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Osteosarcoma (OS) is a malignant disease that develops rapidly and is associated

with poor prognosis. Immunotherapy may provide new insights into clinical treatment

strategies for OS. The purpose of this study was to identify immune-related genes

that could predict OS prognosis. The gene expression profiles and clinical data of 84

OS patients were obtained from the Therapeutically Applicable Research to Generate

Effective Treatments (TARGET) database. According to non-negative matrix factorization,

two molecular subtypes of immune-related genes, C1 and C2, were acquired, and

597 differentially expressed genes between C1 and C2 were identified. Univariate Cox

analysis was performed to get 14 genes associated with survival, and 4 genes (GJA5,

APBB1IP, NPC2, and FKBP11) obtained through least absolute shrinkage and selection

operator (LASSO)-Cox regression were used to construct a 4-gene signature as a

prognostic risk model. The results showed that high FKBP11 expression was correlated

with high risk (a risk factor), and that high GJA5, APBB1IP, or NPC2 expression was

associated with low risk (protective factors). The testing cohort and entire TARGET cohort

were used for internal verification, and the independent GSE21257 cohort was used for

external validation. The study suggested that the model we constructed was reliable

and performed well in predicting OS risk. The functional enrichment of the signature was

studied through gene set enrichment analysis, and it was found that the risk score was

related to the immune pathway. In summary, our comprehensive study found that the

4-gene signature could be used to predict OS prognosis, and new biomarkers of great

significance for understanding the therapeutic targets of OS were identified.

Keywords: gene signature, prognosis, osteosarcoma, immunotherapy, bioinformatics analysis

INTRODUCTION

Osteosarcoma (OS) is the prevailing primary malignant tumor of the bone, and it is most likely
to occur in children and adolescents, with 80–90% of OS tumors occurring in the metaphysis
of the long tubular bones, distal femur, proximal tibia, and proximal humerus (Jackson et al.,
2016). OS is highly malignant and develops rapidly, and it is likely to metastasize to the lung
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in the early stage (Pan et al., 2019). The average 5-year survival
rate of those with local OS is about 80%, but the outcome for
those with metastatic disease is much worse (Mirabello et al.,
2009). Surgery, chemotherapy, and radiotherapy developments
play an extremely important role in reducing the rate of
lung metastasis and improving the long-term survival rate of
patients with OS, making the 5-year survival rate reach 60–80%
(Jawad et al., 2011). Targeted therapy and immunotherapy may
provide new opportunities for comprehensive OS treatment. In
recent years, the discovery of immune checkpoints has pushed
cancer immunotherapy to a new level, with specific blocking of
immunosuppression effects and enhanced anti-tumor immune
responses. As an emerging treatment, immunotherapy has shown
promising results for OS (Miwa et al., 2019). However, there
are still many problems to be solved in immunotherapy for OS,
especially in terms of predicting immunotherapy biomarkers and
identifying new effective therapeutic targets.

Immunotherapies, particularly those based on immune
checkpoint inhibitors, have shown promising activity in a variety
of tumors, with clinically significant improvements in response
rates, progression-free survival, and overall survival in lung
cancer, head and neck cancer, and bladder cancer (Chen et al.,
2017). In many malignancies, innate and adaptive immune cells
play a role in the tumor microenvironment, communicating with
antigen-presenting cells, such as natural killer cells, macrophages,
and dendritic cells, as well as lymphocytes, thereby allowing
for effective tumor control (Gajewski et al., 2013). Recently,
immunotherapy has shown promise in a variety of cancers, but
its application in OS remains unexplored. It has been suggested
that OS may be sensitive to immunotherapies. The percentage
of CD8+ infiltrating lymphocytes in OS is higher than in
other sarcoma subtypes (van Erp et al., 2017), and the degree
of infiltration is positively correlated with survival (Gomez-
Brouchet et al., 2017). Some studies have shown that the use
of immune checkpoints can be a promising treatment for OS.
High PD-L1 levels have been observed in patients with OS,
and PD-L1 levels have been associated with tumor-infiltrating
lymphocyte levels (Shen et al., 2014). In addition, the median
overall survival of patients with low PD-L1 levels was shown to
be longer than that of patients with high PD-L1 levels. A recent
study reported that PD-1 levels in peripheral blood CD4+ and
CD8+ T cells in patients with OS were high and that PD-1 levels
in CD4+ T cells in patients with metastasis were significantly
higher than in patients without metastasis, and PD-1 and PD-
L1 levels were found to be negatively correlated with prognosis
(Zheng et al., 2015). OS has high levels of genomic instability,
and some tumors express PD-L1, suggesting their potential
sensitivity to inhibitors of the PD-1/PD-L1 axis (Hacohen et al.,
2013; Kansara et al., 2014; Mouw et al., 2017). This all suggests
that PD-1 is involved in the pathogenesis and progression of
OS. Further, a prospective, randomized phase III trial showed
that muramyl tripeptide phosphatidyl-ethanolamine, which is an
investigational agent only available in clinical trials, could activate
monocytes, and macrophages to improve tumor control. The
addition of muramyl tripeptide to chemotherapy was shown to
increase the 6-year overall survival rate of patients with OS from
70 to 78%, and EFS tended to improve (Meyers et al., 2008).

