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Abstract
Differential equations of second order appear in numerous applications such as fluid
dynamics, electromagnetism, quantummechanics, neural networks and the field of
time symmetric electrodynamics. The aim of this work is to establish necessary and
sufficient conditions for the oscillation of the solutions to a second-order neutral
differential equation. First, we have taken a single delay and later the results are
generalized for multiple delays. Some examples are given and open problems are
presented.
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1 Introduction
Consider the class of nonlinear neutral delay differential equations of the form

(
a
(
w′)μ)′(y) + c(y)g

(
u
(
ς (y)

))
= 0, (1)

where w(y) = u(y) + b(y)u(ϑ(y)) and μ is the ratio of two odd positive integers. We assume
the following conditions hold.

(A1) a, c,ϑ ,ς ∈ C(R+,R+) such that ϑ(y) ≤ y, ς (y) ≤ y for y ≥ y0, ϑ(y) → ∞, ς (y) → ∞
as y → ∞.

(A2) g ∈ C(R,R) is non-decreasing and odd with ug(u) > 0 for u �= 0.
(A3) a(y) > 0 and

∫ ∞
0 (a(η))–1/μ dη = ∞. By letting A(y) =

∫ y
0 (a(η))–1/μ dη, we have

limy→∞ A(y) = ∞.
(A4) b ∈ C(R+,R–) with –1 + (2/3)1/μ ≤ –b0 ≤ b(y) ≤ 0 for y ∈R+.
(A5) b ∈ C(R+,R–) with –1 < –b0 ≤ b(y) ≤ 0 for y ∈ R+.
In 1978, Brands [1] showed that the solutions to

u′′(y) + c(y)u
(
y – ς (y)

)
= 0

are oscillatory, if and only if, the solutions to u′′(y) + c(y)u(y) = 0 are oscillatory. Bacu-
likova et al. [2] considered (1) and studied the oscillatory behavior of (1) for g(u) = u,
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0 ≤ b(y) ≤ b0 < ∞ and (A3). They obtained sufficient conditions for the oscillation of the
solutions of the linear counterpart of (1), using comparison techniques. Chatzarakis et al.
[3] considered the equation

(
a
(
u′)μ2)′(y) + c(y)uμ2

(
ς (y)

)
= 0. (2)

Also, Chatzarakis et al. [4] studied (2) to obtain new oscillation criteria. Džurina [5] stud-
ied the linear counterpart of (1) when 0 ≤ b(y) ≤ b0 < ∞ and (A3) and established suf-
ficient conditions for the oscillation of the solutions of the linear counterpart of (1) by
comparison techniques. Karpuz et al. [6] studied (1) for various ranges of the neutral co-
efficient b. Pinelas and Santra [7] studied necessary and sufficient conditions for the solu-
tions of

(
u(y) + b(y)u(y – ϑ)

)′ +
m∑

i=1

cj(y)g
(
u(y – ςj)

)
= 0.

Wong [8] obtained necessary and sufficient conditions for the oscillation of

(
u(y) + bu(y – ϑ)

)′′ + c(y)g(y – ς ) = 0,

where the constant b satisfies –1 < b < 0. Grace et al. [9] studied (1) and established suffi-
cient conditions for 0 ≤ b(y) < 1. For further work on this type of equations, we refer the
reader to [10–36] and the references cited therein. We may note that most of the authors
considered only sufficient conditions, and only a few considered necessary and sufficient
conditions. Hence, the objective of this work is to establish both necessary and sufficient
conditions for oscillation of (1) without using comparison techniques.

In Sect. 2 some preliminary results are presented, Sect. 3 deals with main results, Sect. 4
represents the conclusion and the final section includes open problems.

2 Preliminary results
In this section, two lemmas are presented which we need for our work in the sequel.

Lemma 2.1 Under the assumptions (A1)–(A3) and (A4) or (A5) and the solution u of (1)
is an eventually positive solution, we have

(i) w(y) < 0, w′(y) > 0 and (a(w′)μ)′(y) < 0;
(ii) w(y) > 0, w′(y) > 0 and (a(w′)μ)′(y) < 0,

for sufficiently large y.

