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1  Introduction
Many animal species face habitat loss in a rapidly changing world due to global warm-
ing, harmful human activities, etc. [1]. Hence, monitoring the endangered species in the 
ecosystems becomes an urgent worldwide concern. In this context, the automatic animal 
surveillance system presents an effective substitute for the ecologists’ manual observa-
tions since they require costly and time-consuming on-site monitoring that can be infea-
sible depending on the monitored area’s size.

The rapid progress in micro-electro-mechanical systems (MEMSs) has allowed the 
integration of low-cost micro-acoustic sensing components within network nodes, ena-
bling the development of wireless acoustic sensor networks (WASNs). This technology 
enables a wide variety of unassisted acoustic-based monitoring applications for both 
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indoor and outdoor environments. Examples of these applications are endangered ani-
mal tracking [2], vehicle monitoring [3], speech localizing [4]. These applications rely, 
fundamentally, on recognizing the acoustic event of the target-of-interest that appears 
in the monitored area. In practice, the acoustic sensing deals with large volumes of data 
since it acquires audio signals under relatively high sampling frequencies [5]. Therefore, 
transmitting the whole raw audio signal via multi-hop communication for centralized 
recognition at the sink node is impractical [6]. As energy consumption is proportional 
to the volume of data transmitted by the node’s wireless link, the mode of continuous 
data streaming can cause a fast energy decline of sensors involved in the radio commu-
nications, which shortens the network lifetime [6]. Besides, the time required to deliver 
all the relevant raw data to the remote recognition system can be significant, causing a 
long delay in recognizing the detected acoustic object [7]. Despite that the compressed 
sensing can be an effective solution for data reduction during signal acquisition [8]; it 
produces characteristics that are only useful for signal regeneration but not recognition 
using complex algorithms, which is infeasible at WASN due to the limited resources [9].

Alternatively, an energy-efficient solution would be to report only the result of the 
acoustic signal recognition (i.e., animal type) to the sink node with limited data size. 
Accordingly, the energy consumption of the wireless link, involved in radio communica-
tion, will be substantially reduced, contributing to extend the network lifetime [6]. More 
importantly, this approach avoids loading the network with unnecessary traffic, result-
ing in enhancing the network performance and availability. In this approach, recognizing 
the acoustic target that emits the acoustic signal is performed locally at the sensor node 
level. However, the validity of this solution depends on the efficiency of the designed 
WASN-based acoustic event recognition algorithms, where a balance between applica-
tion’s requirements and sensors’ capabilities should be satisfied [6]. In this context, the 
effectiveness of the acoustic recognition systems is mainly based on the deployed feature 
extraction methods and the classification technique. Although there were several solu-
tions proposed for acoustic-based target recognition for WASN [3, 4, 10–14], they suffer 
from high computational complexity due to the complicated feature extraction tech-
niques (i.e., Fourier transforms) and the used classification approaches. Besides, these 
proposed solutions require considerable computational operations and need enough 
memory storage space to extract and store the large number of features.

Unlike Fourier transforms commonly used in recognition applications, discrete wave-
let transforms (DWT), particularly the Haar wavelet transform, provide an efficient 
acoustic signal analysis with significantly reduced mathematical operations required for 
feature extraction [15]. Although wavelet transforms, in computer-based animal sound 
recognition, have been commonly studied [2, 10, 16–18], very few research work has 
addressed the application of DWT’s features for acoustic animal recognition in WASN; 
see, for example, [10]. Despite the interesting results shown in this work [10], this 
approach requires applying complex algorithms for the classification and features opti-
mization tasks, which cannot be executed at low-resources motes.

In our previous work [19], we studied the efficiency of on-sensor acoustic target rec-
ognition and localization using time-domain features. Despite the low-complexity of the 
proposed methods for feature extraction, the results have shown a considerable overlap-
ping of the extracted features for different animal classes, which increases the difficulty 
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of classification. To solve this problem, we proposed a multi-label classification method 
in which the detected acoustic event is classified into the closest two classes of animals. 
The end-user notification carries, among other information, the extracted features for 
further tuned classification. Although the classification results were interesting, the pro-
posed scheme was not capable of mapping the detected sound to a unique specific ani-
mal class.

This paper proposes a new scheme for energy-efficient acoustic animal recognition in 
WASNs with the goal of reducing the energy consumed during radio communication. 
To this end, the recognition task should be performed at the sensor node and thus, only 
the recognition result is delivered to the remote server instead of streaming the whole 
raw signal. The major challenges lie in selecting low-complexity accurate signal process-
ing algorithms for feature extraction and classification tasks practical for the implemen-
tation on the sensor node. For this purpose, the Haar wavelet is used to derive a set of 
lightweight yet powerful features for on-sensor object recognition using a low-complex-
ity classification method capable of differentiating between animal classes. The success 
criterion of this scheme is its capability to extend the lifetime of sensors’ batteries while 
ensuring a successful animal classification. The rest of the paper is organized as follows. 
In the next section, we review the related work. Then, the proposed approach for acous-
tic sensing is described. After that, the paper details the experimentation and perfor-
mance analysis in terms of system recognition accuracy and energy efficiency before 
concluding and highlighting future work.

