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Uncertainty encountered when modelling
self-excited thermoacoustic oscillations
with artificial neural networks

Stefan Jaensch and Wolfgang Polifke

Abstract

Artificial neural networks are a popular nonlinear model structure and are known to be able to describe complex

nonlinear phenomena. This article investigates the capability of artificial neural networks to serve as a basis for deducing

nonlinear low-order models of the dynamics of a laminar flame from a Computational Fluid Dynamics (CFD) simulation.

The methodology can be interpreted as an extension of the CFD/system identification approach: a CFD simulation of the

flame is perturbed with a broadband, high-amplitude signal and the resulting fluctuations of the global heat release rate

and of the reference velocity are recorded. Thereafter, an artificial neural network is identified based on the time series

collected. Five data sets that differ in amplitude distribution and length were generated for the present study. Based on

each of these data sets, a parameter study was conducted by varying the structure of the artificial neural network.

A general fit-value criterion is applied and the 10 artificial neural networks with the highest fit values are selected.

Comparing of these 10 artificial neural networks allows to obtain information on the uncertainty encountered. It is found

that the methodology allows to capture the forced response of the flame reasonably well. The validation against the

forced response, however, depends strongly on the forcing signal used. Therefore, an additional validation criterion is

investigated. The artificial neural networks are coupled with a thermoacoustic network model. This allows to model self-

excited thermoacoustic oscillations. If the training time series are sufficiently long, this coupled model allows to predict

the trend of the root mean square values of fluctuations of the global heat release rate. However, the prediction of the

maximal value of the fluctuation amplitude is poor. Another drawback found is that even if very long-time series are

available, the behaviour of artificial neural networks cannot be guaranteed. It is concluded that more sophisticated

nonlinear low-order models are necessary.
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1. Introduction

Thermoacoustic oscillations limit the development of
gas turbines and rocket engines. These oscillations are
nonlinear. Hence, in order to decide whether or not a
thermoacoustic oscillation reaches critical amplitude
levels, nonlinear low-order models are necessary.

Several models have been developed to predict these
amplitude levels. The flame describing function (FDF)
combined with a one-dimensional model for the acous-
tics has been proven to give useful estimates of the
oscillation amplitudes in many cases.1–3 It is also pos-
sible to deduce an FDF from a CFD simulation.4–6 The
FDF is limited to harmonic oscillations, where higher

harmonics in the flame response are unimportant.
As shown by Moeck and Paschereit7 and Orchini
et al.,8 the FDF can be extended to the so-called
flame double input describing function (FDIDF).
This increases the accuracy of the prediction
significantly. However, determining a FDIDF is
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prohibitively expensive for practically relevant applica-
tions.8 Another model that has drawn recent interest is
the G-equation.2,8–11 The drawback of G-equation-
based models is that the results depend strongly on
the velocity model used. Consequently, no quantitative
agreement with experiment is obtained. A promising
technique is hybrid CFD/low-order models.12–16 These
models have the advantage that they can account for the
complex interaction between heat source, flow and
acoustics. Additionally, compared to a fully compress-
ible simulation of the whole thermoacoustic configur-
ation, the computational effort can be significantly
reduced. However, the computational effort is still high
and more efficient non-linear low-order models are
needed. A general methodology for deriving low-order
models from a CFD simulation is the CFD/system iden-
tification (SI) approach.17 The general idea of the CFD/
SI approach is to force a CFD simulation with broad-
band excitation signal. If the flame dynamics of a pre-
mixed flame is to be determined, the resulting fluctuation
of the reference velocity and of the global heat release
rate is recorded. From these time series low-order
models can be deduced by system identification.18,19 In
the linear regime, the CFD/SI approach is known to
yield accurate estimates of the flame transfer function
(FTF).17 The CFD/SI approach can be extended to the
nonlinear regime.18,20 Selimefendigil et al.21–23 used the
method to identify nonlinear low-order models for a
cylinder in pulsating crossflow. Zhang et al.24 used
Hammerstein–Wiener models to deduce nonlinear low-
order models from a G-equation solver.

