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Key Points: 17 

 The positive Indian Ocean Dipole event that occurred in 2019 was among the 18 

strongest in the modern instrumental record 19 

 The 2019 Indian Summer monsoon exhibited an unusual seasonal evolution with dry 20 

conditions in June but resulted in above normal rainfall  21 

 The seasonal evolution of ISM was partly driven by a combination of equatorial 22 

Pacific and Indian Ocean sea surface temperature anomalies 23 

 24 

  25 
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Abstract  26 

The positive Indian Ocean Dipole (IOD) event in 2019 was among the strongest on record, 27 

while the Indian Summer monsoon (ISM) was anomalously dry in June then very wet by 28 

September. We investigated the relationships between the IOD, Pacific sea surface 29 

temperature (SST) and ISM rainfall during 2019 with an atmospheric general circulation 30 

model forced by observed SST anomalies. The results show that the extremely positive IOD 31 

was conducive to a wetter-than-normal ISM, especially late in the season when the IOD 32 

strengthened and was associated with anomalous low-level divergence over the eastern 33 

equatorial Indian Ocean and convergence over India. However, a warm SST anomaly in the 34 

central equatorial Pacific contributed to low level divergence and decreased rainfall over 35 

India in June. These results help to better understand the influence of the tropical SST 36 

anomalies on the seasonal evolution of ISM rainfall during extreme IOD events. 37 

 38 

Plain Language Summary 39 

A prominent pattern of variability in the Indian Ocean is a seesaw in sea surface temperature 40 

(SST) between the eastern and western sides of the Ocean basin, called the Indian Ocean 41 

Dipole (IOD). Its influence on the regional weather and climate is not yet fully established, 42 

but the extremely strong IOD event in 2019 provided us the opportunity to consider its 43 

impact on the Indian Summer Monsoon. By simulating the response to the anomalous SST 44 

patterns that occurred in 2019, and by observation-based analyses, we find evidence that the 45 

IOD did influence the monsoon rainfall in 2019, but that SST anomalies in the Pacific Ocean 46 

were also important. Our simulations show that the positive IOD was conducive to wetter-47 

than-normal conditions throughout and especially at the end of the monsoon season, but that 48 

anomalous warmth in the central equatorial Pacific may have contributed to reduced rainfall 49 

in June over India. The results from this study help to understand the role of SST anomalies 50 

within and outside the Indian Ocean in affecting ISM rainfall intensity and seasonal evolution 51 

during extreme IOD events.  52 

 53 
 54 
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1 Introduction 55 

The Indian Ocean Dipole (IOD) is one of the dominant modes of variability of the 56 

tropical Indian Ocean which was discovered and named at the end of the 1990s (Saji et al 57 

1999; Webster et al 1999). The IOD has been recognized as being forced by ENSO (Allan et 58 

al., 2001; Baquero-Bernal et al., 2002; Huang and Kinter, 2002; Dommenget, 2011; Zhao et 59 

al., 2019) as well as a self-sustained mode of oscillation (Ashok et al., 2003; Yamagata et al., 60 

2004; Behera et al., 2006), with modelling frameworks supporting both hypotheses (Fischer 61 

et al., 2005; Behera et al., 2006; Wang et al., 2019; Cretat et al., 2018). The IOD has also 62 

been suggested as a potential trigger for ENSO (Luo et al., 2010; Izumo et al., 2010; Zhou et 63 

al., 2015; Jourdain et al., 2016; Wieners et al., 2017; Wang et al., 2019; Cai et al., 2019), with 64 

IOD events co-occurring with ENSO that may fasten its phase transition (Kug and Kang, 65 

2006; Kug and Ham, 2012). Past changes in the frequency and in the teleconnections of the 66 

IOD have been documented on long time records (e.g. Abram et al., 2020). 67 

The IOD teleconnections span from nearby countries like India (Ashok et al., 2001; Li 68 

et al., 2003; Meehl et al., 2003; Wu and Kirtman, 2004; Cherchi et al., 2007; Krishnan et al., 69 