2 � Related work
An acoustic-based target recognition involves extracting features from the acquired 
signal to identify the source. Most of the existing recognition schemes have combined 
features from multiple domains; time, frequency, cepstrum, and wavelets to achieve a 
high recognition rate [20]. Cepstrum features that are successfully used for speech rec-
ognition were adopted for non-speech sounds in [21] and [22] to recognize bird and 
frog species’ sounds, respectively. Frequency and time features can collectively achieve 
similar performance to cepstrum and sometimes even better, especially in terms of exe-
cution time [15]. The authors of [23] have examined the performance of a fusion of fre-
quency, time, Mel, and Linear Frequency Cepstral Coefficients (MFCC’s and LFCC’s) on 
the recognition rate. This approach is tested on 199 classes of frog calls and achieved an 
accuracy of 95% using Support vector machines (SVMs). In [24], the proposed scheme 
was implemented to recognize nine frog species’ sounds using a mixture of six spectral 
and temporal features. In [25], an optimal-performance approach used a wide range of 
features extracted from several domains to classify 22 classes of frog calls using five clas-
sification algorithms. Although the use of a combination of features increases the recog-
nition accuracy of the approaches mentioned above, these approaches suffer from high 
time and space complexities. Hence, they are inappropriate for resource-constrained 
environments.

Due to the cost-intensive algorithms used in the domain of signal processing, only 
a little attention was given to acoustic-based target recognition in WASNs [3, 4, 
10–14, 19]. In [14], two spectral features were used in the proposed approach for 
binary classification of the sound to either speech or music. The adopted feature 
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extraction algorithms are computationally complex, limiting their deployment for 
low-resources motes. Similarly, the approaches proposed in [3, 4, 11, 12] are char-
acterized by their intensive-computations required for either spectral feature extrac-
tion or the used classifier. Thus, they are not adequate for tiny embedded devices. 
In [13], a featureless approach was designed for classifying two datasets: frog and 
cricket calls based on the sparse representation of signals to be suitable for WSN. 
Although the frog calls dataset’s classification was successful, the classification per-
formance of the cricket species dataset using the same technique was unsatisfactory. 
Due to the inconsistent results, this approach cannot be generalized to recognize 
sounds in a dataset of several classes of animals as intended by our proposed scheme.

Features derived from wavelet were adopted in several applications for the pur-
pose of recognition in [2, 10, 16–18]. The proposed approach in [17] had achieved 
78% and 96% using SVM and MLP, respectively, for bird sounds classification based 
on wavelet packet decomposition (WPD) transform. Similarly, a recent efficient 
WPD-based approach for bird sounds recognition and denoising was proposed in 
[18]. In [2], WPD-based features were used to classify frog sounds. However, WPD-
based approaches require high computational resources to decompose the signal 
into deep levels for feature extraction. Therefore, Discrete wavelet transform (DWT) 
is preferred since it requires fewer operations than WPD. In [16], the raw wavelet 
coefficients and 26 features from cepstrum and spectral domains were merged to 
get high performance with a dataset of four animal classes. However, when DWT 
coefficients were used alone, poor results were obtained with a 25% recall due to the 
low-level meaning of wavelet coefficients that cannot be used directly as features. 
A well-known DWT-based approach used to recognize three datasets with a low 
number of classes per each dataset was [26]. The recognition performances ranged 
from 53 to 82% for the three datasets using 45 features extracted from 12 levels. We 
can conclude that these approaches require calculating a high number of features or 
coefficients. In [27], the ECG signals were classified using four decomposition levels 
to get a performance of 74%. Similarly, features derived from the Haar wavelet trans-
form provided accurate results with low-complexity computations for the epilepsy 
episodes detection in the EEG signals [28]. In contrast to the binary classification of 
the signals in [27, 28], our proposed scheme is supposed to classify sounds as one of 
12 classes.

To the best of our knowledge, DWT-based features proposed for acoustic recog-
nition in WASN have been only addressed in [10]. Although the frog sounds accu-
rately classified in [10], its efficiency is based on the application of computationally 
intensive algorithms for feature optimization and complex classifiers (i.e., DNN 
and genetic algorithm) that are not suitable to be deployed in low-resources motes. 
Moreover, the dataset used in this approach contains nine classes with only 49 sylla-
bles, which implies that the risk of over-fitting might occur. In summary, the current 
methods suffer from the need for high memory storage space and high computa-
tional complexity. Additionally, the energy consumption of the existing WASN-solu-
tions has not been measured to evaluate the capability of these approaches in saving 
the sensor energy and thus extending network lifetime.
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3 � Methods
Wireless acoustic sensor network (WASN) consists of a group of acoustic sensors dis-
tributed over a specific area to exchange information wirelessly with the end-user at the 
sink node. This network type is mainly used for remote monitoring of acoustic targets 
appearing within the sensors field [2]. The WASN can be organized into several clusters 
by adopting an appropriate energy-efficient clustering algorithm, which is beyond the 
scope of this paper. Each cluster is composed of different member nodes and one clus-
ter head (CH). The proposed solution provided in this paper aims to detect and recog-
nize an acoustic object locally at sensors nodes whenever an object enters their sensing 
range. We assume that only one acoustic target appears at a specific time and all sensors 
are stationary with known positions.

