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DEAD/H box helicases are implicated in lung cancer but have not been systematically investigated for
their clinical significance and function. In this study, we aimed to evaluate the potential of DEAD/H
box helicases as prognostic biomarkers and therapeutic targets in lung cancer by integrated bioinformatic
analysis of multivariate large-scale databases. Survival and differential expression analysis of these heli-
cases enabled us to identify four biomarkers with the most significant alterations. These were found to be
the negative prognostic factors DDX11, DDX55 and DDX56, and positive prognostic factor DDX5. Pathway
enrichment analysis indicates that MYC signalling is negatively associated with expression levels of the
DDX5 gene while positively associated with that of DDX11, DDX55 and DDX56. High expression levels of
the DDX5 gene is associated with low mutation levels of TP53 and MUC16, the two most frequently
mutated genes in lung cancer. In contrast, high expression levels of DDX11, DDX55 and DDX56 genes
are associated with high levels of TP53 and MUC16 mutation. The tumour-infiltrated CD8 + T and B cells
positively correlate with levels of DDX5 gene expression, while negatively correlate with that of the other
three DEAD box helicases, respectively. Moreover, the DDX5-associated miRNA profile is distinguished
from the miRNA profiles of DDX11, DDX55 and DDX56, although each DDX has a different miRNA signa-
ture. The identification of these four DDX helicases as biomarkers will be valuable for prognostic predic-
tion and targeted therapeutic development in lung cancer.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lung cancer is the most common cancer and the leading cause
of cancer-related death. It accounts for 11.6% of all cancers world-
wide, with approximately 2.1 million new cases in 2018 alone [1].
In addition to its prevalence, most lung cancer patients have a poor
prognosis, with a 5-year predicted survival of around 17.8% [2].
There is a disproportionate number of lung cancer-related deaths
when compared with other cancers of a similar incidence, such
as breast cancer. In 2018 lung cancer was responsible for 1.75 mil-
lion deaths, almost 20% of all cancer-related deaths in that year,
whereas breast cancer, despite having an almost equal number of
diagnoses, led to only 0.6 million deaths [1]. This discrepancy
may potentially be due to late diagnosis, leading to the delayed
onset of treatment and allowing more time for cancer to develop
in both stage and grade. As a result, a large number of lung cancer
patients present late with metastasis, and miss the optimal time
window for localised surgical intervention. Besides, a larger num-
ber of lung cancer patients that have metastasis will miss the opti-
mal time window for surgical treatment when they are diagnosed.
The majority of these patients have to undergo numerous cycles of
chemotherapy and thus risk the severe adverse effects that accom-
pany it [3]. This demonstrates the need to develop new treatments
capable of limiting lung cancer progression, to improve the efficacy
of chemotherapy and the survival of these patients.

Lung cancer is a heterogeneous disease comprising two sub-
types. Small cell lung cancer (SCLC) is believed to arise in the neu-
roendocrine cells of the lung, while non-small cell lung cancer
(NSCLC) accounts for 85% of cases and is further divided into 3 sub-
types: squamous-cell carcinoma (LUSC), adenocarcinoma (LUAD),
and large-cell carcinoma (LCC) [2,4]. The most common forms of
NSCLC are LUAD and LUSC [2]. LUAD begins in type II alveolar cells
of the lung, responsible for maintaining alveolar surface tension,
and the stem cells that accumulate in the bronchioalveolar duct
junction [5]. LUSC arises from the squamous epithelial cells of
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the bronchus [5]. Despite their shared classification of NSCLC, the
two subtypes possess distinct mechanisms of tumorigenesis that
determines their heterogeneous histology and tumour progression
[6]. Despite recent advances in the treatments of lung cancer, mor-
tality rates are still substantially high in these patients; therefore
improved therapeutic targeting of lung cancer cells may be vital
to improving lung cancer survival [7].

DEAD/H box RNA helicases are a superfamily of molecules
which possess crucial roles in all stages of RNA metabolism, from
transcription to translation or degradation [8,9]. All DEAD/H box
proteins possess the same basic structure consisting of a struc-
turally conserved helicase core which consists of two RecA-like
domains [9,10]. Conserved amino acid motifs, which confer the
ATP and RNA binding ability of the helicases, are spread out across
these regions and act together in a complex to confer the helicase
function. The first member of the family to be discovered was
eIF4A, a member of the translation initiation complex, the struc-
ture of which is restricted to a helicase core and RecA-like domains,
possessing only a minimal N terminus chain [11–13]. It was
observed that eIF4A shared several commonmotifs with other pro-
teins possessing a similar function; this discovery led to the foun-
dation of the DEAD/H box RNA helicase family [13]. A search of
GenBank revealed that 57 members of the helicase family have
been identified in humans, all possessing the conserved motifs
held within the helicase core and RecA-like domains [14]. One of
these shared motifs is the DEAD, or DEAH, amino acid sequences
[13]. The RecA domains generate a cleft around the helicase core
where both ATP and RNA can bind [9]. The RNA binding sites bind
the sugar-phosphate backbone of the RNA strand and hold it in
place opposite to the ATP binding site. Without the need for com-
plementary base pairs to associate with a target sequence, the heli-
cases are not selective for specific RNA [15]. As helicases, the
DEAD/H box proteins are capable of binding and unwinding RNA
in an ATP-dependent manner, however, in DEAD/H box helicases
this process is limited to short RNA duplexes [16]. These RNA
duplexes are capable of forming complex secondary structures,
which arise through interactions between the bases of the RNA
sequence, and these are capable of acting as regulators of RNA pro-
cessing [17]. Since these structures are very stable, the RNA
duplexes will remain in their conformation unless acted on by
external factors, such as a helicase capable of remodelling the
duplex to facilitate proper RNA processing. To achieve its associa-
tion with ATP and RNA the binding cleft must be in a highly
defined conformation and subtle changes to these motifs can
impact the ability of the protein to perform its function [10].
Because of this, the variation in the DEAD/H box protein function
is determined by the presence of variable C and N terminal auxil-
iary domains. These domains can possess their own function, such
as nuclease activity, or be responsible for the recruitment of other
proteins to a dynamic complex around the RNA, for example the
spliceosome or translation complexes.

