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Abstract
There is growing need for reliable survey-based small area estimates of crime
and confidence in police work to design and evaluate place-based policing
strategies. Crime and confidence in policing are geographically aggregated and
police resources can be targeted to areas with the most problems. High levels of
spatial autocorrelation in these variables allow for using spatial random effects to
improve small area estimation models and estimates’ reliability. This article
introduces the Spatial Empirical Best Linear Unbiased Predictor (SEBLUP),
which borrows strength from neighboring areas, to place-based policing. It
assesses the SEBLUP under different scenarios of number of areas and levels
of spatial autocorrelation and provides an application to confidence in policing in
London. The SEBLUP should be applied for place-based policing strategies
when the variable’s spatial autocorrelation is medium/high, and the number of
areas is large. Confidence in policing is higher in Central and West London and
lower in Eastern neighborhoods.
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Introduction

Policing analyses and intelligence-led policing are moving towards the study of
small geographic areas, or micro places, to develop place-based policing strategies
to reduce crime and disorder (Hutt et al. 2018; Weisburd 2018). Place-based
policing draws from the empirical observation that crime is concentrated at micro
geographical units, which are sometimes referred to as ‘hot spots of crime’
(Weisburd 2015, 2018). Sherman et al. (1989) found that only 3.5% of addresses
in the city of Minneapolis produce 50% of all annual crime calls to the police.
Pierce et al. (1988) found similar results in Boston: 2.6% of addresses produce the
50% of police calls. Weisburd et al. (2004) examined the distribution of crime in
Seattle from 1989 to 2002, and found that 50% of crimes were located at 4.5% of
street segments, which showed that the concentration of crimes in small areas is
stable across time. Therefore, Weisburd (2015) argues that there is a law of crime
concentration, which states that “for a defined measure of crime at a specific
microgeographic unit, the concentration of crime will fall within a narrow band-
width of percentages for a defined cumulative proportion of crime” (Weisburd
2015:138). Place-based policing interventions target those areas with high levels
of crime and are successful in reducing crime and disorder, as shown by Braga
et al. (2014) in their meta-analysis of quasi-experimental evaluations of hot spots
policing. Braga et al. (2014) also found that the crime control benefits of such
strategies diffuse into areas surrounding targeted places. This shows the need for
the study of small areas in policing research and practice. However, the police
effectiveness in reducing crime in places highly depends on its relationship with
the public (Bennett et al. 2014; Jackson et al. 2013; Tyler and Bies 1990;
Weisburd 2018). Areas with higher confidence in police work tend to have larger
citizens’ cooperation with the police, thus enhancing the police capacity to prevent
crime and deviance. Moreover, government inspections into police forces assess
not only their effectiveness in reducing crime, but also they expect the police to
develop programs to enhance its legitimacy and public confidence in those
geographical areas where public cooperation with police services is lower
(HMICFRS 2017). The confidence in police work is also distributed at micro
places (Williams et al. 2019), and thus should be taken into account to design
place-based policing strategies.

Police-recorded offences and crime calls are relatively easy to geocode and
map, and advanced geographical analyses can be drawn from crime maps with a
high level of spatial accuracy (Hutt et al. 2018). However, the confidence in
policing cannot be directly observed and is mainly recorded by crime surveys,
such as the Crime Survey for England and Wales (CSEW) and the National Crime
Victimization Survey (NCVS). Crime surveys are usually designed to record large
samples and provide reliable direct estimates only for large geographies, such as
regions or cities, and small areas within these are usually unplanned domains and
have small or zero sample sizes. This is the reason why more advanced statistical
methods are needed to map the confidence in police work. Groves and Cork
(2008) argue that model-based small area estimation (SAE) techniques are a
potential tool to overcome such limitations and produce reliable small area
estimates from crime surveys. SAE seeks to produce reliable estimates for
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unplanned areas where direct estimates are not precise enough (Rao and Molina
2015). Those estimates allow for advanced geographical analyses and precise
maps of the confidence in policing and associated constructs.

