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Abstract: Owing to the effects of camera, illumination,
extraction algorithm defect, and other reasons, vector
data for reservoir waterbodies extracted from remote
sensing data may have quality issues, impacting the effi-
ciency of data utilization in areas such as water resource
management and reservoir monitoring. To efficiently detect
abnormal data from massive vector products of reservoir
waterbodies, a semi-automatic detection method for reser-
voir waterbody vector data is presented. The method has
three phases. First, the original reservoir vector data are
preprocessed to obtain the time series of the area of reser-
voir waterbodies. Second, datamodeling with time series of
reservoir waterbodies area data is done using the exten-
sible generic anomaly detection system (EGADS) plug-in
framework and time series modeling is conducted using
the Olympic model. Third, data that have quality problems
are identified with Kσ model was used to determine the
outliers; thereby, the date of the outliers is detected.
Results of accuracy verification show that the sensitivity

and specificity of the method were 94.44 and 83.87%,
respectively, showing its feasibility for use in anomaly de-
tection in polygonal reservoir waterbody vector data with
far greater efficiency than traditional manual inspection.

Keywords: EGADS plug-in framework, reservoir, vector
data, time series analysis, anomaly detection

1 Introduction

Water conservancy information can serve as an important
basis for management, forecasting, early warning, and
emergency response related to water disasters [1,2].
Reservoirs are important man-made water conservancy
facilities built for improved control and utilization of
water resources. It is of great significance to understand
the water volume change of reservoirs in real time [3].
There are a total of more than 98,000 reservoirs in China
[4]. Remote sensing images can be used to obtain surface
water information [5,6], and polygon vector data are its
main product form. The quality management of the reser-
voir water vector data plays an important role in ensuring
the provision of water conservancy information.

The commonly used water extraction algorithms based
onmultispectral images can be divided into four categories:
the single-band threshold method [7], the multiband spec-
tral relationship method [8,9], the water index method
[10–12], and the remotesensing imagesegmentationmethod
[13,14]. These methods can automatically and effectively
extract water information from an image. Among them,
water index methods (such as normalized difference water
index [NDWI]) are easy to realize, efficient, andoftenused in
engineering practice. However, due to cloud cover [15–17],
shadow [9], image width [18], and defects in the algorithm,
the results of water extraction appear as abnormal values.
Therefore, it is necessary to further screen out the abnormal
water extraction results.

In recent years, with the advent of the era of remote
sensing big data, multitemporal remote sensing moni-
toring has become a research hotspot [19], and long
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time series monitoring has turned into one of the impor-
tant applications of water conservancy remote sensing.
Meanwhile, the water conservancy service platform has
been developed for monitoring of geographical situation,
which can realize the automatic production and the dis-
tribution of water conservancy products [20,21] and has
led to the rapid increase of water monitoring products.
However, the traditional vector data detection method
needs to manually load the extracted vector data and the
corresponding image data for visual evaluation, which
consumes a lot of human and material resources [22,23].
Meanwhile, automatic anomaly detection of vector data
products can improve the accuracy and update efficiency
of water conservancy monitoring database.

Early work on automatic anomaly detection for
vector data focused on testing spatial information, attri-
bute data, and topological relations. Wei and Liu [24]
proposed an extended model and the sorting method
for the GIS real estate data, which allowed for the quality
control of spatial information and attribute data and im-
proved the efficiency of data testing. Popescu et al. [25]
used the vector models of data representation in cadas-
tral maps and developed a system for spatial location
verification and attribute data constraint integration to
assist in the automated management of cadastral infor-
mation. Automated data quality inspection methods have
been developed that are aimed at a diverse range of vector
data in the geographical national conditions census and
apply rule-based detection models for inspecting the posi-
tional accuracy (position edge) and attribute correctness of
the vector data [26,27]. To solve the problem of attribute
uncertainty in water vector data, Guo et al. [28] considered
the data structure and topological relations synthetically
and proposed an algorithm for automatic correction of linear
water attributes. Gui et al. [29] noted that the quality of
cadastral data includes location accuracy, attribute correct-
ness, and topological consistency. In their study, verification
and modification methods were designed for the topological
inconsistency of cadastral spatial data, including node
matching errors, cracks, and superposition. Zhang et al.
[30] designed a topological consistency detection algorithm
that integrated qualitative and quantitative location features
of planar entities and allows for automatic detection of to-
pological conflicts in polygonal vector data. In general, the
current method of vector detection can achieve good auto-
mation for attribute data and topological relationships, but
research on spatial information detection methods for spe-
cific objects is scarce. For vector data extracted from water,
the accuracy of spatial information is the basis of water
information monitoring. In this study, we focused on the
accuracy of spatial range expression of water vector data

