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Present-day and next-generation accelerators, particularly for applications in driving wakefield-based
schemes, require longitudinal beam shaping and attendant longitudinal characterization for experimental
optimization. Here we present a diagnostic method which reconstructs the longitudinal beam profile at the
location of the wakefield-generating source. The methods described derive the longitudinal profile of a
charged particle beam solely from measurement of the time-resolved centroid energy change due to
wakefield effects. As such, they are insensitive to the beam losses in post-interaction transport often found
in common diagnostics. The reconstruction technique is based on a deconvolution algorithm that is fully
generalizable to any analytically or numerically calculable Green’s function for the wakefield excitation
mechanism. This method is shown to yield precise features in the longitudinal current distribution
reconstruction. We demonstrate the accuracy and efficacy of this technique using simulations and
experimental examples, in both plasmas and dielectric structures, and compare them to experimentally
measured longitudinal beam profiles. The limits of resolution and applicability to relevant scenarios are
also examined.
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I. INTRODUCTION

Advanced acceleration techniques based on beam-driven
wakefields have produced unprecedented results in terms of
achievable gradients, exceeding the GeV/m threshold in
dielectrics [1], and extending up to 10’s of GeV/m in
plasmas [2]. To go beyond proof-of-concept, wakefield
research now looks to optimize such acceleration schemes.
In this regard, maximizing the efficiency of energy transfer
to the wakefield acceleration process requires breaking the
symmetry in the wake-driving beam distribution by pre-
cision manipulation of its longitudinal profile [3]. The
prompt and precise characterization of the longitudinal
profile is therefore critical for performance enhancement in
wakefield accelerators. There are a myriad of techniques to
measure the bunch profile of high brightness, picosecond-
scale beams, including the use of transverse deflecting

cavities [4], electro-optic sampling [5], and interferometry
of emitted radiation [6–8].
Many diagnostic techniques incorporate beam-collimat-

ing elements in order to improve measurement resolution
by restricting transverse acceptance of the beam, thus
removing possible resolution degradation due to the beam’s
betatron size. However, such modified diagnostics may
observe a distorted view of the beam distribution due to
time-dependent sampling biases arising from strong corre-
lations between the longitudinal profile and the transverse
beam size. These issues are particularly prevalent in large-
amplitude wakefield acceleration experiments, which, due
to the presence of strong transverse forces, [9], sample a
partial beam distribution at the diagnostic location. As
recovery of the full beam current is needed, such effects are
quite damaging to the efficacy of longitudinal beam shape
diagnostics.
In order to circumvent these issues, we have developed a

method to reconstruct the beam current profile at the
wakefield source that relies only on the beam mean-energy
measurement. The measured, time-dependent energy per-
turbations to the beam core, which due to the transverse
uniformity of the longitudinal wakefield in the region of
interest, is not affected by sample biasing due to transverse
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beam propagation. This is in contrast with direct current
measurements. The time-resolved mean energy is acquired
with a commonly employed single-shot longitudinal phase
space (LPS) diagnostic, consisting of a deflecting cavity and
dipole magnet spectrometer [10]. This measurement, along
with knowledge of the single particle wakefield inside the
structure or plasma, allows one to create a high-fidelity
reconstruction of the bunch profile at the wakefield source,
as seen in Fig. 1. This measurement of the energy centroid is
differential (made via a comparison between the time
dependent mean energy when the wakefield source is
present or not), so in the absence of significant longitudinal
motion within the distribution it accounts for downstream
optics and external sources of energy change. This enables
acquisition of the bunch profile at the wakefield source in
cases where transverse beam optics constraints (i.e., aper-
tures) prevent accurate, direct current profile measurements.
Further, and most strikingly, the application of the

reconstruction method yields profiles with a high degree
of precision and even subresolution features beyond the
diagnostic threshold, particularly when the wake functions
of the source are well-understood. In the examples we
employ to demonstrate these methods, we show that when
these reconstructed profiles are utilized, the predicted wake-
field response is accurately corroborated by the measured
effects in the drive and witness bunches, resulting in a
comprehensive and self-consistent description of the wake-
field interaction. Even in cases where the measured current
profile is resolvable with other methods, our reconstruction
technique provides a detailed cross-check that can yield
further physical insight into the interaction, without the need
to introduce extra diagnostic instrumentation.
The reconstruction method is employable over a wide

range of conceivable wakefield interaction scenarios.
Beyond acceleration, beam-driven wakefields are already
used for phase space manipulations, such as beam com-
pression [11], linear ramp shaping [12] or dechirping
[13–15]. The information gleaned from the manipulating
media can doubly yield additional detailed bunch profile

information by application of the signal reconstruction
method presented here.