Proof Assume there exists a y1 ≥ y0 such that u(y) > 0, u(ϑ(y)), and u(ς (y)) > 0 for y ≥ y1.
From (1) and (A2), we have

(
a
(
w′)μ)′(y) = –c(y)g

(
u
(
ς (y)

))
< 0 for y ≥ y1, (3)

which implies that (a(w′)μ)(y) is non-increasing on [y1,∞). We have a(y) > 0, and thus
either w′(y) < 0 or w′(y) > 0 for y ≥ y2, where y2 ≥ y1.

If w′(y) > 0 for y ≥ y2, then we have (i) and (ii). We prove now that w′(y) < 0 cannot occur.



Santra et al. Journal of Inequalities and Applications        (2020) 2020:256 Page 3 of 12

If w′(y) < 0 for y ≥ y2, then there exists κ1 > 0 such that (a(w′)μ)(y) ≤ –κ1 for y ≥ y2,
which yields upon integration over [y2, y) ⊂ [y2,∞) after dividing through by a

w(y) ≤ w(y2) – κ
1/μ
1

∫ y

y2

(
a(η)

)–1/μ dη for y ≥ y2. (4)

By virtue of condition (A3), limt→∞ w(y) = –∞. We consider the following possibilities:
Let the solution u be unbounded. There exists a sequence {yk} such that limk→∞ yk = ∞

and limk→∞ u(yk) = ∞, where u(yk) = max{u(η) : y0 ≤ η ≤ yk}. Since limy→∞ ϑ(y) = ∞,
ϑ(yk) > y0 for all sufficiently large k. By ϑ(y) ≤ y,

u
(
ϑ(yk)

)
= max

{
u(η) : y0 ≤ η ≤ ϑ(yk)

} ≤ max
{

u(η) : y0 ≤ η ≤ yk
}

= u(yk).

Therefore, for all large k,

w(yk) = u(yk) + b(yk)u
(
ϑ(yk)

) ≥ (
1 + b(yk)

)
u(yk) > 0,

which contradicts limy→∞ w(y) = –∞.
Let the solution u be bounded, then w is bounded, from which one concludes

limy→∞ w(y) = –∞, a contradiction. Hence, w satisfies one of the cases (i) or (ii). This
completes the proof. �

Lemma 2.2 Under the assumptions (A1)–(A3), (A4) or (A5), (i) and u is an eventually
positive solution of (1), we have limy→∞ u(y) = 0.

Proof Assume that there exists a y1 ≥ y0 such that u(y) > 0, u(ϑ(y)), and u(ς (y)) > 0 for
y ≥ y1. Then Lemma 2.1 holds and w satisfies one of the cases (i) or (ii) for y2 ≥ y1, where
y ≥ y2. Let w satisfy (i) for y ≥ y2. Therefore,

0 ≥ lim
y→∞ w(y) = lim sup

y→∞
w(y) ≥ lim sup

y→∞

(
u(y) – b0u

(
ϑ(y)

))

≥ lim sup
y→∞

u(y) + lim inf
t→∞

(
–b0u

(
ϑ(y)

))
= (1 – b0) lim sup

y→∞
u(y),

which implies that lim supy→∞ u(y) = 0 and hence limy→∞ u(y) = 0. �

Remark 1 In view of (ii) of Lemma 2.1, it is obvious that limy→∞ w(y) > 0, i.e., there exists
κ1 > 0 such that w(y) ≥ κ1 for all large y.

3 Main results
In this section, we establish the necessary and sufficient conditions for the oscillation of the
solution of (1) by considering the two cases when g(v)/vμ1 is non-increasing and g(v)/vμ1

is non-decreasing.

3.1 The case when g(v)/vμ1 is non-increasing
Suppose that there exists μ1 such that 0 < μ1 < μ and

g(v)
vμ1

≥ g(u)
uμ1

for 0 < v ≤ u. (5)
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For example the function g(u) = |u|μ2 sgn(u) with 0 < μ2 < μ1 < μ satisfying (5).