This motif variability allows the helicases to be involved in all
aspects of RNA processing with each member of the family playing
a distinct role. In RNA processing, each of the steps requires DEAD/
H box RNA helicases to mediate progression and modification,
either directly or through the recruitment of complexes [9]. As
gene expression is a complex process involving several heavily reg-
ulated stages, the DEAD/H box RNA helicases must be correctly tar-
geted and regulated to ensure appropriate RNA processing. RNA
unwinding is an ATP-dependent process and a primary function
of the helicases involving the conserved RecA-like domains and
helicase core; many helicases mediate this action by loading onto
a single-stranded region of an RNA duplex and displacing the com-
plementary strand during ATP dependent unidirectional transloca-
tion [20]. However, an alternative mode of action has been
suggested for some members of the DEAD/H box family. In this
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mechanism the helicase associates with a single-stranded region
distinct from the target duplex but in close spatial proximity, this
single-stranded DNA or RNA mediates helicase loading onto the
duplex and subsequent duplex unwinding by local strand separa-
tion [20,21]. Despite possessing ATP dependent helicase activity,
some members of the DEAD/H box family are capable of mediating
their actions through ATP independent mechanisms [9].

Among the DEAD/H box helicases, 16 are DEAH-box members
(DHXs) while the others are DEAD-box members (DDXs). Although
sharing the two evolutionarily-conserved RecA-like core domains,
DHXs and DDXs unwind RNA structures through distinct mecha-
nisms. DDXs bind and unwind RNA duplexes or ribonucleoproteins
on their surfaces directly. In contrast, some DHXs require translo-
cation inside the RNA structures along the 30–>50 direction before
resolving nucleic acid, and some DHXs can unwind both RNA and
DNA with a G-quadruplex structure [18,19].

Notably, the DEAD/H box helicases also have other multiple bio-
chemical or biological functions which are often independent of
their conserved helicase core domains [22]. Individual helicase
proteins can interact with proteins and participate in posttransla-
tional modification through their N-terminal and/or C-terminal
domains specifically [23]. For instance, the N-terminal domain of
DDX3 plays a role in nuclear export by interacting with exportin
1 [24]. DDX3 is considered to play dual roles in cancer develop-
ment and progression [25]. The N-terminal domain of DDX5 can
regulate some transcriptional coactivators such as PIAS1, Fibril-
larin, c-ABL kinase and RNA polymerase II by protein interaction
[26]. The C-terminal of DHX9 contains a nuclear localisation and
export signalling domain [27]. The N-terminal domain of DHX36
is essential for cell viability, required for the nuclear localization,
and specific interaction with the spliceosome [28]. Instead, the C-
terminal domain of DHX36 is involved in the interaction with
single-stranded DNA at the 30-end with a G4 structure [29]. The
C-terminal domain of DDX20 can interact with p53 and NF-jB,
and play a role in abnormal cell signal transduction [30].

Dysregulation of DEAD/H box helicases disrupts tightly con-
trolled homeostasis of biological processes involving RNA, such
as pre-mRNA splicing, RNA export, transcription and translation.
The production of aberrant RNA and subsequent dysregulation of
downstream transcription, can have profound consequences on
uncontrolled fate, phenotype transition, migration and invasion
of cancer cells during tumour development and metastasis
[31,32]. In addition, as a consequence of altering RNA metabolism
or interacting with specific proteins, some DEAD/H box helicases
may mediate genome stability and stress-induced DNA damage
repair thus be linked with mutation occurrence or frequency
[33,34]. There is also evidence that a helicase can modulate methy-
lation of mRNAs and microRNAs (miRNAs) [35].

These enzymes have been implicated in the development, pro-
gression and metastasis of cancer as well as in the response to
chemotherapeutic agents [36,37]. They can be both tumour sup-
pressive, as demonstrated by the role of DDX3 in mediating p21
expression, and tumorigenic, as DHX32 was shown to upregulate
VEGFA expression and contributed to the increased growth and
vascularisation of colorectal cancer [38,39]. Therefore, whilst they
present promising targets to alter the expression of oncogenes and
tumour suppressors, the role of the DEAD/H box helicases is very
dependent on the context in which they are found. There is a par-
ticular interest in the potential of these enzymes for diagnostic and
prognostic biomarkers or as novel pharmacological drug targets in
cancer [40,41]. There are several DEAD/H box helicase therapeutics
currently in development in preclinical and clinical trials. Small
molecules, capable of modulating RNA binding and ATP-
dependent helicase activity, or disrupting certain protein–protein
interactions implicated in cancer progression, have been demon-
strated to possess anticancer activity [42,43]. However, there has
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been no systematic investigation of the clinical relevance and bio-
marker potential of the DEAD/H box helicase family members. This
means that the associations that exist in one cancer may not exist
in another, so a systematic investigation is necessary to determine
which helicases present potential targets for investigation.

Therefore, this study aims to unveil whether DEAD/H box RNA
helicases have a clinical significance in lung cancer and whether
they possess the potential to become a therapeutic target or prog-
nostic biomarker. With the advances of the Bioconductor, R and
other statistical computing tools, we undertook integrated bioin-
formatic analysis by integrating publicly-available large-scale
databases, including KM survival, gene expression, mutation,
miRNA expression, immune cell correlation and methylation pro-
files, for this purpose,
2. Results

2.1. Association of the DEAD/H box helicase genes with the survival of
lung cancer.

In order to understand the prognostic values of the 57 DEAD/H
box helicases in lung cancer, we performed the KM survival analy-
sis of their gene expression respectively. In all lung cancer patients,
92.44% of the helicases were significantly associated with overall
survival (OS) (52/57) (p < 0.01). In LUAD, the significant helicases
numbered 92.88% (53/57). In contrast, the percentage of significant
helicases was only 10.53% (6/57) in LUSC. The heat map of the
association of the individual helicase genes with the OS is shown
in Fig. 1A after the p-values were converted to negative log10 (p-
values). In general, LUAD is more similar in all lung cancer cases,
while LUSA is quite different. In Fig. 1B, the hazard ratio from sur-
vival analysis is shown for each DEAD/H box helicase gene. In all
lung cancer cases, 56.14% of the helicases are positively associated
with the survival rate, while 35.09% possess a negative association
(Fig. 1C). The KM plots of the first 10 ranked DEAD/H box genes in
ascending order of log-rank p-values are shown in Fig. 1D-1L. The
database of the p-values and HR of all the DEAD/H box genes are
provided in Supplement Table 1.
2.2. The association of DEAD/H box members with the clinical
parameters of lung cancer

We then selected the top 20 DEAD/H box helicase genes accord-
ing to the p-values of KM analysis. The selection criteria were
based on the p-values after KM analysis: all the DEAD/H box heli-
case members in LUSC with a p < 0.01 (n = 6 in total) and the 14
with the smallest p-values in LUAD.