II. BACKGROUND

The longitudinal profile reconstruction technique
discussed here is based on a signal deconvolution of
time-resolved energy change measurements due to the
wakefield. For a longitudinal wakefield, the drive beam
initially experiences deceleration specific to the nature of
the modes supported by the medium (dielectric, corrugated
structure, or plasma). This manifests itself as a time-
dependant change in beam energy, ΔU, which is propor-
tional to the induced wake potential, WðsÞ, which is
defined as the convolution of the longitudinal beam
distribution and the wake function,

WðsÞ ¼
Z

s

0

ρzðs̃ÞGzðs − s̃Þds̃; ð1Þ

where ρzðsÞ is the longitudinal beam distribution, and
GzðsÞ is the Green’s function representing the longitudinal
wake function, or longitudinal wake potential of a point
particle [16]. Equation (1) is valid under the assumption of
a pencil-like beam, where the transverse RMS beam size σr
is small compared to either the plasma wavelength or
vacuum channel size, in the case of a wakefield (e.g.,
dielectric or metallic) structure. With known functions
WðsÞ and GzðsÞ, a practical method of solving for ρzðsÞ
in this integral equation involves the application of Laplace
transformations.
We define the forward and inverse Laplace transforma-

tions as [17,18]

L½fðsÞ� ¼
Z

∞

0

fðsÞe−psds ð2Þ

and

L−1½FðpÞ� ¼ 1

2πi
lim
R→∞

Z
κþiR

κ−iR
espFðpÞdp; ð3Þ

where κ is a real number such that the line p ¼ κ in the
complex plane avoids singularities of FðpÞ. According to
the convolution theorem for the Laplace transformation
[17], the Laplace image of the convolution integral with the
variable upper limit is equal to the product of the Laplace
images of the functions under the integral

L½ρz �Gz� ¼ L½ρzðsÞ�L½GzðsÞ�: ð4Þ

Here � refers to a convolution, as shown in Eq. (1)
ρz �Gz ≡

R
s
0 ρzðs̃ÞGzðs − s̃Þds̃. After rearrangement, the

charge density, ρzðsÞ, can be solved for by applying an
inverse Laplace transformation on the quotient, as

FIG. 1. Sketch of an example wakefield accelerator beamline
(beam travels to the left) with a single stage wakefield accelerator
and a single shot longitudinal phase space diagnostic. The
reconstruction algorithm provides an accurate beam profile
determination at the wakefield source, without sampling biases
resulting from collimation.
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ρzðsÞ ¼ L−1
�
LðWÞ
LðGzÞ

�
: ð5Þ

In practice, the wake potential, proportional to the time-
resolved energy change, is measurable with high precision,
and the Green’s function is analytically calculable for many
types of media.
In the generalized case when the Green’s function GzðsÞ

is given numerically, as are the measured values of WðsÞ,
one can solve Eq. (1) approximately by replacing the
convolution ρz �Gz with the quadrature formula on a given
mesh sn ¼ nh, with the mesh step h. The problem of
Eq. (1) in this case is reduced to a linear system

WðsnÞ ¼
Xn
j¼m

AmρzðsmÞGzðsn − smÞ ð6Þ

that should be solved for ρzðsmÞ. Here, Am are coefficients
of the chosen quadrature formula. At this point, Eq. (5) and
Eq. (6) are completely general, and the details of the beam
reconstruction are dependent on the specific Green’s
function.
Hence, a longitudinal beam diagnostic method can be

devised by selection of the medium with a well-known
longitudinal wake response and measurement of the beam
energy change due to the self-induced wakefield. In many
applications, such as wakefield acceleration or dechirping,
the manipulating medium already provides the necessary
change in beam energy to make the concept viable. It is also
notable that this method provides an independent measure
of beam charge, for proper normalization ofGzðsÞ, with the
integral

R
ρzðsÞds ¼ Q, where Q is the total charge.

In the following sections of this work, we explore the
implications of this technique with specific application to
reconstructing the bunch profile using different examples.
First, we examine the simple case of a single mode wake
function, which can be used in certain (linear and quasinon-
linear) cases of plasma wakefield acceleration [19] and a
limited scenario in dielectric wakefield acceleration. Then
we extend the analysis to a more general approach that
incorporates multiple modes, as well as arbitrary Green’s
functions, which are essential for cases where the single-
mode description cannot capture the complete wakefield
response. Experimentally derived examples of recon-
structed beam profiles are presented using time-resolved
energy measurements from plasma and dielectric wake-
field acceleration experiments at the Argonne Wakefield
Accelerator [20]. Further, we examine the fidelity of the
diagnostic scheme under different situations and in the
presence of measurement uncertainties.

III. SINGLE MODE DESCRIPTION

In the first case, we consider a single mode Green’s
function

GzðsÞ ¼ G0 cosðk0sÞ; ð7Þ

where k0 is the wave number associated with the funda-
mental mode. We then apply Eq. (5) to derive the
longitudinal profile ρzðsÞ. Consideration of this simple
wake function is relevant for cases such as a dielectric
wakefield structure that can be optimized for a single-mode
operation [21,22], or quasilinear plasma wakefields [19].
The Laplace image of Eq. (7) is

L½G0 cosðk0sÞ� ¼ G0

p
p2 þ k2

: ð8Þ

The longitudinal profile is then determinable from the
inverse Laplace transformation as prescribed by Eq. (5)

ρzðsÞ ¼ L−1
�
W̄ðpÞ k

2
0 þ p2

G0p

�
ð9Þ

where W̄ðpÞ≡ L½WðsÞ�. By using the linearity of the
Laplace transformation, we can expand Eq. (9) to obtain