In summary, several biological characteristics of OS suggest that
regulation of the immune response may bring benefits, and
a better understanding of OS may provide new insights for
immunotherapy in terms of antibody targeting of cell surface
proteins, tumor vaccines using dendritic cells, oncolytic viruses,
adoptive cell therapy, and checkpoint inhibitors (Wedekind
et al., 2018). It is hoped that immunotherapy will lead to a
breakthrough in OS therapy.

To increase immunotherapy efficacy, it is especially pivotal
to determine immune-associated prognostic biomarkers. OS is
characterized by high heterogeneity of somatic copy number
changes and structural rearrangement, suggesting that genes
included in somatic copy number changes are the key drivers of
cancer (Sayles et al., 2019). By focusing on genes that have an
underlying role, we were able to reduce the complexity of the
OS genomic pattern to identify the changes most likely to be
relevant to clinical practice. This suggested the need for genomic
information to perform targeted therapy. Here, we combined
the expression data derived from multiple OS genes from
the Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) and Gene Expression Omnibus (GEO)
databases, and we used the non-negative matrix factorization
(NMF) method to perform molecular subtyping based on
immune-related genes. Further, we used a robust likelihood-
based survival model to develop a 4-gene signature to predict
OS prognosis. A prognostic risk score model was established,
and internal and external verifications were performed. Our
study may provide new biomarkers for predicting the therapeutic
efficacy of immunotherapy and OS prognosis.

MATERIALS AND METHODS

Data Sources and Preprocessing
A total of 84 OS samples with RNA sequencing (RNA-Seq)
data and corresponding clinical follow-up information were
downloaded from the TARGET database (https://ocg.cancer.gov/
programs/target), and the GSE21257 cohort containing 53 OS
samples with prognostic information was downloaded from the
GEO database (www.ncbi.nlm.nih.gov/geo).

The patients collected from the TARGET database were used
for the expression profiles sequenced by RNA-Seq, while the
GSE21257 cohort was used for chip data (the platform was the
Illumina Human-6 v2.0 Expression BeadChip). In the probe
design process, some genes were not designed to be detected as
probes. For the RNA-Seq data, different genomic backgrounds
could be different, so the genes detected by the different data
platforms could also be somewhat different.

In addition, 864 genes were collected from the immune-
related literature (Nirmal et al., 2018). We preprocessed the
TARGET dataset to filter for immune-related genes with low
expression. The filter criterion was to remove genes with
expression <1, which accounted for more than 50% of all
samples. A total of 60 genes were removed from the TARGET
data due to low expression. The details of those genes are given
in Supplementary Table 1. The clinical features of the samples
are provided in Table 1.

Frontiers in Molecular Biosciences | www.frontiersin.org 2 December 2020 | Volume 7 | Article 608368

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
http://www.ncbi.nlm.nih.gov/geo
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Cao et al. 4-Gene Immune-Related Signature for Osteosarcoma

TABLE 1 | Sample clinical features.

Clinical features TARGET-OS GSE21257

Status

Censored 55 30

Dead 29 23

Gender

Male 47 34

Female 37 19

Metastatic

Yes 21 34

No 63 19

Age

≤15 46 21

>15 38 32

Identification of Molecular Subtypes Based
on Immune-Related Genes
We extracted the expression profiles of 804 immune-related
genes from the TARGET database, then univariate Cox
analysis was performed using the coxph function to acquire
prognosis-related genes. NMF was applied to cluster the
OS samples, with the standard “brunet” and 50 iterations.
We set the number of clusters, k, from 2 to 10, and
we determined the average silhouette width of the co-
membership matrix by using the NMF package in R, with
the minimum member of each subclass set to 10. Kaplan–
Meier (KM) survival curves were drawn to compare prognoses
between the molecular subtypes. The limma package in
R was used to identify the differentially expressed genes
(DEGs) between the different molecular subtypes, and the
ClusterProfiler package was used to perform Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis of
the DEGs.