and studied the automatic detection method for vector
data products of massive time series remote sensing images.

Our detection method for massive vector data of reser-
voir waterbodies is based on the data analysis mechanism
of big data platforms. Our method chooses the area proper-
ties to reflect the spatial characteristic and converts them
into a time series set. The spatial variation law of vector
data is analyzed using time series modeling. Outliers are
identified by an anomaly detection algorithm. This method
allowed semi-automatic inspection for polygon vector data
and improved inspection efficiency. The main contributions
of this study are as follows: (1) a proposed spatial informa-
tion anomaly detection method for reservoir waterbody
vector data; (2) a tool for automatic detection of massive
vector data based on the EGADS plug-in framework; and (3)
an evaluation of the application of this method to anomaly
detection of water vector data in different reservoirs.

2 Detection method for polygon
vector data of reservoir water
supported by extensible generic
anomaly detection system
framework

2.1 Background

Anomaly detection can be simply described as follows: given
a set of N data/objects, the process of finding data/objects
that are significantly abnormal, isolated, or inconsistent
with the general rules compared with the general data/
objects [31]. There are three kinds of anomalies in time
series: point anomalies, sequence anomalies, and pattern
anomalies. Time series-oriented anomaly detection usually
needs to achieve two things: time series analysis and effec-
tive abnormal data detection [31,32].

A time series is a column of ordered data recorded in
a chronological order, which can be represented as the
set = ( … )X x x x, , , n

T
1 2 . The result of water vector extrac-

tion for long time series observation is a form of time
series. Time series analysis is used to express the trend
of a time series through the mathematical theory and
method and predict its trend [33]. Time series modeling
reveals the development law of a time series from the
perspective of sequence autocorrelation, which is an im-
portant method to explore the statistical characteristics
(trend, seasonality, periodicity, stationarity, and autocor-
relation) of a time series. It is often used in hydrological
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forecasting, weather forecasting, market economic fore-
casting, and other fields [31,34,35].

Outliers are objects in the data set that deviate from
most of the data. They are generated not because of random
errors, but because of differentmechanisms [36]. In practice,
outliers often contain valuable information, and mining the
hidden value in them is helpful for analyzing decision tasks.
According to the existing studies, anomaly detectionmodels
can be divided into the following categories: the statistical-
based methods [37,38] (establishing the data distribution
model and screening anomalies through deviations); the
distance-based method [39,40] (distance calculation of ob-
jects in data set through distance function and exception
screening using a threshold); the density-based methods
[41,42] (introducing local density and judging outlier degree
of data by weight); and the method based on machine
learning [43–45] (algorithms mainly based on the artificial
neural network and the support vector machine). Studies
have shown that the distance-based method and the ma-
chine learning algorithm tend to have high time complexity
and low efficiency. Some literature state [31,32] that the time
series anomaly detection based on prediction is the most
concise and intuitive anomaly detection method, but this
method relies on the prediction model and a reasonable
threshold.

The extensible generic anomaly detection system
(EGADS), which was designed by Yahoo, is an open-
source extensible framework for automatic anomaly de-
tection of massive time series data [46]. It consists of two
main modules: the time series modeling module (TMM)
and the anomaly detection module (ADM). In the EGADS
plug-in framework, time series model and anomaly de-
tection model can be inserted flexibly according to the
specific application and data characteristics. As a java
package, it can be easily integrated into the existing

monitoring infrastructure. In this study, we used the
EGADS framework as support to explore the anomaly
mining method for vector data of reservoir waterbodies.