ρzðsÞ ¼
1

G0

L−1½pW̄ðpÞ� þ k20
G0

L−1
�
W̄ðpÞ
p

�
: ð10Þ

We notice that

L½W0ðsÞ� ¼ pW̄ðpÞ −Wð0Þ ð11Þ
and

L
�Z

s

0

Wðs̃Þds̃
�
¼ W̄ðpÞ

p
: ð12Þ

Here prime in W0ðsÞ denotes the total derivative.
Without loss of generality we chose the origin in s such

thatWð0Þ ¼ 0. Finally, with Eq. (11) and Eq. (12), Eq. (10)
can be written as

ρzðsÞ ¼
W0ðsÞ
G0

þ k20
G0

Z
s

0

Wðs̃Þds̃: ð13Þ

As a check, in the simple case of constantWðsÞ, Eq. (13)
represents a beam current density distribution that increases
linearly, accompanied by a short current spike at the head of
the beam. This ramped beam is a familiar scenario found in
theoretical treatments of beam-driven wakefield acceler-
ation (e.g., [3,23–27]).

A. Example: Plasma wakefield acceleration

As an example of the reconstructionmethod’s applicability
we apply it in the context of longitudinally ramped bunches,
produced by emittance exchange (EEX) [28], interactingwith
a plasma wakefield accelerator to obtain a high transformer
ratio, as described in Ref. [19]. In this case, several factors
unique to this experiment (discussed later on) prevent
acquiring an accurate measurement of the beam profile.
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In order to apply the reconstruction, we first consider that
the experimental conditions give rise to a regime where the
wakefields within the bunch are described by linear plasma
wakefield theory, where the beam density nb is much
smaller than the plasma density np. The perturbation to the
plasma density is given by [29,30].

∂2n1ðsÞ
∂2s2

þ k2pn1ðsÞ ¼ −k2pnbðsÞ: ð14Þ

In this experiment, the beam is much narrower than the
plasma skin-depth k−1p ¼ c=ωp, and so the longitudinal
wakefield is nearly constant across the radial extent of the
beam. Furthermore, the ramped beam profile causes a
transition to the quasi-nonlinear regime, so the radial depend-
enceof the longitudinalwakedisappears completely.Thus the
representative Green’s function is given by the familiar form
seen in Eq. (7) where k0 ¼ kp is the characteristic plasma
wave number. By using kp calculated from a given plasma
density, and the experimental measurement of the time
dependent energy gain as a proxy for the average wakefield
in the plasma, we reconstruct the longitudinal beam profile
inside the plasma using Eq. (13).

Some comments on the validity of this method as applied
to the “quasi-nonlinear” case are warranted. A fully non-
linear plasma blowout is due to short (kpσz < 1), high
charge beams [31]. However, the experiments reported in
Ref. [19] used a long triangularly shaped beam to reach
blowout conditions through an extended build-up of beam
charge density over several plasma wavelengths. In this
case, the maximum beam charge density is larger than the
unperturbed plasma density. With this strong perturbation,
electrons are expelled from the beam channel, creating a
rarefied “bubble” region around the beam where no plasma
electrons are present. However, the transverse motion of the
plasma electrons is nonrelativistic due to the adiabatic
excitation method, and the maximum bubble radius, rm, is
small compared to the plasma skin-depth. As a result, the
longitudinal near-axis wakefield inside the drive bunch is
dominated by fields generated by the population of plasma
electrons reacting to the effectively linear perturbation to
the plasma density outside the bubble [32]. Thus the
longitudinal wakefield response can be characterized as
nearly linear, and can be approximated by a single mode
Green’s function, of the same longitudinal dependence as
the linear regime limit.
This effect is demonstrated in Fig. 2 through the use of the

particle-in-cell code WARP [33]. In the simulation, a linearly
ramped beam with parameters matching those in Ref. [19],
and displayed in Table I, was injected into a uniform plasma
with a density n0 ¼ 1.3 × 1014 cm−3 (λp ¼ 3 mm). A
longitudinal slice of the simulation is shown in Fig. 2(a)
along with the on-axis longitudinal wakefield. Inside the
drive beam, the wakefield is linear in nature as evidenced by
its sinusoidal dependence on s (see Fig. 2(a) inset). In
Fig. 2(b), the single mode reconstruction [Eq. (13)] tech-
nique is used to reconstruct the beam profile from the
simulatedwakefield. The reconstructed bunch profile shows
excellent agreement with the simulated bunch profile,
including reproduction of fine features such as the curvature
at the beam head due to defocusing forces experienced by
the beam before the bubble region fully develops.
It is important to stress that the reconstruction using a

single mode Green’s function is only accurate within the
drive beam for these experiments. In the beam region, the
wakefield contribution is dominated by the quasilinear
plasma perturbation outside the bubble region. After the
drive electron density suddenly drops to zero (in a distance
< k−1p ), the bubble collapses with an attendant nonlinear
response, and the wakefield is no longer approximated by a
single, linear mode response.

TABLE I. Parameter for the WARP simulation and experiment from the Ref. [19].