In this paper we provide background information, a simulation study and an
application to introduce model-based SAE techniques that account for spatially
correlated random area effects to place-based policing. This is one of the first
papers that evaluates and applies these methods in policing research and practice.
Confidence in police work tends to show high levels of spatial clustering (Jackson
et al. 2013; Williams et al. 2019), which can be taken into account in SAE models
to increase the estimates’ precision. In SAE, the use of spatially correlated random
area effects is increasingly in use (Chandra et al. 2007; Petrucci and Salvati 2006;
Pratesi and Salvati 2008; Salvati et al. 2014). Small area estimators that incorpo-
rate the spatial autocorrelation parameter have been shown to reduce the esti-
mates’ mean squared error when the level of spatial autocorrelation (henceforth ρ)
is large. ρ measures the correlation of a variable with itself across neighboring
areas. Thus, a large ρ means that geographically nearby areas tend to have similar
values (i.e. high values of a variable in one area are surrounded by high values in
neighboring areas and low values of a variable in one area are surrounded by low
values in neighboring areas), while a ρ close to zero represents a geographically
random phenomenon. Specifically, this paper introduces the Spatial Empirical
Best Linear Unbiased Predictor (SEBLUP) to place-based policing. The SEBLUP
is an extension of the Empirical Best Linear Unbiased Predictor (EBLUP), which
is based on the Fay-Herriot (FH) model (Fay and Herriot 1979), considering
correlated random area effects between neighboring areas through the simulta-
neous autoregressive (SAR) process (Cressie 1993; Salvati 2004).

The level of ρ of the variable of interest has shown to be relevant to improve
SEBLUP estimates. Less attention has been paid to the effect of the number of
areas under study, m, on SEBLUP’s performance, and particularly how m interacts
with ρ to explain the SEBLUP’s increased precision. m measures the number of
geographical areas for which we aim to produce estimates. For example, confi-
dence in police work can be estimated in London at a metropolitan (m = 1),
borough (m = 32) or ward level (m = 610), or even at lower geographical scales
with larger number of areas. This is especially relevant for crime analysts and
police departments aiming to select appropriate methods to estimate confidence in
police work at different geographical scales with dissimilar number of areas. There
are few studies examining the efficiency of the SEBLUP under different geo-
graphical conditions and these show contradicting results (Asfar and Sadik 2016;
Petrucci and Salvati 2006; Pratesi and Salvati 2008; Salvati 2004). Thus, further
examinations and applications of the method are needed.

This paper assesses the SEBLUP performance, in terms of bias and mean
squared error, under different scenarios with unequal m and ρ, and provides an
empirical evaluation and application to confidence in police work in London. The
confidence in policing is measured here by the proportion of people who think
that the police do a good job (Stanko and Bradford 2009). Thus, we gain evidence
about the SEBLUP estimates’ reliability under different conditions, to examine the
cases in which this estimator provides better estimates than basic model-based
estimators when applied to policing data. In the simulation study, quality measures
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for SEBLUP estimates are compared to post-stratified and EBLUP estimates
controlling for m and ρ. In the empirical evaluation, estimates of confidence in
police work are produced at ward level in five London sub-regions with different
number of wards. Furthermore, the application contributes to the increasing
criminological research on understanding the geographical distribution of citizens’
confidence in the police (Jackson and Bradford 2010; Jackson et al. 2013;
Tankebe 2012).

Section 2 provides background information on the need for accounting for the
confidence in police work in policing strategies, and section 3 bridges the gap between
SAE and place-based policing. Section 4 describes the SEBLUP and results of previous
studies. Section 5 presents the simulation study and its results. Section 6 applies
SEBLUP to produce estimates of confidence in police work in London. Section 7
draws final conclusions.

Confidence in the Police and Policing Strategies

The police effectiveness in maintaining order and preventing crime depends on its
relationship with the public (Jackson and Bradford 2010; Jackson et al. 2013). Citizens’
willingness to cooperate and support police officers is essential for an effective policing
service, and public cooperation with the police is shaped by the citizens’ trust in police
work (Bennett et al. 2014; Tyler 2004). The residents’ confidence in police services,
which shows heterogeneity between neighborhoods, affects the unequal police capacity
to prevent crime in different areas. Thus, effective policing strategies need to develop
measures to enhance the public confidence in police work, and inspections into police
forces assess the efforts made by the police to increase their public confidence at
different geographical areas (HMICFRS 2017). This is especially important in the case
of place-based policing strategies, which have been criticised for having negative
impacts on the perceptions about the police of targeted communities (Rosenbaum 2006).

Confidence in policing and police legitimacy are known to be driven by a series of
demographic and social variables that operate at individual, micro and meso levels, and
increasing research focuses on understanding their predictors at different scales. Several
individual characteristics have been related with decreased confidence in police work
and less willingness to cooperate with the police, such as being male and young,
belonging to an ethnic minority, low education, poverty, negative perceptions of
procedural justice and negative experiences with the police (Jackson et al. 2013;
Sampson and Bartusch 1998; Tankebe 2012; Tyler 2004). Particular attention has been
given to the study of the relationship between procedural justice and public confidence
in police: citizens tend to be more confident in police services and legitimize police
activities when police officers are perceived to treat people with respect and dignity
(Tyler 2004; Tyler and Bies 1990).

