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Multiple machine learning approach to characterize
two-dimensional nanoelectronic devices via featurization
of charge fluctuation
Kookjin Lee 1,2,3,11, Sangjin Nam4,11, Hyunjin Ji5, Junhee Choi6, Jun-Eon Jin7, Yeonsu Kim3, Junhong Na8, Min-Yeul Ryu8,
Young-Hoon Cho7, Hyebin Lee7, Jaewoo Lee3, Min-Kyu Joo 9,10✉ and Gyu-Tae Kim3✉

Two-dimensional (2D) layered materials such as graphene, molybdenum disulfide (MoS2), tungsten disulfide (WSe2), and black
phosphorus (BP) provide unique opportunities to identify the origin of current fluctuation, mainly arising from their large surface
areas compared with those of their bulk counterparts. Among numerous material characterization techniques, nondestructive low-
frequency (LF) noise measurement has received significant attention as an ideal tool to identify a dominant scattering origin such
as imperfect crystallinity, phonon vibration, interlayer resistance, the Schottky barrier inhomogeneity, and traps and/or defects
inside the materials and dielectrics. Despite the benefits of LF noise analysis, however, the large amount of time-resolved current
data and the subsequent data fitting process required generally cause difficulty in interpreting LF noise data, thereby limiting its
availability and feasibility, particularly for 2D layered van der Waals hetero-structures. Here, we present several model algorithms,
which enables the classification of important device information such as the type of channel materials, gate dielectrics, contact
metals, and the presence of chemical and electron beam doping using more than 100 LF noise data sets under 32 conditions.
Furthermore, we provide insights about the device performance by quantifying the interface trap density and Coulomb scattering
parameters. Consequently, the pre-processed 2D array of Mel-frequency cepstral coefficients, converted from the LF noise data of
devices undergoing the test, leads to superior efficiency and accuracy compared with that of previous approaches.
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INTRODUCTION
Low-frequency (LF) 1/f noise spectroscopy is a nondestructive
defect diagnosis tool, which identifies dominant scattering origins.
Such scattering origins are caused by imperfect crystallinity, lattice
vibration, surface trap distribution, and channel and dielectric
defects, in addition to the Schottky barrier inhomogeneity at the
metal-semiconductor interface in semiconductor devices1–6.
However, as the size of the channel material decreases,
particularly in the case of two-dimensional (2D) layered materials,
their atomically thin nature with a large surface-to-volume ratio
makes it significantly difficult to investigate them using LF 1/f
noise analysis as compared with their bulk silicon counterparts7,8.
Conventionally, the time-resolved current (I) variation in electronic
devices has been ascribed to the carrier number and/or mobility
fluctuation9; ΔIðtÞ / qμ ΔNð Þ þ q Δμð ÞN, where q, μ, and N denote
the elementary unit charge, carrier mobility, and number of
charge carriers, respectively. However, since the inherent vulner-
ability of 2D materials to surrounding interfaces considerably
influences the charge fluctuation, this high sensitivity of LF noise
features would reflect the individual effects of both channel and
dielectric materials in addition to the presence of chemical/
electrical doping10,11.
Thus far, numerous LF noise features have been reported on 2D

materials, such as the presence of electron-hole puddle induced
charge scattering on graphene12, the Coulomb scattering

suppression via high-κ passivation of black phosphorus (BP)13,
the promotion of charge fluctuation in molybdenum disulfide
(MoS2) due to the height and inhomogeneity of the Schottky
barrier11, the anisotropic LF noise feature of rhenium disulfide
(ReS2)

14, and the thickness-dependent Coulomb scattering para-
meter of molybdenum ditelluride (MoTe2)

