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Abstract
Type 1 Chiari malformation (C1M) is characterized by cerebellar tonsillar herniation of 3–5 mm or more, the frequency of 
which is presumably much higher than one in 1000 births, as previously believed. Its etiology remains undefined, although 
a genetic basis is strongly supported by C1M presence in numerous genetic syndromes associated with different genes. 
Whole-exome sequencing (WES) in 51 between isolated and syndromic pediatric cases and their relatives was performed 
after confirmation of the defect by brain magnetic resonance image (MRI). Moreover, in all the cases showing an inherited 
candidate variant, brain MRI was performed in both parents and not only in the carrier one to investigate whether the defect 
segregated with the variant. More than half of the variants were Missense and belonged to the same chromatin-remodeling 
genes whose protein truncation variants are associated with severe neurodevelopmental syndromes. In the remaining cases, 
variants have been detected in genes with a role in cranial bone sutures, microcephaly, neural tube defects, and RASopathy. 
This study shows that the frequency of C1M is widely underestimated, in fact many of the variants, in particular those in 
the chromatin-remodeling genes, were inherited from a parent with C1M, either asymptomatic or with mild symptoms. In 
addition, C1M is a Mendelian trait, in most cases inherited as dominant. Finally, we demonstrate that modifications of the 
genes that regulate chromatin architecture can cause localized anatomical alterations, with symptoms of varying degrees.

Introduction

Primary or congenital malformations of Chiari are structural 
defects in the brain and spinal cord that occur during fetal 
development and range from cerebellar tonsillar herniation 
through the foramen magnum to the absence of the cerebellum 
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with or without other associated intracranial or extracranial 
defects such as hydrocephalus, syrinx, encephalocele or spinal 
dysraphism. Four traditional subgroups of Chiari malforma-
tions (types CM 1–4) (Singh 2018; Holly 2019; Hidalgo 2020) 
are described despite the ambiguity between lumping and split-
ting makes hard the classification on clinical base (Luciano 
2011; Hennekam 2012). The most common type 1 malforma-
tion (C1M) is characterized by the following magnetic reso-
nance (MRI) findings: caudal displacement of the cerebellar 
tonsils more than 3–5 mm below the foramen magnum plane 
and a discrepancy between the anterior and posterior fossa and 
supratentorial crypt, with or without anomalies of the cranio-
cervical junction (Bhimani 2018; de Arruda 2018; Lawrence 
2018; Tam 2020). The signs of C1M can appear in adulthood 
or before adolescence, in the latter case with about 40% of 
subjects are under the age of 5 years, 25% of 5–10 years and 
30% of 10–15 years (Tubbs 2007; McVige 2014; Piper 2019). 
The most common symptoms are occipital or upper cervi-
cal headaches, exacerbated by valsalva maneuver (tension, 
coughing, and sneezing) (McVige 2014; Piper 2019). Other 
symptoms vary greatly and may include motor (40–74%) and 
sensory (50%) changes in the extremities, clumsiness (15%), 
and dysphagia (10%) (Tubbs 2007; Piper 2019). C1M can 
also be associated with syringohydromyelia, hydrocephalus 
and several other malformations of the skull and cervical spine 
(Speer 2003; McVige 2014; Mukherjee 2019). Syringomyelia 
is present in 60–70% of patients, with progressive scoliosis in 
30% of cases (Poretti 2016).

The presence of C1M in multiple members of the same 
family and not only in monozygotic twins strongly indicates 
a genetic basis for the malformation, even in the absence of 
Mendelian inheritance (Abbott 2018). Moreover, the clini-
cal diagnosis is further complicated by the wide variety of 
symptoms and disease severity among members of the same 
family, some of them showing very nuanced features that do 
not significantly influence the daily routine (Abbott 2018). 
Under these conditions, the request for MRI investigations, 
essential for the diagnosis of C1M, is not always guaranteed.

Apart from these considerations, a very likely genetic 
basis for C1M is strongly supported by its presence in 
numerous genetic syndromes associated with different genes 
(Markunas 2013; Merello 2017; Rymer 2019; Martirosyan 
2020). Although various information has emerged about the 
correlations between genetic variants and the presence of 
either isolated or syndromic C1M, a systematic genome-
wide investigation with the extension to apparently healthy 
parents has never been conducted.

The aim of this study was to discover and validate C1M-
associated genes by whole-exome sequencing (WES) in 51 
among multiplex and single pediatric cases and in their rela-
tives. Twenty-two patients were syndromic and 29 with iso-
lated C1M (Table 1). In addition, we systematically extended 
MRI to both parents, regardless of whether they had clinical 

signs of C1M, in all the cases where the candidate variant(s) 
of the proband was inherited. To prevent that the interpreta-
tion of the MRI was influenced by the genetic data, the radi-
ologist was not aware of which parent was the carrier of the 
candidate variant. Under these conditions, even the slightest 
sign of C1M in the carrier parent reinforced the role of the 
variant. In contrast, the parents of cases with de novo variants 
did not undergo MRI. In fact, all but one of these patients was 
syndromic, and the detected variant indeed fully accounted, at 
least a posteriori, for the clinical condition. This finding bona 
fide excluded the presence of other variant associated with the 
proband’s malformation in the healthy parents.

Materials and methods

Patients

The aim of the study was highlighting the molecular basis 
of C1M. To this purpose, we enrolled patients with either 
isolated or syndromic C1M. All patients have been evalu-
ated by experts of neurosurgery, radiology as well as clinical 
genetics. Patients had a confirmed diagnosis of C1M on the 
following criteria: (a) caudal displacement of the cerebel-
lar tonsils between 3 and 5 mm to the plane of the foramen 
magnum; (b) bulbar kinking (cases 13, 22, 23, 26, 35, 37, 
and 45; 13.7% of cases; (c) Klippel–Feil deformity (case 
51; 1.96% of cases); (d) scoliosis (cases 1, 16, 25, 38, and 
50; 9.8% of cases); (f) hydrocephalus (cases 4 and 26; 3.9% 
of cases). A measurement protocol defining the type of CM 
was followed upon classical guidelines recommendations 
(Lawrence 2018; Hidalgo 2020).

Patients were enrolled by the neurosurgeons who planned 
the type of operation, based on the clinical and radiological 
presentation of the Chiari Malformation (Fig. 1).

A written informed consent to proceed with genetic inves-
tigations was signed by the parents, according to the format 
of the Meyer Hospital. Samples were rendered anonymous, 
and each one marked with a progressive numerical code.

A total of 51 unrelated subjects (aged 3  months to 
21 years, mean age 8 years) were enrolled. Chiari’s mal-
formation appeared sporadic in all but four cases (cases 
23, 25, 28, and 39) where C1M was already known to 
be familiar. The parents were regularly examined both 
from a clinical point of view and genetic investigations. 
The trio/quartet-based WES was performed together with 
the array-CGH analysis to rule out unbalanced genomic 
rearrangements. In 22 patients, other disorders, such as 
short stature, intellectual disability (ID), autism spectrum 
disorder (ASD), developmental delay, congenital anoma-
lies or dysmorphic traits, were present in addition to C1M 
(Table 1). The clinical characteristics of the 51 probands 
including their age at diagnosis and the molecular findings 
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are summarized in Table 1. More detailed information 
regarding recruiting and phenotype of the patients are 
reported in supplementary methods.