We investigated the association of the top 20 DEAD/H box genes
with clinical parameters of lung cancer. In LUAD, as shown in Fig. 2,
19 of the 20 genes showed differential expression when tumour
and normal tissues were compared. The top 5 genes with higher
levels of expression in tumour included DDX56, DDX11, DDX55,
DDX15 and DDX32 (p < 2e-16), while DDX5 is one of the genes
which has lower expression in tumours (p < 2e-16). Among the dif-
ferent T stages in the TNM classification, 12 of the selected DDX
members showed significance. Among them, DDX5 was the most
significant which was downregulated in the advanced T stages
(p < 7.3e-06) followed by DDX26B which also showed downregula-
tion with T stage progression (p < 5.6e-06). Among the different N
stages, only four of the selected genes showed significance, which
were DDX17 (p = 0.00014), DDX26B (p = 0.00029), DDX5
(p = 0.002) and DDX56 (p = 0.015). Among the different M stages,
only DDX11 showed statistical significance (p < 0.05). We also per-
formed gene expression analysis of the overall stages, and found
that DDX17 (p = 0.0005), DDX26B (p = 3.6E-05), DDX47
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(p = 0.044) and DDX5 (p = 0.0014) were significantly different.
Among the different ages, only DDX5 and DDX56 showed differ-
ences. Between the genders, DDX3Y (p < 0.0001), DDX47
(p = 0.016), DHX40 (p = 0.016), DDX26B (p = 0.020) and DHX15
(p = 0.028) showed difference of gene expression (Supplement
Fig. 1).

In LUSC, 16 of the 20 genes showed differential expression
when tumour and normal tissues were compared. The top five
genes with higher levels of expression in tumour were DDX11,
DDX56, DDX49, DDX55 and DDX47 (p < 0.0001), while DDX5
was also the gene which had the most significant low expression
in tumour (p < 0.0001) followed by DDX29 (p < 0.0001) and
DDX17 (p < 0.0001) (Fig. 3). Among the different T stages in LUSC,
DDX50 (p = 0.013), DDX56 (p = 0.021), DHX40 (p = 0.028), DDX3Y
(p = 0.03) and DDX25 (p = 0.041) showed significance. Among the N
stages in LUSA, DDX46 (p = 0.014), DDX17 (p = 0.020), DDX50
(p = 0.035) and DDX35 (p = 0.044) showed differential expression.
Among the M-stages, no significance was observed in terms of the
expression of the DEAD/H box helicase genes.

We also performed gene expression analysis of the overall
stages, and found that DDX20 (p = 0.002), DDX50 (p = 0.017),
DDX17 (p = 0.026) and DDX46 (p = 0.030) were significantly differ-
ent. Among the different ages, only DDX31 (p < 0.007) showed dif-
ferential expression. Between the genders, only DDX3Y
(p < 0.0001) and DDX47 (p = 0.015) showed a difference in gene
expression (Supplement Fig. 2).

2.3. Correlation of the DEAD/H box helicase gene expression

We then performed a matrix correlation analysis using the
Pearson method. As shown in Fig. 4A, in LUAD, DDX55 had a more
positive correlation with other DDX members such as DDX11 (cor-
relation coefficient (r = 0.6) and DDX56 (r = 0.4), while DDX5 had
the most negative correlation with other DDX members such as
DDX49 (r = -0.4). Similarly, in LUSC, DDX55 also had the most fre-
quent positive correlation with other DDX members such as
DDX11 (r = 0.6), DDX56 (r = 0.5) and DDX49 (r = 0.5), while
DDX5 also had the most frequent negative correlation with other
DDX members such as DDX49 (r = �0.5) (Fig. 4B).

2.4. Identification of the lead DEAD/H box helicase gene candidates

We then plotted the levels of the differential expression (–log
10 (p-value)) to generate a heat map of all the 20 DDX genes in
the two subtypes. Based on this analysis, we identified that
DDX11, DDX56, DDX55 and DDX5 showed the most significant dif-
ferential expression profiles in both subtypes of the NSCLC
(Fig. 4C). Using a radar chart (Fig. 4D), we were able to illustrate
the multivariate association of these four DDX genes with the
whole aspect and three individual TNM-staging parameters of
the LUAD and LUSC subtypes. It showed that DDX11 covered more
significant association aspects with both subtypes, the M-stage of
LUAD and the T-stage of LUSC. DDX55 showed a more significant
association with the M-stage of LUSC. DDX5 showed a more signif-
icant association with the N-stage of LUSC and the T-stage of LUAD.
DDX56 showed a more significant association with the whole
LUAD subtype and the N-stage of LUAD.

2.5. Function signatures indicated by GSEA

By GSEA analysis, we were able to identify the most significant
signalling pathways as the functional signatures of the DDX mole-
cules. In both subtypes of the NSCLC, DDX5-associated genes were
found to be enriched in the positive regulation of the mRNA
surveillance pathway (LUAD: p = 0.0234; LUSC: p = 0.0011) and
mRNA 30 end processing (LUAD: p = 0.0010; LUSC: p = 0.0011).



Fig. 1. Survival analysis of the DEAD/H box helicases in lung cancer. (A) Heatmap of log-rank test p-values (negative log10 scale) showing the association with overall
survival (OS). (B) Heatmap of hazard ratio (HR) showing the direction of the risk association (HR > 1, positive; HR < 1, negative; HR = 1, null). (C) Pie chart summarising the
percentage of the helicases associated with OS. (D) The OS plot of the first 10 most significant genes in lung cancer.
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On the other hand, DDX5-associated genes were enriched in the
negative regulation of the pentose phosphate pathway (LUAD:
p = 0.0057; LUSC: p = 0.0058) and protein secretion (LUAD:
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p = 0.0227; LUSC: p = 0.0200). DDX5-associated genes in LUAD
were also enriched in the negative regulation of MYC targets
(p = 0.0119) (Fig. 5A–B).



Fig. 2. Gene expression profiles of the DEAD/H box helicase genes among tissue types and TNM stages in LUAD. (A) Gene expression between tumour and normal tissues.
(B) Gene expression at different primary tumour (T) stages in the TNM system. (C) Gene expression at different regional lymph nodes (N) stages in the TNM system. (D) Gene
expression at different distant metastasis (M) stages in the TNM system. The p-values<0.05 were highlighted in bold.
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DDX11-associated genes were found to be enriched in the pos-
itive regulation of a cluster of signalling pathways including mRNA
surveillance pathway (LUAD: p = 0.0012; LUSC: p = 0.0012), mitotic
DNA integrity checkpoint (LUAD: p = 0.0011; LUSC: p = 0.0011) and
MYC targets (LUAD: p = 0.0012; LUSC: p = 0.0012). In contrast,
DDX11-associated genes were enriched in the negative regulation
of protein secretion (LUAD: p = 0.0080; LUSC: p = 0.0080) and IL6-
JAK-STAT3 signalling (LUAD: p = 0.0072; LUSC: p = 0.0069)
(Fig. 5C–D).