Theorem 3.1 Assume that (A1)–(A4) and (5) hold. Then each unbounded solution of (1)
is oscillatory if and only if

∫ ∞

Y
c(η)g

(
κ1/μA

(
ς (η)

))
dη = +∞ ∀Y > 0 and κ > 0. (6)

Proof On the contrary, we assume that there exists a nonoscillatory unbounded solution
u(y) of (1). Suppose that the solution u(y) is eventually positive. Then there exists y1 ≥ y0

such that u(y) > 0, u(y) > 0, u(ϑ(y)) > 0 and u(ς (y)) > 0 for y ≥ y1. Proceeding as in the
proof of Lemma 2.1, we see that (a(w′)μ)(y) is non-increasing, and w satisfies one of the
cases (i) or (ii) on [y2,∞), where y2 ≥ y1. Then we have the following two possible cases.

Case 1. Let w satisfy (i) for y ≥ y2. As u is the unbounded solution, there exists y ≥ y2

such that u(y) = max{u(s) : y2 ≤ s ≤ T}. Since w(y) = u(y) + b(y)u(ϑ(y)), we have u(y) ≤
w(y) + {1 – (2/3)1/μ}u(ϑ(y)) < u(y), which leads a contradiction.

Case 2. Let w satisfy (ii) for y ≥ y2. Note that limy→∞(a(w′)μ)(y) exists. Using w(y) ≤ u(y)
in (1) and integrating the new inequality from y to +∞, we obtain

∫ ∞

y
c(η)g

(
w

(
ς (η)

))
dη ≤ (

a
(
w′)μ)

(y).

That is,

w′(y) ≥
[

1
a(y)

∫ ∞

y
c(η)g

(
w

(
ς (η)

))
dη

]1/μ

(7)

for y ≥ y3. Let y4 > y3 be a point such that

A(y) – A(y3) ≥ 1
2

A(y), y ≥ y4.

Then integrating (7) from y3 to y, we get

w(y) – w(y3) ≥
∫ y

y3

[
1

a(η)

∫ ∞

η

c(ζ )g
(
w

(
ς (ζ )

))
dζ

]1/μ

dη

≥
∫ y

y3

[
1

a(η)

∫ ∞

y
c(ζ )g

(
w

(
ς (ζ )

))
dζ

]1/μ

dη,

i.e.,

w(y) ≥ (
A(y) – A(y3)

)
[∫ ∞

y
c(ζ )g

(
w

(
ς (ζ )

))
dζ

]1/μ

≥ 1
2

A(y)
[∫ ∞

y
c(ζ )g

(
w

(
ς (ζ )

))
dζ

]1/μ

. (8)

Since (a(w′)μ)(y) is non-increasing on [y4,∞), there exist κ > 0 and y5 > y4 such that
(a(w′)μ)(y) ≤ κ for y ≥ y5. Integrating the inequality w′(y) ≤ (κ/a(y))1/μ, we have

w(y) ≤ w(y5) + κ1/μ(
A(y) – A(y5)

)
.
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Since limt→∞ A(y) = ∞, the last inequality becomes

w(y) ≤ κ1/μA(y) for y ≥ y5.

On the other hand, (5) implies that

g
(
w

(
ς (ζ )

))
=

g(w(ς (ζ )))
wμ1 (ς (ζ ))

wμ1
(
ς (ζ )

) ≥ g(κ1/μA(ς (ζ )))
(κ1/μA(ς (ζ )))μ1

wμ1
(
ς (ζ )

)
.

Consequently, (8) becomes

w(y) ≥ A(y)
2

[∫ ∞

y

c(ζ )g(κ1/μA(ς (ζ )))wμ1 (ς (ζ ))
(κ1/μA(ς (ζ )))μ1

dζ

]1/μ

.

If we define

ϒ(y) =
∫ ∞

y

c(ζ )g(κ1/μA(ς (ζ )))wμ1 (ς (ζ ))
(κ1/μA(ς (ζ )))μ1

dζ ,

then wμ1 /(κ1/μA)μ1 ≥ ϒμ1/μ/(2κ1/μ)μ1 . Taking the derivative of ϒ we get

ϒ ′(y) ≤ –
g(κ1/μA(ς (y)))c(y)wμ1 (ς (y))

(κ1/μA(ς (y)))μ1
≤ –

c(y)g(κ1/μA(ς (y)))
(2κ1/μ)μ1

ϒμ1/μ(
ς (y)

) ≤ 0.