15. These studies
indicate the high feasibility of LF noise spectroscopy as a tool to
classify the material and device properties. Nevertheless, the
origin of carrier fluctuation, occurring either in the 2D layered
material itself or at the interface between the 2D layered material
and the gate dielectric, has not been identified clearly. Moreover,
it is significantly difficult to identify an individual noise source
from the LF noise data without appropriate data processing for
the model-dependent LF noise analysis.
Most recently, the combination of artificial-intelligence (AI)

based approach and scientific data analysis has been widely
considered in various applications such as healthcare16,17, image
recognition18,19, voice search20, and molecular/material
science21,22. Further, it has also been determined that these
combined techniques are suitable for solving the problems
associated with non-linear processes or enormous combinatorial
spaces with high efficiency16,22–24. This clearly indicates that the
machine learning (ML) and deep learning (DL) approaches can
provide a better optimization and decision-making by converging
the scientific data and extracting interpretable models from these
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data automatically22,25. Recently, studies on applying ML or DL to
analysis of 2D layered materials have been widely conducted26–29.
In this study, we introduce an effective technique to classify and

infer the characterization of current fluctuation with high
efficiency and precision by combining AI and LF noise spectro-
scopy. Due to the similarities of the fabrication process, geometry,
bandgap, and mobility of 2D FETs, classifying only using
fundamental DC analysis of transfer curves and output character-
istics is very difficult. On the other hand, since LF noise data
measure the tiny fluctuations of carriers in channel according to
time, characterizing an own FET is easily explained. Based on the
time-resolved ΔI(t) measured from various 2D material-based field-
effect transistors (FETs), 2D arrays of the Mel-frequency cepstral
coefficient (MFCC) for several electronic properties were consid-
ered, and the corresponding features were obtained via a hidden
Markov model (HMM). HMM has disadvantages that it must have a
relatively large amount of data and hardly express dependencies
between hidden states. However, HMM is suitable for processing a
large amount of LF noise data based on the advantages of having
a strong statistical foundation and enabling efficient learning from
raw sequence data. This approach allows us to automatically
identify essential device information such as the type of 2D
channel materials and gate dielectrics, interface trap density (Nit),
Coulomb scattering parameter (αSC), and the presence of chemical
and electron beam doping. Therefore, the combination of factors
such as channel material, gate dielectric, contact metal, and
electron beam irradiation significantly affects carrier fluctuations
as a function of time. This combination, which has more than 100
LF noise data sets under 32 conditions, becomes a catalyst for
machine learning that automatically and effectively classify the
characteristics of various nanoelectronic devices. In addition, the
obtained LF noise spectroscopy data are highly interpretable via
machine learning techniques, thereby identifying the contribution
of engineered features in characterizing the device information
and performance.

RESULTS
Workflow for audio and current signal classification
The decimal data type, measured in the time domain, has been
used generally for ML and DL in data science; however, the Fourier
transform (FT) of this data are frequently employed in ML
algorithms to improve data interpretation30,31. The process of
transforming raw data into a suitable representation for a learning
algorithm is often called featurization. For instance, in speech
recognition, proper methodology has been widely studied to
convert a signal from the time domain to the frequency domain
for more accurate classification and analysis31–33. A typical data
demonstration method that extracts the characteristics of the
original audio signal through the Mel-frequency cepstral coeffi-
cient is illustrated in Fig. 1a. Each speech frame of the time
domain signal is first obtained through the pre-emphasis, framing,
window, and other processing of the original audio signal as
expressed in schematic (i) of Fig. 1a. Subsequently, the speech
signals comprising a 30ms frame window are Fast Fourier
transformed (FFTed) with a Hamming window. Further, each
spectrum signal is processed by Mel filters (26 filters) to obtain the
corresponding Mel-frequency spectrum. Finally, the Mel-frequency
spectrums are processed using discrete cosine transform (DCT) to
acquire the MFCCs in the cepstral domain as shown in schematic
(ii) of Fig. 1a.
We employ this data processing algorithm for a number of ΔI(t)

data obtained from various 2D material based FETs which have
been fabricated and analyzed under various experimental
conditions such as different gate dielectrics11,13,34,35, tempera-
tures11,34,36, channel materials10,11,13,34,35,37–39, chemical/electron
beam doping40,41, and source/drain contact metals11,34 (see