To accomplish the target recognition task, first, the signatures of the targets-of-inter-
est need to be stored in the sensor nodes’ memory. During the network setup phase, 
the sink node broadcasts the signatures vectors of all classes to all CHs included in the 
network. Then, each CH will, in turn, send them to the associated member nodes. At 
the application runtime, every sensor node will acquire acoustic samples periodically 
to detect whether an acoustic event has occurred. This requests sensors to monitor 
any significant variation in the intensity of the sampled signal and whenever this vari-
ation exceeds a specific pre-determined threshold ( RMS0 ), an acoustic event is consid-
ered detected. Otherwise, the acoustic signal is discarded, and the acoustic sensor will 
resume its periodic sensing to detect new events. To decrease the notification packets’ 
rate in the network, the sensor node, which detected the acoustic event, has to recognize 
the acoustic target’s type before notifying CH. Consequently, sending unnecessary noti-
fications to the CH in the case of false detections are avoided (i.e., false positives, where 
an acoustic object is detected, but it appears irrelevant). Unlike transmitting the whole 
raw acoustic signal, this approach decreases the packet size and the energy consumed 
during transmission. After detecting the presence of a new acoustic event in the sensors’ 
vicinity, the on-board processor at each triggered sensor node will extract a set of fea-
tures from the sampled acoustic signal. This set of features will define a vector ( F  ) that 
represents the detected target. As the communication bandwidth is limited in WASN, 
a local pattern-based classification algorithm at each sensor will decide on the detected 
animal’s type instead of transmitting the feature vector through the network. In other 
words, the extracted vector ( F  ) is compared with all signatures , loaded in the memory of 
the sensors, using a suitable similarity measure to identify the object. The new acoustic 
target will be assigned to a specific class based on the highest similarity score between 
the signature of the corresponding class and the extracted vector ( F  ). Once the object 
is recognized, the sensor node will send a notification message that contains the rec-
ognition result to the corresponding CH. Since all the triggered sensors will send their 
recognition decisions to the CH, a distance-rejection technique must be adopted at CH 
to consider only the most reliable result [29]. Accordingly, the result of the closest node 
to the detected target is assumed to be the reliable one [3]. This strategy avoids advertis-
ing false detections or redundant data to the sink node, which are unbeneficial for the 
end-user.

The fundamental steps required for the recognition of an acoustic sound in WASN 
are sampling, acoustic event detection, signal preprocessing, feature extraction, object 
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classification, and end-user notification. Note that the signal processing, feature extrac-
tion, and classification functions are performed in the microcontroller of every triggered 
sensor node. As previously discussed, not all feature extraction methods and classi-
fication algorithms can be performed at sensor nodes due to their limited processing 
resources. For adequate sensor-based implementation, the designed tasks should be 
capable of recognizing the target accurately at low-complexity computations, which 
allows per-node low-energy consumption. In the following sections, the required steps 
for acoustic-based recognition, depicted in Fig. 1, are detailed.

3.1 � Sampling

Sampling all raw data samples of the acoustic signal at 8  kHz provides a satisfactory 
balance between the acoustic signal quality and the constrained resources [14]. Hence, 
using 8 kHz for sampling rate or lower is a common choice used in most of the WASN’s 
acoustic recognition systems (see Table  4 for more details). Concerning the sampling 
period, careful selection is crucial since sampling can cause high energy consumption 
[30]. In our approach, the sampling period should exceed the minimum time required 
for the signal processing to conserve sensors’ energy. This means that Ts > Tp must 
be satisfied, where Ts denotes the sampling period and Tp denotes the minimum time 
required to process the scheme including all the steps of signal acquiring, object detec-
tion, target recognition and CH notification. The sampling periods of 5, 10, and 20 s are 
common choices in animal recognition applications [31].

Periodic sensing

Signal Power calculation

Is new 
object 

detected?

Object classification using 
(ED, MD) classifiers

Haar wavelet decomposition

Haar-based Features extraction

End-user notification

Yes

No

Classes 
Signatures

Fig. 1  Flowchart diagram of the proposed sensor-based acoustic animal recognition in WASN
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3.2 � Detection of a new acoustic signal

This step is performed to differentiate between real acoustic events from background 
noise regardless of whether this acoustic event is irrelevant or not, which will be decided 
at a later stage. In this step, the sensors in each cluster perform periodic sensing at a 
time interval ( t ) to acquire a new acoustic signal. These sensors should be aware of 
the acquired signal’s power-level variation to decide whether a positive detection has 
occurred. For this purpose, the sensor node will calculate the root mean square (RMS) 
of the samples to obtain the average signal power Pi(t) . Then, the Pi(t) is compared with 
a pre-defined threshold RMS0 . The threshold value RMS0 is dependent on the noise level 
at the areas where the sensor nodes are placed, which is determined during network 
deployment as a part of the calibration procedures [4, 11]. As higher ambient noise lev-
els may trigger unnecessary detections, updating RMS0 value during network operation 
avoids increasing the detection complexity and thus energy expenditure [32]. The deci-
sion on object detection is determined based on the following detection function (D):

An acoustic event is detected (D = 1) if the average signal power in a specific time 
interval exceeds RMS0 . Consequently, the acquired samples of the signal N  will be 
passed to the next step for further processing. Otherwise, the current value of RMS0 
will be updated considering the calculated average power of the newly acquired signal 
according to the following equation:

The threshold value RMS0 plays an essential role in segmenting the signal into a time-
series of raw acoustic data blocks, which results in event detection. A prior calibration 
step is required to allow the sensors to discover the background noise automatically 
within their local environment where the network is deployed [30]. Thus, this would 
help in determining the threshold value RMS0 based on the sensors’ awareness of the 
noise level when no acoustic event arises. Thus, in this stage, each sensor will compute 
the (RMS) of multiple acoustic signals over a time interval (t) . Then, the average signal 
power will be used to determine the background noise threshold RMS0 . Self-calibration 
at sensors can be initiated automatically at any time during network operation for updat-
ing the current calibration procedures and to minimize the sensitivity to the variation 
of the noise level in the environment, if necessary, e.g., after orientation changes or an 
increase in the background noise.