In the present study, the CFD/SI approach is used to
obtain nonlinear low-order models of a laminar flame.
The capability of artificial neural networks (ANNs) to
serve as the nonlinear model structure is investigated.
ANNs have become a very popular black-box model
in the last decades. They have been used to predict
stock prices to forecast the weather and to model air-
crafts. The ANN framework provides a model structure,
which can easily be extended in such a way that very
complex nonlinearities can be described.
Consequently, it is expected that there exists an ANN
that describes the nonlinear flame dynamic accurately.
Indeed, Blonbou et al.25,26 and Vaudrey and Saunders27

showed that ANNs can be used to control combustion
instabilities. However, the model structure of an ANN
has a large number of parameters and consequently,
ANNs are prone to over-fitting. This phenomenon
occurs in particular if only short time series are avail-
able. In contrast to experimental test rigs, as investigated
by Blonbou et al.25,26 and Vaudrey and Saunders,27 the
time series used for the CFD/SI approach should be as
short as possible. Otherwise, no advantage in computa-
tional time can be achieved. Therefore, the key question
addressed in the present study is whether or not an

appropriate ANN can be determined based on the lim-
ited information available, i.e. the broadband time
series. An ANN is considered to be appropriate if on
the one hand it can capture the forced response of the
flame. This criterion allows to validate the predicted
fluctuation of the global heat release rate in both the
time and the frequency domain in a straightforward
manner. A drawback of this comparison is that it
depends strongly on the forcing signal used. Therefore,
on the other hand, an additional validation criterion is
investigated. The ANNs identified are combined with a
thermoacoustic network model in order to model self-
excited thermoacoustic oscillations. The predicted oscil-
lations are compared against the results obtained with
the hybrid CFD/low-order models discussed in Jaensch
et al.16 This validation analyses if small errors made by
the ANN accumulate and is very close to the application
considered. A difficulty of this validation is that thermo-
acoustic oscillations can be very complex, which makes
a direct comparison in the time or frequency domain
difficult. In the present study, we compare the oscilla-
tions predicted in terms of root mean square (RMS)-
values and the maximal fluctuation of the global heat
release rate.

In the next section, the CFD setup is introduced,
which forms the basis of the present study.
Thereafter, we discuss how ANNs can be used for the
CFD/SI approach. Then, the methodology is validated
in terms of forced response and self-excited oscillations.

2. Numerical setup

The CFD setup is shown in Figure 1 and corresponds to
the multi-slit burner investigated by Kornilov et al.28

Figure 1. Multi-slit burner and the corresponding CFD domain

investigated.16
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and Duchaine et al.29 The numerical settings were
chosen as in Duchaine et al.,29 i.e. equivalence ratio 0.8,
inlet velocity 0.4m/s, inlet temperature, 293K and wall
temperature 373K. In contrast to Duchaine et al.,29 a low
Mach formulation of the Navier–Stokes equations was
solved. This implies that the density depends on the tem-
perature only, but not on the pressure. Consequently, the
acoustics inside the computational domain is suppressed.
In particular, this modification also suppresses the intrin-
sic thermoacoustic feedback.30 It is expected that this
simplifies the identification significantly, it allows us to
investigate an open-loop problem. OpenFOAM (http://
www.openfoam.org/) was used as CFD solver. The CFD
setup used in the present study is identical to the low-
Mach simulation described in Jaensch et al.16

3 ANNs

In the present section, first the structure of ANNs is
introduced. Afterward, it is discussed how ANNs can
be used as a nonlinear model structure for the CFD/SI
approach.

3.1. Structure of ANNs

An ANN consists of interconnected neurons. A single
neuron is a function y ¼ � u,?ð Þ with input vector u and
a scalar output y. ? is the parameter vector. The func-
tion � (�) is called the activation function. In principle,
any function can be used. For practical applications,
sigmoid functions and radial basis functions (RBF)
have been proven to be useful choices.20;18 Examples
of both functions plotted in Figure 2. A sigmoid func-
tion is given as

�Sig u,?ð Þ¼
2

1þ exp �2?Tu
� �� 1 ð1Þ

Here, the parameter vector ? weights the inputs.
Consequently, the elements �k of ? are called weights.
A radial basis function is defined as

�RBF u, c,�ð Þ ¼ exp �
1

2
ku� ck2�

� �
ð2Þ

with the generalized norm

ku� ck� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� cð Þ

T � u� cð Þ

q
ð3Þ

Here, the parameter vector ? is represented by the
centre vector c and the norm matrix . These quantities
correspond to the mean vector and the covariance
matrix of a multivariate normal distribution. In order
to reduce the number of parameters, � is assumed to be
a diagonal matrix.