Construction of the Prognostic Risk Model
Random Grouping of Samples
The expression profiles of 597 DEGs between the molecular
subtypes were retained. A total of 84 OS samples from the
TARGET database were divided into a training cohort and a
testing cohort. To avoid random allocation bias from affecting
the stability of subsequent modeling, all samples were randomly
grouped with replacement 100 times in advance. Group sampling
was based on a training cohort-to-verification cohort ratio
of 0.5:0.5.

Univariate Cox Analysis of the Training Cohort
Univariate Cox proportional hazards regression was performed
for each immune-related gene in the training cohort, and the
coxph function of the survival package in R was performed with
P < 0.01 as the threshold for filtering.

LASSO-Cox Analysis
To reduce the number of genes in the risk model, we
performed least absolute shrinkage and selection operator

(LASSO) regression. LASSO is a penalized regression method
that reduces overfitting by performing shrinkage and model
selection simultaneously. A more refined model is obtained
by constructing a penalty function, which can compress
some coefficients and set others equal to 0. Therefore, it
retains the advantage of subset contraction. Further, it is
a biased estimate for processing data with multicollinearity,
which can realize the selection of variables while estimating
parameters and better solve the multicollinearity problem in
regression analysis.

Relationships Between Risk Scores and
Pathways
To observe the relationships between the risk scores of the
different samples and biological functions, we selected the gene
expression profiles corresponding to these samples. The GSVA
package in R was applied for single-sample gene set enrichment
analysis (ssGSEA). We calculated the score of each sample for
different functions, thus obtaining the ssGSEA score of each
sample corresponding to each function. Further, we observed the
correlations between these functions and risk scores.

RESULTS

Flow Chart of Analysis
We designed a protocol for the analysis of OS subtypes and
construction of the prognostic model. The analysis process was
carried out in strict accordance with the protocol (Figure 1).

Identification of Molecular Subtypes Based
on Immune-Related Genes
Univariate Cox analysis was used to obtain 142 genes related
to prognosis (P < 0.05; Supplementary Table 2). According
to indicators such as cophenetic, dispersion, and silhouette
in the NMF method, k=2 was chosen as the optimal
number of clusters (Figures 2A,B). At the same time, cluster
analysis was conducted on the expression profiles of these
142 genes (Figure 2C). Compared with the Cluster 2 (C2)
subtype, most genes were highly expressed in the Cluster 1
(C1) subtype.

Prognosis, Immune Score, and Biological
Functional Analysis Between Subtypes
KM survival curves were drawn to compare the survival of the
two molecular subtypes. The results showed that C2 had worse
prognosis than C1, for both overall survival and progression-free
survival (P < 0.05; Figures 3A,B).

To determine the relationships of the immune and stromal
scores between the two molecular subtypes, we estimated the
immune and stromal scores of each sample by using the R
software package and then made comparisons. The results
showed that there were significant differences in stromal scores,
immune scores, and ESTIMATE scores between C1 and C2, and
the immune score of C1 was significantly higher than that of C2
(P < 1e-5; Figures 3C–E).
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FIGURE 1 | Osteosarcoma research protocol.

GSEA was performed to analyze the significantly
enriched pathways in C1 and C2. More immune-
related pathways were enriched in C1, including
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY,
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY,
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY,
and KEGG_NATURAL_KILLER_CELL_MEDIATED_
CYTOTOXICITY, suggesting that C1 had a close relationship
with immunity (Supplementary Figure 1).

Compared with C2, there were 597 DEGs, including
552 upregulated genes and 45 downregulated genes,
in C1. The results suggested that the C1 and C2

subtypes were dominated by upregulated DEGs
(Supplementary Table 3).