3.3 � Signal preprocessing

Signal preprocessing is a necessary step to prepare the signal for feature extraction. It 
involves framing and silence removal. In practice, acoustic signals are not stationary, but 
they can be considered stationary if they are analyzed for a short span of time. Therefore, 
in our approach, the acoustic signal is portioned into frames of 1024 samples that cor-
respond to 0.128 s with an overlapping of 25% between consecutive frames to preserve 
the information contained in the boundaries of frames. Each frame is then multiplied 

(1)D =

{

1 Pi(t) > RMS0
0 Pi(t) ≤ RMS0

(2)RMS0 := RMS0 + (Pi(t)× α) where 0 ≤ α ≤ 1
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by a Hamming window before extracting features. The frame size used in our solution 
represents a reasonable choice since typical sensors (i.e., Mica/Mica2 series motes) have 
4  Kb RAM only. As every sample point requires 2 bytes, this means a frame of 1024 
data points allocates 2048 bytes of the sensor’s RAM space while the remaining space is 
assigned to other modules [5].

Typically, acoustic animal records comprise periods of silence that need to be dis-
carded when processing the signals. Thus, each frame is checked if it is silent to pass 
only the active frames to the feature extraction step. The primary purpose of this step 
is to emphasize the essential information contained in each sound record. Thus, only 
prominent non-silent frames of the sound signal are guaranteed to remain. Conse-
quently, not only the quality of the feature extraction process is improved, but also the 
associated processing time is decreased. Since the background noise level might vary, 
the silence threshold for each sound record is calculated adaptively based on the signal’s 
average energy. In our approach, we defined the silent frame as a frame whose Root-
mean-square value (RMSi) is below 10% of the long-term average signal energy [19]. Fig-
ure 2a–c shows the result of a sound record’s silence removal algorithm in the dataset. 
The overlapping frames in Fig. 2b indicate the active parts that are remained for further 
processing. The silence removal method has the following steps:

1	 Compute the threshold value TSilence of each sound record based on the value of the 
average power of the whole signal Pi(t) determined during the object detection phase 
(3):

2	 For each frame i , calculate the corresponding RMSi value (4):

	 where xi is the value of the ith sample and N represents frame length.
3	 Compare the RMSi value against TSilence . If the RMSi of frame i is below the signal 

threshold TSilence , it is considered a silent frame and will be discarded, and the sub-
sequent frame in line will be processed. Otherwise, frame i is considered an active 
frame and will be passed to the feature extraction step. This process is continuing 
until all frames of the signal are preprocessed. The function of the silent frames 
detection can be defined as expressed in (5):

3.4 � Feature extraction

The acoustic-based target recognition applications depend fundamentally on feature 
extraction methods to classify the detected acoustic event. Feature extraction meth-
ods should generate a compact representation of the features at a low computational 
cost to cope with WASN constraints while providing accurate classification results. 

(3)TSilence = Pi(t)× 0.10

(4)RMSi =

√

∑N
i=1 x

2
i

N

(5)S =

{

1, RMSi > TSilence

0, RMSi ≤ TSilence
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Simple statistical measures extracted from the raw signal, such as mean, standard 
deviation, peak, variance, skewness, and kurtosis, were used for the acoustic target 
recognition, as stated in [33]. However, they failed to provide high accuracy in the 
results of our preliminary experiments and thereby, they are not part of the addressed 
features.

Although temporal domain features have a low time complexity of O(N ) , they suffer 
from low discrimination ability between acoustic objects; thus, they are commonly 
combined with spectral features [23, 25, 34]. Even though this strategy increases the 
classification accuracy, it increases the computational complexity, which questions 
its practicality for the sensor-based implementation. More specifically, the extraction 

Fig. 2  The result of a ‘cow’ sound record preprocessing. a before silence removal, b the overlapping frames of 
the active part of the sound record, c the sound record after silence removal
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of spectral features requires first transforming the signal into the frequency domain 
using Fast Fourier transform (FFT) or Short-Time Fourier transform (STFT), which 
have the complexity of O

(

N log2N
)

 and additional O(N ) operations to compute the 
required feature. Moreover, STFT suffers from limited resolution in the time–fre-
quency plane due to the fixed analysis window used for all frequencies [26]. Therefore, 
a better choice would be to analyze the range of different frequencies dynamically 
using a varied-size window to extract time–frequency features. This concept of mul-
tiresolution analysis is provided by the wavelet transform. Unlike Fourier transforms, 
wavelets can capture discontinuities and sharp spikes more efficiently due to wave-
let functions’ finite duration nature [35]. Capturing such information is significant in 
the differentiation between sounds. Compared to the wavelet packet decomposition 
(WPD) transform, discrete wavelet transform (DWT) is considered computationally 
inexpensive, particularly, the Haar wavelet that provides a robust signal analysis with 
low time complexity of O(N ) [36]. Therefore, we used the discrete wavelet transform 
(DWT) to decompose the signal into approximation (A) and detail (D) coefficients. 
In our preliminary tests, we evaluated the classification performances of different 
wavelets. The evaluated waveletes are the Haar, Db2, Db4, Db10, Sym2, Sym4, Sym8, 
Sym10, and Coif1, which are used in acoustic-based signal classification in [37]. We 
noticed that there is insignificant impact of the chosen mother wavelet on the clas-
sification rate which is consistent with findings in [27]. Therefore, we selected the 
computationally inexpensive and fast Haar wavelet transform that allows low-cost 
implementation at the sensors [36].