Several interconnected neurons build an ANN. As
depicted in Figure 3, ANNs are structured in several
layers. The inputs of the ANN are time-lagged velocity
signals u0 t� i�tð Þ. Here, i is the time increment and �t
is the time step. The inputs of the ANN are also the
inputs of the neurons positioned in the first layer. The
inputs of the neurons in the second layer are the out-
puts of the neurons in the first layer and so on. The last
layer consists of a single neuron with a linear activation
function. Note that all neurons positioned in the same
layer have the same inputs. As only time-lagged input
signals and no time-lagged output signals are the inputs
of the ANN the impulse response of the ANNs con-
sidered is finite and has the length n�t. An infinite
impulse response would require us to pass the output
of the ANN as feedback to its inputs. This is analogue
to a finite impulse response (FIR) model used for lin-
ear system identification. The finiteness of the impulse
response reflects the convective nature of the flame
dynamics: an impulse velocity perturbation impinging
on the flame causes a perturbation of the flame front
and consequently a fluctuation of the global heat
release rate. Blumenthal et al.31 showed for a G-
equation flame model that the perturbation of the
flame front is convected through the flame and that
the original flame front is restored via a convective

Figure 3. Generic example of a structure of an artificial neural

network with four neurons in the first layer, two neurons in the

second layer and a single neuron in the third layer.

Figure 2. Full line: sigmoid function with �¼ 1, dashed line:

radial basis function (RBF) with
P
¼ 1 and c¼ 0.
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restoration mechanism. Once the perturbation and the
restoration are convected through the flame, the fluctu-
ation of the global heat release vanishes instantan-
eously. Thus the impulse response of the flame is
finite. Therefore, the FIR model should be considered
as a grey-box model of the flame.32 It is expected that
these considerations hold for the nonlinear flame
dynamics. In general, the ANN framework allows to
additionally consider time-lagged values of the output
signal, i.e. the fluctuation of the global heat release rate,
as inputs of to the neural network. However, this yields
an oscillatory impulse response, which does not corre-
spond to the convective nature of the flame response.
Silva et al.33 show that these so-called auto-regressive
models are useful for modeling the scattering matrix of
a flame, but not for the FTF.

Typically, all activation functions of neurons pos-
itioned in the same layer are identical. If RBFs are
used, it is advantageous to normalize the output of
the k-th neuron in a layer by the output of all neurons
in the same layer

�NRBF, k u, c,�ð Þ ¼
�RBF u, ck,�kð ÞPM
i¼0 �RBF u, ci,�ið Þ

ð4Þ

with M being the number of neurons in the layer. The
function NRBF;k(u, c, �) is called normalized radial basis
function (NRBF).

3.2. Identification of ANNs

The identification procedure used to determine the
unknown parameter vector ? of an ANN is similar
to the procedure used for linear identification17,18:

1. First, a broad band time series is created.
2. The model structure has to be chosen.
3. The unknown parameters are determined by solving

an optimization problem.
4. The model identified must be validated.

In order to generate broad band time series, the CFD
simulation introduced above was forced with different
broadband excitation signals. The signals were gener-
ated with the method discussed in Föller and
Polifke.34 As for the linear CFD/SI approach, the fre-
quency content of the signal should be chosen such that
all frequencies of interests are excited. For the nonlinear
identification, also the amplitude of the signal is import-
ant. Therefore, signals with different amplitudes are
investigated in the present study. The particular signals
used are discussed in detail in the next section.

The second step of the identification procedure is to
fix the structure of the ANN. This means choosing the
activation function, the number of layers and the

number of neurons per layer. Additionally, the max-
imum delay n has to be fixed. Unfortunately, there
exist no general design rules for choosing the structure
of an ANN. Typically, one identifies several ANNs
with different structures and selects the ANN with the
best performance. In the present study, this is done in
terms of a large parameter study, which is discussed in
the next section.

The third step of the identification procedure is to
determine the vector of unknown parameters ? of the
neural networks. This is done by solving the optimiza-
tion problem

min
?