2011; Cherchi and Navarra, 2013; Krishnaswamy et al., 2015; Chowdary et al., 2016; 70 

Srivastava et al., 2019, as some examples of the wide published literature available), 71 

Indonesia (Pan et al., 2018), Africa (Black et al., 2003; Manatsa and Behera, 2013; Endris et 72 

al., 2019) and Australia (i.e., Cai et al., 2009; Ummenhofer et al., 2013; Dey et al., 2019; 73 

Hossain et al., 2020), to more remote places, like Brazil (Chan et al., 2008; Taschetto and 74 

Ambrizzi, 2012; Bazo et al., 2013).  75 

Here we are particularly interested on the relationship between the IOD and the Indian 76 

summer monsoon (ISM). Summer monsoon rainfall over India represents the largest source 77 

of annual water for the country (Mall et al., 2006; Archer et al., 2010) and is important for the 78 

agrarian economy (Gadgil and Gadgil, 2006; Webster et al, 1998). Despite its annual 79 

occurrence, the Indian summer monsoon is highly variable in time and space, with the largest 80 

portion of its variability modulated by ENSO, as known since the beginning of the 19th 81 

century (Walker, 1924; Sikka, 1980; Rasmusson and Carpenter, 1983; Kirtman and Shukla, 82 

2000; Ratna et al 2011; Sikka and Ratna, 2011, as few examples). Toward the end of the 20
th

 83 

century a weakening of the ISM-ENSO relationship has been identified (Kumar et al., 1999; 84 

Kinter et al 2002) with the IOD recognized as a potential trigger of ISM rainfall. Several 85 

papers reported the individual and combined influences of ENSO and IOD on ISM rainfall 86 

and found that both phenomena, individually and combined, affect ISM rainfall performance 87 
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(Ashok et al., 2004; Sikka and Ratna, 2011; Krishnaswamy et al 2015; Li et al., 2017; Hrudya 88 

et al 2020).  89 

The active and break spells of monsoons are regulated by the boreal summer 90 

intraseasonal oscillation (BSISO), which propagates north from the equator into the Indian 91 

monsoon region and substantially affects the monsoon rainfall (Sikka and Gadgil 1980; 92 

Sperber et al., 2000). Within the monsoon season, the mean structure of moisture 93 

convergence and meridional specific humidity distribution undergoes significant changes in 94 

contrasting IOD years, which in turn influences the meridional propagation of BSISO and 95 

hence the related precipitation anomalies over India (Ajayamohan et al., 2008; Kikuchi et al., 96 

2012; Singh and Dasgupta, 2017; Konda and Vissa, 2019). At this timescale, the ocean‐97 

atmosphere dynamical coupling has been found to be important to the extended Indian 98 

summer monsoon break of July 2002 (e.g. Krishnan et al 2006). 99 

Some recent studies have investigated the causes of the strong IOD event in 2019. In 100 

particular, it has been found that the occurrence of 2019 extreme pIOD event features the 101 

strongest easterly and southerly wind anomalies on record, leading to the strongest wind 102 

speed that facilitated the latent cooling to overcome the increased radiative warming over the 103 

eastern equatorial Indian Ocean, leading to the unique thermodynamical forcing (Wang et al., 104 

2020). The thermocline warming associated with anomalous ocean downwelling in the 105 

southwest tropical Indian Ocean triggered atmospheric convection to induce easterly winds 106 

anomaly along the equator and the positive feedbacks led to an IOD event (Du et al., 2020). 107 

Also, the record‐breaking interhemispheric pressure gradient over the Indo-Pacific region 108 

induced northward cross‐equatorial flow over the western Maritime Continent, able to trigger 109 

strong wind‐evaporation‐SST and thermocline feedbacks that contributed to the strong IOD 110 