Array‑CGH

Array-CGH analysis was performed on proband’s DNA 
from blood using an Agilent Human Genome CGH 
Microarray Kit 4 × 180 k with an overall median probe 
space of 40  Kb, using the same protocol previously 
described (Palazzo 2017). All nucleotide positions refer 
to the Human Genome, February 2009 Assembly (hg19). 
Data analyses were performed using Agilent Cytogenom-
ics V.2.5.8.1.

Whole‑exome sequencing (WES) and bioinformatics 
analysis

Genomic DNA (gDNA) was extracted according to the 
manufacturer’s instructions whereas libraries preparation 
for WES, sequencing base calling, coverage analysis, vari-
ants annotation, and variant filtering are detailed in the Sup-
plementary Methods. MutationTaster, Mutation Assessor, 
SIFT, PolyPhen2_HVAR, FATHMM-MKL, and FATHMM 
were used to assess the effect of variants on protein function. 
Validated variants were classified based on standards and 
guidelines of the American College of Medical Genetics and 
Genomics (ACMG) (Nykamp 2017).

Quality control of sequencing showed that 96% of the 
reads were mapped to the reference genome (hg19), and 
97% of the targeted regions were covered by ≧ 30 × reads 
with average depth of 120x. Details of quality control of 
depth, coverage, as well as the bioinformatically prioritized 
variant(s) and their interpretation are shown in Supplemen-
tary Methods and Supplementary Fig. 1).

All candidate variants were confirmed by Sanger 
sequencing.

Total RNA extraction and gene expression profiling 
by Affymetrix GeneChip analysis

Skin biopsy samples were obtained from three probands and 
their family members and primary fibroblasts grown from 
skin biopsy specimens, as already reported (Vangipuram 
2013). Total RNAs were extracted from confluent fibroblasts 
by RNeasy Mini Kit (Qiagen). The quality and quantity of 
extracted RNAs were assessed by Agilent 2100 Bioana-
lyzer System. Human Transcriptome Array 2.0 GeneChips 
were used. Further details are provided in Supplementary 
Methods.

Results

Table  1 summarizes the main clinical findings of our 
C1M patients. Molecular results (array-CGH and WES) 
are also reported. According to the WES results, patients 
were divided into four categories (a–d): (i) affected by a 
syndrome in which C1M was already reported at least in 
some cases (a); (ii) affected by a syndrome in which C1M 
was never reported (b); (iii) affected by isolated C1M (c); 
and (iv) without any obvious disease-variant (d). Molecular 
findings in parents, their MRI findings (+: presence of C1M; 
−: absence of C1M), and their clinical condition in respect 
to C1M (presence at least of headache) are also reported. 
Table 1 also shows the frequency of the variant in gnomAD 
and/or its rs. In 11 cases, more than 1 gene showed candidate 
variants.

Category A (cases 1–11). Patients in this category have 
variants in genes previously reported in syndromes occa-
sionally associated with C1M. With the exception of cases 
7, 9 and 10, the others were with syndromic C1M, includ-
ing developmental and psychomotor retardation. Although 
in all cases, the set of malformative signs was a posteriori 
attributable to the syndrome associated with the identified 
genetic/genomic variant, the clinical diagnosis was not a 
priori obvious. Brain MRI was performed due to frequent 
headache episodes in cases 9 and 10, and to a nasal glioma in 
case 7. Cases 9 and 10, both with a variant within an FGFR 
gene (FGFR3 and FGFR1, respectively) did not show other 
clinical disorders except C1M. In cases 4, 6, 7, 9, 10, and 11, 
the imputed C1M-variant of the proband was inherited by a 
parent who was affected by recurrent headaches, whereas in 
the remaining cases was de novo. Analysis of the array-CGH 
experiments revealed only two cases (cases 1 and 3) with 
causative CNVs, namely deletion at 5q35, including NSD1, 
and 22q11.2, respectively. As expected by the syndromic 
condition of the patients, both were de novo.

Category B (cases 12–22). Patients in this category have 
variants in genes reported in syndromes in which C1M has 
never been described. All patients, but case 18 with trigono-
cephaly only, presented with malformative and/or behavioral 
characteristics not a priori ascribable to a specific syndrome. 
In all, MRI was requested because of neurological disorders 
and/or abnormal cranial conformation. The molecular and 
clinical conditions of the parents are described as for cat-
egory A.

Category C (cases 23–38). Patients in this category have 
isolated C1M, sometimes associated with other individual 
signs or symptoms which, as a whole, were not attributable 
to any known syndrome. All candidate genes we detected 
have been reported in malformation syndromes that did 
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not include C1M. MRI was requested in most of the cases 
because of recurrent headache while in cases 31, 33, 34, 
and 36 the investigation was requested because of motor 
tics, persistent arm pain, mild neurodevelopmental delay, 
and torticollis, respectively. Parents’ molecular and clinical 
conditions are described as above.

In category D (cases 39–51), three types of cases are 
listed: (i) a single case (case 39) in which the variant con-
cerned a gene so far not disease-associated but whose seg-
regation in the family coincided with the presence of C1M, 
thus strengthening the role of the gene in the Chiari malfor-
mation; (ii) a single case (case 40) in which the gene-variant 

Fig. 1   Sagittal T1 or T2-weighted MRI images showing Chiari type I malformation (C1M) in our 51 cases as evidenced by low-lying cerebellar 
tonsils. Sagittal MRI of the cervical spine also detects different cases of syringomyelia indicated by red asterisks
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had been reported in the literature with a disorder having a 
type of inheritance different from that found in our study; 
(iii) those in which no plausible variant has been identified 
(cases 41–51).

Discussion

This study shows that C1M, both syndromic and isolated, 
is mainly dependent on variants in chromatin-remodeling 
genes, in most cases of the missense type and in very few 
cases presumably leading to a truncated protein (PTV pro-
tein truncation variant). Indeed, 25 out of the 45 variants 
lay in genes that play a direct role in maintaining chro-
matin organization (Table 2), while the remaining ones 
were in genes known for their role in bone and cartilage 
formation and bone fusion, and in neural tube defects. In 
10 cases, WES and array investigations fail to reveal can-
didate variants (Table 1, d). These cases are with isolated 

C1M with recurrent headache and syringomyelia in three 
cases. The reason we have not identified any causative var-
iant is attributable to different causes: (i) the variant has a 
frequency > 2% which is the maximum value of the MAF 
with which we have selected the variants; (ii) the variant 
is smaller than the CNVs identifiable by array-CGH and 
is found in regions covered < 20× reads by exome or is in 
non-coding regions; (iii) the variant is in mosaic with little 
or no percentage of variant allele in the blood. On the basis 
of what is reported in the literature, these last two hypoth-
eses are the most probable (Kremer 2017; Wright 2019).

In the following sessions, we discuss the role played to 
the occurrence of C1M by chromatin-remodeling genes 
(category W), according to the different classes of coded 
proteins, from W1 to W5, and subsequently by the genes 
involved in the sutures of the cranial bones and in micro-
cephaly (category X), in the closure of the neural tube 
(category Y), and in RASopathy (category Z).