Beam energy Charge Beam length Beam spot size Plasma density Plasma length

40 MeV 1.8 nC 6 mm 200 μm 1.3 × 1014 cm−3 8 cm

FIG. 2. WARP simulation of a ramped beam after propagating
34 mm through a uniform plasma. (a) Longitudinal cross-section
of the beam (blue) and plasma (grey) electron densities with the
on-axis longitudinal electric field. Inset: magnified view of the
on-axis longitudinal wakefield. (b) Comparison between PIC
simulated longitudinal current distribution (blue, dashed) and the
single mode bunch reconstruction (red, filled) from the simulated
wakefield Ez.
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Results from the use of our reconstruction method for the
quasi-nonlinear experimental case described by [19] are
plotted in Fig. 3. In this particular experiment at the
Argonne Wakefield Accelerator, an emittance exchange
beamline [28] was used to shape the temporal profile of the
beam into two different ramped profiles, one without any
leading perturbation and one with a parabolic head pertur-
bation. Here, the time-dependent energy change of the
drive and witness bunches was measured along with the
longitudinal current distribution using a single-shot longi-
tudinal phase space diagnostic (Fig. 1) [10]. A 100 micron
wide horizontal slit, placed immediately upstream of the
diagnostic was used to improve the temporal resolution of
the measurement.
The reconstructed bunch profile (shown in red) is created

by following the steps listed here. The time-dependent
wakefield was extracted from the observed beam energy
change due to the wakefield interaction averaged over the
8 cm long plasma column [34]. The plasma wave number,
kp, is calculated by measuring the distance between
adjacent minima in the wakefield in the drive region,
which corresponds well to the plasma wavelength
2π=kp. We apply the reconstruction method [Eq. (13)] to
the region before the first wakefield maximum, where
simulations indicate that the beam experiences the quasi-
nonlinear regime. In the first case, Fig. 3(a) the
reconstruction shows a bunch with a near-linear ramp over
roughly two plasma periods along with a short tail. The
development of a tail is consistent with beamline dynamics
simulations as a symptom of the emittance exchange
shaping process and strong focusing before the plasma

stage [35]. In Fig. 3(b) we observe that the reconstructed
beam profile has a linear ramp with a parabolic head pertur-
bation.Thisperturbationhasbeenshownanalytically toflatten
the decelerating wakefield inside the drive [24] when the
perturbation stretches over a plasma wavelength, which is
consistent with our observations of the wakefield itself.
The predicted single mode wakefield from the measured

current distribution is also plotted in Fig. 3. This was
calculated by convolving the measured current profile with
the single mode Green’s function Eq. (7) where k0 is
derived from the measure plasma wavelength and the
amplitude G0 is set to match the observed maximum
decelerating wakefield.
The experimentally measured current profiles show

significant differences when compared to the reconstructed
profiles, demonstrating the sampling biases when collima-
tion is used, which is an expected result due to three factors.
First, as a consequence of the emittance exchange bunch
shaping process, longitudinal slices of the beam have
varying vertical profiles, where the bunch slice that con-
tains the highest current is also the largest transversely [35].
Second, the presence of strong transverse forces in the
multiperiod plasma wakefield response, results in nonuni-
form focusing along the drive bunch length, which when
propagated through the diagnostic beamline, leads to
further longitudinal-transverse correlations. As a result of
these factors, when using horizontal collimation to improve
the temporal resolution, we sample only a small portion of
the vertical beam distribution, which strongly biases the
faction of charge collected from each temporal slice.
Finally, significant sources of emittance growth before
the diagnostic exist, both inside the plasma as a result of
density mismatch [36] and multiple scattering [37] in
beryllium windows used to separate the plasma from the
rest of the beamline. This accentuates any differences in
vertical beam slice size relative to the collimator dimen-
sions. These factors explain why the measured, normalized,
current profiles shown in Fig. 3 show greater relative
current density in the beam head and smaller current
density in the tail, when compared to the reconstruction.
Furthermore, the predicted wakefield from the measured
current distribution clearly does not match the observed
wakefield, casting further doubt on the accuracy of the
measured current profile. The reconstruction method relies
only on the differential centroid energy measurement, thus
providing a profile characterization free of these artifacts
and is consistent with the observed wakefield.

IV. MULTIMODE DESCRIPTION

The single-mode reconstruction technique works for a
specific subset of problems, and is extremely useful for a
rapid profile determination. However, for cases where the
Green’s function of the wakefield device is precisely
known, either analytically or through simulation, a general
approach can be used to expose finer features in the beam

FIG. 3. Wakefield measurement (blue), normalized current
reconstruction (red), normalized current profile measurement
(green, dashed), and wakefield prediction from current measure-
ment (light blue, dashed) from single shot longitudinal phase
space measurements of the beam after a plasma accelerator.
Measurements from two different beam shapes (a) linear ramp,
(b) linear ramp with parabolic head are shown.
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profile. This includes both dielectric [38] and corrugated
metal structures as well as other media where the modal
description is calculated numerically, such as the woodpile
structure considered recently [22], where the wake function
of a single particle is describable by a series of modes.
In this section, we extend the applicability of the recon-
struction algorithm beyond the single-mode description of
the previous section.