Therefore, ϒ(y) is non-increasing on [y5,∞) so ϒμ1/μ(ς (y))/ϒμ1/μ(y) ≥ 1, and

(
ϒ1–μ1/μ(y)

)′ ≤ –(1 – μ1/μ)ϒ–μ1/μ(y)
c(y)g(κ1/μA(ς (y)))

(2κ1/μ)μ1
ϒμ1/μ(

ς (y)
)

≤ –(1 – μ1/μ)
c(y)g(κ1/μA(ς (y)))

(2κ1/μ)μ1
.

We have μ1/μ < 1 and ϒ(y) is positive and non-increasing. Integrating the last inequality,
from y5 to y, we have

(1 – μ1/μ)
(2κ1/μ)μ1

∫ y

t5
c(η)g

(
κ1/μA

(
ς (η)

))
dη ≤ –

[
ϒ1–μ1/μ(η)

]y
y5

< ϒ1–μ1/μ(y5) < ∞,

which contradicts (6).
If u(y) < 0 for y ≥ y1, then we set y(y) := –u(y) for y ≥ y1 in (1). Using (A2), we find

(
a(y)

(
w′(y)

)μ)
+ c(y)g

(
y
(
ς (y)

))
= 0 for y ≥ y1,

where w(y) = y(y) + b(y)y(ϑ(y)) and g(u) := –g(–u) for u ∈R. Clearly, g satisfies (A2). Then,
proceeding as above, we can find the same contradiction.

To prove the condition (6) is necessary, assume that (6) does not hold; so for some κ > 0
and y ≥ y0 we have

∫ ∞

Y
c(η)g

(
κ1/μA

(
ς (η)

))
dη ≤ κ

3
.
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We set

S =
{

u : u ∈ C
(
[y0,∞),R

)
, u(y) = 0 for y ∈ [y0, Y ] and

(
κ

3

)1/μ[
A(y) – A(Y )

] ≤ u(y) ≤ κ1/μ[
A(y) – A(Y )

]
for y ≥ y0

}
.

We define the operator � : S → C([y0, +∞),R) by

(�u)(y) =

⎧
⎨

⎩
0, y ∈ [y0, Y ],

–b(y)u(ϑ(y)) +
∫ y

Y [ 1
a(η) [ κ

3 +
∫ ∞
η

c(ζ )g(u(ς (ζ ))) dζ ]]1/μ dη, y ≥ Y .

For every u ∈ S and y ≥ Y , we have

(�u)(y) ≥
∫ y

Y

[
1

a(η)

[
κ

3
+

∫ ∞

η

c(ζ )g
(
u
(
ς (ζ )

))
dζ

]]1/μ

dη

≥
∫ y

Y

[
1

a(η)
κ

3

]1/μ

dη =
(

κ

3

)1/μ[
A(y) – A(Y )

]
.

For every u ∈ S and y ≥ Y , we have u(y) ≤ κ1/μA(y) and g(u(y)) ≤ g(κ1/μA(y)). Then

(�u)(y) ≤ –b(y)u
(
ϑ(y)

)
+

∫ y

T

[
1

a(η)

(
κ

3
+

κ

3

)]1/μ

dη

≤ b0κ
1/μ[

A
(
ϑ(y)

)
– A(Y )

]
+ (2κ/3)1/μ[

A(y) – A(Y )
]

≤ b0κ
1/μ[

A(y) – A(Y )
]

+ (2κ/3)1/μ[
A(y) – A(Y )

]

=
(
b0 + (2/3)1/μ)

κ1/μ[
A(y) – A(Y )

] ≤ κ1/μ[
A(y) – A(Y )

]
,

which implies that (�u)(y) ∈ S. Let us define now a sequence of continuous function vn :
[y0, +∞) →R by the recursive formula

u0(y) =

⎧
⎨

⎩
0, y ∈ [y0, Y ],
κ
3 [A(y) – A(Y )], y ≥ Y ,

un(y) = (�un–1)(y), n ≥ 1.