While raw wavelet coefficients can be employed for distinguishing between animal 
classes, our preliminary experiments have shown their inefficiency due to their low-
level expressiveness and large dimensionality. Hence, for the selected decomposition 
level (l) , the detail coefficients were extracted for each frame that composes the sig-
nal. After that, the mean of all frames’ coefficients is calculated to get only one global 
vector of the detail coefficients per level. Then, we applied statistical measures on the 
detail coefficients to obtain compact features similar to what had been done in [26] 
by Tzanetakis. In [26], three features were used which are: the mean ( M ), standard 
deviation ( STD ) of the absolute values of the coefficients per subband, and the ratio 
of the mean values of two adjacent subbands ( RM ). In addition to these features, we 
extracted a set of wavelet-based features. Definitions and mathematical formulas of 
the extracted wavelet-based features are presented in “Appendix A”. These features are 
the energy variance of coefficients in each subband (E) calculated in Eq. (A.1), tempo-
ral centroid per subband ( TC ) calculated in Eq. (A.2), the ratio of coefficients energy 
between two adjacent subbands ( ER ) calculated in Eq. (A.3), temporal centroids dif-
ference between two adjacent subbands ( TCD ) calculated in Eq. (A.4), and the Shan-
non entropy per subband ( P ) calculated in Eq. (A.5), which was proposed in [18]. We 
note that the ER and TCD features cannot be computed unless two decomposition 
levels are calculated. Finally, the values of each extracted feature are normalized to 
have zero-mean and unit-variance using F =

F−µ
σ(F) Where F  and F  are the original and 

normalized feature, respectively. µ and σ are the mean and standard deviation of the 
feature, respectively, obtained during the training phase.
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The final decision on the features for implementation on WASN is based on two cri-
teria: (1) their high accuracy to ensure efficient recognition and; (2) their adequacy for 
sensor-based implementation based on their computational complexity according to 
[15, 36]. Concerning the latter criterion, the time complexity of several implemented 
algorithms is presented in Table 1. Toward achieving the first criterion, we evaluated 14 
features extracted from the wavelet, time, and frequency domains by adopting WEKA’s 
attribute evaluator: Gain Ratio. The evaluated time and frequency-based features are 
energy (g), zero-crossing rate (ZCR), loudness (L), spectral roll-off (SR), spectral flux 
(SX), and spectral flatness (SF), which had been used in [23, 25, 34]. As a result, the 
descending list of the highest features in their gain ratio is: STD, E, P, L, g, ZCR, SX, SF, 
SR, TC, M. In this experiment, we have applied one decomposition level for extracting 
wavelet features, thus, RM, RE, and TCD were not evaluated because they require two 
levels to be computed. The highest three features were wavelet-based features, and we 
found that [ Energy, entropy ] have provided powerful discrimination between different 
animal classes contained in the dataset. More details about the recognition performance 
of different combinations are discussed in Sect. 4.1 while the energy evaluation of the 
selected wavelet features is validated through AVRORA simulator in Sect. 4.2.

3.5 � Classification

The classification of the detected target is carried out in all triggered sensor nodes. 
However, CH adopts a distance-rejection technique to select the recognition result 
of the closest node to the detected target. In order to perform classification, the 
signatures of the animal classes are constructed offline and then broadcasted by the 
end-user to the deployed sensors during the configuration phase. These signatures 
are formed by computing the mean of the normalized features vectors for all the 
training samples per each class at the base station. Each signature is represented by 
signatureC =

{

µfeature1,µfeature2, . . .
}

 where C = 1, 2, .., 12, which represents the class 

Table 1  The computational complexity of feature extraction methods [15, 36]

Subset domain Features (abbreviation) Requires

Time Energy(g) O(N)

Zero-crossing rate (ZCR)

Loudness (L)

Frequency Spectral flux (SX) STFT which costs O
(

N log2 N
)

Spectral roll-off (SR)

Spectral flatness (SF)

Wavelet The mean of the subband’s coefficients (M) 1-D Haar which costs O(N)

The standard deviation of the subband’s coefficients (STD)

The ratio of absolute mean values of two adjacent subbands 
(RM)

The energy variance of the subband’s coefficients (E)

The energy ratio between two adjacent subbands (ER)

The temporal centroid per subband (TC)

The difference between the temporal centroids of two adja‑
cent subbands (TCD)

The entropy per subband (P)
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number. In runtime, the features’ vector is extracted from the newly detected acous-
tic signal. Then, the extracted vector is compared with all existing animal signatures 
using a lightweight distance-similarity classifier. More specifically, each sensor involved 
in the recognition computes the distances between the extracted feature vector ( F  ) 
and every animal signature. Then, all these distances are stored in a distance vector 
DC = {d1, d2, ..., d12} , where d1 represents the distance between the ( F  ) and class 1 signa-
ture and so on. Then, the class label (C) of the unknown object will be determined based 
on the shortest value in DC vector. Euclidean distance (ED) or Manhattan distance (MD) 
is two of the common similarity measures in the context of data mining and classifica-
tion applications [20]. Definitions and mathematical formulas of Euclidean and Manhat-
tan distance are presented in “Appendix B”; see B.1 and B.2.

Standard metrics used in audio-based recognition applications are recall, precision. In 
the following equations, TP, TN, FP, and FN stand for the correctly predicted positive 
instances, the correctly predicted negative instances, the actual negative instances that 
are classified incorrectly as positive, and the actual positive instances that are classified 
incorrectly as negative, respectively.

•	 Recall: this metric measures the true positive rate, which is critical for the system 
performance. The goal is to obtain a high recall score, which indicates that the sys-
tem is not missing an animal of interest. This metric’s high value means that we get a 
low miss rate (i.e., low number of undetected targeted animals), which is required for 
the system reliability.