Table 2   Chromatin-remodeling proteins, nomenclature and substrate specificity

me1 mono-methylation, me2 di-methylation, me3 tri-methylation
*Heterozygous
# Biallelic

Histone methyltransferases

Histone and residue me3 me2 me1

H3 lysine-36 NSD3
SETD2*

NSD1*
NSD3
SETD2*

NSD1*
SETD2*

Cases 1, 2
Case 19
Cases 11, 23, 24, 24, 26

H3 lysine-4 SMYD3*
SETD1B*

SMYD3 *
NSD3
SETD1B*
KMT2E*

SETD1B*
KMT2E*

Cases 17, 18
Case 19
Cases 27, 28, 29
Case 35

H3 lysine-9 SETDB1* EHMT1* SETDB1* EHMT1* SETDB1* Case 30
Case 21

H3 lysine-27 NSD3 Case 19
H4 lysine-20 KMT5A* Case 34

Histone demethylases

Histone and residue me3 me2 me1

H3 lysine-4 KDM5B* KDM5B* KDM5B* Case 20
H3 lysine-27 KDM6B# KDM6B# Case 33
Histone acetyltransferase
 Histone acetyltransferase activity EP300* Acetylates all four core histones in nucleosomes Case 16
 Histone H3 acetyltransferase activity BRPF1* Stimulates acetyltransferase and transcriptional activity Case 22

Histone methylation
 DNA-binding protein SETBP1* Bind the SET nuclear oncogene which is involved in DNA 

replication
Case 32

Histone proteins
 Histone H1 HIST1H1D*

HIST1H1E*
HIST1H2BH*

Bind to linker DNA between nucleosomes forming the chroma-
tin fiber

Case 30
Case 31
Case 31
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W. Chromatin‑remodeling genes

Chromatin remodeling plays a central role in modulating 
gene expression. Histone post-translational modifications 
(PTMs) by specific enzymes, e.g., histone acetyltransferases 
(HATs), deacetylases, methyltransferases, and kinases, 
are crucial to chromatin dynamism. Although acquired 
alterations in the patterns of histone PTMs have been at 
first linked to cancer (Garraway 2013; Morgan 2015), the 
application of WES to cohorts of people with intellectual 
disabilities and other neurological dysfunction has shown 
that a growing number of constitutional disorders associ-
ate with germline variants of genes involved in chromatin 
regulation. In many cases, these genes are the same whose 
somatic variants, sometimes even the same variant, drive 
cancer. The resulting effect can be a constitutional disor-
der associated with higher than normal risk of tumors (Lee 
2007; Acuna-Hidalgo 2017; Faundes 2018). More recently, 
new technological approaches for the efficient identification 
of DNA methylation throughout the genome have shown that 
syndromes caused by variants of the chromatin-remodeling 
genes are characterized by specific methylation signatures. 
These “episignatures”, typified either by hyper- or hypo-
methylation of the CpG sites, relate 42 clinically distinct 
OMIM disorders to 34 methylation patterns, potentially 
offering new therapeutic perspectives for individuals suf-
fering from these disorders (Aref-Eshghi 2020). Many of 
the chromatin-remodeling genes associated with these syn-
dromes, and in other contexts with cancer, are the same we 
have identified starting from a well-defined symptom such as 
C1M, although, paradoxically, C1M has been reported only 
occasionally or has never been described among the mal-
formative characteristics that typify the various syndromes. 
The identified genes regarding chromatin-remodeling factors 
are listed in Table 2, based on their frequency in our cohort.

W1. Histone methyltransferases

The most frequent variants associated with C1M were 
detected in members containing the SET domain of the 
lysine methyltransferase family. SETD2 variants, all of mis-
sense type, were the most represented in our cohort (cases 
11 and 23–26). Heterozygous variants of SETD2 resulting 
in a premature stop codon have been associated with the 
Luscan–Lumish syndrome (#616831). Among the few sub-
jects so far reported, some were with an overgrowth-Sotos-
like phenotype and postnatal obesity (Lumish 2015; van 
Rij 2018; Marzin 2019). C1M with syringomyelia beside 
to neurodevelopmental disorders was reported in a single 
case with a SETD2 frameshift variant (31). In contrast, 
none of our C1M patients with SETD2 variants (Table 1 and 
Supplementary Fig. 2) were with Luscan–Lumish features 
although the 12-year-old patient (case 23) was beginning 

to show overweight. Patient 11, a 4-year-old girl, was the 
only syndromic one, although her clinical disorder was 
presumably related to the presence of the promoter GNAS 
variant inherited by the mother (Haldeman-Englert 2017). 
The fact that patients 23–26, aged between 7 and 14 years, 
were not in the least syndromic could be explained by the 
type of variant that in all cases was missense, and not a PTV 
one as in syndromic cases. In accordance with the relative 
pathogenicity of the missense variants, in all cases they were 
inherited from a parent who showed non-severe symptoms 
of C1M, essentially recurrent headaches. The consistency 
of paternal inheritance of the SETD2 variants in our five 
cases might not be accidental. Maternal depletion of Setd2 
causes defects in mouse oocyte maturation and subsequent 
one-cell arrest after fertilization, thus identifying SETD2 as 
a crucial player in establishing the maternal epigenome and, 
in turn, embryonic development (Xu 2019). It is unclear why 
SETD2’s missense variants may specifically involve C1M.

Other frequent variants of histone methyltransferases, 
all of the missense type, have been detected in SETD1B. 
De novo variants in SETD1B, leading to PTV or haploin-
sufficiency, were reported in syndromic ID (Hiraide 2018; 
Krzyzewska 2019) (Supplementary Fig. 3). Our patients 
27–29, aged between 4 and 13 years, were with isolated 
C1M, even if patient 29, the oldest one, was with mildly 
increased head circumference and dyslexia. All have inher-
ited a missense variant from a parent with C1M, all with a 
history of recurring headaches. A specific hypermethyla-
tion signature associated with LoF variants in the SETD1B 
gene was recently demonstrated (Hunter 2005), with profiles 
overlapping those of patients affected by Hunter–McAlpine 
syndrome, who harbor duplication of NSD1. Indeed, NSD1, 
which also contains a SET domain, is responsible for Sotos1 
syndrome mainly but not only in presence of frameshift and 
nonsense variants (https​://varso​me.com/gene/NSD1; Türk-
men 2003; Laccetta 2017). Size variable microdeletions 
which encompass NSD1 cause about 10% of Sotos1 syn-
drome cases, and, actually, C1M has been reported in few 
patients with this condition (Tatton-Brown 2005). Our cases 
1 and 2, the first with a de novo 5q deletion of about 2 Mb 
including NSD1, and the second with a de novo rare mis-
sense variant in the same gene, showed C1M, accompanied 
in case 1 by syringomyelia. Both presented with a phenotype 
ascribable to Sotos1 syndrome (macrocephaly, ID, behavio-
ral problems, and delay of the expressive language).