DDX55-associated genes were found to be enriched in the pos-
itive regulation of a cluster of signalling pathways including mRNA
surveillance pathway (LUAD: p = 0.0011; LUSC: p = 0.0011), Ribo-
some biogenesis in eukaryotes (LUAD: p = 0.0011; LUSC:
p = 0.0012), mitotic DNA integrity checkpoint (LUAD: p = 0.0011;
LUSC: p = 0.0011) and MYC targets (LUAD: p = 0.0012; LUSC:
p = 0.0012). In contrast, DDX55-associated genes were enriched
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in the negative regulation of IL6-JAK-STAT3 signalling (LUAD:
p = 0.0097; LUSC: p = 0.0092) and protein secretion (LUAD:
p = 0.0102; LUSC: p = 0.0095) (Fig. 5E–F).

In both subtypes, DDX56-associated genes were found to be
enriched in the positive regulation of a cluster of signalling path-
ways including homologous recombination (LUAD: p = 0.0022;
LUSC: p = 0.0026), proteasome (LUAD: p = 0.00; LUSC: p = 0.00)
and MYC targets (LUAD: p = 0.00; LUSC: p = 0.00). In contrast,
DDX56-associated genes were enriched in the negative regulation
of nik/NFjb signalling (LUAD: p = 0.00; LUSC: p = 0.00), protein
secretion (LUAD: p = 0.00; LUSC: p = 0.00), TGF-b signalling (LUAD:
p = 0.00; LUSC: p = 0.00), IL6_JAK_STAT3 signalling (LUAD: p = 0.00;
LUSC: p = 0.00) and HEDGEHOG signalling (LUAD: p = 0.00; LUSC:
p = 0.00) (Fig. 5G–H).

We further performed multiple correlation analysis on the four
DDXs and 58 MYC target genes. As shown by the correlation heat



Fig. 3. Gene expression profiles of the DEAD/H box helicase genes at different types and TNM stages in LUSC. (A) Gene expression between tumour and normal tissues. (B)
Gene expression at different primary tumour (T) stages in the TNM system. (C) Gene expression at different regional lymph nodes (N) stages in the TNM system. (D) Gene
expression at different distant metastasis (M) stages in the TNM system. The p-values <0.05 were highlighted in bold.

Y. Cui, A. Hunt, Z. Li et al. Computational and Structural Biotechnology Journal 19 (2021) 261–278
map plots in Fig. 5I and J, both in LUAD and LUSC, DDX5 negatively
correlated with the majority of these gene targets. In contrast, the
other three DDXs correlated positively with the majority of the
MYC targets. This further confirmed the result of the GSEA. The
correlation coefficient and p-values of each MYC target pair are
provided in Supplement Table 2.

The pathway viewing analysis indicated that DDX5, DDX11 and
DDX55 played their roles in mediating RNA splicing and process
through regulating their associated genes in lung cancer (Fig. 6).
Interestingly, DDX56-associated genes participated in a role in reg-
ulating multiple steps of mitochondrial translation.
2.6. Differential miRNA profiles associated with the DDXs

We investigated the correlation of the four DDXs with the
miRNA expression by database integration. There were 466
266
samples filtered after the match of the gene expression database
and the miRNA expression database. By differential data analysis,
the miRNAs with significant alteration were identified (p < 0.05)
in response to the gene expression levels of the four individual
DDXs, respectively (i.e. high vs low). As shown in Fig. 7A, the
pooled heat map analysis of the lg2FC values of these miRNAs indi-
cated that DDX5 correlated with a distinctive miRNA profile com-
pared to DDX11, DDX55 and DDX56, despite the fact that each DDX
showed different miRNA signatures. The miRNAs which were sig-
nificantly associated with the four individual DDXs are shown in
Fig. 7B–E, respectively. The logical relationships of the distin-
guished miRNAs from different DDX groups are shown using a
Venn diagram (Fig. 7F). DDX5 only shared one miRNA with
DDX55 which was MIMAT0019839 (hsa-miR-4723-3p). However,
DDX5 correlated with MIMAT0019839 positively (lg2fc = 0.69,
p < 0.05) while the correlation of DDX55 with this miRNA was



Fig. 4. Correlation and expression analysis of the first twenty most significant DEAD/H box helicase genes. (A) LUAD. (B) LUSC. (C) Heatmap of the differential expression
of the first 20 most significant DDXs in both LUAD and LUSC types. (D) Radar chart showing the association of four DDX genes with TNM-stage parameters of the LUAD and
LUSC subtypes.
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negative (lg2fc = �0.85, p < 0.05). DDX5 did not share any differen-
tiated miRNAs with DDX11 and DDX56. MIMAT0030414 (hsa-miR-
4433b-3p) negatively correlated with both DDX11 (lg2fc = �0.84,
p < 0.05) and DDX56 (lg2fc = �1.17, p < 0.05). MIMAT0002837
(hsa-miR-519b-3p) correlated positively with both DDX55
(lg2fc = 1.68, p < 0.05) and DDX56 (lg2fc = 1.82.84, p < 0.05).
DDX11 and DDX55 shared seven differentiated miRNAs which
were MIMAT0019691 (hsa-miR-4634), MIMAT0019711 (hsa-miR-
267
4649-5p), MIMAT0018006 (hsa-miR-3622b-3p), MIMAT0027372
(hsa-miR-6735-3p), MIMAT0019707 (hsa-miR-4646-5p),
MIMAT0028126 (hsa-miR-7114-3p) and MIMAT0002867 (hsa-
miR-520h).