(Lu and Ren, 2020). Wang and Cai (2020) described how the consecutive occurrence of 111 

positive IDO in 2018 and 2019, along with the evolution of a Central Pacific El Niño, 112 

influenced Australian climate.  The 2019 IOD event led to unusually warm conditions in 113 

many parts of East Asia during 2019–2020 winter (Doi et al 2020), though not necessarily 114 

linked with the severe drought that occurred during that fall in East China (Ma et al 2020). In 115 

terms of predictability, such an extreme event like the 2019 IOD could be predicted a few 116 

seasons in advance (Doi et al., 2020). 117 

In this study we intend to investigate the dynamical aspects of the relationship 118 

between IOD and Indian summer monsoon rainfall with a specific focus on 2019. That year 119 

was peculiar in terms of the seasonal evolution of precipitation over India with dry conditions 120 

at the beginning of the monsoon season and very wet conditions toward the end (Sunitha 121 
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Devi et al., 2020). In particular, we designed a set of sensitivity experiments to verify the role 122 

of anomalous SST in the Indian Ocean, i.e. the developing IOD that year, and the SST 123 

anomalies elsewhere. The work is organized as follows: Section 2 describes the data used for 124 

the analysis as well as the model and experiments performed. Section 3 is dedicated to the 125 

observed characteristics of IOD and ISM during 2019 with specific attention to the evolution 126 

within the summer season. Section 4 shows the results from the sensitivity experiments 127 

performed, including a discussion of the main results obtained. Finally, section 5 summarizes 128 

the main finding and provide future perspectives from this analysis. 129 

 130 

2 Methods 131 

2.1 Observed datasets and indices 132 

The SST anomaly difference between the west (50°E-70°E, 10°S-10°N) and east 133 

(90°E-110°E, 10°S-0°) equatorial Indian Ocean, identified as the Dipole Mode Index (DMI; 134 

Saji et al., 1999), is used as the metric for the IOD and we computed it using three different 135 

datasets: Extended Reconstructed Sea Surface Temperature v5 (ERSST; Huang et al., 2017) 136 

available at 2° latitude-longitude degree resolution, National Oceanic and Atmospheric 137 

Administration optimum interpolation SST version 2 (NOAA OISSTv2; Reynolds et al., 138 

2002) available at 0.25° resolution, and Hadley Centre Sea Ice and Sea Surface Temperature 139 

data set v1.1 (HadISST; Rayner et al., 2003) available at 1° resolution. Other indices used 140 

are: Nino3.4 (area averaged SST anomaly over equatorial Pacific, 5°N-5°S 170°W-120°W) 141 

from https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/ and El Nino-Modoki (Ashok et al., 142 

2007; Weng et al, 2007) from http://www.jamstec.go.jp/virtualearth/general/en/index.html . 143 

For rainfall we used the Global Precipitation Climatology Project (GPCP) data (Adler 144 

et al., 2003) available at 2.5° resolution. We also have used the Homogeneous Indian 145 

Monthly Rainfall Data Sets (Kothawale and Rajeevan, 2017) from 146 

https://tropmet.res.in/static_pages.php?page_id=53. Other atmospheric variables and the 147 

global SST field are taken from National Center for Environmental Prediction‐Department of 148 

Energy (NCEP-DOE) Reanalysis 2 (Kanamitsu et al., 2002) available at 2.5 degree 149 

resolution. All anomalies are calculated with respect to the 1981-2010 climatology.  150 

 151 

2.2 The IGCM4 model and sensitivity experiments 152 

The Intermediate General Circulation Model version 4 (IGCM4; Joshi et al. 2015) is a 153 

global spectral primitive equation atmospheric model with a spectral truncation at T42 154 

https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/
http://www.jamstec.go.jp/virtualearth/general/en/index.html
https://tropmet.res.in/static_pages.php?page_id=53
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(corresponding to 128x64 grid points in the horizontal) and 20 layers in the vertical, with the 155 

top at 50 hPa. This configuration, i.e. T42L20, is the standard for studies of the troposphere 156 

and climate (Joshi et al. 2015). IGCM4 has been extensively used in climate research, process 157 

modelling and atmospheric dynamics (van der Wiel et al., 2016; O' Callaghan et al., 2014; 158 