Further, KEGG pathway analysis of the DEGs between
the subtypes of the TARGET data was performed by using
ClusterProfiler (v3.14.0) in R. For the upregulated DEGs, a
total of 62 pathways were annotated, among which 46 had
a significant difference (false discovery rate <0.05). The top
10 results are shown in Figure 3F. Natural killer cell-mediated
cytotoxicity, the toll-like receptor signaling pathway, the T cell
receptor signaling pathway, the B cell receptor signaling pathway,
and other immune-related pathways were significantly enriched
(Supplementary Table 4).
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FIGURE 2 | (A): Consensus map of NMF clustering. (B) Cophenetic, rss, and dispersion distributions with ranks from 2 to 10. Cophenetic correlation is obtained

based on the concordance matrix proposed by Brunet et al. and it is used to reflect the stability of the clusters obtained from NMF. The value of cophenetic correlation

is between 0 and 1, and the larger the value, the more stable the clusters. The rss refers to the residual sum of squares, which is used to reflect the clustering

performance of the model. The smaller the value, the better the clustering performance of the model. Theoretically, this value is the smallest when each sample is

clustered into 1 class, but such results are not available in practice, so it needs to be used in combination with other indicators. (C) Heat map of the expression of the

prognosis-related genes in the different subtypes.

Similarly, seven pathways were annotated among the
downregulated DEGs shown in Figure 3G. The HIF-1 signaling
pathway, pathways in cancer, and central carbon metabolism in
cancer were enriched (Supplementary Table 5).

Construction of The Prognostic Risk Model
Based on Immune-Related Genes
Random Grouping of Samples and Univariate Cox

Analysis
Group sampling was based on a training cohort-to-verification
cohort ratio of 0.5:0.5. There were 42 training cohort samples

and 42 testing cohort samples (Supplementary Table 6).
Univariate Cox proportional hazards regression was performed
for each immune-related gene. The results showed that
there were 14 prognostic genes in the training cohort
(Supplementary Table 7).

Construction of the Gene Signature by LASSO-Cox

Analysis
Fourteen was considered a large number of prognostic genes and
inappropriate for the clinical context, so LASSO-Cox regression
analysis was performed to further narrow the range of immune-
related genes while maintaining a high accuracy rate. First, the
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FIGURE 3 | (A) KM curve of the overall survival of the subtypes of the TARGET tumor samples. (B) KM curve of the progression-free survival of the subtypes of the

TARGET tumor samples. (C) Comparison of stromal scores between C1 and C2. (D) Comparison of immune scores between C1 and C2. (E) Comparison of

ESTIMATE scores between C1 and C2. (F) KEGG pathway analysis of the upregulated DEGs between the molecular subtypes. (G) KEGG pathway analysis of the

downregulated DEGs between the molecular subtypes.
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change trajectory of each independent variable was analyzed
(Figure 4A). The results showed that the number of independent
variable coefficients approaching 0 increased with the gradual
increase of lambda. A 10-fold cross-validation was used to
construct the model. The confidence interval of each lambda
is shown in Figure 4B. A total of 8 genes were selected as the
target genes for subsequent analysis when the model reached the
optimal value, with lambda equal to 0.1030521.

To further reduce the number of genes, the Akaike
information criterion (AIC) was used for stepwise regression.
AIC takes into account a model’s goodness of fit and its simplicity
in terms of the number of parameters needed to achieve this fit.
The stepAIC function of the MASS package in R started with the
most complex model and successively deleted variables in turn
to reduce the AIC. The smaller the value, the better the model. It
gave the model sufficient fit with fewer parameters. Finally, a total
of 4 genes, GJA5, APBB1IP, NPC2, and FKBP11, was obtained.

The prognostic KM curves of the 4 genes are shown in
Figures 5A–D. APBB1IP and NPC2 could divide the TARGET
training cohort samples into high- and low-risk groups with
prognostic significance (P < 0.05). FKBP11 had marginal
prognostic significance (P = 0.05152), and GJA5 had no
prognostic significance (P > 0.05).

Evaluation of the Risk Model
The 4 genes were used to construct the risk model,
as follows: RiskScore=-0.873∗GJA5-1.016∗APBB1IP-
1.192∗NPC2+0.915∗FKBP11. The risk score of each sample
according to expression was calculated and shown as the risk
score distribution (Figure 6A). The overall survival of the
samples with high risk scores was significantly lower than that
of the samples with low risk scores, suggesting that samples with
high risk scores had worse prognoses. It was determined that the
high expression of FKBP11 was correlated with high risk (a risk
factor), while the high expression of GJA5, APBB1IP, or NPC2
was associated with low risk (protective factors). Further, receiver
operating characteristic (ROC) analysis was conducted by using
the timeROC package in R for the prognostic classification of
risk scores. We analyzed the classification efficiency of prognosis
prediction at 2, 3, and 5 years. The average area under the curve
(AUC) reached 0.93 (Figure 6B). Finally, the Z-score method
was applied to the preprocessing of risk scores. Samples with
a risk score >0 were put into the high-risk group, while those
with a risk score <0 were put into the low-risk group. A KM
curve between the 2 risk groups was plotted (Figure 6C). There
was a very significant difference (P < 0.0001), with 18 samples
classified as high risk and 24 as low risk.