1

N

XN�1
i¼0

q0ANN i�t, ?ð Þ � q0CFD i�tð Þ
� �2

ð5Þ

This optimization problem is nonlinear and conse-
quently, nonlinear optimization algorithms are neces-
sary. These algorithms are based on error
backpropagation, which allows to calculate the gradient
of the cost function analytically. In comparison to the
Wiener–Hopf inversion, the computational effort
required is significantly larger. However, compared to
the computational costs of the CFD simulation, the
computational effort is still negligible. A particularity
of ANNs is that the optimization is non-deterministic.
Recall from the discussion of the structure of
ANNs that the inputs and outputs of all neurons pos-
itioned in the same layer are equal (see also Figure 3).
Hence, neurons positioned in the same layer differ only
with respect to their parameter vector. Consequently, if
in order to solve the optimization problem all param-
eters are initialized to zero, after the optimization the
parameters of all neurons positioned in the same layer
will be equal. The performance of such an ANN would
be poor. In order to avoid this behaviour, the parameter
vector is initialized to small, random values.
Consequently, re-identifying an ANN with the same
structure several times can yield ANNs, showing a
significantly different performance. Note that only the
optimization algorithm is non-deterministic. ANNs
are a deterministic model once all parameters have
been determined. The number of unknown parameters
of an ANN grows rapidly with the number of neurons
and layers. This enables ANNs to model
complex nonlinearities, however, it creates the risk of
over-fitting. If the optimization problem (5) is solved
untill convergence, the quality of the ANN obtained
would be poor. In order to avoid over-fitting, the data
used to identify the parameters of the ANNs is divided
into three different data sets: training data, validation
data and test data. The optimization algorithm calcu-
lates the gradient of the cost function using only the
training data set. The optimization stops when the
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error made on the validation data set increases. The test
data set is not used during the optimization. In the pre-
sent work, 70% of the data are used as training data,
15% as validation data and 15% as test data. The data
were divided randomly using a fixed seed.

For the present study, the default implementation of
ANNs in Matlab (www.mathworks.com, version:
R2015b) is used.

4. Numerical results

Unfortunately, there are no general design rules for the
structure of neural networks. Indeed, as the training of
neural networks is non-deterministic, two ANNs with
the same structure can show totally different behaviour.
This holds even if the same data set was used to train
both networks. In order to use ANNs to model self-
excited thermoacoustic oscillations a criterion is neces-
sary, which allows to decide whether or not an ANN
identified is a good low-order model of the nonlinear
flame dynamics. This criterion should be based on the
broadband time series used to identify the network.

Otherwise, the computational effort required to find a
suitable ANN can make the methodology prohibitively
expensive. The criterion investigated in the present
work is the fit value defined as

fit ¼ 100 1�
kq0CFD � q0ANNk

kq0CFD � q0CFDk

� �
ð6Þ

with the temporal average q0CFD of the fluctuations of the
global heat release rate measured in the CFD simula-
tion. This criterion is also known as normalized root
mean square error (NRMSE). The criterion is evaluated
using the full broadband time series including training
data, validation data and test data. Recall that the
weights of the ANN are determined via the optimization
procedure discussed in the previous section using the
validation and the training data. The test data are not
used. Considering this data to select the optimal ANNs
is an additional method to prevent over-fitting.

In order to increase the generalizability of the results
of the present study, a large number of ANNs with
different structures were identified using the five data

Figure 4. Five different data sets used to generate the ANNs. Left: envelope of the time series u0=�u �½ �, middle: power spectral

density PSD (dB/Hz), right: empirical probability density function.
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sets shown in Figure 4. The 10 ANNs with the greatest
fit values on each data set were selected. The underlying
parameter study is explained in detail in the next sub-
section. Thereafter, the ANNs selected are validated
against the forced response and against self-excited
thermoacoustic oscillations.

4.1. Setup of the parameter study

As shown in Figure 4, five different broadband time
series are investigated. These data sets were generated
by forcing the inflow velocity u0 of the CFD simulation
with three different broadband excitation signals. The
length of the time series obtained is 100 �. Here, � is the
length of the impulse response of the flame and is equal
to 10 ms. All signals are statistically independent from

each other and were generated with the non-Gaussian
simulation method described in Föller and Polifke.34 A
small part of the signal is shown in Figure 7. The signals
were scaled such that the amplitude u0= �u of the first
signal is 50%, the one of the second signal is 100%
and the one of the third signal is 150%. From the
three time series obtained, five different data sets were
generated. These data sets are shown in Figure 4. The
data sets 1, 2 and 3 are the time series directly generated
by the CFD simulation. Data set 4 is concatenated and
consists of the first third of the data sets 1 to 3, respect-
ively. Data set 5 is concatenated and consists of the full
data sets 1 to 3. Data set 4 and 5 are investigated in to
analyse whether signals containing several excitation
amplitude levels can improve the results. In the linear
regime, the length of the time series and its power spec-
tral density are sufficient to characterize the excitation
signal used for identification. This is because linearity
implies that the response is independent from the exci-
tation amplitude. In the nonlinear regime, however,
also the distribution of the amplitudes is important.
In Figure 4, this is shown by the empirical probability
density function.