We also detected a rare variant in another gene of the NSD 
family, namely NSD3. The patient, case 19, is a syndromic 
5-year-old child with visual problems (strabismus, hyperme-
tropia, and color blindness) and ID. The presence of C1M 
was highlighted thanks to MRI that was performed to com-
plete the instrumental exams. We discovered in the patient 
two variants, one inherited by the healthy mother, in the 
ACSL4 gene associated with X-linked mental retardation-63 

https://varsome.com/gene/NSD1
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(#300387), which explains patient’s ID, and another one, a 
de novo inframe deletion in the NSD3 gene. Its SET domain 
has lysine methyltransferase activity. The fact that the vari-
ant we detected is de novo and very rare reinforces its role 
in C1M. The three bases deletion falls into the C-terminal 
block of ~ 700 amino acids which is shared with NSD1, also 
associated with C1M (Supplementary Fig. 4).

Heterozygous variants in SMYD3, a gene that encodes a 
histone methyltransferase and so far involved in tumorigen-
esis only (Giakountis 2017; Bottino 2020), were detected in 
cases 17 and 18. Case 17 showed a stop variant, and case 18 
a missense one, both inherited by highly symptomatic par-
ents and both rare. In both cases, the phenotype was compli-
cated by the presence of a de novo variant in a second gene, 
which perfectly matched with their clinical disorder. Indeed, 
case 17 with global developmental delay has a NALCN mis-
sense variant that matches with the CLIFAHDD syndrome 
(# 616266) overlapping patient’s phenotype, and case 18 
was with a PTCH1 frameshift variant associated with Gorlin 
syndrome (#109400). Actually, this patient who was enrolled 
because of trigonocephaly, 1 year later was with odontogenic 
keratocysts and developed a medulloblastoma, a tumor char-
acteristic of Gorlin syndrome. Altogether, in both the cases, 
the rarity of the SMYD3 variants and their segregation with 
C1M suggest their role in Chiari malformation. Of note, 
we detected a homozygous variant of SMYD4, an important 
paralogous of SMYD3 (GeneCards: https​://www.genec​ards.
org/cgi-bin/cardd​isp.pl?gene=SMYD3​) in two C1M broth-
ers, inherited by healthy parents (case 39). However, the 
high frequency of this variant, also at the homozygous state 
(gnomAD), makes dubious its association with C1M in this 
family, unless assuming a complex inheritance.

All the other lysine-methyltransferase gene variants we 
detected in our cohort were in single cases, either with syn-
dromic or isolated C1M. In case 34, a 3-month-old girl with 
scaphocephaly and delayed neurological development, we 
identified a de novo missense variant in KMT5A (or SET8/
PR-Set7). So far, no constitutional disturbances associated 
with variants of this gene have been identified. However, 
the finding that Kmt5a homozygous-null mice can only be 
recovered at 2.5 days post-conception (Oda 2009), might 
indicate that the paucity of KMT5A-associated disorders in 
humans is due to embryonic lethality. Indeed, the observed/
expected (oe) metric (gnomAD) equal to 0.06 indicates 
that KMT5A is with high probability LoF intolerant. The 
variant we detected was absent in gnomAD although a very 
rare variant at the same location, p.Gly50Ala, is considered 
possibly damaging (Polyphen) or deleterious (SIFT). The 
finding that KMT5A interacts with TWIST in promoting epi-
thelial–mesenchymal transition (Yang 2012), might explain 
patient 34 scaphocephaly. Indeed, null heterozygous variants 
of TWIST associates with unicoronal or bicoronal synostosis 
(Seto 2007).

In case 35, a 21-year-old female, we detected a com-
pound heterozygosity for missense variants of KMT2E 
(Supplementary Fig. 5), another histone methyltransferase 
gene. Each of the variants was inherited from a healthy 
parent. De novo heterozygous variants of KMT2E, most 
predicted to result in PTV, are associated with O’Donnell-
Luria–Rodan syndrome (#618512) characterized by global 
developmental delay with variably ID, and subtle dys-
morphic features, not present in the patient. One of the 
variants we detected in the patient (c.[2722C > T];[=] 
p.[Pro908Ser];[=]) is low-frequent (0.001673), with two 
homozygous cases reported in gnomAD. The other one 
is absent in gnomAD although a very rare variant at the 
same location, p.Ser1532Arg, (0.000003995 of allele fre-
quency) is given as deleterious at low confidence by SIFT. 
Patient 35 had a severe C1M, associated with platybasia 
and scaphocephaly and almost normal comprehension and 
behavioral skills, in the absence of any other clinical dis-
order. It is, therefore, logical to hypothesize that the situ-
ation of compound heterozygosity for KMT2E missense 
variants, a low frequent and a rare one, caused alterations 
only in a limited embryogenetic field, in this specific case 
the cranio–spinal junction. Indeed, there are numerous 
examples which demonstrate that the quantity of residual 
protein shapes the final phenotype, with rare biallelic LoF 
variants causing early lethality with aberration in numer-
ous embryonic fields, and the combination of a rare and 
a low-frequent variant causing malformations limited to 
specific organs (Ren 2020).

In case 21, a 2-year-old girl with microcephaly, psycho-
motor delay, hypotonia, seizures, brachydactyly, behavio-
ral and sleep disturbances, a de novo heterozygous variant 
of EHMT1, was detected. The gene codes a histone meth-
yltransferase. The variant is not represented in gnomAD 
and is already reported as one of the few missense changes 
associated with Kleefstra syndrome, that is usually caused 
by large deletions, frameshift, or nonsense mutations. A 
posteriori, the malformative picture of our patient fits 
well with that of Kleefstra syndrome. The biochemical 
characterization of this variant, made on the previously 
reported patient, demonstrated that it deteriorates the his-
tone methyltransferase-1 gene activity (Yamada 2018). It 
is noteworthy that in our patient the detection of the vari-
ant in a chromatin-remodeling gene, prompted us to inves-
tigate whether C1M, although never reported in Kleefstra 
syndrome, were present, as indeed it was the case (Fig. 1, 
case 21). Patients with Kleefstra syndrome are character-
ized by a specific alteration of the epimethylation signa-
ture, largely overlapping that of the Wiedemann–Steiner 
syndrome (WDSTS) (Aref-Eshghi 2020), associated with 
variants, mostly of truncating type, in KMT2A, encoding 
another lysine-methyltransferase. Indeed, the recent find-
ing that WDSTS is almost always associated with C1M 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=SMYD3
https://www.genecards.org/cgi-bin/carddisp.pl?gene=SMYD3
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(Giangiobbe 2020) suggests that cranio-vertebral junction 
malformation can also be present in Kleefstra syndrome 
although so far neglect.

W2. Histone demethylases

In contrast to histone methyltransferases, histone demethy-
lases erase the methyl groups from histone lysine resi-
dues, A number of neurodevelopmental disorders, includ-
ing both OMIM-codified and uncodified syndromes, are 
associated with heterozygous or hemizygous variants of 
the null type in histone demethylase genes (Swahari 2019). 
Moreover, as far as we know, C1M was never reported in 
alterations of any of histone demethylases.