A. Multimode Green’s function: Few-mode case

When extending the analysis to a multimode structure,
the Green’s function of Eq. (7) can be replaced by a
superposition of different mode contributions

GzðsÞ ¼
XN
n¼0

Cn cosðknsÞ: ð15Þ

First, we calculate the Laplace image of the Green’s
function using the linearity of the Laplace transformation

ḠðpÞ ¼ L
�XN
n¼0

Cn cosðknsÞ
�
¼

XN
n¼0

Cnp
k2n þ p2

: ð16Þ

To find ρzðsÞ according to the Eq. (5) and the definition
of the inverse Laplace transformation Eq. (3) the integral

ρzðsÞ ¼
1

2πi

Z
κþi∞

κ−i∞

W̄ðpÞespQN
n¼0ðk2n þ p2Þ

p
P

N
n¼0 fCn

Q
m≠nðk2m þ p2Þg dp

ð17Þ
needs to be evaluated. An analysis of the integrand unveils
an essential singularity at the points p ¼ �i∞ as well as
poles that correspond to the zeros of the polynomial in the
denominator:

p
XN
n¼0

�
Cn

Y
m≠n

ðk2m þ p2Þ
�

¼ 0: ð18Þ

The detailed evaluation of this integral is given in
Appendix.
Again taking the origin in s such that Wð0Þ ¼ 0 we

arrive at the final expression for the charge density

ρzðsÞ ¼
W0ðsÞP
N
n¼0 Cn

þ
Q

N
n¼0 k

2
nP

N
n¼0 fCn

Q
m≠nk

2
mg

Z
s

0

Wðs̃Þds̃

þ
Z

s

0

Kðs − s̃ÞWðs̃Þds̃: ð19Þ

with the kernel KðsÞ given by

KðsÞ ¼
X
pi

Res

�
esp

Q
N
n¼0ðk2n þ p2Þ

p
P

N
n¼0 fCn

Q
m≠nðk2m þ p2Þg

�
: ð20Þ

Here pi are the roots of the Eq. (18) that are enclosed by the
integration contour (see Appendix) except for the root at
p ¼ 0. For the case of two and three modes, the residues in

Eq. (20) can be evaluated analytically, as the equations for
the poles Eq. (18) are quadratic and bi-quadratic equations
respectively. It is still possible to evaluate the four-mode
case but this involves Cardano formulas for the cubic
equation. If the number of modes is greater then four, one
should proceed with a numerical solution of Eq. (18) and
substitution of the calculated zeros into the residue formula
in Eq. (20).

B. Arbitrary Green’s function

The evaluation of Eq. (1) by a Laplace transformation
is preferable as the integrals are calculated exactly,
thus removing any error due to approximations. How-
ever, in some cases when the Green’s function is computed
combining numerical simulation and extrapolation ap-
proach (see Ref. [39]), it may be more convenient to
consider a numerical reconstruction scheme. In this case the
Green’s function and the wake potential WðsÞ are given on
a mesh sn ¼ nh where we assume that the mesh sn is
uniform, with step size h. We rewrite Eq. (1) on this
mesh as

WðsnÞ ¼
Z

sn

0

ρzðs̃ÞGzðsn − s̃Þds̃: ð21Þ

If we assume that h ≪ 1 then the integral on the right-hand
side can be approximated using the quadrature formula. If
we chose the mesh for the integral sm ¼ mh (the same as
the initial mesh sn) then we write the integral as

Z
sn

0

ρzðs̃ÞGzðsn − s̃Þds̃ ≈
Xn
m¼1

QmρmGn;m: ð22Þ

Here Qm are coefficients for the corresponding quadrature
formula, Gn;m ¼ Gzðsn − s̃mÞ is the element of the square
matrix G, and ρm ¼ ρzðs̃mÞ is the element of the unknown
vector ρ. Introducing the notation WðsnÞ≡Wn and using
Eq. (22), Eq. (21) becomes a square system of linear
equations of the form

Wn ¼
Xn
m¼1

QmρmGn;m: ð23Þ

The most appropriate quadrature formula for the equidis-
tant mesh and the case here is the trapezoidal rule with
coefficients Qm given by

Qm ¼
�
1=2 m ¼ 1; n

1 m ≠ 1; m ≠ n:
ð24Þ

The matrix Gn;m has a triangular form, so all values of ρm
can be calculated using a simple recurrent formula that with
Eq. (24) for k > 2 reads
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ρk ¼ 2
Wk −W1 − h

2
ρ1Gk;1 − h

P
k−1
l¼2 ρlGk;l

hGk;k
: ð25Þ

To initiate the calculations, we again assume Wð0Þ ¼ 0 as
well as ρzð0Þ ¼ 0. This allows us to calculate ρ1 as

ρ1 ¼
2W1

hG1;1
; ð26Þ

and ρ2 as

ρ2 ¼ 2
W2 −W1 − h

2
ρ1G2;1

hG2;2
: ð27Þ

If we assume that the total number of mesh points is N and
ρ0 ¼ ρzð0Þ ¼ 0 then the total charge can be calculated
using the same trapezoidal rule as follows