In addition to the time series, also the structure of
the ANN is varied. The parameters changed are listed
in Table 1. All 3780 combinations of these parameters

Figure 5. Comparison of the FDF deduced from the optimal ANNs and from the CFD simulation. Left: gain; right: phase; lines:

estimate by the ANN with the highest fit value. Shaded area: bounds of the prediction made by the 10 optimal ANNs selected.

Markers: reference generated by forcing the CFD with harmonic signals. Excitation amplitudes: A¼ 50% (full blue line, blue dots),

A¼ 100% (dashed black line, black squares), A¼ 150% (dotted yellow line, yellow diamonds), training data sets ordered top to bottom

as in Figure 4.

Table 1. Parameters varied for the parameter study.

�t/� 0.015, 0.03, 0.06

n�t/� 1.5, 2, 2.5

# neurons 2 to 20 (step size of 2)

# layers 2, 3

� (–) Sigmoid, NRBF
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were investigated. The number of unknown parameters
of the ANNs varied between 55 and 3801. On each of
the five data sets shown in Figure 4, ANNs with the
resulting structures were identified. In order to find an
optimal ANN for each of the structures, the non-deter-
ministic optimization algorithm was 10 times repeat-
edly applied. Thereafter, the fit value achieved by
each ANN was determined. The 10 ANNs with the
highest fit values on each data set were selected. The
capability of these optimal ANNs to model

the nonlinear flame dynamics is investigated in the
next subsections.

4.2. Validation of the forced response

In Figure 5, the FDF deduced from the ANNs is com-
pared against the results obtained from the CFD simu-
lation. An FDF can be deduced from an ANN
analogously to the way it is deduced from a CFD simu-
lation or an experiment: at first the ANN is forced with

Figure 6. Validation of the response of the 10 optimal ANNs to harmonic forcing in the time domain. Solid line: estimate by the

ANN with the highest fit value. Shaded area: bounds of the predictions made by the 10 optimal ANNs. Black dotted line: CFD

reference. Forcing frequency: 100 Hz, excitation amplitudes: 50% (left), 100% (middle) and 150% (right), training data sets ordered top

to bottom as in Figure 4.
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a harmonic input signal with a specific amplitude and
frequency. The output of the ANN is its prediction of
the fluctuation of the global heat release rate. The ratio
of the Fourier transformed input and output signals at
the forcing frequency is the value of the FDF. For
frequencies up to 200 Hz, the phases predicted by the
ANNS are in excellent agreement with the CFD refer-
ence data. Also for higher frequencies, the phase is pre-
dicted well. The variance of the results is large only for
the highest forcing amplitude considered, i.e. 150% and
for the ANNs identified on data set 4. Errors at these

high frequencies are expected as the gain of the FDF is
very small. The picture is less distinct for the predicted
gain. Overall, the low-pass characteristic of the FDF is
captured well by the ANNs. The variance of the pre-
diction is quite small for an excitation amplitude of
50% and increases for the higher excitation amplitudes
considered. At an excitation amplitude of 50%, a large
variance is observed for the ANNs identified on data
set 5. This is a problematic observation. It shows that
even if very long-time series are available, it cannot be
guaranteed that the ANNs identified predict the FDF

Figure 7. Validation of the forced response of the 10 optimal ANNs against broadband time series. The broadband data are the last

10 t¼ of data set 5. Solid line: estimate by the ANN with the highest fit value. Shaded area: bounds of the predictions made by the 10

optimal ANNs. Black dotted line: CFD reference. Training data sets ordered top to bottom as in Figure 4.
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with good accuracy. The results with the ANNs identi-
fied on data set 5 improve for higher excitation ampli-
tudes. Here, the prediction is more accurate than the
one made by the ANNs identified on the other
data sets.