•	 Precision: it measures the positive predictive value that is significant for situations 
when the cost of the false positive detections (i.e., the detection of untargeted ani-
mals) is high. In our case, these instances represent the number of non-targeted ani-
mals that are recognized by our system. Thus, recognizing irrelevant sounds will trig-
ger unrequired processing in the sensors, which should be avoided. The goal is to 
obtain a high precision value as it represents the classification predictions’ accuracy 
per class.

4 � Results and discussion
In this section, we describe the set of experiments conducted to assess the proposed 
scheme performances in terms of recognition accuracy and energy efficiency. The per-
formance analysis addressed the application level to measure the efficiency of the scheme 
in terms of classification accuracy of the detected sound based on the extracted wavelet 
features. For this purpose, we implemented the proposed scheme with MATLAB. We 
used a dataset containing audio records belonging to twelve different animals, namely: 
{Dog, Rooster, Pig, Cow, Frog, Cat, Chicken, Insect, Sheep, Crow, Cricket, and bird}. This 
set of animals’ sounds represents a subset from a larger dataset used for environmental 

(6)Recall =
TP

TP + FN

(7)Precision =
TP

TP + FP
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sound classification known as ESC-50 [38]. The dataset records, which contain 480 files, 
are stored in.wav format with a sampling frequency of 44.1  kHz. Moreover, we col-
lected for the evaluation of the proposed scheme 127 records at.wav format from differ-
ent websites of animal sound libraries such as [39]. The collected records have different 
sampling frequencies with variable durations, and they often contain background noise. 
Therefore, the preprocessing of these records is an essential step to mitigate the issues 
mentioned earlier. 20 records out of 480 included in the ESC-50 dataset were excluded 
from the dataset due to the high noise level. We also performed frequency downsam-
pling for the records to be at a unified sampling frequency of 8 kHz. The total number of 
the collected animal sound records is 587 records with durations ranging from 1 to 5 s. 
From these records, we have used 70% for training and 30% for testing.

4.1 � The recognition accuracy of the proposed scheme

We evaluated the discrimination capability of wavelet-based features to determine 
their impact on animal recognition accuracy. First, we examined the recognition’s per-
formance of the extracted wavelet-based features, as shown in Table 2. Those features 
are derived from five decomposition levels of the acquired signal. Interestingly, features 
combinations derived from this decomposition level recorded the highest recognition 
accuracy compared to lower levels. However, the increment in the decomposition lev-
els raises the computations and increases the features vector’s size. Due to the limited 
memory on tiny devices, this number of features is voluminous and impractical for the 
application. Alternatively, we studied other combinations of the eight wavelet features 
to select the appropriate non-lengthy efficient feature vector that ensures a trade-off 
between complexity and recognition accuracy. For this purpose, the WEKA tool was 
used where gain ratio attribute evaluator and Ranker search methods were adopted to 
check the discrimination capability of different features’ combinations. The recall results 
of different combinations of features, which showed the highest gain ratio, according to 

Table 2  The recall results of different combinations of wavelet-based features

Set Wavelet features selected Average recall 
using ED (%)

Average recall 
using MD (%)

Number 
of features

Wavelet 
decomposition 
level(s)

#1 All features 88.82 89.86 37 5

#2 Entropy of level 2
Energy of level 1
Energy Ratio of level 2 & 1
Centroid of level 1

85.70 87.09 4 2

#3 Entropy of level 2
Energy of level 1
Energy Ratio of level 2 & 1

85.38 84.86 3 2

#4 STD of level 1
Energy of level 1
Entropy of level 1

86.04 86.87 3 1

#5 Energy of level 1
Entropy of level 1

86.08 85.59 2 1

#6 STD of level 1
Energy of level 1

85.03 85.44 2 1

#7 STD of level 1
Entropy of level 1

85.52 85.21 2 1
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WEKA, are shown in Table 2. We noticed that higher decomposition levels or more fea-
tures do not necessarily increase the recall performance. (e.g., set#3 are extracted from 
the second decomposition level and have more features than set#5 but recall results 
obtained with set#3 are lower than of those obtained with set#5).

We also found that decomposition levels one and two can produce high results using 
both Euclidean and Manhattan Distances. The number of features and the decompo-
sition levels used for extracting each set are depicted in Table  2. Compared with the 
results obtained with the features set extracted from two levels reported in Table 2, we 
noticed that a satisfactory recognition rate could be obtained with only one decomposi-
tion level and with a smaller set of features. The reason is that the detail coefficients of 
the first level capture the high frequencies and abrupt changes of the signal that help in 
differentiating between animal classes, which are essential for the recognition task.

Using set #2 and set #4 of features achieved, the highest recall results compared with 
the rest, particularly with set #5 of features. However, calculating set #2 and set #4 of 
features needs higher computations and higher processing resources to decompose the 
signal at a higher level and to extract more features. Indeed, despite the higher complex-
ity of the methods used to extract set #2 and set #4 of features, the gain in recognition 
accuracy was improved by only around 1%, which is not worthwhile. Interestingly, the 
method used to extract set #5 of features requires fewer computational operations to 
decompose the signal into only one decomposition level and to calculate two features 
while guaranteeing high recognition accuracy. Thus, we considered feature set #5 an 
adequate choice for the proposed scheme since it guarantees a satisfactory compromise 
between sound recognition capability and energy expenditure.

We evaluated the proposed recognition scheme’s recall and precision based on set#5 
of features using Manhattan Distance and Euclidean Distance classification methods for 
the set of sound record of animals. The results are shown in Fig. 3.