Q ¼ hρN
2

þ h
XN−1

m¼1

ρm: ð28Þ

C. Example: Dielectric wakefield acceleration

As a relevant example for the multimode case we
consider the dielectric wakefield acceleration experiment
described in Ref. [20]. Similar to the plasma example, this
experiment used a linearly ramped bunch, generated using
the emittance exchange beam line [28] and sent through a
dielectric structure with planar symmetry. A single shot
wakefield measurement system [10] was utilized to map
out the wakefield behind this triangular shaped driver.
Parameters of the dielectric slabs as well as external
experimental conditions of Ref. [20] are summarized in
Table II.
For a rectangular structure, the Green’s function is

represented by a double sum over x and y modes as

GI
zðsÞ ¼

XNx

n1

XNy

m¼1

An;m cosðkn;msÞ ð29Þ

(see Refs. [40–42]). In this specific case, to achieve high
accuracy (<0.1%) the Green’s function has to include
Nx ¼ 80 x-modes and Ny ¼ 50 y-modes, for a total of
4000 modes. First, we apply Eq. (19) to the experimentally
measured wakefield inside the bunch. We then apply a low-
pass filter to reduce numerical noise that comes from the
derivative term. The power spectrum of the distribution that

resulted from the reconstruction is simply zeroed above a
certain cutoff frequency that is considered as a filter
parameter. The filter parameter was adjusted manually
until the difference between convolution and measurement
did not exceed 15%, and most numerical artifacts were
eliminated. The bunch profile that resulted from the
reconstruction performed in this manner is presented in
Fig. 4(b) and compared to the charge density measured
with the LPS diagnostic from Ref. [20], Fig. 4(a). The
reconstruction provides significant new insights into the
fine features of the charge density profile as well as
clarifying adjustments to the bunch length and the shape
of the tail.
Next, the Green’s function was adjusted to account for

the effects of the group velocity vg as GzðsÞ ¼ GI
zðsÞ

[1 − s=Lð1 − vgÞ−1]. For the modes that give dominant
contribution to the wakefield, vg ≈ 0.8c on average. The
attenuated Green’s function was evaluated numerically
[Fig. 5(a)] and then Eq. (25) with Eq. (26) and Eq. (27)
were applied to restore the charge density profile. As
before, numerical noise that comes from the discretization
of the convolution integral was filtered out using low-pass
filter. Filter parameters were optimized based on the same
strategy as before, namely the reconstructed distribution
was convoluted with the Green’s function and compared
with the initial measured wakefield inside the bunch; the

FIG. 4. (a) Normalized charge density from Ref. [20] measured
with the LPS diagnostic. (b) Normalized charge density at the
wake field accelerating structure reconstructed using Eq. (19)
(c) Normalized charge density at the wake field accelerating
structure reconstructed using Eq. (25).

TABLE II. Experimental parameter of Ref. [20].

Beam energy Charge Vacuum gap Slab thickness Width Length ε

48 MeV ∼2 nC 2.5 mm 150 μm 1.27 cm 15 cm 3.75
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filter parameter was then adjusted to reduce error between
the convolution and the measurement. The largest errors
occur at the bunch tail, however 15% accuracy is enough to
remove the major part of the numerical noise while
resolving the spike in the charge density closest to the
tail. Further smoothing of the distribution and elimination
of this spike results in a quite large 40%–60% difference
between the measured value and the reverse convolution of
the wake at these locations.
We also use the reconstruction technique to evaluate the

total charge by applying Eq. (28). We calculate the total
charge for the reconstructed profile to be Q ¼ 1.8 nC. This
number is in agreement with the measured charge of ∼2 nC
within the experimental errors, yielding an independent
method to corroborate charge measurements.
It is important to note that profiles which are recon-

structed using the two different approaches [Fig. 4(b) and
Fig. 4(c)] match quite well. Slight differences at the tail of
the distribution may be explained by slight differences in
the Green’s functions, as well as variation of the parameters
of the low pass filter.
In Fig. 5(c) we compare the theoretical prediction of the

wakefield generated by a reconstructed bunch with the
measurements of the Ref. [20]. To produce the theoretical
wakefield [blue line in Fig. 5(c)] the Green’s function for

this structure Fig. 5(a) is numerically convoluted with the
reconstructed bunch profile [Fig. 4(b)]. As expected, the
measured wakefield inside the bunch [orange line in Fig. 5
(c)] coincides with the theoretical prediction. This indicates
that the reconstruction procedure has been successful and
the bunch profile agrees with the measured wakefield.
Furthermore, we observe that behind the bunch the calcu-
lated wakefield is in very close agreement with experi-
mental observations [green line in Fig. 5(c)] from Ref. [20],
providing further validation of this technique.
We note that in comparison to the LPS diagnostics

[Fig. 5(b)] reconstructed charge density better repro-
duces measured wakefield inside the bunch. The observed
difference between the LPS diagnostic measurement
Fig. 5(b) and the reconstructed profile Fig. 5(c) comes
from the linearly ramped beam, which has a strong
vertical-longitudinal correlation between particles in the
tail. These particles are excised due to the aperture in the
LPS diagnostic, thus leading to a bunch shape that is not
well represented at the tail end.
It should be noted as well that the long-range wakefield

is consistent with the measurements in both cases, as higher
order harmonics in the long-range wakefield that couple to
the fine features of the bunch longitudinal profile are
heavily suppressed by the bunch length.

