three
pieces of PDA medium with mycelia was shaken at 120 rpm
at 25 °C for 3 d on a rotary shaker. The suspension liquid was
adjusted to 2 × 107 spores per mL with distilled water.

Each seedling was inoculated with a 10 mL F. oxysporum
spore suspension of 2 × 107 spores per mL by watering roots
at the two-true-leaf growth stage (Yao et al. 2019). Control
plants were inoculated with sterile distilled water and treated
in the same way. The plant roots were collected at 0, 12, 24,
48, and 96 h post inoculation and frozen immediately in liquid
nitrogen. Samples were pooled together as a mixed infection
RNA library. Three replicates were used for each treatment,
and 15 plants were used in each replication.
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RNA Sequencing and Data Processing

Total RNA was extracted with an RNA prep Pure Plant Kit
(TIANGEN). The RNA quality was assessed using a
NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE) and Nano 6000 Assay Kit on
Agilent Bioanalyzer 2100 System (Agilent Technologies,
CA, USA), respectively.

RNA was fragmented randomly and rRNA was removed
from the samples by using a Ribo-Zero rRNA removal kit
(Epicentre, Madison, WI, USA). The cDNA was synthesized
by using a random hexamer primer, and purified with
AMPure XP beads (Beckman Coulter, Beverly, USA). The
purified double-strand cDNA was end-repaired, poly-A tail-
added, and ligated to the Illumina adapter. Clustering of the
index-coded samples was performed on an acBot Cluster
Generation System using TruSeq PE Cluster Kitv3-cBot-HS
(Illumina) according to the manufacturer’s instructions. After
cluster generation, the library preparations were sequenced on
an Illumina HiSeq X Ten system (Illumina Inc., USA).

The sequence alignment and subsequent analysis of the
high-quality data was conducted using the designated genome
Gossypium_hirsutum_v1.1 as a reference (http://mascotton.
njau.edu.cn/info/1054/1118.htm) via HISAT (Li et al. 2014),
while StringTie (Kim et al. 2015) was used to assemble the
reads that had been mapped to the designated genome. Based
on the selected reference genome sequences, the mapped
reads were spliced by StringTie and compared with the orig-
inal annotation information of the genome to find the previ-
ously unannotated transcription regions. In order to obtain
annotation information using BLAST software, the mapped
reads were also compared to the following databases: the Non-
redundant (Nr) (Sayers et al. 2019), Swiss-Prot (Apweiler
et al. 2004), Gene Ontology(GO) (Ashburner et al. 2000),
Cluster of Orthologous Groups of proteins (COG) (Tatusov
et al. 2000), Evolutionary Genealogy of Genes: Non-
supervised Orthologous Groups(EggNOG), Eukaryotic
Orthologous Groups (KOG) (Koonin et al. 2004), and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al. 2004). The FPKM method was used to indi-
cate the transcriptional or gene expression level (Trapnell et al.
2010). The FPKM value was calculated as follows: FPKM=
cDNA fragments/ (mapped fragments (millions) X transcript
length (kb), with cDNA fragments being the number of reads
that aligned to a specific unigene, mapped fragments being the
total number of reads that aligned to all unigenes, and tran-
script length being the length of the unigene.

Identification of Differentially Expressed Genes (DEG)
and Data Validation

The DEGs between the inoculated and control samples were
identified by edgeR (Robinson et al. 2009). The FC value

indicates the ratio of expression between two samples
(groups). The false discovery rate (FDR) control method
was applied in multiple hypothesis testing to correct the P
value. An FDR < 0.05 and FC =1.5 were set as the thresholds
for assessing the significance of the difference in gene expres-
sion (Reiner et al. 2003).

The level of gene expression obtained by RNA-Seq was
verified using quantitative real-time PCR (qRT-PCR). The
primer sequences were designed using Primer3 (http://
bioinfo.ut.ee/primer3/) and synthesized by the Beijing
Genomics Institute (BGI, Beijing, China). The qRT-PCR
was carried out with three technical replicates using
NovoStart SYBR qPCR Super Mix Plus Kit (Novoprotein)
on an Eppendorf Mastercycler ep realplex machine
(Germany) according to the manufacturer’s protocol. PCR
cycles were as follows: one cycle of 1 min at 95 °C, followed
by 40 cycles at 95 °C for 20s,60 °C for 20s and 95 °C for 30s.
Following amplification, all products were subjected to melt
curve analysis. The cotton UBQ7 gene (GenBank:
DQ116441) was used as the reference gene to normalize the
total amount of 500 ng RNA in each reaction.

Measurement of Peroxidase and Lignin

The peroxidase activity (POD) and lignin content were mea-
sured by using an enzyme-linked immunosorbent assay
(ELISA) kit (Shanghai Bio-Tech Company, Ltd) according
to the manufacturer’s instructions (Kapat and Dey 2000;
Lequin 2005). Briefly, blank controls, standard wells, and
sample wells were set up. A 50 μl of the ELISA-coated refer-
ence standard 40 μl of sample replacement solution and 10 μl
of the test sample were used. The solutions were gently mixed
and incubated at 37°Cfor 45 min. Each well was washed five
times using washing buffer. Samples were incubated with
50 μL Biotinylated anti-IgG at 37 °C for 30 min; then incu-
bated with 50 μL streptavidin-HRP at 37 °C for 15 min. A
total of 50uL chromogen solution A and B solutions were
added each well and incubate samples at 37°Cfor 15 min.
The reactions were stopped by adding 50 μL stop solution.
The optical density (OD) values were measured at 450 nm for
the standard curve. The data were collected from three repli-
cated plants at 0 h, 12 h, 24 h, 48 h and 96 h after inoculation.
The analysis of variance (ANOVA), and all significant differ-
ences were examined according to Tukey test by DPS 6.05
software at p < 0.05 (Zhejiang University, Hangzhou, China)
(Tang and Zhang 2013).

Histochemical Test

Hand-cut cross-sections were made from the base of the stem
of both the Fov and distilled water treated cotton plants at 16 d
after treatment. Lignin histochemistry was examined using
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safranin O-fast green staining method (Jia et al. 2015). The
materials were fixed in 50% FAA for 24 h then dehydrated
with ethanol, and embedded in paraffin. The 4 μm thickness
cut sections were stained with 1% safranin O in distilled water
(pH 6.7) for 10 min then washed and counterstained with a
0.1% solution of fast green in water for 5 min. Tissue sections
with lignin were stained and observed under a light micro-
scope (LEICA CTR6000 Germany). The presence of lignin
was stained with red.
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