Ratna et al., 2020). The IGCM4 gives a good representation of the mean climate state (Joshi 159 

et al, 2015), in particular the simulated climatology and annual cycle over Asia is in 160 

reasonable agreement with the reanalysis for temperature and precipitation (Ratna et al., 161 

2020). The physical parameterization schemes used here are the same as in Joshi et al (2015) 162 

and Ratna et al (2020). 163 

The set of experiments performed with the IGCM4 consist of a control simulation 164 

(CTRL) with prescribed SST obtained from a climatology (1981-2010) of the skin 165 

temperature in the NCEP-DOE Reanalysis 2 (Kanamitsu et al, 2002) and two sensitivity 166 

experiments where the 2019 SST anomaly is added to the CTRL climatology globally 167 

(IODglob) and only over the Indian Ocean (IODreg). All other boundaries conditions are the 168 

same as in CTRL. The surface albedo has been adjusted to indicate the presence or absence 169 

of sea ice according to whether the new surface temperature was below freezing. We used the 170 

greenhouse gas concentration in the model which is close to the 1995 value, the midpoint of 171 

the 1981-2010 climatology. For each simulation, the model is integrated for 55 years and the 172 

mean of the last 50 years is analysed, excluding the first five years as model spin up. These 173 

simulations are long enough to allow a clear separation of the response to the SST anomalies 174 

from the internally generated variability, especially for “noisy” variables such as 175 

precipitation. 176 

 177 

3 2019 Indian Ocean Dipole and Indian Summer Monsoon 178 

The Indian Ocean Dipole (IOD) was unusually strong in 2019 (Fig. 1a). The positive 179 

IOD event was the strongest of the last two decades, and possibly the strongest of the last 38 180 

years. The Sep-Nov 2019 DMI was four standard deviations above the 1981-2010 181 

climatology in the ERSST data. This exceeded the previous strong event of 1997 in the 182 

ERSST and NOAA-OI-SST datasets, while 1997 remained the strongest in HadISST (Fig. 183 

S1). The 2019 positive IOD phase arose from both negative SST anomalies over the eastern 184 

equatorial Indian Ocean (EEIO) and warm SST anomalies over the western equatorial Indian 185 

Ocean (WEIO) from June to October (Fig 1c-h). However, the evolution of the event was 186 

strongly determined by the EEIO, which largely cooled from climatological conditions in 187 
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May to almost 1 K cooler than normal by October. On the other hand, the WEIO stayed more 188 

constant (i.e. less than 1 K warmer than normal) throughout the period (Fig. 1b). 189 

The total seasonal (June-September) rainfall over India was 110% with respect to its 190 

long period average, with the June rainfall quite low (67%) while the September one quite 191 

excessive (152%) (Yadav et al., 2020). These conditions have been part of large-scale rainfall 192 

anomalies observed in the regions surrounding the Indian Ocean in 2019 (Fig. 2a, d and g). In 193 

this study we are interested to understand what anomalous climate conditions within the 2019 194 

summer season contributed to monsoon rainfall variation from a dry June to a wet September 195 

over India. 196 

The annual evolution of the IOD index is compared with ENSO associated indices for 197 

the year 2019 (Fig 1b). The IOD is strong compared to the rest of indices during 2019 so it is 198 

interesting to consider the role of IOD on the seasonal evolution of ISM rainfall. The IOD 199 

index intensified from July and reached its peak during October-November (Fig 1b), due to 200 

the strengthening of the SST anomaly in the EEIO, as noted above. Nino3.4 SST  indicates 201 

that ENSO condition was slightly positive in June, before decreasing in strength to reach zero 202 

anomaly in September. El Nino Modoki index, which is indicator of a central Pacific SST 203 

anomaly, remained slightly above normal throughout the year (Fig. 1c-h). 204 

We have compared (Fig. S2) the seasonal evolution of the IOD, Pacific indices and 205 

ISM rainfall (Table S1) with three other strong IOD events (1994, 1997, 2006) to consider if 206 

they support our finding that a strengthening positive IOD may be associated with a wetter 207 