V. DISCUSSION

It is apparent from comparisons between the experimen-
tal and simulated wakefields that the reconstruction method
accurately predicts the drive beam profile present during
the wakefield interaction. Several practical issues must
carefully be taken into account when applying these
reconstruction algorithms in order to reduce error. The
accuracy of the reconstruction relies not only on the mea-
surement accuracy of the wakefield, but also on the
physical validity of the Green’s function used to describe
the wakefield response. For example, in the plasma wake-
field case, the plasma wave number was estimated by
measuring the separation between adjacent wakefield
minima in the drive beam (as well as from independent
measurements of the plasma density). Variations of the
parameter kp in this case, changes the weighting between
the derivative and integration terms in the Eq. (13), leading
to greater variations in the tail of the reconstructed beam,
where the integration term is typically dominant.
It is also important to consider that the single-mode

reconstruction validity [Eq. (13)] is extendable to certain
multimode cases as well. By inspecting Eq. (19) we
conclude that if max jKðsÞj given by Eq. (20) is much
smaller than the multiplier in front of the integral in
Eq. (19) one may neglect the third convolution term and
the reconstruction formula resembles Eq. (13), except for
multipliers in front of the integral and derivative. Intere-
stingly these factors could be found by a simple optimi-
zation procedure with an ansatz,

FIG. 5. (a) Green’s function for the structure that was used in
Ref. [20] for measuring the wake field. (b) Charge density as
measured via LPS diagnostics (red, filled), measured wake field
inside the driver (orange), measured wake field behind the driver
(green) and theoretical calculation of the full wake field based on
a Green’s function and charge density measure via LPS diag-
nostics (blue) (c) Reconstructed charge density (red, filled),
measured wake field inside the driver (orange), measured wake
field behind the driver (green) and theoretical calculation of the
full wake field based on a Green’s function and reconstructed
charge density (blue).
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ρzðsÞ ¼ A

�
W0ðsÞ þ B

Z
s

0

Wðs̃Þds̃
�

ð30Þ

which is convoluted with the known Green’s function.
Then, the constants A and B are varied to minimize

max

����WðsÞ −
Z

s

0

ρzðs̃ÞGzðs − s̃Þds̃
����: ð31Þ

The smoothing strategy for the low-pass filter that was
applied in the example cases relies on a similar optimiza-
tion method. The back-convolution of the filtered result is
compared to the measured wakefield and the maximum
modulus of the difference is kept below a certain threshold.
This strategy shows the trade-off between smoothness of
the reconstructed profile and accuracy of the reconstruction
procedure.
The universal solution introduced in Sec. IV B has a built

in error that is connected with the discretization in Eq. (6)
of the convolution integral Eq. (1). Oversampling of the
measured data for theWðsÞ and subsequent filtering solves
this problem, however analytical evaluation of Eq. (5) is
preferable, as it does not produce additional errors and
requires less aggressive filtering. This in turn enables finer
resolution in certain scenarios.
The proposed method can be directly applied to struc-

tures with different transverse geometries using their
respective Green’s functions, given a pencil-like beam
approximation is applicable. If the transverse size of the
beam is significant (close to the size of the vacuum gap of
the structure or plasma skin-depth) then additional consid-
erations regarding the transverse form-factor must be
incorporated into the reconstruction procedure. This is
critical for some linear PWFA experiments (as might be
encountered at AWAKE [43], for example). It is also
especially important in the multimode case, as modal
amplitudes have to be modified to account for the trans-
verse beam shape and size. These considerations can be
taken into account in a straightforward manner, using a
computational approach.

VI. SUMMARY

In thiswork,we have suggested an innovative approach in
the experimental methodology of determining the longi-
tudinal charge distribution, based on deconvolution of
measured longitudinal wakefield effects in a beam. The
algorithm is generalizable to a wide variety of experimental
scenarios and as such, is applicable to a variety of wakefield-
based media (plasma, dielectric, corrugated, photonic and
Bragg structures etc.). It permits, in these applications,
reconstruction of the bunch profile with high-precision,
reproducing fine features that may not be observable with
other beam measurement methods. This technique has been
successfully applied to reconstruct longitudinal charge
distribution in the plasmawakefield acceleration experiment

described in Ref. [19], and in the dielectric wakefield
acceleration experiment described in Ref. [20]. It is impor-
tant to emphasize that the methods presented, whether they
are single- or multi-mode, yield excellent results for the
asymmetric beam shapes of highest interest. Enhanced beam
features with finer resolution may require the multimode
approach, while the universal solution proposed here has
some inherent numerical fluctuations that must be filtered to
obtain robust results. Regardless, ourmethod does not suffer
frombiasing due to transverse subsampling of the beamwith
collimators.
One may examine the future application of this method

in next-generation PWFA experiments, which are reliant
on high-resolution temporal diagnostics [44]. Generally,
PWFA experiments have relatively long interaction lengths,
and associated energy loss, and thus a large effective
projected emittance growth due to betatron oscillation
phase-mixing. In this case there would be significant
challenges in transporting the entire beam to the diagnos-
tics. For highly resolved time measurements, which depend
on the slice emittance, our energy-based reconstruction
technique is able to produce resolution on the scale of ∼fs,
and is applicable in both short pulse and long-ramped
pulse modes.
The highly flexible profile reconstruction method is

applicable to advanced accelerators based on wakefields,
conventional accelerators, machine-learning optimization
routines, and for compact diagnostics designed to probe
bunch profiles at any point along an accelerator.
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APPENDIX: EVALUATION
OF THE INTEGRAL IN EQ. (17)