In terms of precision metric, we noticed that some classes’ classification results based 
on ED are slightly better than using MD. Figure 3 shows that 100% of audio records for 
seven classes were correctly classified according to the recall results. These classes are 
Rooster, Frog, Cat, Chicken, Insect, Crow, and Crickets. Based on human listener clas-
sification, the recall rates of individual classes such as rooster, frog, cat, chicken, crow, 
and crickets were below 80% according to [38]. This indicates that our proposed scheme 
can accurately classify the acoustic objects that belong to these classes when they appear 
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Fig. 3  The recall and precision results of set #5 of features using a Manhattan distance, b Euclidean distance
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in the area of surveillance. We can also note that the proposed scheme produced 80% or 
more in terms of precision for seven classes using Euclidean distance. This high preci-
sion performed by the proposed scheme would reduce false detection, making it suitable 
for an extended range of applications. The proposed approach achieved an average recall 
of 86.08% using Euclidean Distance, where seven animal classes were 100% recognized, 
which demonstrates the high accuracy of our approach. However, the recall results of 
Dog and Pig classes using this scheme are low due to the wide variety of waveforms con-
tained in the records of these classes. In fact, the dog class contains records of puppies’ 
sounds while Pig class includes records of snort, grunt, squeal, and oinks sounds. Hence, 
the classification model could not accurately learn the mapping between classes and dif-
ferent waveforms within one class, especially with the limited number of records per 
class. We believe that the performance of the proposed approach of animal recogni-
tion can be further improved if a larger dataset of animal sounds is used in the learning 
phase.

The mean distributions of the selected features: energy and entropy of the sounds of all 
animal classes are presented in Fig. 4a, b. These distributions show how these two fea-
tures have distinguishable values per class. When combined, these features provide high 
accuracy for the recognition task.

Although set #5 of features are designed to be effective under sampling frequency 
of 8  kHz, they also showed an encouraging performance of recall using 16  kHz and 
44.1  kHz, where 84.61% and 85.10% were achieved using Euclidean Distance, respec-
tively. This result attests the scalability of our proposed scheme under different sampling 
frequencies.

4.2 � The energy efficiency of the proposed recognition scheme implemented on the sensor

We studied the energy efficiency of the proposed scheme when implemented in a wire-
less acoustic sensor. For this purpose, we used the AVRORA tool [40], which is an 
instruction-level emulator of sensors platforms that allows the evaluation of energy con-
sumed in executing internal algorithms and communicating data to a remote device. We 
estimated the energy consumption for MICAz motes based on ATmega128L microcon-
troller and using a RAM of 4 kB.

The energy consumption and execution time of the proposed scheme were evalu-
ated based on three different scenarios, as depicted in Table 3. In the first scenario, 

Fig. 4  The mean distribution of features a energy, b entropy
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the sensor processes the whole tasks of the animal recognition scheme. Then, it trans-
mits a notification packet of one byte that carries the detected class’s identity to the 
end-user. In the second scenario, the acoustic sensor processes all the proposed steps 
except the classification, which will be performed at the server level. This means that 
the server will be notified with a packet containing the 2-D vector of floating-point 
features, where each feature is represented with 4 bytes. The server performs the clas-
sification task based on those received features. In the third scenario, the acoustic 
sensor will send the raw data samples to the remote server without any processing. 
Each sample of the signal is represented by 2 bytes. In our approach, the acoustic 
signals are assumed to be in a mono-format with a sampling frequency of 8 kHz (16-
bit). The simulation results for processing an acoustic signal with a length of 1 s are 
illustrated in Table 1. As we can see from this table, the overall cost of processing the 
whole scheme (scenario #1) is around 37  mJ and needs around 0.5  s for execution. 
Compared to (scenario #2) where the classification is processed at the server-side, 
the gain in energy and time is negligible. This is because the classification method, 
proposed in our scheme, has a low-complexity and does not require intense process-
ing. We think that implementing the classification at the sensor side would avoid the 
transmission of useless notification and would reduce the communication overhead 
[32]. When compared to (scenario #3), which corresponds to transmitting a record 
of 1 s of raw data of the acoustic signal, we can note that (scenario #1) saves 71.5% of 
sensor energy, proving the efficiency of our approach in extending sensor lifetime.

Table  4 sums a comparison with the performances and the characteristics of the 
most relevant similar solution designed for WASNs. The obtained results showed that 
our recognition scheme consumes more energy than the solution proposed in [20]. 
This is because extracting wavelet-based features requires a higher processing band-
width than extracting features in the time domain. However, it is important to note 
that the scheme proposed in [20] was unable to perform single-label classification. In 
contrast, our scheme proved the ability to perform one-label animal recognition with 
a recall of 86% for twelve classes. In terms of execution time, it was reported in [5] 
that implementing a 512-point Fast Fourier Transform algorithm needs 15 s in ExScal 
motes. However, the proposed recognition scheme’s execution needs only 0.5 s in the 

Table 3  Evaluation of the three processing scenarios at the sensor using MICAz

Measured attribute Energy consumption
(mJ)

Time
(ms)

Scenario #1:
The full scheme

37.05 500

 Processing 36.79 496

 Notification 0.26 4.50 E−3

Scenario #2:
The scheme without classification

37.02 498

 Processing 36.75 493

 Notification (vector of features) 0.27 4.76 E−3

Scenario #3:
Transmission of 1 s of the raw acoustic signal

130.42 1511.89
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MICAz mote to send the result to the remote server, making it suitable for real-time 
implementation in WASN.