Robustness Verification of The Risk Model
Risk Model Validation in the Testing Cohort and

Entire TARGET Cohort
To determine the robustness of the model, we used the same
model and the same coefficient in the training cohort for the
testing cohort and entire TARGET cohort. We calculated the risk
score of each sample according to expression and then plotted the
risk score distribution.

The risk score distribution of the testing cohort is shown in
Figure 7A. The overall survival of the samples with high risk
scores was significantly lower than that of the samples with low
risk scores, suggesting that the samples with high risk scores had
worse prognoses. Regarding changes in the expression of the 4
signature genes with increased risk scores, it was determined that
the high expression of FKBP11 was correlated with high risk (a
risk factor). The high expression ofGJA5, APBB1IP, orNPC2was
associated with low risk (protective factors). This was consistent
with the TARGET training cohort. The average AUC reached 0.78
(Figure 7B). The KM curve showed a very significant difference
(P = 0.019), with 24 samples classified as high risk and 18 as low
risk (Figure 7C).

Th risk score distribution of the entire TARGET cohort is
shown in Figure 8A. It was consistent with the performance of
the TARGET training cohort. The average AUC reached 0.88.
Prognoses in the high-risk group were significantly worse than
those in the low-risk group (P < 0.001; Figure 8B). The KM
curve showed a very significant difference (P < 0.0001), with 43
samples classified as high risk and 41 as low risk (Figure 8C).

Risk Model Validation in the External Cohort
To determine the robustness of the model, we used the same
model and the same coefficient in the training cohort for
the external testing cohort. The risk score distribution of the
GSE21257 testing cohort is shown in Figure 9A. The results
were consistent with those of the TARGET training cohort. The
average AUC reached 0.7 (Figure 9B). Prognoses in the high-
risk group were worse than those in the low-risk group. The KM
curve showed a very significant difference (P = 0.026), with 27
samples classified as high risk and 24 as low risk (Figure 9C).

Prognostic Analysis of the Risk Score
Model and Clinical Features
We performed subgroup survival analysis of the clinical variables
based on risk scores and found that the 4-gene signature divided
the samples into the high- and low-risk groups appropriately
in terms of age, sex, and metastasis (P < 0.01; Figure 10). The
results suggested that the risk score model had good predictive
ability in terms of different clinical features.

Relationships Between Risk Scores and
Pathways
To observe the relationships between the risk scores
of the different samples and biological functions,
ssGSEA was performed by using the GSVA package
in R. The functions with correlation coefficients >0.35
were selected (Figure 11A). A total of 26 pathways
were negatively correlated with risk score. The KEGG
pathways used for cluster analysis based on enrichment
scores are shown in Figure 11B. Some of the 26
pathways negatively correlated with increased risk score,
including KEGG_JAK_STAT_SIGNALING_PATHWAY,
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOX
ICITY, KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_
PATHWAY, and KEGG_B_CELL_RECEPTOR_
SIGNALING_PATHWAY.
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FIGURE 4 | (A) Change trajectory of each independent variable. The horizontal axis represents the log value of the independent variable lambda, and the vertical axis

represents the coefficient of the independent variable. (B) Confidence intervals under each lambda.

Univariate and Multivariate Cox Analyses
of the 4-Gene Signature
Univariate and multivariate Cox regression analyses were used
to determine the independence of the 4-gene signature model
in clinical applications (Table 2). Univariate Cox regression
analysis results showed that risk score was significantly correlated
with prognosis; at the same time, multivariate Cox analysis
results showed that it was an independent prognostic risk
factor (hazard ratio = 2.9103, 95% confidence interval =

1.8364–4.6120, P = 5.4e-06). Forest maps can simply and
intuitively display the statistical summary results of different
factors. The multivariate Cox results in a forest diagram are
shown in Supplementary Figure 2. The results suggested that
the 4-gene signature model had good predictive performance in
clinical applications.