Inductively, it is easy to verify that, for n > 1,

(
κ

3

)1/μ[
A(y) – A(Y )

] ≤ un–1(y) ≤ un(y) ≤ κ1/μ[
A(y) – A(Y )

]
.

Therefore the point-wise limit of the sequence exists. Let limy→∞ un(y) = v(y) for y ≥ y0.
By Lebesgue’s dominated convergence theorem, u ∈ S and (�u)(y) = u(y), where u(y) is a
solution of (1) on [Y ,∞) such that u(y) > 0. Hence, (6) is necessary. This completes the
proof. �
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Example 3.2 Consider the delay differential equation

(
e–y((u(y) – e–yu(y – 1)

)′)3/5)′ + y
(
u(y – 2)

)1/3 = 0, y ≥ 0. (9)

Here μ = 3/5, a(y) = e–y, –1 < b(y) = –e–y ≤ 0, ϑ(y) = y – 1, ς (y) = y – 2, A(y) =
∫ y

0 e5s/3 ds =
3
5 (e5y/3 – 1), g(v) = v1/3. For μ1 = 1/2, we have a decreasing function g(v)/vμ1 = v–1/6. Now

∫ ∞

0
c(η)g

(
κ1/μA

(
ς (η)

))
dη =

∫ ∞

0
η

(
κ5/3 3

5
(
e5(η–2/3 – 1

))1/3

dη = ∞ ∀κ > 0.

So, all the conditions of Theorem 3.1 hold, and therefore every unbounded solution of (9)
is oscillatory.

Theorem 3.3 Let assumptions (A1)–(A4) hold. Then each unbounded solution of (1) os-
cillates if and only if (6) holds for every κ > 0.

Proof To prove sufficiency by contradiction, assume that the solution u of (1) is even-
tually positive and unbounded. So, there exists y1 ≥ y0 such that u(y) > 0, u(ϑ(y)) > 0
and u(ς (y)) > 0 for y ≥ y1. Proceeding as in the proof of Lemma 2.1, (a(w′)μ)(y) is non-
increasing, w satisfies one of the cases (i) or (ii) on [y2,∞), where y2 ≥ y1. We have the
following two possible cases.

Case 1. Let w satisfy (i) for y ≥ y2. This case is similar to the proof of Theorem 3.1.
Case 2. Let w satisfy (ii) for y ≥ y2. Since w(y) is unbounded and monotonically increas-

ing, it follows that

lim
y→∞

wμ(y)
Aμ(y)

= lim
y→∞

(w′(y))μ

(A′(y))μ
= lim

y→∞
(
a
(
w′)μ)

(y) = c < ∞.

If c = 0, then limt→∞ A(y) = +∞ implies that limt→∞ w(y) < +∞, which is invalid (∵ w(y)
is unbounded). Hence c �= 0. Therefore, there exist a constant κ > 0 and a y2 > y1 such
that w(y) ≥ κ1/μA(y) for y ≥ y2. Consequently, u(y) ≥ w(y) ≥ κ1/μA(y) for y ≥ y2. Using
u(y) ≥ κ1/μA(y) in (1) and then integrating the final inequality from y2 to +∞, we obtain a
contradiction to (6) for every κ > 0.

By using the same transformation as in the proof of Theorem 3.1 we can get a contra-
diction for an eventually negative unbounded solution, so we omit it here.

One can prove the necessary part by following the proof of Theorem 3.1. So we omit it
here. The proof of the theorem is complete. �

Theorem 3.4 Assume that (A1)–(A4) and (5) hold. Then each solution of (1) is oscillatory
or limy→∞ u(y) = 0 if and only if (6) holds for every κ > 0.

Proof On the contrary, we assume that the solution u of (1) is eventually positive. Then
there exists y1 ≥ y0 such that u(y) > 0, u(ϑ(y)) > 0 and u(ς (y)) > 0 for y ≥ y1. Proceeding as
in the proof of Lemma 2.1, we see (a(w′)μ)(y) is non-increasing, and w satisfies one of the
cases (i) or (ii) on [y2,∞), where y2 ≥ y1. Thus, we have the following two possible cases.