Validating against the FDF allows to compare the
results for several different forcing amplitudes and fre-
quencies. However, the analysis is limited to the forcing
frequency. This ignores the capability of ANNs to pre-
dict also a non-harmonic response of the flame.
Therefore, in Figure 6, the response of the optimal
ANNs to a harmonic forcing signal is shown in the
time domain. The predicted fluctuation of the global
heat release rate is validated against the prediction
made by the CFD. At an excitation amplitude of
50%, the results are in good agreement with each
other and independent from the data set used to iden-
tify the ANNs. The variance of the prediction made by
the ANNs increases significantly with the excitation
amplitude. Up to an amplitude level of 100%, the
shape of the response is captured quite well. At 150%
amplitude, the peaks of the response are still captured,
however, the variance becomes large. The results

obtained with data set 4 and data set 5 are slightly
more robust. This is expected as these data sets include
all excitation amplitudes.

In Figure 7, the ANNS are compared on the last
10t=� of data set 5. The shape of the response is captured
by all sets of ANNs. The ANNs identified on data sets 3
and 5 show the lowest variance. This is because the fit
criterion used to select these ANNs contains also the
broadband signal shown in Figure 7. The variance of
the other sets of optimal neurons is larger. Nevertheless,
the main features of the time series are still captured.

4.3. Validation against self-excited oscillations

From the analysis of the forced response, we can con-
clude that over-fitting was successfully avoided by the
procedure applied to obtain the sets of optimal ANNs.
However, the analysis depends strongly on the forcing
signal used. Therefore, in the present section, the cap-
ability of the ANNs identified to predict self-excited
thermoacoustic oscillations is investigated.

Both the weakly compressible CFD simulation and
the ANNs are models for the flame dynamics of the
laminar flame considered. In order to model self-excited
thermoacoustic oscillations, they need to be coupled
with a model for the acoustics. In Figures 8 and 9,
the coupling of the CFD simulation and of an ANN
with an acoustic network model is shown, respectively.
In Jaensch et al.,16 the coupling of the CFD and the
network model is described in detail. The ANNs are
coupled with the acoustic model using Matlab/
Simulink.

In Figure 10, the self-excited thermoacoustic oscilla-
tions are compared in terms of their RMS values and in
terms of the maximal fluctuation of the global heat
release rate. The bifurcation parameter is the plenum
length, as shown in Figures 1, 8 and 9. At each length
investigated, a self-excited oscillation was calculated
with all optimal ANNs for 50 �. As discussed by
Jaensch et al.,16 the thermoacoustic oscillations of the
present configurations hardly depend on the initial con-
dition used. In order to minimize the computational
effort of the CFD simulation the simulation, was
started from a perturbed case. This situation cannot
be reproduced with the ANNs. Therefore, we focus
the discussion on comparing the fully developed ther-
moacoustic oscillation. For the results shown in Figure
10, only the last 20 � of the 50 � time series are used.

At several working points numerical instabilities
were observed. One example of such a numerical
instability is shown in Figure 11. The oscillation pre-
dicted by the ANN develops significantly more slowly
than the oscillation predicted by the CFD simulation.
This mismatch is due to the different initial conditions
used and thus, expected. After about 25 �, the

Figure 8. Coupling of the CFD simulation with an acoustic

network model to model self-excited thermoacoustic

oscillations.

Figure 9. Coupling of an ANN with an acoustic network model

to model self-excited thermoacoustic oscillations.

Jaensch and Polifke 375



oscillation is in good agreement with the CFD simula-
tion. Unfortunately, numerical errors grow and, after
about 35 � unphysical oscillations are observed. Such
numerical instabilities occur irregularly at different
plenum lengths and for different ANNs. These oscilla-
tions can be identified as its dominant frequency fu lies
outside the interval 0< fu< 800Hz. In Figure 10, the
corresponding data are highlighted with squares.

The variance of the prediction made by the ANNs
identified on data set 5 is significantly smaller than the

prediction made by the ANNs identified on the other
data sets. Only the results of one of these ANNs
diverge. This behaviour shows that the prediction of
the ANNs improves when longer time series are used
to train the ANN. The ANNs identified on data set 5
over-predict the RMS values for short plenum lengths
and under-predict the values for long plenum lengths.
Nevertheless, the trend of the RMS values is captured.
However, the prediction of the maximum heat release
fluctuation is poor for long plenum lengths. Only the

Figure 10. Self-excited thermoacoustic oscillations predicted by the 10 ANNs with the highest fit values on each training set. The

training data sets are ordered top to bottom as in Figure 4. Left: comparison in terms of RMS values of the global heat release rate

fluctuations; right: comparison in terms of maximum heat release rate fluctuation. Black circles: CFD reference values, colored

crosses: solutions oscillating at a dominant frequency fu in the range of 0 Hz< fu< 800 Hz predicted by ANNs. These solutions are

considered to be physically meaningful. Colored squares: solutions oscillating with a dominant frequency outside of this range. These

solutions are considered to be unphysical. Dashed black line: mean value of the physically meaningful solutions predicted by the ANNs.