Fig. 1b). More than 100 LF noise data sets of various 2D layered
FETs were considered in this study under 32 different conditions
at a particular gate (VG) and drain (VD) bias condition. In contrast to
the audio signal shown in Fig. 1a, after performing the additional
signal normalization process, each MFCC of the current signal in
the cepstral domain is consequently determined via FFT and DCT
as displayed in schematic (i) and (ii) of Fig. 1b. The MFCCs of the
audio and current signals, which comprise the 2D array, are
respectively used in speech recognition and device classification
(materials/characteristics) through the inference process using ML
with the optimized algorithm (see Fig. 1c). The conditions of the
device that ML trained and learned in this algorithm distinguishes
are as follows (see Fig. 1d): BP, graphene, MoS2, ReS2, MoTe2, and
tungsten diselenide (WSe2) were used as channel materials; h-BN
and SiO2 were employed as gate oxides; Ti, Au, Pt, and Cr were
used as the contact metals; and passivation, temperature
variations, triethanolamine (TEOA) doping, and electron beam
irradiation were considered as the different external factors.

Process flowchart for learning and classifying 2D transistor
The ΔI(t) of 2D material-based FETs under several conditions were
measured at a particular VG and VD (see Fig. 2a) in a shielding
metal box (see Fig. S2 and Note 2 in the Supplementary Materials
for details of the LF noise measurement system)42. The drain
current ID can be defined as the sum of the average statistic (DC)
drain current (ID) and low-noise current fluctuations (ΔID);
ID ¼ ID þ ΔID

3–6,9. Since the amplitude of ΔID is substantially
smaller than ID, ΔID is generally converted to the voltage signal
using the low-noise current-to-voltage preamplifier, as depicted in
Fig. 2b. The amplified noise signal was considered as the input
ΔID(t) data used in Python, where the amplitude normalization
and pre-emphasis processes were performed, as presented in
Fig. 2c. Subsequently, the preprocessed ΔID(t) data were separated
into specific frames with respect to the time domain, and FFT was
performed on these data. The transformed data produced by each
frame were expressed as power spectral density (SI) in the
frequency domain, and all SI were filtered onto the Mel scale. This
transformation of specific frames into SI allowed the evaluation of
periodic spectra, and the amount of spectral energy between
frequencies could then be obtained by combining the respective
frames. It was observed that the Mel scale filter interval was
directly proportional to the frequencies i.e., narrow around low
frequencies and became wider at the higher the frequencies
indicating that the Mel-scale filter amplified the amount of energy
around low frequencies (see Fig. S4 and Note 3 in the
Supplementary Materials)30,43–47.
The obtained data, which are called Mel-frequency spectrums

and mainly used for learning, were consequently more sensitive to
the low frequency values, allowing a precise carrier scattering
analysis in the devices. Subsequently, the Mel-frequency spec-
trums were transformed through the DCT and extracted to a finite
data point sequence, composed of the current MFCCs in the
cepstral domain43–45. Further, all SI filtered by the Mel scale were
overlapped, indicating the existence of correlations between the
spectral densities. These correlations could be separated using
the DCT method. The current MFCCs transformed by the DCT was
expressed as the change in filter energy, and a part of them
was extracted to store data as 2D arrays, as demonstrated in the
schematic in Fig. 2c30,47. Based on the research conducted thus
far, the engineered current MFCC features were characterized into
2D arrays with a number between 200 and 1000 for each
device class.
Every engineered current MFCCs feature was stored by class,

based on the device conditions, and they were learned and
classified using ML with an HMM algorithm and DL with an NN, as
illustrated in Fig. 2d, e. The HMM based on the Markov
chain30,31,48,49 in Fig. 2d was the first algorithm model used for
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learning and classifying the data in this study. In HMM, the
unaligned training sequences are processed by iteratively
evaluating the data stored as current MFCCs. For all the training
parameters, the estimates with prior probability distributions are
assumed using a maximum a posteriori approach30,50,51. The
scores for the 32 classes were calculated as Y, as shown in Fig. 2d.
Further, the class with the highest score was determined, and
could be used to infer the device conditions as shown in Fig. 2f.