Case 1. Let w satisfy (i) for y ≥ y2. Then, by Lemma 2.2, we have limy→∞ u(y) = 0.
Case 2. Let w satisfy (ii) for y ≥ y2. The case follows from the proof of Theorem 3.1.
The necessary part is similar to Theorem 3.1. The proof of the theorem is complete. �
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3.2 The case when g(u)/uμ1 is non-decreasing
Suppose that there exists μ1 > μ such that

g(v)
vμ1

≤ g(u)
uμ1

for 0 < v ≤ u. (10)

For example we might consider the function g(u) = |u|μ2 sgn(u) with μ < μ1 < μ2 satis-
fying (10).

Theorem 3.5 Assume that (A1)–(A3), (A5), (10), ς ′(y) ≥ 1 hold. Then each solution of (1)
oscillates or limy→∞ u(y) = 0 if and only if

∫ ∞

Y

[
1

a(ζ )

[∫ ∞

ζ

c(η) dη

]]1/μ

dζ = +∞ ∀y > 0. (11)

Proof Proceeding in the proof of Theorem 3.4, we can conclude that limy→∞ u(y) = 0 when
z satisfies (i). Let us consider Case 2, for y ≥ y2. By Remark 1, there exist a constant κ > 0
and y2 > y1 such that z(ς (y)) ≥ κ for y ≥ y2. Consequently,

g
(
w

(
ς (y)

))
=

g(w(ς (y)))
wμ1 (ς (y))

wμ1
(
ς (y)

) ≥ g(κ)
κμ1

wμ1
(
ς (y)

)
(12)

for y ≥ y2. Using w(y) ≤ u(x) and (12) in (1), and then integrating the final inequality we
have

lim
A→∞

[(
a
(
w′)′)(η)

]A
y +

g(κ)
κμ1

∫ ∞

y
c(ζ )wμ1

(
ς (ζ )

)
dζ ≤ 0.

Since (a(w′)′)(y) is non-increasing and positive, we have

g(κ)
κμ1

∫ ∞

y
c(η)wμ1

(
ς (η)

)
dη ≤ (

a
(
w′)μ)

(y) ≤ (
a
(
w′)μ)(

ς (y)
) ≤ a(y)

((
w′)μ)(

ς (y)
)

for all y ≥ y2. Therefore,

(
g(κ)
κμ1

)1/μ[
1

a(y)

[∫ ∞

y
c(ζ )wμ1

(
ς (ζ )

)
dζ

]]1/μ

≤ w′(ς (y)
)

implies that

(
g(κ)
κμ1

)1/μ[
1

a(y)

[∫ ∞

y
c(ζ ) dζ

]]1/μ

≤ w′(ς (y))
wμ1/μ(ς (y))

≤ w′(ς (y))ς ′(y)
wμ1/μ(ς (y))

.

Integrating the final inequality from y2 to +∞, we have

(
g(κ)
κμ1

)1/μ ∫ ∞

y2

[
1

a(ζ )

[∫ ∞

ζ

c(η) dη

]]1/μ

dζ <
∫ ∞

y2

w′(ς (η))ς ′(η)
wμ1/μ(ς (η))

dη

≤ w1–μ1/μ(ς (y2))
μ1/μ – 1

< ∞,

which contradicts (11).
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Next, we show that (11) is necessary. Assume that (11) does not hold and let there exist
y ≥ y0 such that

∫ y

Y

[
1

a(ζ )

[∫ ∞

ζ

c(η) dη

]]1/μ

dζ ≤ (1 – b0)(g(1))–1/μ

5
,

where κ > 0 is a constant. We set

S =
{

u ∈ C
(
[y0,∞),R

)
: u(y) =

1 – b0

5
, y ∈ [y0, Y ]

1 – b0

5
≤ u(y) ≤ 1 for y ≥ Y

}
.

We define the operator � : S → C([y0,∞),R) by

(�u)(y) =

⎧
⎨

⎩

1–b0
5 , y ∈ [y0, Y ],

–b(y)u(ϑ(y)) + 1–b0
5 +

∫ y
T [ 1

a(η) [
∫ ∞
η

c(ζ )g(u(ς (ζ ))) dζ ]]1/μ dη, y ≥ T .