In our C1M cohort, we detected variants in two his-
tone demethylases, namely KDM5B (patient 20) and 
KDM6B (patient 33), (Supplementary Fig. 6). Case 20, 
a 4-year-old male with scaphocephaly, ASD and psycho-
motor delay, had two missense variants, one de novo in 
KDM5B and another inherited by the healthy mother in 
the X-linked gene BCORL1. The latter was also detected in 
his twin brother presenting with mild psychomotor delay. 
The patient was the only one in the family with C1M. 
Accordingly, we attributed the Chiari malformation to 
the variant in KDM5B whereas the one in BCORL1 was 
presumably responsible for the mild neurodevelopmental 
disorder of both kids, as reported in Shukla–Vernon syn-
drome (#301029). KDM5B, also known as JARID1B, has 
been associated with an autosomal recessive ID syndrome 
(#618109), whereas a gain of function mechanism (GoF) 
has been suggested for the heterozygous missense variants 
detected in ID patients, (Lebrun 2018). In our case, the 
variant is de novo and falls within the BRIGHT domain, 
which contributes to the recognition of the H3K4me2 sub-
strate peptide (Johansson 2016), that suggests its pathoge-
netic role (Supplementary Fig. 6a).

Case 33 is with homozygous variant in KDM6B, inher-
ited by healthy parents, consisting in the duplication of two 
triplets, leading to three consecutive prolines outside from 
the functional domains but in a highly conserved region 
(Supplementary Fig. 6b). This variant should not impair the 
formation of the protein, as the gene constraint (gnomAD) 
indicates a strong probability of being LoF intolerant (oe 
score: 0.07). De novo heterozygous variants which are pre-
dicted protein truncating are associated with NEDCFSA 
(#618505), a neurodevelopmental disorder with coarse 
facies and mild distal skeletal abnormalities but apparently 
no C1M. In fact, our patient, with a totally different phe-
notype characterized only by C1M with severe holocord 
syrinx and mild ID, is homozygous for a variant that has 
no influence on heterozygous parents and, therefore, has a 
pathogenetic mechanism other than LoF.

W3. Histone acetyltransferases

Histone acetylation and deacetylation are essential parts in 
optimizing gene regulation. In our cohort, we detected two 
C1M cases with variants in histone acetyltransferase genes, 
namely cases 16 and 22 and none with variants in those 
encoding histone deacetylases.

Case 16, a 5-year-old girl, has a unique sign evocative 
of C1M, namely scoliosis that is reported in up to 20% of 
patients with Chiari 1 malformation (Kelly 2015). No sur-
gical treatment has been undertaken for C1M due to her 
severe psychomotor delay. The variant of this patient is an 
inframe de novo deletion in exon 31 of EP300 which gen-
erates the loss of five amino acids, Asn-Gln-Phe-Gln-Gln 
with the insertion of Lys. This variant was considered patho-
genic in a patient 42 in Lopez et al. (2018), presenting with 
a spectrum of signs fitting with Rubinstein–Taybi syndrome 
2 (#613684, RSTS2). In fact, EP300, together with its par-
alogous CREBBP, is a gene whose variants are causative of 
Rubinstein Taybi syndrome by a mechanism of haploinsuf-
ficiency. Our patient’s evaluation by the clinical genetics’ 
team did not highlight the facial characteristics of RSTS, 
such as the typical grimacing smile, neither broad and/or 
angulated thumbs nor halluces. Rather, her features, with 
short stature, microcephaly, renal anomaly, and scoliosis, 
recalled the phenotype of the Menke–Hennekam syndrome 
1 (#618332) associated with missense mutations in the distal 
exons of CREBBP (Banka 2019). The variant we found in 
patient 16 is a low-frequent one (0.3% among NFE, gno-
mAD), so that the assignment of a pathogenic role would 
require a second, hit that we were unable to identify even 
after exome reanalysis. Although C1M has been frequently 
reported in RBTS1, both for large deletions and for single-
nucleotide variants regardless of their location, it has never 
been detected in variants associated with EP300 (Parsley 
2011; Marzuillo 2013; Menke 2018). Moreover, RSTS-
associated variants in both CREBBP and EP300 produce a 
specific epigenetic signature (Aref-Eshghi 2020).

Case 22, a 6-year-old girl with a de novo ultra-rare LoF 
variant in BRPF1, presents ID, bilateral foveal hypoplasia, 
strabismus and ptosis, a phenotype consistent with IDDDFP 
(#617333: intellectual development disorder with dysmor-
phic facies and ptosis), recently associated with the BRPF1 
heterozygous variants, mainly nonsense or frameshift (Mat-
tioli 2017). Moreover, she suffered from recurrent head-
aches and MRI showed C1M with bulbar kinking (Fig. 1). 
Although brainstem hernia through the foramen magnum 
has never been reported in these patients, some were with 
C2–C3 spinal fusion of the cervical vertebrae. Indeed, mal-
formations of this type, which fall within the spectrum of 
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the Klippel–Feil anomaly, have been reported in cohorts of 
pediatric patients who attended the surgical treatment of 
symptomatic C1M (Tubbs 2003, 2011). BRPF1 encodes 
a component of the MOZ/MORF which has a histone H3 
acetyltransferase activity. The frameshift variant we detected 
should alter the interaction with KAT6A and KAT6B thus 
impairing BRPF1 in activating KAT6A for H3K23 propio-
nylation, as demonstrated for IDDDFP patients with variants 
comparable to that of patient 22 (Yan 2020). Not by chance, 
de novo truncating mutations in KAT6B, which cause a spec-
trum of disorders, include, although rarely, C1M (Kennedy 
2019), and more frequently craniosynostosis which in turn 
may cause Chiari malformation (Bashir 2017).

W4. DNA‑binding proteins acting on histone 
methylation

Case 32, a 12-year-old boy with frequent headache episodes 
and hypospadias, had a missense variant in SETBP1, inher-
ited from his father who was equally suffering from C1M and 
hypospadias. The SETBP1 protein is part of a group of pro-
teins that binds to certain regions of DNA to increase gene 
expression. De novo missense germinal variants of SETBP1 
in a 12 base pair hotspot of exon 4, encoding SETBP1 pro-
tein residues 868–871, cause both Schinzel–Giedion syn-
drome (SGS) and hematological malignancies. In fact, the 
variants of this hotspot can alter a degron, thus compromis-
ing the correct degradation of the SETBP1 protein and lead-
ing to its accumulation (Piazza 2013, 2018).

In patient 32, the variant, also in exon 4, precedes the 
mutation hotspot for over 100 base pairs and is reported 
as very rare in gnomAD. Patient’s phenotype, decidedly 
less dramatic than that of SGS, could really depend on the 
SETBP1 variant: missense variants upstream or downstream 
of the critical region can result in less severe disorders, 
hardly classifiable as SGS (see patients 28 and 29 in Acuna-
Hidalgo 2017). Hypospadias, which is present in both our 
proband and his father, is actually reported in most of the 
SGS cases. As for C1M, it is never reported in SGS patients 
although skull malformation, wide occipital synchondrosis, 
steep base are frequently reported in subjects with C1M.

W5. H1 linker histones

Histone H1 belongs to the fifth family of histones and binds 
to nucleosomes in several ways. Its interaction with the 
linker DNA strengthens the structure of the nucleosome, 
acting itself as histone linker (Fyodorov 2018). Like the 
core histones, H1 proteins undergo several post-translational 
modifications.