Comparison of the Risk Score Model With
Other Models
Three OS prognosis-related risk models were identified by
reviewing the literature, including a 19-gene signature (Goh et al.,
2019), an 8-gene signature (Zhang et al., 2019), and a 3-gene
signature (Shi et al., 2020). To make the models comparable, the
same method was conducted to calculate the risk score of each
OS sample in the TARGET cohort based on the corresponding
genes in the 4 models. The Z-score method was applied to the
preprocessing of risk scores, and samples with a risk score >0
were put into the high-risk group, while those with a risk score
<0 were put into the low-risk group. The ROC and KM curves
of the 3 comparison models are shown in Figure 12. The AUCs
of these 3 models were lower than that of our 4-gene risk score
model at 2, 3, and 5 years. Our 4-gene risk score model included
a reasonable number of genes and had better performance. In

addition, the 3 comparison models could significantly divide
samples into high- and low-risk groups (P < 0.05).

Epigenetic Modification of the 4 Genes
We analyzed the methylation of the 4 genes in the high- and low-
risk groups, and the results showed that the level of methylation
ofAPBB1IP in the high-risk groupwas higher than in the low-risk
group, and the risk score heat map showed that in the high-risk
group, APBB1IP was lowly expressed. The level of methylation
of FKBP11 in the low-risk group was higher than in the high-
risk group, and the risk score heat map showed that FKBP11 was
lowly expressed in the low-risk group (Supplementary Figure 3).

Thus, the degree of methylation had a negative correlation
with gene expression. The expression of APBB1IP and FKBP11
was found to be regulated by methylation to a certain extent.
There was no significant relationship between the expression of
GJA5 or NPC2 and the level of methylation.

DISCUSSION

The treatment and prognosis of OS have not changedmuch in the
past 30 years. Due to the poor prognosis of OS, it is necessary to
determine prognostic biomarkers for OS patients in order to then
use appropriate treatment strategies, including immunotherapy.
We conducted a comprehensive study to establish a 4-gene
signature, which was verified through internal and external
testing cohorts. An immune-related risk model was established
to explore the potential association between OS risk score and
survival and to provide new biomarkers for OS prognosis.

In our study, the gene expression profiles and clinical data of
84 OS samples were obtained from the TARGET database, and
42 samples were randomly selected as the training cohort. Using
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FIGURE 5 | KM curve of the 4 genes (in the TARGET training cohort). (A) The survival curve of GJA5 gene. (B) The survival curve of APBB1IP gene. (C) The survival

curve of NPC2 gene. (D) The survival curve of FKBP11 gene. The abscissa represents survival time, and the ordinate represents survival probability.

the NMF algorithm to cluster molecular subtypes, two molecular
subtypes (C1 and C2) were obtained, and 597 DEGs between C1
and C2 (including 552 upregulated genes and 45 downregulated
genes) were identified. Functional and pathway enrichment
analysis results showed that immune-related pathways, such as
natural killer cell-mediated cytotoxicity, the toll-like receptor
signaling pathway, the T cell receptor signaling pathway,
the B cell receptor signaling pathway, and other immune-
related pathways, were significantly enriched in the C1 subtype,
suggesting that C1 was closely related to immunity. Moreover,
the immune score of C1 was significantly higher than that of
C2, and the prognosis of C1 was better than that of C2. Further,

the results of the KEGG pathway analysis of the DEGs between
the subtypes of the TARGET cohort showed that some immune-
related pathways had a significant difference. Specifically, the
HIF-1 signaling pathway was enriched. HIF-1α promotes tumor
cell growth, migration, and invasion in OS through activation
of the AKT/cyclin D1 signal cascade (Zhang et al., 2018). In
recent years, immunotherapy has become a novel and effective
treatment method, and it has been used in the treatment of
various tumors, including OS (Lettieri et al., 2016; Wang et al.,
2016; Thanindratarn et al., 2019). However, only a few patients
receiving immunotherapy have responded to this treatment due
to the immunosuppressive microenvironment (de Visser et al.,
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FIGURE 6 | (A) Risk score, survival time, survival status, and 4-gene expression in the TARGET training cohort. (B) ROC curve and AUC of the 4-gene signature.

(C) KM survival curve distribution of the 4-gene signature in the TARGET training cohort.

2006). Therefore, it is necessary to study the biomarkers that
enable the prediction of the benefits of immunotherapy, which
could aid clinical decision-making for individualized treatment.