In this appendix we present a detailed evaluation of the
inverse Laplace transformation for the multimode case. For
convenience we reproduce the inverse Laplace integral
Eq. (17):

ρzðsÞ ¼
1

2πi

Z
κþi∞

κ−i∞

W̄ðpÞespQN
n¼0ðk2n − p2Þ

p
P

N
n¼0 fCn

Q
m≠nðk2m þ p2Þg dp:

ðA1Þ

In the limit of p → �i∞, the products in the numerator, as
well as the product in the denominator, in the expression
under the integral could be modified as
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YN
n¼0

ðk2n þ p2Þ ⟶
p→�i∞

p2N;

p
XN
n¼0

�
Cn

Y
m≠n

ðk2m þ p2Þ
�

⟶
p→�i∞

p2N−1
XN
n¼0

Cn: ðA2Þ

Using Eqs. (A2), we find that the expression under the
integral in the vicinity of the points p ¼ �i∞ simplifies to

W̄ðpÞespQN
n¼0ðk2n þ p2Þ

p
P

N
n¼0 fCn

Q
m≠nðk2m þ p2Þg ⟶

p→�i∞

pW̄ðpÞespP
N
n¼0 Cn

: ðA3Þ

We recall from Eq. (11) that

L½W0ðsÞ� ¼ pW̄ðpÞ −Wð0Þ; ðA4Þ
and assuming Wð0Þ ¼ 0 we arrive at

ρzðsÞ ¼
W0ðsÞP
N
n¼0Cn

þ 1

2πi

Z
κþi∞

κ−i∞

×

�
W̄ðpÞespQN

n¼0ðk2nþp2Þ
p
P

N
n¼0fCn

Q
m≠nðk2mþp2Þg−

pW̄ðpÞespP
N
n¼0Cn

�
dp:

ðA5Þ
The integral in the second term does not have an essential
singularity anymore as it is canceled out.
To evaluate the integral in the Eq. (A1) first we apply

convolution theorem for the Laplace transformation [17] in
a form

L½W � Kf� ¼ W̄ðpÞK̄fðpÞ ðA6Þ
with K̄fðpÞ given by

K̄fðpÞ ¼
Q

N
n¼0ðk2n þ p2Þ

p
P

N
n¼0 fCn

Q
m≠nðk2m þ p2Þg −

pP
N
n¼0 Cn

:

ðA7Þ
This allows one to rewrite Eq. (A5) as

ρzðsÞ ¼
W0ðsÞP
N
n¼0 Cn

þWðsÞ � KfðsÞ: ðA8Þ

The next step is the evaluation of the integral KðsÞ ¼
L−1½K̄ðpÞ�

KfðsÞ ¼
1

2πi

Z
κþi∞

κ−i∞

×

�
esp

Q
N
n¼0ðk2n þ p2Þ

p
P

N
n¼0fCn

Q
m≠nðk2m þ p2Þg −

pespP
N
n¼0 Cn

�
dp:

ðA9Þ
The integral in Eq. (A9) does not have any singularities in
the left half plane (Fig. 6) except for the poles that are
defined by the polynomial in the denominator of the first
term. The corresponding equation for the poles reads

p
XN
n¼0

�
Cn

Y
m≠n

ðk2m þ p2Þ
�

¼ 0: ðA10Þ

Therefore the integral in Eq. (A9) could be calculated using
the residue theorem [17,18]. It is apparent that the second
term under the integral in Eq. (A9) does not contribute to
these residues, thus

KfðsÞ ¼
X
pi

Res

�
esp

Q
N
n¼0ðk2n þ p2Þ

p
P

N
n¼0 fCn

Q
m≠nðk2m þ p2Þg

�
: ðA11Þ

We notice that the pole at p ¼ 0 could be always evaluated
explicitly and reads

Resðp ¼ 0Þ ¼
Q

N
n¼0 k

2
nP

N
n¼0 fCn

Q
m≠nk

2
mg

: ðA12Þ

With Eq. (A11) and Eq. (A8) accounting for Eq. (A12) we
finally arrive at

ρzðsÞ ¼
W0ðsÞP
N
n¼0 Cn

þ
Q

N
n¼0 k

2
nP

N
n¼0 fCn

Q
m≠nk

2
mg

Z
s

0

Wðs̃Þds̃

þ
Z

s

0

Kðs − s̃ÞWðs̃Þds̃: ðA13Þ

Here KðsÞ denotes the sum of residues that are defined by
the roots of Eq. (A10) except for the trivial root p ¼ 0:

KðsÞ ¼
X
pi≠0

Res

�
esp

Q
N
n¼0ðk2n þ p2Þ

p
P

N
n¼0 fCn

Q
m≠nðk2m þ p2Þg

�
: ðA14Þ
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