Research has also found that confidence in policing is higher in certain neigh-
borhoods than others, and the confidence and trust in the police are known to be
influenced by neighborhood-level variables that operate at the scales of small
communities (Jackson et al. 2013; Sampson and Bartusch 1998). Some of the
variables used to explain the unequal distribution of the neighbors’ confidence in
police work and associated constructs are the average income, unemployment
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rates, social cohesion, residential mobility, concentration of minorities and immi-
grants, and crime rates (Bradford et al. 2017; Dai and Johnson 2009; Jackson et al.
2013; Kwak and McNeeley 2017; Sampson and Bartusch 1998; Wu et al. 2009).
Wu et al. (2009:150) argue that “racial composition, concentrated disadvantage,
residential mobility, and violence crime rate are all good neighborhood-level
predictors in determining public perception of police”. Sampson and Bartusch
(1998) found that the combined effect of concentrated disadvantage, crime and
ethnic concentration explains 82% of the variation between small areas in levels of
satisfaction with police. Neighborhood poverty and unemployment, as forms of
concentrated disadvantage, are known to shape neighbors’ social identities and
decrease citizens’ attitudes and perceptions of policing services (Wu et al. 2009).
Confidence in police work tends to be lower in deprived areas, while wealthy
neighborhoods have more confidence in the police. While some argue that this is
due to the larger police control and the more violent techniques used by the police
in deprived areas (Dai and Johnson 2009), others argue that it is explained by
differential social identities within cities: “residents of more socially integrated
neighborhoods may feel they are connected to larger formal institutions such as
the police” (Kwak and McNeeley 2017:10). People living in poor socioeconomic
conditions are not only likely to be dissatisfied with the police, but with all
government services (Dai and Johnson 2009).

The concentration of minorities and immigrants has also been used to explain
neighborhood-level confidence in policing. Areas with larger concentrations of minor-
ities and immigrants are likely to have lesser confidence in police work (Sampson and
Bartusch 1998; Wu et al. 2009), although research conducted in the United Kingdom
has found the opposite: “trust in the police was on average higher among immigrants to
the United Kingdom than among the UK-born population” (Bradford et al. 2017:381).
Dai and Johnson (2009) argue that the relationship between concentration of minorities
and dissatisfaction with the police in the US is likely to be explained by the
neighborhood concentrated disadvantage, as citizens from minority groups are
disproportionately represented in deprived areas. In relation to crime rates, Kwak and
McNeeley (2017) and Wu et al. (2009) found that, contrarily to what one might expect,
these are not significant in predicting confidence in policing and dissatisfaction with the
police. We will use this information to select covariates to fit our SAE models of
confidence in policing.

Small Area Estimation in Place-Based Policing

Since 2008, when the US Panel to Review the Programs of the Bureau of Justice
Statistics suggested the use of model-based SAE to produce estimates from the NCVS
(Groves and Cork 2008), there have been several applications of SAE methods to
policing data. Buelens and Benschop (2009) used the EBLUP based on the FH model
to produce estimates of victimization rate per police zone in Netherlands. Fay and
Diallo (2012) presented an extension of the temporal model developed by Rao and Yu
(1994) and applied it to estimate crime by states in the US. Whitworth (2012) produced
regression-based synthetic estimates of fear of crime in England and Wales. Taylor
(2013) made use of multilevel models to produce synthetic estimates of perceived
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antisocial behaviour in England and Wales. Williams et al. (2019) introduced the
spatially correlated random area effects and produced neighborhood estimates of
public confidence in policing from a spatiotemporal Bayesian approach. Wheeler
et al. (2017) made use of spatial models to produce synthetic estimates of attitudes
towards the police. Regression-based synthetic estimates, however, are known to suffer
from a high risk of bias arising from possible misspecification of models (Rao and
Molina 2015). Spatial microsimulation approaches have also been used to produce
estimates of crime rates (Kongmuang 2006).

Several of these studies have shown the need for incorporating the spatial autocor-
relation parameter to SAE when producing estimates for designing place-based polic-
ing strategies. The spatial autocorrelation accounts for the geographical concentration
of attitudes towards policing and estimators that incorporate it tend to provide more
precise estimates than basic model-based estimators. The SEBLUP has shown prom-
ising results not only in simulation studies (Asfar and Sadik 2016; Chandra et al. 2007;
Pratesi and Salvati 2008; Salvati 2004), but also when it has been applied to social
science research, such as the estimation of poverty (Salvati et al. 2014). Thus, the
SEBLUP is expected to produce promising results in the field of place-based policing.
Hence, we aim to bridge this gap by demonstrating its use for estimating confidence in
police work at small area level. In order to gain evidence about cases in which the
SEBLUP provides better estimates than basic model-based estimators when applied to
policing data, we provide a simulation study and an application.