A total of 14 genes associated with survival were obtained
through univariate Cox analysis, and 8 genes were selected as
target genes by LASSO regression. Further, the AIC was used
to obtain 4 genes (GJA5, APBB1IP, NPC2, and FKBP11) to
include in a 4-gene signature as a prognostic risk model. The
results showed that high FKBP11 expression was correlated with

high risk (a risk factor), while high GJA5, APBB1IP, or NPC2
expression was associated with low risk (protective factors).

FK506 binding protein 11 (FKBP11) belongs to the FK506
binding protein family (Rulten et al., 2006), and FKBP11 mRNA
is present at high levels in many secreting tissues, including
pancreas, stomach, and salivary gland tissues (Bonner and
Boulianne, 2017). FKBP11 is involved in the regulation of mTOR
(Hausch et al., 2013; Wang et al., 2019) and the pathogenesis of
stress-related inflammatory diseases, including type 2 diabetes
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FIGURE 7 | (A) Risk score, survival time, survival status, and 4-gene expression in the TARGET testing cohort. (B) ROC curve and AUC of the 4-gene signature.

(C) KM survival curve distribution of the 4-gene signature in the TARGET testing cohort.

mellitus, systemic lupus erythematosus, and hepatitis (Ruer-
Laventie et al., 2015; Wang et al., 2017, 2018). In addition, a
gradual increase in FKBP11 expression has been detected in
the development of hepatocellular carcinoma (HCC), suggesting
that FKBP11 may be a potential early biomarker for HCC (Lin
et al., 2013). Gap junction alpha-5 protein (GJA5, also known
as connexin 40) is a constitutive vascular gap junction protein
that plays an important role in the coupling between vascular
wall cells (Bai, 2014; Lu and Wang, 2017). New ultraviolet

target genes, including GJA5, have been identified, and they
are often dysregulated in human squamous cell carcinoma
(Shen et al., 2017). However, the significance of GJA5 in
tumorigenesis remains unclear. Amyloid beta precursor protein
binding family B member 1 interacting protein [APBB1IP, also
known as Rap1-GTP-interacting adaptor molecule (RIAM)],
appears to play a role in signal transduction from Ras activation
to actin cytoskeleton remodeling, and it seems to mediate
Ras-related protein 1-induced adhesion (Bromberger et al.,
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FIGURE 8 | (A) Risk score, survival time, survival status, and 4-gene expression in the entire TARGET cohort. (B) ROC curve and AUC of the 4-gene signature.

(C) KM survival curve distribution of the 4-gene signature in the entire TARGET cohort.

2019). APBB1IP integrates signaling events that are critical
for integrin-mediated immune function control and cancer
progression (Patsoukis et al., 2019). Some studies have shown
that APBB1IP is a new biological marker associated with gastric
cancer and head and neck squamous cell carcinoma (Sanati
et al., 2018; Shen et al., 2019). The Niemann–Pick type C2
(NPC2) protein is involved in the regulation of intracellular

cholesterol homeostasis via direct binding with free cholesterol
(Kamata et al., 2015). NPC2 is abundant in normal liver tissue,
but it is downregulated in HCC. Further, low NPC2 levels may
predict poor prognosis and regulate the progression of HCC by
regulating the ERK1/2 pathway (Liao et al., 2015; Chen et al.,
2018). To further understand the biological correlations of these
genes, we conducted functional enrichment analysis and found
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FIGURE 9 | (A) Risk score, survival time, survival status, and 4-gene expression in the GSE21257 testing cohort. (B) ROC curve and AUC of the 4-gene signature.

(C) KM survival curve distribution of the 4-gene signature in the GSE21257 testing cohort.

that these genes were mainly concentrated in immune-related
pathways. The 4-gene signature was reliable and performed well
in predicting OS prognosis and the effect of immunotherapy.

Furthermore, the 4-gene signature was able to divide samples
into high- and low-risk groups appropriately in terms of age, sex,
and metastasis. The results suggested that the risk model had
good predictive ability in terms of different clinical features and
that the risk score could be used as an independent prognostic
risk factor.