2.2 Vector detection of reservoir
waterbodies based on EGADS

Facing abnormal phenomena, such as false and missed ex-
tractions andwater level alarm in automaticwater extraction,
this study used the EGADS framework combined with the
geometric characteristics of the water vector to design a de-
tection method for vector data of reservoir waterbodies. First,
rough inspection and processing are carried out on the water
vector to find a preliminary solution to the most significant
and obvious quality problems such as sawtooth, void, and
irregular property structures and to obtain the initial area
data for anomaly detection. Then, combining the EGADS
framework plug-in outlier detection method, time series
modeling is carried out on the area data of vector water to
analyze and find the change rules of water data. The relia-
bility of data is tested, based on this, using different anomaly
detection models. Finally, abnormal data are found, and the
alarm result is obtained. The specific research ideas are
shown in Figure 1.

2.2.1 Rough inspection and processing of polygon
vector data of reservoir waterbodies

The extraction products of reservoir waterbodies have
some obvious and easy-to-handle quality problems, such
as sawtooth, void, confusion, or abnormality of attribute
information, which are common problems in water extraction

Figure 1: Detection flow chart for polygonal vector data of waterbodies in EGADS.
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[47,48]. These problems can be solved by the rough in-
spection and preprocessing of data, and the basic quality
control of vector water body can be realized, which in-
cludes two parts: geographic geometry processing and
ETL processing.
(1) Geographic geometry processing. First, given the in-

itial reservoir waterbodies vector data, the gross er-
rors were removed by using the filling and smoothing
methods, which was caused by the hole and saw-
tooth. Then, as the results of the same waterbody
may be extracted from different images on the same
date, data fusion was carried out by setting the date
and the same object judgment conditions to obtain
complete vector data extraction results. The area of
the fused vector data was calculated after projection.

(2) ETL processing. The table structure was designed in
the Hive Data Warehouse to realize standardized data
storage. After exporting the attribute data from the
Geographic database, the data were extracted, trans-
formed and loaded, and finally stored in the target da-
tabase. It builds the foundation for follow-upmodeling.

2.2.2 Time series modeling of polygonal vector data of
reservoir waterbodies

Through rough inspection and processing, the obtained
area information of water vector is a group of typical time
series, and they could have trend, seasonal, and cyclical
characteristics. In time series modeling, different mod-
eling methods should be selected for time series with
different regularities. Within the framework of EGADS,

TMM provides nine time series models in common use,
which are described in detail in Table 1.

Meanwhile, to realize the evaluation of themodel, TMM
provides five metrics to evaluate the time series model, and
the description of each index is shown in Table 2.

Water is a type of ground object greatly affected by the
pattern of water and heat distribution on the surface [49],
which has obvious seasonal characteristics, so an appro-
priate time series data model with seasonal characteristics
should be selected. This study compared various modeling
methods and selected the optimal method to model and
analyze the time series of the waterbody vector data.

2.2.3 Abnormal detection of polygonal vector data of
reservoir waterbodies

In the time series modeling stage, given the area time series
of waterbody vector, the prediction value of xt at time t is
obtained by modeling. TMM passes the original sequence
and prediction results to ADM.

ADM calculates the deviation metric (DM) between
the predicted value and the actual value, and analyzes
the distribution characteristics of the deviation. When the
error falls outside some fixed thresholds, the data are
judged as an abnormal value, and an alarm is issued.
Threshold reflects the sensitivity of the abnormal detection
model, but it is difficult to determine the optimal thresholds
artificially. The EGADS provides two kinds of algorithms,
Kσ deviation and density distribution, which track a set of
DMs by default and select the appropriate thresholds.

The ADM supports four anomaly detection models,
which are described in detail in Table 3.