We further investigated the functional enrichment of these dif-
ferentiated miRNAs using the mirPATH in Diana Tools. As shown in
Fig. 7G, these miRNAs are involved in several cancer-cell related
signalling pathways including Wnt signalling (MIMAT0002867,



Fig. 5. GSEA of the four DDX candidates. Three significant functional annotations of each DDX were presented. (A) DDX5 in LUAD. (B) DDX5 in LUSC. (C) DDX11 in LUAD. (D)
DDX11 in LUSC. (E) DDX55 in LUAD. (F) DDX56 in LUSC. (G) DDX56 in LUAD. (H) DDX56 in LUSC. (I) Heatmap showing the correlation matrix of the MYC target genes and four
DDXs in LUAD. (J) Heatmap showing the correlation matrix of the MYC target genes and four DDXs in LUSC.
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Fig. 6. Functional pathway analysis of the differential genes of the four DDX candidates. (A) DDX5 in LUAD. (B) DDX11 in LUAD. (C) DDX55 in LUAD. (D) DDX56 in LUAD.
(E) Comparison of the gene function profiles associated with the four DDXs in both LUAD and LUSC types.
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Fig. 7. Analysis of miRNA profilings which are associated with the four DDX candidates in LUAD. (A) Heatmap of differential miRNAs between the expression levels of the
DDXs. (B) Significantly differentiated miRNAs (p < 0.05) between the expression level of DDX5. (C) Significantly differentiated miRNAs between the expression level of DDX11.
(D) Significantly differentiated miRNAs between the expression level of DDX55. (E) Significantly differentiated miRNAs between the expression level of DDX56. (F) Venn
diagram showing the logical relations of the four DDXs through their-associated miRNAs. (G) Function enrichment analysis of the miRNA targets.
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MIMAT0009838), focal adhesion (MIMAT0002867, MIMAT0009838),
cell cycle (MIMAT0002867, MIMAT0008006) and ubiquitin-
mediated proteolysis (MIMAT0002867, MIMAT0008006).

2.7. Mutation profiling associated with DDX

As dysregulated DDXs are implicated in the process of RNA
regulation and transcription in cancer, we investigated whether
DDX is associated with the mutation of cancer-related genes. As
shown in Fig. 8A and 8B, in lung cancer, there were three genes
with high frequencies of mutation, TP53, MUC16 and KRAS.
High expression of DDX5 is associated with a low level of
TP53 mutation, while high expression levels of DDX11, DDX55
and DDX56 are associated with high levels of TP53 mutation.
A similar pattern was also observed between the association
of MUC16 mutation with the expression levels of these four
DDX genes. For KRAS, its mutation frequency is associated neg-
atively with DDX56 expression, while it is associated positively
with DDX11, DDX55 and DDX56. Individually, DDX5 expression
also is associated negatively with the mutation frequency of
SMARCA4 (BRG1). DDX55 however is associated positively with
the mutation of SMARCA4, but associated negatively with the
mutation of EGFR.

2.8. Association of DDXs with immune filtration in lung cancer

To investigate whether the interaction of cancer cells with the
tumour-infiltrating immune cells may influence the production
of DDX molecules, we investigated the association of DDX expres-
sion levels with the filtrated immune cells in lung cancer tissues.
As shown in Fig. 8C, DDX5 expression positively correlated with
CD8 + T cells and B cells. In contrast, DDX11, DDX55 and DDX56
negatively correlated with infiltrated CD8 + T and B cells. The cor-
relations of DDX5 with macrophages and dendritic cells were mar-
ginal, while DDX11, DDX55 and DDX56 negatively correlated with
infiltrated macrophages and dendritic cells. Overall, this indicated
that the immune cell profiles associated with DDX5 were distinct
to those associated with DDX11, DDX55 and DDX56. The data of
partial correlation coefficient and p-value of the tumour-
infiltrating immune cells and DDXs are summarised in Supplement
Table 3.

2.9. Association of DNA methylation with DDX expression

We investigated the correlation of DDX gene expression with
DNA methylation by dataset combination. As shown in Fig. 8D,
the DNA methylation pattern associated with DDX11 was distinc-
tive from those associated with DDX5, DDX55 and DDX56. The top
50 DNA methylation sites associated with these four DDXs are
summarised in Supplement Table 4.

2.10. DDX expression in cancer cell lines

We investigated how these four DDX genes are differentially
expressed in the lung cancer cell lines compared to other cancer
cell lines. Despite the large variation of the pooled data, the expres-
sion levels of DDX5 were similar to the cell lines from other cancer
types, although one lung cancer cell line, SK-MES-1 showed high
expression (Fig. 9A). The expression levels of DDX11 and DDX55
were varied in lung cancer cell lines, although they are in the range
of other cancer cell lines (Fig. 9B and C). Interestingly the variation
of the DDX55 expression data is relatively narrow. The expression
levels of DDX56 were similar to the cell lines from other cancer
types, although SK-MES-1 showed high expression (Fig. 9D). We
further examined the expression patterns of the four DDX genes
only in lung cancer cell lines. The clustered analysis indicated that
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in the 71 lung cancer cell lines, the gene expression profile of DDX5
is distinguished from those of DDX11, DDX55 and DDX56 (Fig. 9E).
The databases of the gene repression of the four DDXs in pan-
cancer and lung cancer cell lines are provided in Supplement
Tables 5 and 6, respectively.
3. Discussion

In this study, we present a whole image of the prognosis com-
parison of all the DEAD/H box helicases, considering their possible
differences between LUAD and LUSC as well as all types in lung
cancer. The prognostic values of a biomolecule can be potentially
cancer-type dependent or sometimes the opposite, in different
(sub)types or even in different stages of one cancer [44,45]. There
are various mechanisms which could count for this discrepancy. A
protein biomarker may have varied spliced isoforms with diverse
functions, be localised to different cellular compartments (e.g.
nuclear/cytoplasm), be signalled in a complex to modulate differ-
ent downstream signalling pathways, may interact to a loss/gain
function (e.g. mutation) of its effector/partner in different sub-
types, be regulated/interacted by other cells in a different tumour
microenvironment, or mediates a substrate with multiple func-
tions (e.g. INOS) [46]. For example, in a breast cancer subtype with
wild-type p53, in response to DNA damage stress, DDX3 associates
with p53, leading to the accumulation of p53 in the nucleus, and
the activation of its downstream target p21 expression, to modu-
late DNA damage-induced apoptosis. However, in a cancer subtype
with non-functional or mutant p53, DDX3 otherwise inhibits the
cellular apoptosis process [25]. In non-small cell lung cancer, the
subtypes of LUAD and LUSC differ in their pathological types,
molecular features and treatment responses [47]. As a transcript
signature, one gene cluster (e.g. MUC5B, HABP2, MUC21, and
KCNK5) can be up-regulated in LUAD but down-regulated in LUSC
whilst another cluster (e.g. CSTA, P2RY1, and ANXA8) can be vice-
versa [48]. Further, some gene mutations have been particularly
linked with the prognostic outcomes of LUSC [49]. Therefore, to
identify biomarker candidates with prognostic significance, it is
vital to take into account the subtypes of cancer, in this case, LUAD
and LUSC in NSCLC.