Case 31, an 8-year-old girl, had two variants in differ-
ent classes of the linker histone H1 protein family, each 
inherited by a healthy parent. Due to her motor tics which 

she had suffered from since the age of 5 years, MRI was 
required leading to the detection of syringomyelia. None 
of the two genes, which lie in the large histone gene clus-
ter on chromosome 6p22, have ever been associated with 
tics or Chiari malformation. Although the presence of tics 
has rarely been reported in C1M patients (Monzillo 2007; 
Berthet 2014), the two disorders are related as evidenced by 
the amelioration of symptoms after the surgical posterior 
fossa decompression, in both our and a similar case reported 
by Berthet et al. (Berthet 2014). One of them involves the 
HIST1H2BH gene, which currently is not associated with 
any of the OMIM-codified disorders, the other one involves 
the HIST1H1E gene whose de novo frameshift variants at 
the C-terminal tail associate with an ID syndrome, the Rah-
man Syndrome (#617537), characterized by a peculiar pat-
tern of growth, specific facial features, premature aging and 
a specific hypomethylation profile (Ciolfi 2020). Patient 31 
has no symptoms of Rahman syndrome, as expected by the 
location of the variant at the opposite end of the gene, i.e., 
in the N-terminal domain. The link between the two vari-
ants we detected, and the patient’s disorder is unclear. Both 
variants are extremely rare, which suggests their causality. 
On the other hand, the fact that the parents, each carrier of 
one of the variants, are healthy, suggests that it is precisely 
the co-presence of the two variants that determines their 
causality, thus suggesting some interactions between the two 
H1 linkers, either direct or mediated by common chaperone 
proteins (Flanagan 2016).

X. Genes involved in the sutures 
of the cranial bones or microcephaly

In our study, ten patients (cases 4, 5, 6, 9, 10, 11, 14, 15, 30, 
and 36) were with variants in genes known to be associated 
with craniosynostosis. The premature fusion of the cranial 
sutures is a phenotypically and genetically heterogeneous 
condition, which is syndromic in most of the cases. Variants 
in FGFR2, FGFR3, TWIST, EFNB1, TCF12 and ERF are 
detected but many other genes such as FGFR1 and ALX4 
are emerging as crucial to a proper suture of cranial bones 
(Wilkie 2017).

Cases 4, 5, and 6 were with ERF heterozygous variants. 
ERF encodes a negative regulator of ERK1/2, at the base 
of the pathway RAS-MAP kinase; its haploinsufficiency 
can results in the failure to inhibit RUNX2 function (Twigg 
2013). Variants in this gene are associated with syndromic 
(facial dysmorphism, speech delay, learning difficulties and/
or behavioral problems as well as C1M) or non-syndromic 
forms of craniosynostosis (Glass 2019).

Case 4, a 2-year-old girl was with global developmen-
tal delay, severe postnatal growth delay, hypotonia, micro-
cephaly, mandibular hypoplasia, fifth finger clinodactyly, 
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ataxia with clumsy, and unstable gait. Beside to the ERF 
variant inherited by the mother, she also had biallelic 
missense variants in PCNT, inherited by each of the par-
ents. The mother was complaining recurrent headaches. 
Accordingly, the ERF variant, a very rare one, was con-
sidered causative of the C1M disorder whereas the PCNT 
variants appeared to be responsible for the osteodysplas-
tic primordial dwarphism type 2 (#210720), which may 
present also with microcephaly, and mandibular hypo-
plasia. Case 5, a 7-year-old boy, was with scaphocephaly, 
speech delay and mild ID. His ERF de novo variant was a 
frameshift one, so far never reported. Case 6, a 7-year-old 
boy, was with mild ID and recurrent headache. His mis-
sense and rare ERF variant was inherited by the mother, 
who resulted to be also with C1M but without any obvious 
symptom.

Three patients (cases 9, 10, and 30) were with variants 
in genes belonging to the FGFR gene family. The deregu-
lation of the FGFR signaling network has been reported 
in different conditions, although the most well character-
ized are craniosynostosis and skeletal dysplasia (Miraoui 
2010).

Case 9, a 5-year-old boy, was with syringomyelia, fatty 
filum, and headache. The missense variant in FGFR3 was 
inherited by the mother who resulted to be affected by C1M 
and, indeed, she complained recurrent headache. The variant 
is very rare and falls in a transmembrane domain which is 
not involved in achondroplasia, craniosynostosis, or other 
skeletal FGFR3-associated dysplasia, although in some of 
these dysplasias Chiari malformations, of either type 1 or 
2, are reported (Awad 2014). Moreover, a specific variant 
of FGFR3, p.Ala391Glu, that associates with Crouzon syn-
drome and acanthosis nigricans (CAN, #612247), is also 
characterized by C1M (Rymer 2019).

Case 10, a 4-year-old girl, was with recurrent headache. 
She has a missense variant in FGFR1 that we assumed to be 
causative of C1M because it is very rare and was inherited 
by the father who resulted to be affected by C1M, although 
asymptomatic. FGFR1 specific GoF mutations are associ-
ated with craniosynostosis in Pfeiffer and Jackson–Weiss 
syndromes, not present neither in the proband nor in the 
father. Chiari malformations are described in some of them 
(Sargar 2017).

Case 30, a 7-year-old boy with syringomyelia, mild 
ID and dizziness, was with three missense variants, one 
in FGFR2, a second one in SETDB1, and a third one in 
HIST1H1D, the first two inherited by the mother also with 
C1M, headache and dizziness, and the third inherited by 
the healthy father. The FGFR2 variant seems to be mainly 
responsible for the C1M present in the proband and his 
mother. Indeed, variants in this gene have been associated 
with Chiari malformation in patients with craniosynostosis 
(Twigg 2015; Coll 2019).

Two patients (cases 15 and 36) were with missense vari-
ants in ALX4 who is a homeodomain-like transcription fac-
tor. Heterozygous variants of this gene, leading to GoF and 
LoF, associate with craniosynostosis (#615529) and parietal 
foramina 2 (#609597), respectively, whereas biallelic vari-
ants are reported in frontonasal dysplasia (#613451).

Case 15, a 12-year-old girl, suffered from syringomyelia, 
stiff neck and pyramidal syndrome characterized by tremor 
in the legs, which started at the age of about 6 years. Of her 
two variants that we have detected, that in ALX4, a missense 
one, was inherited by the symptomatic C1M mother, while 
the TOR1A variant, a PTV one, was inherited by the father 
who, in retrospect, was affected by the same pyramidal syn-
drome of the proband, with strong general tremor since the 
age of 17 years diagnosed as juvenile Parkinson’s disease. 
Indeed, TOR1A variants are associated with dominant tor-
sional dystonia 1 syndrome (DYT1, #128100).

Case 36, an 11-year-old girl, was with persistent congeni-
tal torticollis which suggested the MRI investigation. We 
found two missense variants in ALX4 and DKK1, both inher-
ited from the mother who suffered from recurrent headache. 
DKK1 is involved in the WNT-signaling cascade, with a role 
in the formation of the head during mouse embryogenesis 
(GeneCards, https​://www.genec​ards.org/cgi-bin/cardd​isp.
pl?gene=DKK1). Two different DKK1 missense variants, 
both falling in domain 1, are reported in two familial cases 
of C1M (Merello 2017). The DKK1 variant in our family, 
which falls between domains 1 and 2, supports its role in 
C1M, although it cannot be excluded that also the variant in 
ALX4 has had a causative role.