The second method used was the NN30,52,53, which is one of the
DL methods. In this algorithm, the Y values of classes, which had
been calculated by HMM, were classified by performing one
additional learning step. In this method, the input score vectors, Y,
were transferred to the first layer (layer-1) with 32 perceptrons,
which is the number of classes, and were then transferred to the
second layer (layer-2) by employing a rectified linear unit (ReLU)
function as the activation function54,55. Instead of the widely used

Fig. 1 Workflow comparison between speech and device characteristic classification. The initial steps of the data representation for
training: a the audio signal and b the current signal (i) in the time domain and (ii) in the frequency domain (the darker color, the smaller value).
c The inference steps after ML for (i) speech recognition and (ii) materials/characteristics classification. d Side views of the device structures,
which are fabricated using various materials after being subjected to external factors such as e-beam irradiation, triethanolamine (TEOA)
chemical doping, and temperature variations; Au, Ti, Pt, and Cr are used as the source/drain contact metals; silicon dioxide (SiO2) and
hexagonal boron nitride (h-BN) are used as the gate dielectrics; the channels are composed of a combination of various atoms such as Mo, W,
S, Se, Te, C, and black phosphorus (BP); MoS2, MoTe2, WSe2, ReS2, graphene, and BP have thicknesses varying from monolayer through to 40
layers.
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sigmoid function, we considered a ReLU function here as the
activation function because of its sparse activation property,
which could be partially activated by providing zero as an output
against a negative input30,54,55. Subsequently, the score vector
data were classified using the softmax function, which is used for
classification in layer-2, and the probability of a specific class was
calculated and classified, demonstrating a normalization effect.
The softmax function was obtained by dividing the sigmoid value
of each class by the sum of sigmoid values of all classes as
described below30,54:

S yið Þ ¼ eyi
Pi

j¼1 e
yi

(1)

Compared to the HMM method, the second method had the
advantage of classifying the score via repetitive training and
learning, which was performed to determine the maximum value
of the scores, Y, obtained through HMM. Finally, the device
conditions could be inferred as indicated in Fig. 2f.

Data featurization
Numerous electrical properties of FETs, such as the carrier type
(electrons or holes), field-effect mobility, subthreshold swing, and
current on/off ratio of the device-under-test (DUT) can be
determined from the ID – VG transfer characteristics of 2D layered
FETs (see Fig. 3a and Supplementary Materials Fig. S1). However, a
precise classification of the 2D FETs with fundamental DC analysis
is significantly challenging, due to the similarities of mobility,
bandgap, geometry, and fabrication process of 2D FETs, except
under a few specific conditions such as graphene FET. For
instance, ΔID(t) can be measured during 0.5 s at a particular VG and
VD in a device belonging to a specific class (condition) after
excluding ID as illustrated in Fig. 3b. It is noteworthy that we only
considered ΔID(t) data where ID was larger than 100 nA to avoid a
possible error caused by the minimum detection limit of our
system. Subsequently, the current normalization process was
performed for ΔID(t) and divided into 11 frames with a 200 ms
window. The SI of each frame was converted using FFT as shown

in Fig. 3c and converted into a vector, xn, possessing 100 current
MFCC elements, anm, via Mel-scale filtering and DCT. The xn for
each frame was concatenated to create the current MFCC 2D array
of each class (condition), X(class)i, as indicated in Fig. 3d.