Table 1: Time series Models supported by TMM

Type Model Description

Simple window model Olympic model (seasonal
naive)

It belongs to the naive seasonal model. The predicted value is the
smoothed average of the previous n periods

Exponential smoothing
model

Simple exponential
smoothing model

These models are used to produce smoothed time series. The predicted
value is the weighted sum of the previous value. Double and triple
exponential smoothing variants add the trend and seasonality into the
models

Double exponential
smoothing model
Triple exponential smoothing
model

Moving Smoothing Model Moving average model The predicted value of point x is replaced by the average value of the
adjacent points. Weighted moving average model adds weight factorWeighted moving average

model
Regression model Regression model They establish a relationship between one or more independent variables x

and dependent variables yMultiple linear regression
model
Polynomial regression model
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After using the best time series model to obtain the
fitting results, this study used the four anomaly detection
models to analyze the waterbody vector data. We then
analyzed the detection characteristics and the accuracy
of the models and selected the best-fit anomaly detection
model. Thus, the optimal anomaly detection model for
the waterbody vector data was determined.

3 Data and preprocessing

3.1 Data

The Water conservancy Gaofen satellite product service
and distribution subsystem is one of the operational sub-
systems of the Gaofen Water conservancy Remote sensing
application demonstration system (phase 1), which is de-
veloped by the Ministry of Water Resources. The system
supports the management, query and sharing of domestic
Gaofen satellite images (GF-1, GF-2, etc.), as well as the
extraction, management, and query of water vectors na-
tionwide. Based on the water body extraction algorithm
with the water body index and automatic threshold, it
can automatically extract water nationwide based on do-
mestic Gaofen series of remote sensing images and provide

near real-time nationwide water conservancy production
and query.

The experimental data are obtained from the national
water vector data automatically extracted by this system.
Since the series of Gaofen satellites was launched as early
as April 2013 and the study started at the end of 2017, we
chose a data time range covering the full four years:
November 2013 to November 2017. Our study focused on
the polygonal vector data of reservoir waterbodies. First-
level large reservoirs are the largest in terms of storage
capacity, water area, and project scale, and the social and
economic benefits generated are relatively more impor-
tant. Due to the larger coverage, they are more likely to
be blocked and affected by the cloud, vegetation, moun-
tain shadow, and other objects, resulting in inaccurate
extraction results, which are more suitable for research.
Therefore, in this study, the Miyun reservoir (located in
Beijing), a first-level large reservoir, was selected to con-
struct the detection method for the waterbody vector
data, to test the detection effect of different models pro-
vided by EGADS in the actual sequence, and to obtain a
suitable detection method for water reservoir vector data.

3.2 Data preprocessing

The data from the Miyun Reservoir from October 2, 2013,
to October 5, 2017 were preprocessed, and we obtained
160 datasets, including the attribute information of reser-
voir name, reservoir type, time, and area. We plotted the
scatter plot for the water area time series as shown in
Figure 2.

The area data for the Miyun reservoir (Figure 2) range
from [20,100] km2, and there were obvious deviations
from the surrounding points. So, anomaly detection of
the waterbody vector data is very necessary. Waterbody
vectors with areas of approximately 20, 30, 40, 50, 60, 70,
80, 90, and 100 km2 were selected for observation, and
typical data are shown in Figure 3.

There are two main reasons for the variation of the
extraction areas of reservoir waterbody: (1) there is cloud

Table 3: Anomaly detection models supported by ADM

Model Description

DBScan model Density-based spatial clustering of applications with noise
Kσ model The classic Kσ model, which is usually used for normal distribution data
AKDCPD model Adaptive kernel density change-point detection
ELD model Extreme low-density outlier detection

Table 2: Metrics for modeling in TMM

Model Description Calculation formula

Bias The arithmetic mean of
the errors

x xBias −n i
n

i i
1

1 = ∑ ( )

=

MAD The mean absolute
deviation

x xMAD −n i
n

i i
1

1 = ∑ ∣ ∣

=

MAPE The mean absolute
percentage error

MAEP n i
n x x

x
100 %

1
− ¯i i

i( )
= ∑

=

∣ ∣

MSE The mean square of the
errors

x xMSE −n i
n

i i
1

1
2= ∑ ( )