ISM when not overwhelmed by ENSO influences. In 1994, a positive IOD strengthened 208 

further from June to August. Although the central Pacific was warmer than normal, El Nino 209 

conditions were not reached, perhaps allowing the IOD to dominate and contribute to above-210 

average ISM rainfall in most months and in the seasonal total (Ashok et al., 2004; Sikka and 211 

Ratna, 2011). By contrast, 1997 was dominated by a very strong El Nino, though the 212 

expected ENSO-induced anomalous subsidence may have been neutralized/reduced by 213 

anomalous IOD-induced convergence over the Bay of Bengal (Behera et al., 1999; Ashok et 214 

al, 2001) and contributed to a near-normal ISM season. During 2006, the onset of positive 215 

IOD was late compared to the other years considered, perhaps contributing to above normal 216 

rainfall in the final months of the ISM (the Modoki index was close to normal and Nino3.4 217 

only warmed to an El Nino state later in the year). Overall, out of these four years, the two 218 

with the strongest positive IOD and relatively weak Nino3.4 anomalies (1994 and 2019) had 219 

excess ISM rainfall (+15% and +16% with respect to the 1981-2010 climatology, Table S1). 220 
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There was a smaller increase in ISM rainfall in 2006 (+9%) when the IOD event developed 221 

later, while 1997 had a strong El Nino and a normal ISM season (+2%). 222 

4 Mechanisms contributing to the anomalous 2019 Indian summer monsoon rainfall 223 

To understand the contribution that SST forcing may make to the 2019 rainfall 224 

variability over the Indian landmass, we compared the model simulated anomaly (IODglob 225 

and IODreg as explained in Section 2) with the observed anomaly. Following the design of 226 

the experiments, the comparison is focused in the identification of the rainfall pattern 227 

anomalies in the different cases. Of course, we do not expect perfect agreement, even were 228 

the model perfect, because of internal atmospheric variability unrelated to the 2019 SST 229 

anomalies. Nevertheless, both sensitivity experiments reproduce a dipole precipitation 230 

anomaly over the south equatorial Indian Ocean (dry in the east, wet in the west; Fig. 2a-c) 231 

during the whole monsoon season (June-September) that closely resembles the observed 232 

pattern. Observed Jun-Sep precipitation is above average over the Indian land mass and over 233 

the Bay of Bengal, and both experiments simulate a qualitatively similar pattern. Instead, the 234 

intensity of the anomaly is larger when the model is forced with only Indian Ocean SST 235 

anomalies (IODreg; Fig. 2c) compared to the global SST (IODglob) anomaly (Fig. 2b). This 236 

indicates the importance of the 2019 Indian Ocean SST anomaly in contributing to wet 237 

conditions over India, though it is modulated by SST anomalies elsewhere. 238 

The comparison of the sensitivity experiments also illuminates on the possible 239 

mechanisms behind the two contrasting months of the season (i.e. dry June and wet 240 

September). In June, the model response to Indian Ocean SST forcing produces a stronger 241 

south-westerly monsoon flow and wet anomalies over western India (IODreg; Fig. 2f), 242 

whereas including SST anomalies from other ocean basins (IODglob; Fig. 2e) suppresses the 243 

wet anomaly and brings the simulated response closer to the observations (with the exception 244 

of the western Indian Ocean). The negative rainfall anomaly over EEIO is also stronger in 245 

IODglob compared to IODreg and more similar to the observations. On the other hand, both 246 

IODglob and IODreg experiments have a wet anomaly over India in September, as is also 247 

seen in the observations (though the observed anomaly is stronger and more extensive). 248 

These results indicate that the 2019 Indian Ocean SST anomalies suppress rainfall in the 249 

EEIO and favour a wetter than normal Indian monsoon, but that in June the latter is more 250 

than offset by a response to the SST anomaly outside the Indian Ocean, resulting in the dry 251 

anomaly, as it is observed. 252 

Considering the whole 2019 season, stronger low-level southerly wind anomalies 253 

dominated over the Bay of Bengal due to low level divergence over EEIO associated with the 254 
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very positive IOD (Fig. 2a,b,c). The low-level winds are similar to Behera and Ratnam 255 