The fact that both are inherited from the symptomatic 
mother (recurrent headache) supports their role, but does 
not allow us to understand which of the two (or if both) is 
involved in the Chiari malformation.

Case 12 showed two variants in two different genes, namely 
ZIC1 (inherited from the father) and ZSWIM6 (inherited from 
the mother). Heterozygous mutations in ZIC1 are associated 
with coronal craniosynostosis-6 (CRS6-#616602) and some 
cases can have impaired ID with Dandy–Walker malforma-
tion as well as spina bifida occulta (Blank 2011). ZIC1 GoF 
mutations are described in subjects with bicoronal synostosis 
and calvarial abnormality (plagiocephaly), with abnormal con-
formation of the posterior fossa associated with mild delayed 
development (Twigg 2015). Our case presented plagiocephaly, 
microcephaly, C3–C4 synostoses, clumsy movements, hyper-
activity, and tics (successfully treated with Risperdal). Many 
of these features are described in patients with NEDMAGA 
condition (#617865) caused by heterozygous mutation in 
the ZSWIM6 gene (Palmer 2017). At the moment, there are 
very few cases reported and the exact pathogenetic mecha-
nism linked to variants in this protein is not well known. We 
assume that the neurological features of our case were deter-
mined by the variant in ZSWIM6 while the ZIC1 variant was 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=DKK1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=DKK1
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associated with the defect of the posterior cranial fossa, in 
turn responsible for C1M, although a synergistic effect of the 
two variants was not excluded. In fact, none of the parents 
presented C1M, although the mother experienced difficulties 
with learning and a delay in language, presumably related to 
the ZSWIM6 variant.

In case 13, WES revealed two compound heterozygous 
variants within the CENPE gene, inherited from healthy 
parents. This gene encodes for a centrosomal protein 
that accumulates in the G2 phase of the cell cycle and is 
required for stable spindle microtubule capture at kineto-
chores (GeneCard, https​://www.genec​ards.org/cgi-bin/cardd​
isp.pl?gene=CENPE​). Diseases associated with CENPE 
include Microcephaly-13 (#616051). Our patient is a female 
of 10 years of age, with microphthalmia, microcephaly, 
short stature, ID and nasal glioma. Recent studies provided 
further knowledge about genes involved in microcephaly 
and few homozygous variants have been found in CENPE 
(Mirzaa 2014; Ahmad 2017). Furthermore, CENPE pro-
tein is highly expressed in some tumors including glioma 
(Rahane 2019) and indeed our case was with nasal glioma. 
Although our case is the first one in which biallelic vari-
ants in this gene are associated with C1M, we assume that 
the microcephaly and the associated posterior fossa mal-
formation was the cause of C1M (Niesen 2002). In fact, 
the possibility that C1M is secondary to tumor formation 
as suggested (Kular 2020) cannot be formally ruled out 
although it seems unlikely since nasal glioma usually has 
no connection with the intracranial brain.

Case 14, a 13 year-old-girl with midfacial hypoplasia, 
GH deficiency, short stature and ID, presented biallelic mis-
sense variants in the GLI2 gene. One of these is very rare 
(0.0009% of heterozygous people reported in gnomAD) and 
was inherited from her symptomatic mother (recurrent head-
ache), while the other (inherited from the healthy father) has 
never been reported. GLI2 is a zinc-finger transcription fac-
tor involved in the Sonic Hedgehog pathway, and GLI2 vari-
ants have been reported in holoprosencephaly (HPE) and/or 
holoprosencephaly-like (HPEL) phenotypes with pituitary 
anomalies and postaxial polydactyly (Bertolacini 2012). A 
link between HPE and craniosynostosis is reported as well 
as between craniosynostosis and C1M (Muenke 2001). To 
our knowledge, no biallelic inheritance has been reported 
for GLI2, but based on the segregation of the variants in 
our family, the maternal one [c.2117C > T] appears causa-
tive of C1M. At present, two different GLI2 variants in cis, 
c.3351C > A and 3555delC have been reported in a patient 
with C1M and mild sign of HPE, inherited from an appar-
ently normal mother (Arnhold 2015), indeed suggesting a 
role of GLI2 in C1M.

Y. Genes associated with neural tube defects 
(NTDs)

In three cases (37, 38, and 40), all with isolated C1M, we 
detected variants in two genes, namely VANGL1, which 
belongs to the planar cell polarity (PCP) core, in cases 37 
and 40, and FUZ, a PCP effector gene, in case 38, both 
allowing coordination of cell movements during embryonic 
morphogenesis (Juriloff 2012). Rare germline heterozygous 
missense variants in both genes, as well as somatic ones in 
VANGL1, have been associated with isolated neural tube 
defects (Seo 2011; Tian 2020). Indeed, most of these vari-
ants behave as hypomorphic or conditional factors predis-
posing to the failure of the closure of the neural tube, as 
suggested by both their possible presence also in healthy 
relatives and the known contribution to the defect of nutri-
tional factors such as folic acid (Bartsch 2012).

Although none of our patients was affected by NTD, a 
link between neural tube defects and craniospinal junction 
alteration is evident, since myelomeningocele, a type of 
NTD, is often associated to type II Chiari malformation with 
brainstem herniation and a towering cerebellum in addition 
to the herniated cerebellar tonsils and vermis (Kular 2020).

In patient 37, a 2-year-old girl with severe signs of Chiari 
I malformation such as sleep apnea, dysphagia, and ataxia 
with poor coordination and unsteady walk, the heterozygous 
missense variant of VANGL1, p.Glu347Ala, was inherited 
from the father who had C1M associated with recurrent 
headaches. The variant, interpreted as possibly damag-
ing and deleterious by Polyphen and SIFT, respectively, is 
relatively frequent in the African population in which it is 
also present in the homozygous state, while it is extremely 
rare in other populations (0.0001238 among NFE to which 
the patient belongs: gnomAD). The variant is found in the 
carboxylic terminal of the protein, essential for its binding 
to the plasma membrane to make it available to the other 
PCP core proteins (Iliescu 2014). The functional study of an 
NTD variant that fell within the same domain (p.Arg374His) 
showed that the protein localized throughout the cytoplasm, 
rather than being enriched in the plasma membrane. It is 
quite conceivable that the occurrence of a defect in the clo-
sure of the neural tube rather than in the range of the C1M 
depends on the residual amount of protein still able to locate 
correctly on the cell membrane.

In patient 40, a 3-year-old-boy with severe stuttering, the 
VANGL1 missense variant, p.Ala116Thr, was homozygous 
with heterozygous healthy parents. This allele, rs4839469, 
in its genotype GC (Alanine versus Proline) much more than 
in the GA one (Alanine versus Threonine), was associated 
with increased risk of NTDs in a Han population of North-
ern China (Cai 2014).

https://www.genecards.org/cgi-bin/carddisp.pl?gene=CENPE
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CENPE
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In conclusion, even if the world-wide high frequency of 
the variant makes dubious its role in C1M, we may assume 
VANGL1 behaves as a susceptibility factor not only in NTDs 
but also in C1M occurrence.