=

SAE The sum of absolute
errors

x xSAE −i
n

i i1 = ∑ ∣ ∣

=

Note: in the formula, the observed value of time i is xi, the predicted
value of time i is xi.
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cover in the remote sensing image or the image does not
cover the reservoir completely (Figure 3(a)–(e) and (i)).
We need to identify and remove this type of abnormal
data; (2) drought, flood, agricultural irrigation, and arti-
ficial storage cause the amount of reservoir water to

increase or decrease, resulting in changes in the water
area (Figure 3(f)–(h)). We need to detect the abnormal
changes in the reservoir waterbody under these circum-
stances to improve water management, dispatching, and
emergency response.

Figure 2: Scatter plot of area-time change of Miyun Reservoir from
October 2013 to October 2017.

Figure 3: Water vector data for Miyun Reservoir (20–100 km2). (a) 2014-9-21, (b) 2013-12-12, (c) 2014-1-6, (d) 2015-8-21, (e) 2013-10-23, (f)
2014-9-10, (g) 2013-10-2, (h) 2017-3-3, (i) 2014-5-1.

Figure 4: Scatter diagram of time series modeling results of Miyun
Reservoir from October.
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4 Results and analysis

4.1 Time series modeling

We used the area time series of the Miyun Reservoir for
modeling using nine time series models of TMM. The

results are shown in a scatter diagram (Figure 4) and

sequence chart (Figure 5). The automatic forecast model

is the optimal model chosen by EGADS from nine models

according to the minimum deviation rule. However, this

method has a single selection criterion, and it may not be

applicable to the analysis of the waterbody vector data.

Figure 5: Sequence chart of time series modeling results of Miyun Reservoir from October 2013 to October 2017.
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Figure 4 shows the scatter diagram of the results of
time series modeling for each model; EGADS judged that
the reservoir automatic prediction model is the Olympic
model. As only the rate of change of the reservoir area
was considered in our experiment, the result of the mul-
tiple linear regression model is consistent with those of
the regression model.

Figure 5 shows the characteristic curves of time series
of sample and modeling results. The fitting effect of each
model has the following characteristics: (1) the fitting
curve of the Olympic model (Figure 5(a)) in the early
stages of the data over a short time interval (before De-
cember 2015) agrees well with the actual area curve, but
the fitting effect is ordinary when the time interval of later
data is large. At the same time, the fitting curve of
the model can reflect the seasonal variation of the per-
formance data. (2) The fitting curves of the regression
model, multivariate linear regression model, and poly-
nomial regression model (Figure 5(b)–(d)) are smooth
curves, which are very inconsistent with the actual area
curve. (4) The fitting curve of the first exponential smoo-
thing model (Figure 5(e)) is similar to that of the Olympic
model as a whole. However, when the time interval is large,
the sudden change in the predicted value is more obvious
than that of the Olympic model. (5) The fitting curve of the
double exponential smoothing model (Figure 5(f)) is very
consistent with the actual curve, and it reveals the over-
fitting phenomenon. (6) The fitting effect of the triple ex-
ponential smoothingmodel is worse than that of the simple
exponential smoothing model, and the sudden change in
the predicted value is obvious (the difference between the
predicted value and the observed value is significant
around April 2015). (7) The fitting curve of the moving
average model in Figure 5(h) is similar to that of the first
exponential smoothing model; however, the sudden
change slows down in February 2015, February 2015,
and April 2017. The curve also reflects the seasonal

variation in the data. (8) Compared with the moving
average model, the sudden change in the predicted data
slows down further in the fitted curve of the weighted
moving average model shown in Figure 5(i) and reflects
the seasonal variation. (9) The automatic forecast model
selected by the system is the Olympic model. In summary,
the time series model suitable for the Miyun Reservoir
should be selected from the Olympic model and the
weighted moving average model.