XðclassÞi ¼ x1 x2 � � � xn � � � x10 x11½ � (2)

xn ¼ an1 an2 � � � anm � � � an99 an100½ � (3)

where i depends on the specific voltage applied to the device
belonging to the class (condition).
In order to examine the high feasibility of our approach, we

considered the carrier number fluctuation-correlated mobility
fluctuation (CNF-CMF) model to interpret our ΔID(t) data (see the
detailed LF noise theory in Supplementary Materials Note 2). This
CNF-CMF model ascribes ΔID(t) to the carrier number fluctuation
(CNF) caused by trapping/detrapping phenomena in the interface
traps between the channel and gate dielectric in addition to the
correlated mobility fluctuation. More specifically, ΔID(t) data can
be influenced by many factors such as the carrier type of channel,
interface quality and condition between the gate oxide and
channel, and the presence of doping (see Fig. 3e). According to
the CNF-CMF model, the drain current normalized SI can be
expressed as follows5,6,9,56:

SI

ID
2 ¼

q2kTNit

f γWLC2
ox

1þ αSCμeffCoxID
gm

� �2
gm
ID

� �2

(4)

where q is the carrier charge, k is the Boltzmann constant, T is the
absolute temperature, f is the frequency, γ is the frequency
exponent, Cox is the dielectric capacitance per unit area, gm is the
transconductance (=ΔID/ΔVG), SVfb is the flat-band voltage spectral
density, and μeff is the effective mobility. The trapped carriers near
the channel-gate dielectric interface not only cause variations in
SVfb , but also degrade electron mobility, resulting in modulation of
the carrier density.
Figure 3f shows the representative SI of each frame in the

frequency domain among the fabricated DUTs. The observation of
certain harmonics in the SI could be attributed to the carrier

Fig. 2 Flowchart for learning and classifying characteristics of 2D transistors. a Schematic of a 2D layered FET, which was measured at a
given VD and VG under various conditions in the shielded state; b amplification of the measured current signal using a low-noise current
amplifier; c process of feature engineering the input data into a suitable representation (current MFCCs) through MFCC (the darker color, the
smaller value); d ML with HMM algorithms using the current MFCCs, which comprises the 2D array; e deep learning process to re-learn into
neural network (NN) through the score vector (Y) extracted via ML with HMM the algorithm using current MFCCs; and f inference steps of
device conditions (channel material, gate material, chemical doping, and e-beam irradiation) through ML with the HMM algorithm and deep
learning with the NN algorithm.
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trapping/de-trapping process in the gate oxide trap sites. In fact,
these harmonics assisted in understanding the characteristics of
each device and expressed these characteristics as spectral
envelopes with specific peaks32,33,57,58. Therefore, Nit and αSC
between the gate dielectric and the channel of each class
(condition) have a significant effect on the spectral envelopes and
unique characteristics of device (see Fig. 3g). As a result, the
current MFCC 2D array comprises power spectral sequences for
each frequency (amplified for the low frequency region), as
demonstrated in Fig. 3h. The HMM algorithm that learns the
previous state and infers the next state is efficient for learning the
current MFCC 2D array that contains Nit, αSC, and γ information
according to the frequency sequence.

Current MFCC and classification accuracy
LF MFCC element parts (from an1 to an40) of engineered current
MFCC at the same ID ≈ 1 μA in each class ((i) graphene on trench
structure, (ii) MoS2 on SiO2, (iii) MoS2 on SiO2 after e-beam
irradiation, and MoS2 on h-BN at (iv) T= 25 K, (v) T= 100 K, and (vi)
T= 200 K) are directly compared in Fig. 4a (see also Supplemen-
tary Materials Figs. S5–6 and Note 3). In all DUTs, we consistently
observe the 1/f noise tendency. The current MFCC elements in the
LF regime were considered to significantly contribute to learning
and classification. Except for the graphene case (see (i) in Fig. 4a),
the SI=ID

2
curves for all 2D materials in this study fit well to the

CNF-CMF model, implying the engineered current MFCCs of
graphene would have a different image than those of the other