Full green line: connection of the prediction of a selected ANN.
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prediction of one particular ANN is close to the
expected values. In Figure 10, all estimations made by
this ANN are connected with a line. This shows that the
results of this ANN diverge for short plenum lengths.

5. Conclusion

The capability of ANNs to serve as a model structure in
order to deduce nonlinear low-order models of a lam-
inar flame from a CFD simulation was investigated.
Via a parameter study a large number of ANNs were
identified. A set of 10 optimal ANNs was selected with
a fit criterion. The fit criterion only used broadband
time series. This allows to evaluate the fit criterion effi-
ciently, since the data used to train the ANNs can be
used. Comparing the 10 optimal ANNs allows to esti-
mate the uncertainty of the prediction.

At first the capability of the ANNs to predict the
forced response of the flame was analysed.
Reasonable agreement was achieved. This shows that
over fitting was successfully avoided by the procedure
applied to identify and select the optimal ANNs. The
validation of the forced response depends strongly on

the excitation signal. Therefore, an additional criterion
was investigated. The ANNs identified were combined
with a thermoacoustic network model in order to model
self-excited thermoacoustic oscillations. This compari-
son is very close to the application. At several working
points unphysical numerical instabilities were predicted
by the ANNs. It was shown that the variance of the
results decreases if very long-time series are used to
identify the ANNs. The ANNs identified on the longest
of the investigated time series were able to predict the
trend of the RMS values. However, the prediction of
the maximal fluctuation of the global heat release rate
was still poor.

Therefore, we conclude that ANNs, in combination
with the identification procedure applied in the present
study, do not have the desired properties to deduce
nonlinear low-order models from a CFD simulation.

The main problem of the approach is that a good
prediction of the forced response does not guarantee a
good prediction of self-excited oscillations. This is
because the forced response can be analysed for par-
ticular excitation signals only. Additionally, in order to
obtain an advantage in computational time this signal
should be as short as possible. In the present study the
longest signal was 30 times longer than a signal needed
to determine the FTF. Longer time series would be
prohibitively expensive for practical applications.

For the present study the implementation of ANNs
provided by Matlab has been used. We consider this
implementation as well-established state of the art. The
ANNcommunity is rapidly growing and develops a huge
number of ANN algorithms, which have their own pros
and cons.Oneof these algorithmsmayyield better results
than the implementation provided by Matlab. This
cannot be excluded and is possibly one way to overcome
the issues discussed in the present work. Another way to
improve the results could be to use different types of exci-
tation signal, e.g. one could use data from simulated self-
excited thermoacoustic oscillations. In the author’s opin-
ion, however, more sophisticated white- or grey-box
models, that account for the physics of the flame dynam-
ics more accurately, are necessary. An additional advan-
tage of grey-box models is that also other information
besides the time series of u0 and _q0 can be used. For exam-
ple Jaensch et al.32 additionally used the acoustic waves
emitted by the flame.

Regardless of the way a model was obtained, it
should be validated by the systematic procedure pro-
posed in the present study. In particular, the models
should be compared in terms of self-excited oscillations.

Acknowledgements

This article has already been published as a non-peer-
reviewed publication at the FVV-Frühjahrstagung
Turbomaschinen.35

Figure 11. Time series of heat release fluctuation of the self-

excited TA oscillations for L¼ 20 cm. Top: full time series; middle

and bottom: zoomed parts of the time series; green-dashed line:

prediction of a selected ANN; black line: CFD reference.

Jaensch and Polifke 377



Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: Research Association for Combustion Engines

(Forschungsvereinigung Verbrennung e.V – FVV, project
number: 6011150). This support is gratefully acknowledged.
The authors also gratefully acknowledge the Gauss Centre for
Supercomputing e.V. (www.gauss-centre.eu) for funding this

project by providing computing time on the GCS Super-com-
puter SuperMUC at Leibniz Supercomputing Centre (LRZ,
www.lrz.de).