After time series modeling, the prediction results of
each model were evaluated. These five metrics all reflect
the fitting ability of the model. Smaller absolute values of
the results indicate a higher fitting ability of the model,
but they may correspond to the overfitting phenomenon.
By using the five metrics provided by TMM, we calculated
the metric results of each model as presented in Table 4.

The fitness of each model, from high to low, is as
follows: double exponential smoothing model, Olympic
model and automatic forecast model, Regression model
and polynomial regression model, polynomial regression
model, moving average model, simple exponential smoo-
thing model, triple exponential smoothing model, and
weighted moving average model.

In our data source, there are some abnormal vector
data caused by clouds, incomplete image coverage of the
study area, or other reasons. They deviate greatly from
the general law, thus disturbing the trend of normal time
series. Therefore, we need to further evaluate the time
series model. The dispersion degree of the model results
was analyzed by calculating for the indicators presented
in Table 5. Concentrated model results show that the re-
servoir water storage was closer to a stable actual state,
indicating the fitness of the model.

The dispersion degree of the corrected results of each
model, from smallest to largest, is as follows: polynomial
regression model, regression model and multiple linear
regression model, Olympic model and automatic forecast

Table 4: Model performance on area time series of Miyun reservoir

Model Bias MAD MAPE MSE SAE

Olympic model −4.5676 12.3270 445.2518 433.5987 1972.3260
Simple exponential smoothing model −1.5409 18.8335 427.7598 743.0800 3013.3656
Double exponential smoothing model −0.3867 4.7088 105.9608 47.1614 753.4099
Triple exponential smoothing model −4.5172 20.5639 360.7425 854.1170 3290.2209
Regression model −1.1514 18.5161 406.8929 644.5372 2962.5733
Multiple linear regression model −1.1514 18.5161 406.8929 644.5372 2962.5733
Polynomial regression model −0.9466 18.4807 407.3938 634.2634 2956.9054
Moving average model −1.2833 18.8168 432.2108 737.7722 3010.6924
Weighted moving average model −1.0836 18.8511 437.1115 754.7399 3016.1811
Automatic forecast model −4.567595 12.327037 445.251751 433.598741 1972.3260
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model, simple exponential smoothing model, moving
average model, weighted moving average model, triple
exponential smoothing model, double exponential smoo-
thing model, and original data.

Considering the fitting curve characteristics, fitting
degree, and the dispersion degree of the corrected results,
the Olympic model is the most suitable time series model
for the Miyun Reservoir. Meanwhile, the system’s auto-
matic prediction model was also the Olympic model, but
the system needs to run all the models before selecting the
best model. Considering the computer performance and
resource consumption, it is appropriate to directly adopt
the Olympic model.

4.2 Outlier detection

After using the Olympic model for time series modeling,
we used the four kinds of anomaly detection models to
detect outliers for the Miyun Reservoir area vector data.
We marked the outliers with a different color in the
scatter plots (Figure 6). The occurrence date of the ab-
normal area data is presented in Table 6.

The characteristics and detection results of each
model were analyzed. The purpose of the density-based
spatial clustering of applications with noise (DBScan)
model is to find outliers that are free from clusters; it
only found near-zero abnormal values in our experi-
ments. The adaptive kernel density change-point detec-
tion (AKDCPD)model considers the change points testing
problem; it mistakenly regarded the area data on June 24,
2014, as an outlier and failed to detect most of the other
abnormal values. The extreme low-density (ELD) model
regards data in low-density regions as outliers, and it hadTa
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Figure 6: Abnormal area data for Miyun Reservoir from October 2013
to October 2017.
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theweakest anomalydetectioneffect inour experiment; only
the smallest area was detected. The Kσ model effectively
identified anomalies in high or low area values (all anoma-
lies detectedbyothermodelswere included).However, a few
abnormal values had not been detected, and the reasons
are explained in Section 4.4.2. In comparison, the optimal
anomaly detection model for the Miyun Reservoir is Kσ
model.

The aforementioned experiments show that in the frame-
workof EGADS, combining theOlympicmodel andKσ model
into a single framework can effectively detect abnormal va-
lues in the area vector data for the Miyun Reservoir.