(2018) where they show low level westerlies and southerlies towards India originated from 256 

the EEIO but they do not show any significant cross equatorial flow in their positive IOD 257 

events composite. Over the Arabian Sea, the IODreg simulation has stronger south-westerly 258 

anomaly compared to IODglob and hence simulates excess rainfall (Fig. 2a, b, c). In June, the 259 

dry anomaly observed over India is related to low-level anomalous anticyclonic circulation 260 

over central-east India and adjacent Bay of Bengal and to anomalous easterlies prevailing in 261 

the peninsular India (Fig 2d). Both circulation features reduced the monsoon flow towards 262 

India and hence contributed to the negative rainfall anomaly over India. IODglob realistically 263 

simulated both these anomalous circulation features (Fig. 2e), whereas IODreg did not and it 264 

shows strong south-westerly flow reaching the Indian landmass (Fig. 2f). In September 2019, 265 

observations show that there was a strong anomalous south-westerly flow towards Indian 266 

landmass and associated cyclonic circulation over central west India, contributing to the 267 

excess rainfall (Fig. 2g). Both sensitivity experiments (Fig. 2h and 2i) simulated anomalously 268 

strong south-westerly flow and anomalous cyclonic circulation over India, though they are 269 

not as strong as observed.  270 

Consistent with precipitation and low-level wind patterns, there is convergence in the 271 

upper troposphere over the Maritime Continent and EEIO in September when the IOD is at 272 

its peak (Fig. 3b), but such convergence does not appear in June (Fig. 3a) when the IOD is 273 

developing and there are still warm SST anomalies over the equatorial Pacific (Fig. 1). In the 274 

IODglob experiment (Fig. 3c) we see that the model responds strongly to these equatorial 275 

Pacific SST anomalies in June, causing strong upper level divergence over east equatorial 276 

Pacific and convergence over the Maritime Continent. The opposite circulation is seen at 277 

lower levels (see Fig. S2 for the 850 hPa velocity potential and divergent winds) which 278 

causes low level divergence extending from the Maritime Continent to the Bay of Bengal and 279 

Indian landmass, contributing to negative rainfall anomaly in June. In IODreg, where the 280 

model is forced with the 2019 SST anomaly only over the Indian Ocean, the model responds 281 

with upper level (lower level) divergence (convergence) over the Indian Ocean and over 282 

India (extending from Australia via WEIO to India; Fig. 3e and S2), which would have 283 

contributed to a positive rainfall anomaly in June. The model simulated velocity potential 284 

anomaly explains the model simulated rainfall and its link with Indian Ocean and Pacific 285 

Ocean SST anomaly, and indicates that the response is more closely linked with the 286 

equatorial Pacific SST rather with the SST anomalies in the extratropical North Pacific which 287 

were also large in 2019. Both sensitivity experiments simulate upper level divergence over 288 
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EEIO region in September, although in IODglob it is stronger than in IODreg, and this 289 

explains the link between the Indian Ocean SST anomaly and the circulation and rainfall 290 

anomalies.  291 

 292 

5 Conclusions 293 

One of the strongest positive IOD events in the historical period occurred in 2019. 294 

The evolution of the 2019 IOD was characterized by a cold anomaly over the EEIO which 295 

started strengthening from June and reached its peak in October, remaining strong until 296 

November.  In the same year, the Indian summer monsoon season experienced peculiar 297 

behaviour with weak rainfall during June (despite the IOD index being already in its positive 298 

phase). Then the monsoon gained its strength from July, ending with an anomalous wet 299 

September and contributing to above-normal seasonal rainfall.  300 

With a suite of atmospheric GCM experiments we have been able to evidence the role 301 

of the IOD and of the SST anomalies elsewhere in the seasonal evolution of rainfall and 302 

circulation anomalies during the 2019 summer monsoon. The anomalous SST gradient 303 

between the west and east equatorial Indian Ocean drives a dipole in equatorial precipitation 304 

anomalies and anomalous low-level circulation that would, in isolation, lead to a wetter than 305 

normal Indian summer monsoon across the monsoon season including June and September. 306 