Case 38, a 10-year-old girl with mild trigonocephaly 
and brachydactyly, has a missense variant in the FUZ 
gene, inherited by the mother who was also with an almost 
asymptomatic C1M. FUZ, is a PCP effector involved in 
cilium biogenesis, whose protein interacts, among others, 
with VANGL1 (https​://www.unipr​ot.org/unipr​ot/Q9BT0​
4). Similarly, missense variants of FUZ were reported in 
association with the susceptibility to all types of NTDs, 
including Arnold–Chiari malformation type II (Seo 2015).

However, FUZ has also a role in the general skeletal 
development as recognized in knockout mice (Gray 2009) 
and, recently, in a 24-week fetus where homozygosity for 
a LoF variant was associated with a long, narrow chest, 
moderately short ribs, short long bones, hypoplastic tib-
iae and extreme polydactyly of all four limbs, whereas 
the carrier parents were healthy (Zhang 2018). The mis-
sense variant of patient 38, which is evaluated as probably 
damaging (Polyphen) and deleterious (SIFT), is very rare 
(0.002%, gnomAD). Indeed, this observation and the pres-
ence of C1M in her mother, who carries the same variant, 
suggest the role of the FUZ variant in her disorder.

Z. RASopathies

RASopathies are a group of syndromes caused by germline 
variants in genes that encode components or regulators of 
the Ras/mitogen-activated protein kinase (MAPK) path-
way (Liao 2019). C1M is not typical of these syndromes, 
although it has been sometimes reported. We detected two 
cases (cases 7 and 8) with variants in RASopathy genes 
namely BRAF and CBL, respectively.

Case 7, a 20-month-old girl, presented with a missense 
variant in the BRAF gene, inherited from her asympto-
matic mother, with C1M. BRAF heterozygous missense 
variants are associated with the Cardiofaciocutaneous syn-
drome (CFCS-#115150), characterized by cardiac abnor-
malities, distinctive craniofacial appearance, and cutane-
ous abnormalities. C1M has been reported in a number of 
cases (Rauen 2016).

The c.430G > T variant of our patient was not reported 
in the literature and, at the time of diagnosis, no clinical 
signs of CFCS were recognized, as in her mother. This 
variant falls into a domain associated with different types 
of tumors and indeed our patient was with nasal glioma 
(Turski 2016).

Case 8, a male of 9 years of age, showed ID, short stat-
ure, hypertelorism, epicanthal folds and café-au-lait spots; 

molecular analysis discovered a missense variant in the CBL 
gene (Tyr371Cys), that is known to be associated with Noo-
nan syndrome (NS-#613563). Retrospectively, many signs 
could be attributed to the Noonan syndrome, albeit without 
the typical facial gestalt. Similarly, Martinelli et al. reported 
one case without the Noonan facial gestalt and C1M hav-
ing a CBL variant located in the same domain of our case 
(Lys382Glu) (Martinelli 2010).

Final conclusion

This study shows two main points:

1.	 C1M frequency is largely underestimated. Indeed, in 
21 of our cases, the same variant of the C1M proband 
was detected in one parent who had an MRI positive for 
C1M. In most of the cases, the carrier parent showed 
signs of C1M, mainly recurrent headaches, which, how-
ever, were not a real impediment to an independent life 
lived without particular restriction. In fact, most of car-
rier parents were unaware of being affected by the same 
disorder of their kid. Although it is possible that with 
transition to adult life there is a physical and psychologi-
cal adaptation to the damage of the malformation, the 
good health of the parent poses a warning to carry out 
invasive interventions. Of course, a different expression 
of the variant between parents and probands cannot be 
discarded.

2.	 C1M has a strong genetic basis, with Mendelian inherit-
ance in most of the cases and a more complex inherit-
ance in a few. The latter condition is essentially related 
to genes involved in NTDs, already known to result by 
a combination of multiple genes and environmental fac-
tors.

Genes associated with C1M are of two types: those 
directly associated with the development of skull and 
cranio-vertebral junction (listed in categories X, Y, and 
Z) and those involved in chromatin remodeling (category 
W). The impact of chromatin-remodeling genes on the 
formation of the cranio-vertebral junction is not clear. 
Episignatures of patients with syndromes where C1M 
has sometimes been reported show varying degrees of 
abnormal methylation (Aref-Eshghi 2020). For example, 
while SETD1B variants in the SETD1B-related syndrome 
result in a strong hypermethylated signature, NSD1 vari-
ants associated with Sotos syndrome display remarkable 
hypomethylation. In contrast, intermediate episignature 
alteration was detected in Wiedemann–Steiner syndrome, 
Kleefstra syndrome and Rubinstein–Taybi syndrome 
where C1M can be present. This indicates that the cor-
rect formation of the cranio-vertebral junction requires 

https://www.uniprot.org/uniprot/Q9BT04
https://www.uniprot.org/uniprot/Q9BT04
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the interplay of multiple genes, each of them activated or 
silenced in a specific space–time span of embryogenesis.

In most of the cases, the gene variants in chromatin-
remodeling disorders are de novo, heterozygous and pro-
tein truncating, suggesting that haploinsufficiency is the 
predominant mechanism for the associated diseases. In 
contrast, in our isolated C1M cases, we mainly detected 
inherited variants of missense and inframe type that do not 
seem to destabilize the entire protein function and do not 
jeopardize the survival of the embryo. Although we have 
not performed methylation tests and the global expression 
profile in fibroblasts from three probands and their car-
rier parent did not reveal any alteration (supplementary 
methods), we consider the chromatin-remodeling variants 
as causative of C1M because they (i) segregated with an 
affected parent, (ii) were at low frequency in contrast to 
the relative frequency of the C1M malformation, and (iii) 
always affected conserved domains and were considered 
pathogenic or likely pathogenic by the prediction tools.

In general, in our study, no associations emerged 
between recurrent malformations related to C1M and 
specific gene variants. In particular, there are no clinical 
signs that are pathognomonic of a particular gene/variant, 
apart from in cases with known syndromes. However, the 
individual cases with variants on the same gene are too 
few to identify any distinctive features. In addition, the 
surgery treatment resulted in radiological improvements 
of the C1M, regardless of the causative variant.

Our results also highlight that in syndromic cases, the 
presence of C1M was not an accidental finding but rather 
the effect of the variant in different tissues and timing of 
embryogenesis. This is clearly shown by the variants of 
NSD1 in cases 1 and 2, who were later assigned as affected 
by Sotos syndrome, and the variants identified in ERF, 
FGFR1, and FGFR3, all genes associated with craniosyn-
ostosis and, rather frequently, Chiari malformation.

This study also showed that there is still much space for 
the attribution of the causative gene(s) to non-severe and 
non-rare disorders. To this end, it becomes imperative to 
increase the numerousness of patients with that certain 
condition, extend molecular and clinical investigations to 
family members, and take into consideration also low-fre-
quent, benign, or probably benign variants even if present 
in apparently healthy parents.
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