Among the lead DDX candidates we identified by integrative
bioinformatic analysis, DDX5 is associated positively with progno-
sis in NSCLC. Lower expression of DDX5 genes predicted a worse
survival including OS, first progression (FP) and post-progression
survival (PPS). One previous study reported a significantly higher
DDX5 expression in tumour samples than in paired adjacent nor-
mal tissue, indicated by Western blots and immunohistochemistry
of limited samples and without follow-up information [50]. This
contrasted with the observations through our bioinformatic analy-
sis. Lung cancer is a heterogeneous disease in which differences
between and within the subtypes are driven by genetic and envi-
ronmental factors, therefore there can be a large amount of vari-
ability between patients [51,52]. Limited numbers of samples
involved in a study may not be robust enough to resist being
skewed by extreme data points, so the results could be vulnerable
to the introduction of bias [53]. In contrast, our use of large-scale
datasets such as TCGA and GEO allowed a substantial number of
normalised samples to be grouped for analysis; with more sam-
ples, the data should provide a more representative view of the
population which, in theory, would increase the reliability and rel-
evance of the data. Whilst it is still possible for the associations to
have occurred by chance, the large amount of data implemented
should decrease the probability of this event occurring. As a draw-
back, the inclusion of tumour and paired adjacent normal tissues
from each patient is not available with the Kaplan-Meier plotter
and the TCGA dataset. We instead ran a paired analysis using a



Fig. 8. The association of the DDX candidates with gene mutation, tumour-infiltrating immune cells and DNA methylation. (A) Mutation frequency of the top 20 genes
with the most frequent mutation. (B) Comparison of the absolute mutated number. (C) Tumour-infiltrating immune cell profile. (D) Heatmap of the top 50 most frequent DNA
methylation sites.
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GEO dataset, GSE18842, with 44 paired lung cancer tissue samples.
This analysis again indicated that there is lower DDX5 gene expres-
sion in tumour tissues than in paired adjacent normal tissue, which
272
supports our observations in this study using the TCGA dataset and
suggests this is unlikely to be biased by genetic or environmental
factors not related to cancer.



Fig. 9. Expression levels of the DDX genes in cancer cell lines. (A) Gene expression level of DDX5 in pan-cancer cell lines. (B) Gene expression level of DDX11 in pan-cancer
cell lines. (C) Gene expression level of DDX55 in pan-cancer cell lines. (D) Gene expression level of DDX56 in pan-cancer cell lines. (E) Heatmap of the gene expression levels of
the four DDXs in 71 lung cancer cell lines using the data from Expression Atlas.
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DDX5 dysregulation has been found in a range of cancers,
including hepatocellular carcinoma where low DDX5 expression
correlates with a worse prognosis [54]. As DDX5 plays an impor-
tant role in the initial stages of miRNA processing in the Drosha
273
complex, its downregulation may limit the ability of the cell to per-
form post-transcriptional inhibition resulting in the upregulation
of oncogenes [55]. It is important to note that, due to its ability
to perform a wide range of functions, the role of DDX5 is very
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dependent on the context in which it is found. Therefore, although
miRNA is involved in the mechanism by which DDX5 promotes
hepatocellular carcinoma, it is unclear as to whether this would
be the same in lung cancer. However, as this is the only other cur-
rent example of DDX5 downregulation, it may be appropriate to
determine whether similar associations exist in lung cancer. There
is already evidence for a negative association between Dicer,
another gene involved in miRNA synthesis downstream of DDX5,
expression and survival in lung cancer [56]. The previous study
on Dicer however did not show a correlation between Drosha
expression and survival, and did not measure the expression of
the proteins which complex with Drosha and are necessary for
its function, such as DDX5. The downregulation of DDX5 shown
in the bioinformatic data highlights the potential for a similar cor-
relation in lung cancer as in hepatocellular carcinoma. In breast
cancer, however, DDX5 is shown as an oncogenic coactivator of
transcription factor Fra-1 [57]. DDX5 regulates DNA replication
prior to proliferation and regulates miRNAs involved in mediating
cytoskeletal reorganization in breast cancer cells [58]. In prostate
cancer, DDX5 is overexpressed and considered as a transcriptional
coactivator of androgen receptor, probably through interactions
with b-Catenin and RNAP II [59]. Therefore, the expression of
DDX5 helicase is cancer dependent.

The other three DDX candidates (i.e. DDX11, DDX55 and
DDX56) are observed as unfavourable prognostic indicators which
are unlike DDX5. DDX11 has been reported to be negatively asso-
ciated with the survival of patients with lung cancer [60]. DDX11 is
also a survival indicator in other solid cancers such as melanomas
and is essential for melanoma metastasis, by participating in chro-
mosome segregation, telomere and cell apoptosis [61]. Function-
ally, the DDX11 helicase is involved in the regulation of the G2/
M transition and is required for sister chromatid cohesion. The
depletion of DDX11 results in centromeric loss and arm cohesion
defects, which is JunB dependent in ALK-positive anaplastic large
cell lymphoma [62]. DDX55 and DDX56 have not yet been linked
with lung cancer in the literature. However, DDX55 has been con-
sidered as one of the dysregulated genes to predict poor early
recurrence-free survival of hepatocellular carcinoma after a micro-
scopically margin-negative (R0) resection [63]. DDX56 is a nega-
tive prognostic factor in colorectal cancer and osteosarcoma
[64,65]. The expression of DDX56 is associated with lymphatic
invasion and distant metastasis. There is a report that DDX56
may play a role in ribosome assembly and maturation [66].

It is believed that miRNAs play a vital role in the initiation, pro-
gression and metastasis of cancer by translationally repressing or
silencing oncogenic or tumour-suppressing mRNA targets. The
biosynthesis of miRNAs contains multiple steps which include
the cleavage of pri-miRNAs to pre-miRNAs, the nucleic exit of
pre-miRNA, cleavage of pre-miRNA to miRNA/miRNA duplex and
the formation of mature miRNAs. DDX5 protein can bind directly
with the nuclear microprocessor complex Drosha/DGCR8 (Pasha)
to facilitate the processes of pri-miRNA cleavage [67,68]. DDX5
functions as a stress sensor to tune the cleavage activity of
Drosha/DGCR8 in pathological conditions such as cancer. Stress-
induced factors, including TP53 and TGFb, can trigger the media-
tion of DDX5 and lead to the production of particular clusters of
pre-miRNAs, respectively [69,70]. Among the eight DDX5-
correlated miRNAs, miR-124 suppresses tumorigenesis and
enhances radiation-induced apoptosis in lung cancer [71,72] while
miR-128 enhances mutant p53 gain of function and promotes
chemoresistance-associated metastasis in lung cancer [73,74].
hsa-miR-124-3p is predicted to target DDX5 mRNA at the 30 UTR
(position 1295-1301) as well. Among the DDX11-associated miR-
NAs, miR-675 appears to suppress NSCLC by targeting a pro-
carcinogenic putative cannabinoid receptor GPR55 [75] with hsa-
miR-4646-3p predicted to target the DDX11 30 UTR at position
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2906-2913. Among the miRNAs correlated with DDX55, there is
no evidence that any are implicated in lung cancer. Among the
miRNAs correlated with DDX56, has-miR-204 is positively associ-
ated with the survival of lung cancer including the LUAD and LUSC
subtypes. We have identified that the correlated miRNA profile of
DDX5 is distinctive from those which correlate with DDX11,
DDX55 and DDX56. However, how these differences happen
requires further investigation in the future.