References

1. Noiray N, Durox D, Schuller T, et al. A unified frame-

work for nonlinear combustion instability analysis based

on the flame describing function. J Fluid Mech 2008; 615:

139–167.
2. Dowling AP. A kinematic model of a ducted flame.

J Fluid Mech 1999; 394: 51–72.

3. Cosic B, Moeck J and Paschereit CO. Prediction of pres-

sure amplitudes of self-excited thermoacoustic instabil-

ities for a partially premixed swirl flame. In:

Proceedings of ASME turbo expo 2013. San Antonio,

Texas, USA: The American Society of Mechanical

Engineers GT2013-94160, 2013.

4. Krediet HJ, Beck CH, Krebs W, et al. Saturation mech-

anism of the heat release response of a premixed swirl

flame using LES. Proc Combust Inst 2013; 34: 1223–1230.
5. Han X and Morgans AS. Simulation of the flame describ-

ing function of a turbulent premixed flame using an open-

source LES solver. Combust Flame 2015; 162: 1778–1792.
6. Han X, Li J and Morgans AS. Prediction of combustion

instability limit cycle oscillations by combining flame

describing function simulations with a thermoacoustic

network model. Combust Flame 2015; 162: 1778–1792.
7. Moeck J and Paschereit C. Nonlinear interactions of mul-

tiple linearly unstable thermoacoustic modes. Int J Spray

Combust Dyn 2012; 4: 1–28.
8. Orchini A, Illingworth S and Juniper M. Frequency

domain and time domain analysis of thermoacoustic

oscillations with wave-based acoustics. J Fluid Mech

2015; 775: 387–414.
9. Kashinath K, Hemchandra S and Juniper MP. Nonlinear

phenomena in thermoacoustic systems with premixed

flames. J Eng Gas Turb Power 2013; 135: 061502.
10. Kashinath K, Waugh IC and Juniper MP. Nonlinear self-

excited thermoacoustic oscillations of a ducted premixed

flame: bifurcations and routes to chaos. J Fluid Mech

2014; 761: 399–430.
11. Kashinath K, Hemchandra S and Juniper MP. Nonlinear

thermoacoustics of ducted premixed flames: The influ-

ence of perturbation convection speed. Combust Flame

2013; 160: 2856–2865.

12. Chakravarthy SR, Balaji C, Katreddy RKR, et al. A
framework for numerical simulation of turbulent incom-
pressible unsteady flame dynamics coupled with acoustic

calculations in time and frequency domains. In: n3l –
International summer school and workshop on non-
normal and nonlinear effects in aero- and thermoacoustics.
Munich, Germany: Technische Universität München,

2013, p.12.
13. Moeck J, Scharfenberg C, Paschereit O, et al. A zero-

Mach solver and reduced order acoustic representations

for modeling and control of combustion instabilities. In:
Active flow control II, notes on numerical fluid mechanics
and multidisciplinary design, Springer-Verlag Berlin

Heidelberg, Germany, Vol. 108, 2010, pp.291–306.
14. Schuermans B, Luebcke H, Bajusz D, et al.

Thermoacoustic analysis of gas turbine combustion sys-

tems using unsteady CFD. In: Proceedings of ASME
turbo expo 2005. GT2005-68393. Reno, Nevada:
ASME, p.2005.

15. Wall CT. Numerical methods for large Eddy simulation of

acoustic combustion instabilities. PhD Thesis, Stanford
University, 2005.

16. Jaensch S, Merk M, Gopalakrishnan E, et al. Hybrid

CFD/ low-order modeling of nonlinear thermoacoustic
oscillations. In: Proceedings of the Combustion Institute,
Vol. 36, 2017, pp. 3827–3834.

17. Polifke W. Black-box system identification for reduced
order model construction. Ann Nucl Energy 2014; 67C:
109–128.

18. Isermann R andMünchhof M. Identification of dynamical

systems: An introduction with applications. Advanced text-
books in control and signal processing. Berlin and
Heidelberg: Springer-Verlag, 2010.

19. Tangirala AK. Principles of system identification: Theory
and practice. Boca Raton, Florida, USA: CRC Press,
2014.

20. Nelles O. Nonlinear system identification: From classical
approaches to neural networks and fuzzy models. Springer-
Verlag Berlin Heidelberg, Germany, 2001.
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