For every u ∈ S and y ≥ Y , (�u)(y) ≥ 1–b0
5 and

(�u)(y) ≤ b0 +
1 – b0

5
+

(
g(1)

)1/μ
∫ y

Y

[
1

a(η)

[∫ ∞

η

c(ζ ) dζ

]]1/μ

dη

≤ b0 +
1 – b0

5
+

1 – b0

5
=

3b0 + 2
5

< 1,

which implies that �u ∈ S. The remaining proof follows from Theorem 3.1. This com-
pletes the proof. �

Example 3.6 Consider the differential equation

(((
u(y) – e–yu

(
ϑ(y)

))′)1/5)′ + (y + 1)
(
u(y – 2)

) 7
3 = 0, y ≥ 0. (13)

Here μ = 1/5, a(y) = 1, ς (y) = y – 2, g(v) = v 7
3 . For μ1 = 4/3, we have g(v)/vμ1 = v, which is

an increasing function. To check (11) we have

∫ ∞

2

[∫ ∞

ζ

(η + 1) dη

]5

dζ = ∞.

So, all conditions of Theorem 3.5 hold, and therefore each solution of (13) oscillates or
converges to zero.

4 Conclusion
It is worth noting that we have established the necessary and sufficient conditions when
–1 < b(y) ≤ 0. These conditions do not hold in all ranges of b(y).

Remark 2 Theorems 3.1–3.5 also hold for the following equation:

(
a(y)

((
u(y) + b(y)u

(
ϑ(y)

))′)μ)′ +
m∑

i =1

cj(y)gj
(
u
(
ςj(y)

))
= 0,
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where b, a, cj, gj,ςj (j = 1, 2, . . . , m) satisfy assumptions (A1)–(A5). In order to extend The-
orems 3.1–3.5, we can find an index i so that cj, gj,ςj satisfies (6) and (11).

Example 4.1 Consider the neutral differential equation

(
e–y((u(y)–e–yu

(
ϑ(y)

))′)3/5)′ +
1

y + 1
(
u(y–2)

)1/3 +
1

y + 2
(
u(y–1)

)1/5 = 0, y ≥ 0. (14)

Here μ = 3/5, a(y) = e–y, b(y) = –e–y, ς1(y) = u – 2, ς2(y) = u – 1, A(y) =
∫ y

0 e5s/3 ds = 3
5 (e5y/3 –

1), g1(v) = v1/3 and g2(v) = v1/5. For μ1 = 1/2, we have decreasing functions g1(v)/vμ1 = v–1/6

and g2(v)/vμ1 = v–3/10. Now,

∫ ∞

0

m∑

i=1

cj(η)gj
(
κ1/μA

(
ςj(η)

))
dη

≥
∫ ∞

0
g1(η)f1

(
κ1/μA

(
ς1(η)

))
dη

=
∫ ∞

0

1
η + 1

(
κ5/3 3

5
(
e5(η–2)/3 – 1

))1/3

dη = ∞ ∀κ > 0.

So, all the conditions of Theorem 3.1 hold, and therefore every unbounded solution of
(14) is oscillatory.

Example 4.2 Consider the differential equation

(((
u(y) – e–yu

(
ϑ(y)

))′)5/7)′ + t
(
u(y – 2)

)5/3 + (y + 1)
(
u(y – 1)

)3 = 0, y ≥ 0. (15)

Here μ = 5/7, a(y) = 1, ς1(y) = y–2, ς2(y) = y–1, g1(v) = v5/3 and g2(v) = v3. For μ1 = 4/3, we
have decreasing functions g1(v)/vμ1 = v1/3 and g2(v)/vμ1 = v5/3. Clearly, all the conditions
of Theorem 3.5 hold. Thus, each solution of (15) oscillates or limy→∞ u(y) = 0.

Remark 3 Examples 4.1 and 4.2 prove the feasibility and effectiveness of Remark 2.

5 Open problem
This work leads to some open problems:

1. Can we find necessary and sufficient conditions for the oscillation of solutions to
second-order differential equation (1) for the other ranges of the neutral coefficient b?

2. Is it possible to generalize this work to fractional order?
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