However, when forcing the IGCM4 model with the global pattern of SST anomalies observed 307 

in 2019, the response changes, particularly in June. Although not considered to be an El 308 

Nino, the first half of 2019 did exhibit anomalously warm conditions in the central Pacific 309 

(visible in the Nino3.4 index) that dissipated by September. The model responds to this 310 

equatorial Pacific warmth with upper-level divergence over the equatorial Pacific and 311 

convergence over the Maritime Continent. This causes low-level divergence extending from 312 

the Maritime Continent to the Bay of Bengal and the Indian landmass, contributing to a 313 

negative rainfall anomaly there in June. By September, this response to remote forcing from 314 

the Pacific weakens (likely linked in part to the weakening of the Nino3.4 SST anomaly 315 

there), leaving the response to the Indian Ocean SST anomalies (linked to the very strong 316 

IOD) to dominate. This response arises from strong IOD-related low-level divergence over 317 

EEIO and convergence over the Indian landmass, contributing to excessive rainfall. 318 

The similarity between the model simulations and observed/reanalysis data provides 319 

evidence that these mechanisms occurred in the real world in 2019, i.e. that there was a 320 

contrasting contribution from the Pacific and Indian Ocean SST anomalies to ISM rainfall. 321 

The tropical Pacific SST contributed to a drying tendency over India while the IOD 322 
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contributed to anomalous wet conditions over India. The Pacific effect dominated in June, 323 

contributing to the dry anomalies observed, but the weakening Pacific SST anomalies and 324 

especially the dramatic strengthening of the IOD led to the latter dominating by September 325 

and having a significant contribution to the very wet September observed. 326 

The observed June and September rainfall anomalies were more extreme than those 327 

simulated in these SST-forced experiments, reinforcing the role that internal atmospheric 328 

variability plays in any particular month or season. Nevertheless, the results from this study 329 

help to understand the role of SST anomalies within and outside the Indian Ocean in affecting 330 

ISM rainfall intensity and seasonal evolution during extreme IOD events. This is important 331 

for improving seasonal predictions of Indian summer monsoon, and our results also highlight 332 

that, to predict the seasonal evolution of ISM rainfall, Pacific SST anomalies must be 333 

considered even when there is an extremely strong IOD.  For example, Li et al (2017) show 334 

that the majority of CMIP5 models simulate an unrealistic present-day IOD-ISMR correlation 335 

due to an overly strong control by ENSO and hence a positive IOD is associated with a 336 

reduction of ISM rainfall in the simulated present-day climate. Hence, coupled climate 337 

models need to improve their simulation of these type of linkages. 338 
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Figures: 637 

 638 

 639 

Fig. 1: (a) Standardized monthly Dipole Mode Index (DMI) from 1980 to 2019 calculated 640 

using ERSST data. (b) Annual cycle of Indian and Pacific Oceans climate indices (K) for 641 

2019 (as discussed in Section 2). (c-h) Observed 2019 SST anomalies from June to 642 

November using NCEP2 data.  643 
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 645 

 646 

Fig. 2: (a, d, g) Observed GPCP rainfall anomaly (mm/day, shaded) and NCEP2 850 hPa 647 

wind anomaly (m/s, vectors) for June-September mean, June and September, respectively. 648 

(b,e,h) and (c,f,l) are the same as (a,d,g) but for IODglob and IODreg experiments, 649 

respectively. Shaded precipitation anomalies are significant at 90% level using a Student’s t-650 

test. 651 
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 653 

Fig. 3: (a,b) 200 hPa velocity potential (10
6
 m

2
 s

-1
, shaded) and divergent wind (m s

-1
, 654 

vectors) anomalies in 2019 June and September, respectively, based on the reanalysis. (c, d) 655 

and (e,f) are the same as (a,b) but for IODglob and IODreg experiments, respectively. Shaded 656 

velocity potential anomalies are significant at 90% level using a Student’s t-test. 657 
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