2D layered materials. The effects of e-beam irradiating the
monolayer MoS2 FET on the SiO2 substrate are compared in
schematic (ii) and (iii) of Fig. 4a, b. The obtained Nit increases by a
factor of 10 after electron beam irradiation. Moreover, the
engineered current MFCC for αSC as a function of T in the
monolayer MoS2 FET on h-BN is also demonstrated (see (iv) to (vi)
in Fig. 4a, b). αSC increases with increasing T from 3.23 × 104

(T= 25 K) to 3.08 × 105 V s C−1 (T= 200 K)11,36.
The frequency distributions are presented in a histogram with

20 intervals, as shown in Fig. 4a, using the normalized elements of
LF MFCC of classes (i)–(vi) (see Fig. 4b). As Nit increases from
condition (ii) to (iii), the highest frequency of the histogram shifts
to the positive direction. A similar positive frequency shift is
observed in cases (iv)–(vi) with the increasing T. Referring to Eq.
(4), the SI varies as a function of Nit and αSC, and the corresponding
current MFCCs can be extracted via featurization, consequently
enabling the representation of a specific histogram tendency.
The HMM algorithm, which learns considering the correlation

between the previous state and the next state, progresses under the
following two learning conditions. The first learning condition is that
the specific current fluctuation of each device in a specific class is
due to Nit and αSC, and the current MFCC contributes to learning by
considering the above information. The second learning condition is
that the HMM algorithm is learned by considering the correlation
between the MFCC of the previous frequency and the MFCC of the
next frequency. Thus, in Eq. (4), the exponent γ, which reflects the
trap distribution, also influences the learning process with the HMM

Fig. 3 Detailed flowchart of ΔID featurization. a Transfer characteristics (ID− VG) of 2D layered FETs measured under various conditions;
b ΔID(t) data measured at a particular VD and VG and then divided into specific frames with sampling period; c current power spectral densities
(SI) in the frequency domain of each frame converted through FFT; d current MFCC comprising 2D array, X(class)i, obtained by concatenating
current MFCC vector, x, processed through Mel filter and DCT; e sectional illustration of carrier behavior in a 2D layered FET; f SI(f) at a
particular VD for several VG and spectral envelopes (the darker color, the larger VG); g Nit and αSC distributions, which were calculated by carrier
number fluctuation-correlated mobility fluctuation (CNF-CMF) model of each class (the box plots are defined by 25th and 75th percentile);
h engineered current MFCC 2D array, which contains carrier behaviors (the darker color, the smaller value).
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algorithm, with Nit and αSC. Figure 4c displays the classification
accuracies and processing time obtained using the HMM algorithm
and the HMM score vector learning method employing the NN for a
number of data. When the number of data was 7800, the HMM
classification accuracy was 76.3% with f1-score and AUC value of
<0.78 using fourfold cross-validation (see Supplementary Materials
Fig. S3 and Note 3.11)30,59,60. The HMM+NN classification accuracy
was 85.2% with f1-score of 0.86, AUC value of 0.83, and processing
time of 3 h for each fourfold cross-validation. For 22,100 data points,
the HMM+NN classification accuracy increased to 95.5% with f1-
score of 0.93, AUC value of 0.91, and processing time of 11 h for each
fourfold cross-validation. However, for 48,800 data points, classifica-
tion accuracies exhibited no further improvement, and only the
processing time increased to 15 h. Moreover, the classification

accuracy learned by the convolution neural network (CNN) algorithm
using current MFCCs as image data not through HMM architecture
reached 93.6% with f1-score of 0.82, AUC value of 0.87 as good as
the performance of HMM+NN. (see Supplementary Materials Fig. S7
and Note 4). On the other hand, the logistic regression model
achieved only a classification accuracy of 88.8% with f1-score of 0.75,
AUC value of 0.89. Therefore, provided that the performance of CNN
architecture for classifying by learning perceptrons of each layer is
acceptable, a transfer learning for any other channel or gate oxide
materials can be possible61.
Most of the classes (or labels) were in good agreement with the