Also, Table  4 shows that the approaches proposed in [10–12] were capable of pro-
viding higher recognition accuracy than our scheme. However, the energy efficiency of 
those schemes was not proved for the execution in limited-resources systems. In fact, 
feature extraction methods and complex classifiers used in these approaches are expen-
sive in terms of computations and thereby impractical for WASN. Although the frog 
sounds dataset classification was accurate in [13], the cricket sounds dataset classifica-
tion was unsatisfactory. This indicates that the proposed scheme of [13] is not scalable 
in classification performance for a wide range of animal classes. In contrast, our scheme 
accurately assured the recognition of one animal sound from a group of twelve animal 
classes.

5 � Conclusions
This paper presented a lightweight scheme for acoustic-based animal recognition 
designed for sharply limited-resources systems (i.e., MICAz motes) seeking to extend 
their lifetime. Instead of streaming the whole raw signal of the acoustic event to the 
remote server, the proposed approach is intended to locally recognize the target and 
communicate only the recognition result to the server. Accordingly, the node energy 
will be saved, which contributes to extend the application’s viability. The scheme’s 
effectiveness is mainly based on applying low-complexity accurate signal process-
ing algorithms for features extraction and classification adequate to be deployed 
on sensor nodes. For this purpose, we adopted low-complexity Haar-based features 
capable of ensuring a high granularity and accurate classification of the detected ani-
mal sound. The experimental results have shown that the proposed scheme ensures 
86% of recognition recall saving 71.5% of energy compared to streaming the whole 

Table 4  WASN-based animal recognition systems

Approach Features Number 
of features

Classifier Dataset (no. 
of classes) = no 
of files

Recognition 
accuracy 
(Recall)

Sampling 
frequency

1 Croker et al. 
[11]

Frequency 
and time

5 ED Frog (5) = 100 Recall = 85%
Accu‑

racy = 89%

16 kHz

2 Dang et al. 
[12]

Envelope 
Extraction

Not speci‑
fied

Matched 
filtering

Frog (3) = not 
specified

Accu‑
racy = 90%

< 10 kHz

3 Wei et al. 
[13]

From 
Gradient 
Projection 
for Sparse 
Recon‑
struction

featureless 
using a 
sparse 
represen‑
tation

Their own ι
1-mini‑
mization 
Sparse 
Approx‑
imation-
based 
classifier

Frog (14) = 228 Recall ≈ 98% 24 kHz

crickets 
(20) = 663

Recall ≈ 50%

4 Colonna 
et al. [10]

Wavelet 4 k-NN Anurans(9) = 49 
syllables

96.25%
94.16
86.96%

44.1 kHz
11 kHz
5.5 kHz

5 Algobail 
et al. [19]

Time 2 ED Animals (7) = 114 81.34% 44.1 kHz

6 Our scheme Wavelet 2 MD
ED

Animals 
(12) = 587

85.59%
86.06%

8 kHz
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acquired acoustic signal to the remote server. The results showed further that the 
whole Haar-based scheme’s execution time is lower by orders of magnitude compared 
with FFT algorithms commonly used in similar approaches. We can conclude that 
this approach avoids loading the network with probably unnecessary traffic, leading 
to increased network performance and availability. Nevertheless, the development of 
an efficient low-energy monitoring system requires further research to be conducted 
regarding the design of low-complexity methods for object localization and tracking 
to build upon the current recognition system.
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Appendices
A. The extracted haar‑based features

1	 The energy variance of coefficients in each subband (E). This feature represents the 
frequency distribution, which is calculated using the following equation.

	 where x(i) indicates the value of coefficient i, N  represents the number of coefficients 
in level L , and X  represents the mean of the coefficients’ values.

2	 The temporal centroid per subband ( TC ). It represents the temporal distribution of 
the signal, which is calculated as follows:

	 where x(i) indicates the value of coefficient i, N  represents the number of coefficients 
in level L , t[i] represents the time index.

3	 The ratio of coefficients energy between two adjacent subbands ( ER ). It represents 
the amount of change in a frequency distribution, which is calculated as follows:

(A.1)E =

∑N
i=1(x(i)− X)2

N − 1

(A.2)TC =

∑N
i=1

(

|x(i)|2t[i]
)

∑N
i=1 |x(i)|

2

https://github.com/karolpiczak/ESC-50
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	 where L corresponds to the decomposition level number, and E is computed accord-
ing to Eq. (6).

4	 The temporal centroids difference between two adjacent subbands ( TCD ). It repre-
sents the amount of change in temporal distribution, which is calculated as follows:

	 where L corresponds to the decomposition level number.
5	 The Shannon entropy per subband ( P ). It represents the temporal distribution of the 

signal, which is calculated as P = −
∑

i

pi log pi where pi is the probability of coeffi-

cient i appearing in the subband. However, we used a slightly different version of this 
equation used in [18] as follows:

Where x(i) indicates the value of coefficient i . Shannon entropy was selected among 
many others (i.e., log-energy, threshold, and norm) due to its performance during prelimi-
nary experiments.

B. The mathematical formulas of Euclidean and Manhattan distance

Euclidean distance can be defined as a straight line between two points in Euclidean space. 
Suppose we have two features’ vectors f = (x1, x2, . . . , xn) and f ′C =

(

y1, y2, . . . , yn
)

. in n
-dimensional space of features. The Euclidean distance of the two vectors is the sum of the 
square difference for each feature. It is calculated using this formula:

The Manhattan distance of the two vectors is the sum of the absolute differences of their 
features. It is calculated using this formula:

where f  is the detected target vector, f ′C is the signatures of classes, and n represents the 
number of features.
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