4.3 Application to other types of reservoirs

To further explore whether the optimal time series model
and anomaly detectionmodel are affected by reservoir scale
in the framework of EGADS, we selected the Xishanwan
Reservoir (second-level large; 99 datasets from November
8, 2013, to April 30, 2017), Dashuiyu Reservoir (third-level
large; 157 datasets from October 2, 2013, to April 26, 2017),
Xiagou Reservoir (fourth-level large; 83 datasets from May
2, 2014, to June 14, 2017), and Gulbeitou Reservoir (fifth-
level large; 63 datasets fromMay 1, 2014, toMay 13, 2017) for
analysis and obtained the optimum models for waterbody
vector data for each reservoir, which are presented as
shown in Table 7.

Experiments show that although the fitting effect of
each time series model is slightly different for the area
data of reservoirs at different scales. Among the nine time
series models, the Olympic model is the best in modeling
performance for different scale reservoirs, in terms of
seasonal variation, a high degree of fitting, and a small

degree of dispersion. The Kσ model can effectively detect
most of the abnormal values for all scales of reservoirs.
Therefore, for reservoirs of different scales, the combina-
tion of the Olympic model and Kσ model in EGADS is
suitable for detection of the abnormal values in the re-
servoir waterbody vector data.

4.4 Accuracy evaluation

4.4.1 Accuracy evaluation method

To verify the validity and accuracy of the method, we se-
lected sensitivity and specificity as the performance mea-
sures. In our study, the experimental results were divided
into four categories: in the first category, actual outliers
are judged as anomalies, with a total of TY; in the second
category, actual outliers were judged as qualified, with a
total of FN; in the third category, the actual qualified value
was judged as qualified, a total of TN; in the fourth cate-
gory, the actual qualified value was judged as abnormal, a
total of FY. The calculation formulae are as follows:

(1) Sensitivity: Refers to the percentage of correctly
classified outliers among all predicted outliers by the
classifier.

=

+

Sensitivity TY
TY FY

(1)

(2) Specificity: Refers to percentage of correctly clas-
sified qualified value among all predicted qualified value
by the classifier.

=

+

Specificity TN
TN FN

(2)

Table 6: Occurrence date of abnormal area data detected

Model DBScan model Kσ model AKDCPD model ELD model

Occurrence date of
abnormal area data

2013/10/10 2013/10/10 2014/5/1 2016/1/19 2014/6/24 2015/12/21
2015/12/21 2013/12/1 2014/6/11 2016/8/11 2014/8/12

2013/12/12 2014/8/12 2016/8/12 2015/1/27
2014/1/6 2014/9/21 2016/10/12 2016/10/12
2014/1/18 2014/11/7 2016/10/14
2014/2/6 2015/1/27 2016/11/12
2014/2/8 2015/6/3 2016/11/16
2014/2/10 2015/12/9 2016/12/4
2014/2/14 2015/12/13 2016/12/24
2014/2/17 2015/12/21 2017/3/3
2014/2/21 2016/1/11 2017/3/4
2014/4/27 2016/1/18 2017/8/5
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4.4.2 Model evaluation and analysis

We extracted the Miyun Reservoir vector data for the
sample and interpreted it manually: 106 are qualified
vector data and 54 are abnormal vector data. Comparing
the results of detection with those of manual interpreta-
tion, we got TY = 34, FN = 20, TN = 104, FY = 2 in the
outliers of the Miyun Reservoir detected by the Olympic
model and Kσ model. By substituting them into formula
(1) and formula (2), sensitivity = 94.44% and specificity =
83.87% were derived. The results show that for the Miyun
Reservoir area vector data, the method exhibited a 94.44%
accuracy rate for abnormal data detection, and the vector
data accuracy is improved from 66.25%, before the inspec-
tion, to 83.87%. Themissed abnormal vector data (FN) and
false abnormal vector data (FY) of the reservoir are shown
in Figure 7 and 8, respectively.