CNF-CMF model with high averaged cross-validation accuracies of
over 90% with f1-score of over 0.86 and AUC value of over 0.84, as
presented in Fig. 4d. However, two exceptional classes, i.e., ReS2

Fig. 4 Engineered current MFCC study and classification accuracy. a LF part of current MFCC (the darker color, the smaller value) converted
at the same ID ≈ 1 μA in each class ((i) graphene on trench structure, (ii) MoS2 on SiO2, (iii) MoS2 on SiO2 after e-beam irradiation, and MoS2 on
h-BN at (iv) T= 25 K, (v) T= 100 K, and (vi) T= 200 K, respectively); b frequency distribution for a specific interval by normalizing the LF part of
current MFCC; c classification accuracies and processing time obtained using the three learning and classification methods based on the
number of data; d classification accuracies according to each class (the inset shows a confusion matrix and the darker color, the smaller value);
e variations in the measured normalized drain current spectral densities for ReS2 and MoS2 on h-BN at f= 10 Hz and data fitted using the CNF
and CNF-CMF models.
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(blue bar) and MoS2 (red bar) FETs fabricated on h-BN, are present
in this figure with low classification accuracies of 74.2% (with f1-
score of 0.79 and AUC of 0.75) and 38% (with f1-score of 0.49 and
AUC of 0.51). This indicates that the current MFCCs for these
classes were misinterpreted in the high current region. To
interpret this miscalculation clearly, the corresponding SI=ID

2

curves at f= 10 Hz for both cases are displayed in Fig. 4e.
Although they are well fitted to the CNF-CMF model in most of the
current regions, the additional contact resistance (RCT) contribut-
ing towards the total LF noise behavior in the high current regions
curtails the accuracies in particular11. The inset in Fig. 4d shows
the confusion matrix of the HMM+NN architecture. Interestingly,
some classes, which should consider the effects on additional
contact resistance such as ReS2 and MoS2 FETs using h-BN as gate
dielectric, WSe2 FETs using Au as contact metal, and monolayered
MoS2 FETs, are sometimes confused with each other.

DISCUSSION
Combining the LF noise spectroscopy with machine learning
algorithms provides an efficient and precise approach to characterize
and classify 2D layered FETs. Through the use of an NN based on the
hidden Markov model algorithm, we demonstrate that MFCCs, which
were converted from the LF noise data of DUTs, can be predicted
more precisely than the limits of fundamental measurements.
Importantly, this method of applying only a specific voltage can be
considered advantageous in both classifying device information and
characterization of device performances. The combination of factors
such as channel material, gate dielectric, contact metal, and electron
beam irradiation have a profound effect on carrier fluctuations,
enabling effective learning and training. Further, the learning models
using LF noise spectroscopy presented herein are highly interpre-
table, and aid in identifying how engineered features, including the
behaviors between carriers and traps, contribute to characterizing
device information and performance. Therefore, the considerable
flexibility of this approach makes it adaptable in distinguishing the
degree of degradation and reliability of device and to modeling
optimized fabrication conditions and device structures. The carrier
transport direction, stacking order and orientation in 2D hetero-
structures would be a critical factor that influences significantly on
charge fluctuation, expecting to enable the improved interpretation
in the future via this approach. Moreover, the inference of
engineered current MFCC features that currently lack sufficient noise
data, combined with the CNF-CMF and additional contact noise
approaches, and an improved ability to build models from limited
experimental data should be possible using the developed model.