It is known that tumour-infiltrating immune cells have a pro-
found impact on tumour progression and the efficacy of anti-
tumour therapies. Therefore, there have been various approaches
developed to track their dynamics [76]. By examining the associa-
tion of the DDXs with the infiltrated immune cells, we found that
DDX55 and DDX56 are quite similar, while DDX5 is different from
the other three. In particular, DDX5 positively correlates with B
cells and CD8 + T cells, unlike the others. It would be interesting
to ask these questions regarding the mechanism: Is it possible that
DDX5 produced by cancer cells attracts the infiltration of these
immune cells? Also, can different types of infiltrated immune cells
produce different levels of DDX5 and other DDXs in response to the
tumour microenvironment?

The combination of distinctive protein domains determines the
function of a protein. All four DDXs share one protein domain
called P-loop_NTPase. The P-loop_NTPase domain catalyses the
hydrolysis of both GTP and ATP. DDX5 has only one different
domain, RNA helicase p68 repeat (p68_rpt), compared with the
other three DDXs. This p68_rpt domain plays a role in the regula-
tion of the alternative splicing of pre-mRNA such as tau [77]. It is
difficult to understand how a difference of only one domain could
contribute to the distinctive association of DDX5 with prognosis,
gene mutation and tumour immune cell profiling. It might be that
there are other mechanisms underlining the DDX5 function which
have not yet been recognised. DDX55 and DDX56 share the same
pattern of seven protein domains. DDX11 shares only the common
P-loop_NTPase with others but has considerable extra domains,
which cannot be seen in DDX5, DDX55 and DDX56. The specific
domains of DDX11 such as CHL1-like DNA helicase and Rad3
may confer its important role in DNA repair in cancer [78].

There is a positive mutual correlation between DDX11, DDX55
and DDX56, implying that they may be co-expressed in lung can-
cer. The abundance of viral nucleic acid in lung cancer may shift
the expression levels of DDXs. There is evidence that some
DEAD/H box RNA helicases play a role as anti-pathogen immune
sensors. In response to certain pathogens, they can transport and
participate in the formation of a protein complex which interacts
with viral RNA/DNAs and facilitate their nuclear export [79,80]. A
previous study has suggested that most LUSC and LUAD contain
either retroviral or HPV DNA [81]. However, as there is no large-
scale gene expression dataset that contains the information of viral
infection of samples, this could not be investigated thoroughly.

By function enrichment analysis, we found that DDX5 is
involved in the negative regulation of MYC, while DDX11, DDX55
and DDX56 are all involved in the positive regulation of MYC.
One study demonstrated that DDX5 may unwind the G4 structure
of the MYC promoters which leads to the activation of MYC tran-
scription [82]. However, there is no significant correlation of the
gene expression of DDX5 and MYC in lung cancer. As a well-
characterised proto-oncogenic transcript factor, MYC can be dys-
regulated at transcriptional and post-transcriptional levels. MYC
transcription can be enhanced by growth factors or cytokines such
as NOTCH, WNT, IGF1, TGFa, EGF and IL-6. In another way, the
TGF-b and Type I interferon (IFN-alpha/-beta) signalling pathways
may play a suppressing role in MYC expression. DDX5 has been
reported as a negative regulator of the Wnt/b-catenin pathway in
cancer [83,84], which may partially explain the negative relation-
ship of DDX5 and MYC. There is no report on the relationship of



Y. Cui, A. Hunt, Z. Li et al. Computational and Structural Biotechnology Journal 19 (2021) 261–278
MYC and DDX11/DDX55/DDX56 genes. At the protein level, how-
ever, there is evidence that MYC protein can bind DDX11 directly,
or regulate the function of DDX11 by activating cohesion regulator
noncoding RNA (CONCR).

Our data indicate that DDX5 is negatively associated with the
mutation frequency of TP53 and MUC16. The gain-of-function
mutation of MUC16, frequently observed in lung cancer, confers
a protecting role in cancer epithelial cells from chemotherapeutic
drugs [85]. It has also been reported that MUC16 mutation may
enhance the infiltrated cytotoxic T cells in the tumour microenvi-
ronment [86]. The tumour-infiltrated cytotoxic T cells might con-
tribute to the alteration of DDX expression although further
investigation is needed. The loss-of-function mutation of p53
may be caused by exposure to carcinogenic substances or a genetic
defect. As a risk factor of cancer development, p53 mutants drive
cancer cells to proliferate and spread beyond control. As DDXs play
an essential role in RNA-associated genomic instability and DNA
repair [87], they may mediate the DNA mutation frequency as a
consequence of stress-induced DNA damage. Aberrant promoter
methylations of tumour suppressor genes have been frequently
observed in lung cancer. There is evidence that miRNA clusters
can control the DNA methylation dynamics [88–90]. We hypothe-
sise that DDXs may alter the DNA methylation patterns by partic-
ipating in miRNA processing, which would be interesting to
investigate.
4. Conclusion

To date, there is no integrated bioinformatic analysis of large-
scale datasets available to investigate whether DEAD/H box heli-
cases can be identified as biomarkers, to predict the prognosis of
lung cancer. In this study, we conducted and identified four DDX
box helicases (namely, DDX5, DDX11, DDX55 and DDX56) with
the most clinical significance by carrying out an integral bioinfor-
matic analysis of multivariate lung cancer databases. We demon-
strated that these four DDX biomarkers have diverse functional
links with the MYC-signalling pathway and are implicated in the
mutation levels of p53 and MUC16, the top two most frequently
mutated genes in lung cancer. We also elucidated the distinctive
association of these four biomarkers with tumour-infiltrated
immune cells, miRNA expression patterns and DNA methylation
profile.