From Figures 2 and 7, the anomalous vector data of
missing alarm can be divided into three categories: (1)
when reservoir imaging was less affected by cloud coverage
or the limitation of the width in the remote sensing image,
the extracted vector changed slightly (Figure 7(a)–(c) and
(e)–(h)). This category of abnormal vector data can be
detected by judging the inclusion relation of the frame
vector of the original image and the detected cloud with
the general water vector or the vector centroid. (2) The ex-
tracted vector data were divided into many fragmentary
vectors, but their total area did not change significantly
(Figure 7(q) and (s)). This category of abnormal vector
data can be detected by judging the size of each vector
area, number, and offset of vector centroids. (3) The ap-
proximate time and concentrated values of abnormal data
result in the larger or smaller fitting value in time series
modeling, which lead to some abnormal data not being
detected (Figure 7(i)–(p), (r) and (t)). This category of ab-
normal vector data can be detected by judging the offset of
vector centroids. (4)Model defects caused part of abnormal
vector data to be undetected (Figure 7(d) and (g)), which
accounts for a small proportion of the total anomaly data.
This category of abnormal vector data can be detected by
judging the size of each vector area and offset of vector
centroids.

From Figure 8, we found that the false alarm anomaly
data were vector data with larger areas: (1) the waterbody
vectors of the Miyun Reservoir (Figure 8(a)) could be ex-
tracted from two images from the same date, but one was
inaccurate because of the excessive cloudiness in the
image, which affected the area of the waterbody vectors
after fusion. (2) The water vector (Figure 8(b)) was dis-
turbed by thin clouds in the image, which resulted in a
larger extraction result, but we could not rule out theTa
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increase in the water surface. To obtain more accurate
anomaly detection results, we should also classify these
two types of anomaly data as anomalies to some extent.

Accuracy evaluation results show that EGADS can
detect 94.44% accuracy rate of reservoir vector data

anomalies and improve the vector data accuracy from
66.25 to 83.87%. The errors in terms of undetected ab-
normal data are small, which can be determined by vector
space position or manual detection. Therefore, the detec-
tion method had passed the qualitative evaluation and can

Figure 7: Missed alarm vector data. (a) 2013-10-23, (b) 2013-11-7, (c) 2014-1-7, (d) 2014-3-27, (e) 2014-6-28, (f) 2014-9-17, (g) 2014-11-14,
(h) 2015-8-21, (i) 2016-1-30, (j) 2016-1-31, (k) 2016-2-25, (l) 2016-3-8, (m) 2016-8-15, (n) 2016-8-26, (o) 2016-9-30, (p) 2016-11-25, (q)
2016-12-8, (r) 2016-12-16, (s) 2017-1-3, (t) 2017-4-18.
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accurately detect most of the reservoir vector data anoma-
lies and combining it with vector space location inspection
can further improve the detection accuracy.

5 Conclusions

With the continuous development of the automatic ex-
traction ability of waterbody data, the volume of water-
body vector data products has increased rapidly, and the
traditional manual inspection methods cannot meet the
current demands. In this study, we utilized the fast cal-
culation and scalability of the EGADS framework, and an
anomaly detection method for reservoir waterbodies vector
data was proposed. First, the area time series was obtained
by preprocessing the vector data. Then, under the EGADS
framework, the Olympic model was used to model the time
series, and the variation rule for the water area was con-
structed. On this basis, the Kσ model was used to automa-
tically detect the abnormal values based on the fitting
values and the original data. Finally, the date for the ab-
normal values was obtained. Accuracy verification results
show that the sensitivity and the specificity of the method
were 94.44 and 83.87%, respectively. The accuracy of the
vector data through EGADS detection increased from 66.25
to 83.87%.

The inspection method used in this study, the EGADS
framework, allowed for the semi-automatic inspection of
vector data of the reservoir water, which has practical
applications in the development of water resources infor-
mation monitoring technology and can even be used for
climate, environmental changes, etc.

The missing outliers in this study can be checked in
combination with the vector space position, so as to
achieve higher accuracy. This problem can be used as
the focus for future research on the application of the
automatic anomaly detection method for reservoir water-
body vector data.
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