METHODS
Sample fabrication
An appropriately selected chemical vapor deposited monolayer MoS2 and
mechanically exfoliated 2D multilayer materials such as MoS2, BP, ReS2,
MoTe2, WSe2, and h-BN were transferred onto high-quality 300 nm-thick
SiO2/p

+-Si substrates. To make source and drain metal electrodes on them,
standard electron beam lithography was used, and 80 nm-thick Au, Ti, Pt,
and Cr were deposited using an electron-beam evaporation system. To
suppress the contact resistance effect at the metal-semiconductor
interface, all the fabricated devices were annealed under a high vacuum
condition for 2 h at 473 K. The trenched graphene FETs in this study was
fabricated on a pre-patterned parallel grid structure made of spin-coated
poly(Methyl Methacrylate) A2 via conventional dry transfer methods39. The
Al2O3 passivation layer was deposited on 2D materials using an atomic
layer deposition system.

In-situ measurement with e-beam irradiation
Electron-beam irradiation was conducted under high vacuum conditions
(~10−6 Torr) at 300 K using a scanning electron microscope (SEM) (Quanta
3D FEG) chamber with a nano-manipulator for multilayer MoS2, WSe2, and

monolayer MoS2 for 30 s with 30 kV and 50 pA. Four tungsten probes
installed on the nano-manipulator system were electrically connected to a
semiconductor parameter analyzer.

Electrical transport measurement
All the devices, except the Al2O3 passivated MoS2 FETs, were characterized
in a high vacuum-probe station system10. Fundamental electrical transport
characterizations were performed using semiconductor analyzers (Keithley
4200, Agilent B1500A) with a temperature controllable probe system (335,
Lake-Shore). Low-frequency noise characteristics were obtained from a
home-made noise measurement system (the system details are presented
in Fig. S2 in the Supplementary Materials), consisting of a home-made
battery box, a low noise current-to-voltage pre-amplifier (SR570, Stanford
Research Systems), and a data acquisition system (DAQ-4431, National
Instruments)42.

Data processing and training
We used the Python speech features library in Github (https://github.com/
jameslyons/python_speech_features) for processing of LF noise data into
MFCC parameters. We only considered data where ID was larger than
100 nA to avoid a possible error. The optimized combination of
hyperparameters was based on the previous studied LF noise analysis,
narrowed the range, and found the best result by iterating through for
loop. After Augmenting training MFCCs dataset using Gaussian noise, we
used hmmlearn (https://github.com/hmmlearn/hmmlearn) library in
Github for using HMM trainer function with training MFCCs data. Through
HMM training, trained data generated for each class were converted into
score vectors, and these vectors were trained by neural network based on
the Tensorflow keras (https://www.tensorflow.org/guide/keras). Finally, We
learned and trained current MFCC data directly using CNN also based on
the Tensorflow keras (https://www.tensorflow.org/guide/keras).

Model validation
We used the 4-fold cross-validation method to train our MFCCs dataset,
training MFCCs dataset was divided into 4 subsets having equal sizes
randomly. Of the 4 subsets, a single subset was retained for the test data
for evaluating the model, and the remaining three subsets were used as
training. Our cross-validation process is repeated 4 times, with each of the
four subsets used once for test. The remained test MFCC datasets were
converted into score vectors to evaluate the model with training data
learned through the HMM+NN architecture. We obtained not only the
accuracy, but also confusion matrix, receiver operating characteristic (ROC)
curves, area under the curve (AUC) value, and f1-score to evaluate the
model performance accurately with imbalance of the data (https://scikit-
learn.org/stable/modules/classes.html#module-sklearn.metrics).

DATA AVAILABILITY
Some of LF noise data that support the findings of this study are available from
Github (https://github.com/Kookjin-Lee/Kookjin.Sangjin.noiseML) and the test LF
noise data are uploaded in the subfolder with each label name in the folder (Test
data_noise). All LF noise data are available from the corresponding author(s) upon
reasonable request.

CODE AVAILABILITY
All the codes used to train, evaluate, calculate the presented results in this study are
available from Github (https://github.com/Kookjin-Lee/Kookjin.Sangjin.noiseML)
using the available Python file (LFnoise_ML_Classification_SJ_KJ.py).
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