We propose a new avenue, following the identification of four
DDX biomarker candidates, in which our understanding remains
limited. It would be worthy to further pinpoint the cellular and
molecular functional roles of these DDX candidates in lung cancer,
in order to enhance our understanding of their prognostic and
therapeutic potential. Furthermore, given the size of the gene fam-
ily and the seemingly diverse roles in different cancer types, it
would be necessary to explore the wider context of the connection
both with other family members and in other tumour types.
5. Methods

5.1. Survival analysis

The analysis of the survival was performed using the datasets
(Version on 25 May 2020) from the Kaplan Meier plotter (https://
kmplot.com) [91]. The pooled database repository (n = 1925) con-
tained the data from Gene Expression Omnibus (GEO) (n = 1288),
caArray (n = 504) and the Cancer Genome Atlas (TCGA) (n = 133).
The summary of data sources is provided in Supplement Table 7.
Patients were stratified using the option of Auto select best cut
off for KM plotting.
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5.2. Correlation of the DEAD/H box helicase genes

The RNASeq datasets, including TCGA normal and tumour data-
sets of lung cancer and GTEX dataset of the normal lung, were
obtained from Github (http://github.com/mskcc/RNAseqDB). The
datasets were values of FPKM (fragments per kilobase of exon
model per million reads mapped) with quantile normalisation
and correction for batch effects [92]. The clinical data of the TCGA
samples were obtained from UCSC Xena (https://tcga.xenahubs.
net) using the UCSCXenaTools [93]. They were then merged
according to sample names and sample types. The correlation of
the DEAD/H box helicase genes was performed using the ‘‘ggcor-
rplot” package in R [94].
5.3. Associations with clinicopathological parameters

These clinical-related associations were evaluated using those
DEAD/H box helicase genes with huge significance in survival anal-
ysis. We investigated the clinical features including type, TNM
stage, grade, pathological stage, age, gender and smoking intensity.
5.4. Gene set enrichment analysis (GSEA)

To prepare the data set for a GSEA analysis, the TCGA RNASeq
expression data were first divided into two levels (high & low)
by the median expression values of a DEAD box helicase (DDX)
gene. The log2 of the fold change (log2fc) of each gene in the RNA-
Seq database was then calculated with this equation: log2fc = log2
(high)-log2(low). The p-value and adjusted p-value (padj) of each
gene were calculated using the ‘‘limma” package in R [95]. The rank
of each gene was calculated using this equation: rank = �log10
(padj)/log2fc. The gene expression profiles associated with each
DDX are provided in Supplement Table 8. The annotated gene sets
for GSEA analysis were obtained from the Molecular Signatures
Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp). We then conducted the GSEA analysis using a ‘‘fgsea”
package [96]. The gene set collections which we applied were
obtained from Kyoto Encyclopedia of Genes and Genomes (KEGG),
Gene Ontology (GO) and Hallmark. We then sought to highlight the
top 10 signalling pathways from each gene set, according to their
normalised enrichment scores (NES), if there was significance
(p < 0.05). Maximally, five signalling pathways were enriched from
NES > 0 while another five were from NES < 0, depending on the
ascending order of their p-values. The gene function profiles asso-
ciated with each DDX were also compared using a ‘‘clusterProfiler”
package in R and the Reactome pathway database [97,98].
5.5. miRNA profiling

The dataset of miRNAs was obtained from UCSC Xena which
included 495 samples and 2228 miRNA targets. This dataset was
then merged with a sub-dataset from TCGA RNAseq which con-
tained the expression levels of the DDX genes. The log2fc values
of miRNAs were then calculated according to the expression levels
of a DDX gene. The miRNAs with the top 20 and bottom 20 of the
log2fc values associated with each DDX were selected for the cal-
culation of the p-values. The data of differential miRNAs for all
DDXs were then pooled for the heatmap plotting analysis (Supple-
ment Table 9). The miRNAs with significance (p < 0.05) for each
DDX were plotted with a bidirectional bar chart. A Venn diagram
was used to evaluate the logical relations of the DDXs through
their-associated miRNAs. The predicted miRNA targets and their
functional analysis was performed using DIANA-miRPath (v3.0)
(http://diana.imis.athena-innovation.gr/DianaTools) [99].

https://kmplot.com
https://kmplot.com
http://github.com/mskcc/RNAseqDB
https://tcga.xenahubs.net
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5.6. Mutation

The dataset of mutation was obtained from UCSC Xena which
included 514 samples and 40,543 gene targets. This dataset was
then merged with the expression levels of the DDX genes. The
top 20 genes with the most frequent mutation were compared
for their difference between the levels of individual DDX genes
(Supplement Table 10).
5.7. Methylation

The dataset of DNA methylation was obtained from UCSC Xena
which included 493 samples and 485,577 methylation sites. This
dataset was then merged with the expression levels of the DDX
genes according to the matched sample names (n = 477). The dif-
ference of the DDX methylation frequencies associated with each
DDX gene was analysed using the limma Bioconductor package.
5.8. Tumour filtrating immune cell profiling

The correlation of tumour-infiltrating immune cell profile and
gene correlation was obtained from TIMER (https://cistrome.shi-
nyapps.io/timer) [100].
5.9. Gene expression of lung cancer cell lines

The data of DDX gene expression in pan-cancer cell lines were
obtained from CellExpress (http://cellexpress.cgm.ntu.edu.tw).
The obtained database was originally from three datasets including
CCLE (GSE36133) [101], NCI-60 (GSE32474) [102] and Sanger Cell
Line Project (GSE68950) [103]. There were 60 cell lines from 9 pri-
mary cancer sites. The boxplots were made using the ‘‘ggpubr”
package in R. For an extended investigation of lung cancer cell
lines, the gene expression data including 71 lung cancer cell lines
were obtained from Expression Atlas (https://www.ebi.ac.uk/gxa).
5.10. Correlation of DDX genes with the MYC target genes

The list of MYC target genes was obtained from GSEA (https://
www.gsea-msigdb.org/gsea). The correlation of these with DDX
genes was conducted using the ‘‘ggcorrplot” package in R.
5.11. Domain predication

The domains of the DEAD/H box helicase proteins were pre-
dicted using InterPro (https://www.ebi.ac.uk/interpro).
5.12. Data analysis

The data were processed and analysed on the platform of Rstu-
dio (Version 1.3.959) [104] equipped with R (Version 3.6.3) [105].
The R scripts and package version information are provided in Sup-
plement Table 11.
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