To observe the relationships between the risk
scores of the different samples and biological
functions, KEGG_JAK_STAT_SIGNALING_PATHWAY,
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOX
ICITY, KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATH
WAY, and KEGG_B_CELL_RECEPTOR_SIGNALING_PATH
WAY were selected. JAK/STAT signal transduction is an essential
part of growth factor and cytokine signaling, which is involved
in virtually all immune regulatory processes and has become
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FIGURE 10 | (A) KM curve of high- and low-risk samples with age >15 years. (B) KM curve of high- and low-risk samples with age ≤15 years. (C) KM curve of high-

and low-risk samples of male sex. (D) KM curve of high- and low-risk samples of female sex. (E) KM curve of high- and low-risk samples with metastasis. (F) KM

curve of high- and low-risk samples without metastasis.

an attractive target for many immune, inflammatory, and
hematopoietic diseases (Waldmann and Chen, 2017; Gao et al.,
2018; Owen et al., 2019). Natural killer cells are critical effector
lymphocytes that mediate tumor immune surveillance and
clearance and play an important role in innate and adaptive
immune responses to tumors (Malmberg et al., 2017). Toll-like
receptor signaling is involved in activating innate and adaptive
immune responses, and there is substantial evidence of the
benefit of targeting this pathway in cancer treatment (Li et al.,
2014; Moradi-Marjaneh et al., 2018). B cell receptor signaling is
critical for normal B cell development and adaptive immunity,
and B cell receptor signal transduction supports the survival and
growth of malignant B cells in patients with B cell leukemia or
lymphoma (Burger and Wiestner, 2018). These pathways were
all negatively correlated with risk score.

More studies of OS prognosis models are being reported
as time goes on. We compared three published OG prognosis
signatures to prove the superiority of our model. Goh et al.
(2019) developed a novel OS prognostic score with grouped-
variable selection using network-regularized high-dimensional
Cox regression analysis. Zhang et al. (2019) built a predictive tool
for OS lung metastasis and progression by using co-expression

network analysis. Shi et al. (2020) constructed a 3-gene risk
signature based on metastasis-associated genes for the prediction
of OS prognosis and therapeutic targets. To make the models
comparable, the same method was conducted to calculate the
risk score of each OS sample in the TARGET cohort based on
the corresponding genes in these 4 models. The AUCs of the
3 comparison models were lower than that of our 4-gene risk
score model at 2, 3, and 5 years. Our 4-gene risk score model
used a reasonable number of genes and had significantly high
discriminatory power in predicting overall survival.

Our study has some limitations. Because the incidence
of human OS is low, the number of OS samples in the
TARGET database is relatively small. Only 84 OS samples were
obtained, which may lead to selection bias. In addition, some
important and meaningful genes may have been missed in our
multiple screening processes. For better clinical applications,
more samples are needed in future research to verify our findings.
Therefore, it is necessary to do more functional research studies
of the 4 genes mentioned in this paper. Furthermore, numerous
clinical studies as well as animal and cell experiments should be
carried out to verify the prediction accuracy of our risk model
and discover potential immune-related mechanisms.
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FIGURE 11 | (A) Clustering of KEGG pathways with correlation coefficients >0.35 and risk scores. (B) ssGSEA score changes of each sample in regards to the

KEGG pathways with correlation coefficients >0.35 and increased risk scores. The horizontal axis represents the sample, and the risk score increases successively

from left to right.

TABLE 2 | Univariable analysis and multivariable analysis of the entire TARGET.

Variables Univariable analysis Multivariable analysis

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Age 0.9901 0.9118 1.0750 0.8130 1.0191 0.9298 1.1170 0.6858

Gender 0.6870 0.3304 1.4290 0.3150 0.6521 0.3005 1.4150 0.2793

Metastatic 4.7400 2.2710 9.8950 3.4E-05 3.1864 1.4696 6.9090 0.0033

RiskScore 3.4030 2.1600 5.3610 1.3E-07 2.9103 1.8364 4.6120 5.4E-06
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FIGURE 12 | (A,B) ROC and KM curves of the overall survival of the high- and low-risk samples using the 19-gene signature risk model (Goh). (C,D) ROC and KM

curves of the overall survival of the high- and low-risk samples using the 8-gene signature risk model (Zhang). (E,F) ROC and KM curves of the overall survival of the

high- and low-risk samples using the 3-gene signature risk model(Shi).

In conclusion, we constructed an effective 4-immune gene
signature (including GJA5, APBB1IP, NPC2, and FKBP11) based
on TARGET and GEO data for predicting OS prognosis, and
the stability and accuracy of the model were assessed. Our work
will help clinicians evaluate OS prognosis and select appropriate
immunotherapy targets. In the future, this risk prognosis model
should be further validated in more OS patients.
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