Model Description: SEBLUP

Let us consider a target population partitioned into m small areas. In our application,
estimates of confidence in policing will be produced for London wards, thus, m equals
610. In the traditional EBLUP derived from the FH model (Fay and Herriot 1979), we
assume that a linking model linearly relates the quantity of inferential interest (i.e.
proportion of citizens who think that police do a good job), which is usually an area
mean or total δi, to p area level auxiliary variables xi = (xi1,…, xip)′ with a random effect
vi:

δi ¼ x′iβþ vi; i ¼ 1;…;m; ð1Þ

where β is the p × 1 vector of regression parameters and vi∼iid 0;σ2
u

� �
. In our case,

δi represents the confidence in police work and xi denotes the covariates known to
be associated to confidence in policing (e.g. unemployment, concentration of
minorities, poverty). The model assumes that a design-unbiased direct estimate
denoted yi for δi, which is obtained from the observed sample, is available for each
area i = 1, …, m:

yi ¼ δi þ ei; i ¼ 1;…;m; ð2Þ

where ei ∼N(0, ψi) denotes the sampling errors, independent of vi, and ψi refers to the
sampling variance of the direct estimates (Rao and Molina 2015).
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The SEBLUP borrows strength from neighboring areas by adding spatially corre-
lated random area effects (Petrucci and Salvati 2006; Salvati 2004). If we combine (1)
with (2) we can write the following model:

y ¼ Xβþ vþ e; ð3Þ

where y = (y1,…, ym)′ is the vector of direct estimates of confidence in policing for m
areas, X = (x1,…, xm)′ denotes the covariates associated to the outcome measure for m
areas, v = (v1,…, vm)′ is a vector of area effects and e = (e1,…, em)′ is a vector of
sampling errors independent of v. We assume v to follow a SAR process with unknown
autoregression parameter ρ ϵ (−1, 1) and a contiguity matrix W (Cressie 1993):

v ¼ ρWvþ u; ð4Þ

where ρ represents the spatial autocorrelation coefficient of our outcome measure (i.e.
confidence in policing) and W is a standardised matrix that relates each area with all
neighboring areas.

We also assume (Im − ρW) to be non-singular, where Im is a the m ×m identity
matrix, so we can express (4) as follows:

v ¼ Im−ρWð Þ−1u; ð5Þ

where u = (u1,…, um)′ satisfies u∼N 0m;σ2
uIm

� �
. Thus,

y ¼ Xβþ Im−ρWð Þ−1uþ e ð6Þ

The vector of variance components are denoted as θ ¼ θ1; θ2ð Þ0 ¼ σ2
u; ρ

� �0
. Then, the

Spatial Best Linear Unbiased Predictor (SBLUP) of δi ¼ x′iβþ vi is given by

δ
∼SBLUP

i θð Þ ¼ x′i β
∼
θð Þ þ b′iG θð ÞΣ−1 θð Þfy−X β

∼
θð Þg ð7Þ

where b′i is a 1 ×m vector (0,…,1,0,…,0) with 1 in position i. G(θ), the covariance

matrix of v, is given by G θð Þ ¼ σ2
uf Im−ρWð Þ′ Im−ρWð Þg−1. Σ(θ), which is the

covariance matrix of y, is defined as Σ(θ) =G(θ) +Ψ, where Ψ = diag (ψ1,…,ψm).

And eβ θð Þ, the weighted least squares estimator of β , is obtained aseβ θð Þ¼ X
0
Σ−1 θð ÞX� �−1

X
0
Σ−1 θð Þy.

The SEBLUP is obtained by replacing a consistent estimator of θ bybθ ¼ bσ2
u;bρ� �0

:

δ̂
SEBLUP
i ¼ δ

∼SEBLUP

i θ̂
� � ¼ x′i β

∼
θ̂
� �þ b′iG θ̂

� �
Σ−1 θ̂

� �fy−X β
∼
θ̂
� �g: ð8Þ

If we assume the normality of the random effects, we can estimate σ2
u and ρ based

on different procedures. In this research, we consider the Restricted Maximum
Likelihood estimator, which takes into account for the loss in degrees of freedom
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derived from estimating β, while other estimators, such as the Maximum Likeli-
hood estimator, do not (Rao and Molina 2015). The assumption of normality of
the random effects is reasonable in those cases in which area-level direct estimates
are normally distributed, as tends to be the case in criminological studies looking
into the confidence in police work (Williams et al. 2019), emotions about crime
(Whitworth 2012) and rates of some crime types at large spatial scales (Fay and
Diallo 2012). However, such assumption may be considered invalid in those cases
in which the normality of direct estimates is not met. This may be the case of
studies analysing specific crime types at detailed spatial scales, as these may show
zero inflated skewed distributions and thus robust SAE techniques adjusted to
non-normal distributions are needed (Dreassi et al. 2014).

Previous Studies Using the SEBLUP

The SEBLUP has not yet been used to estimate crime rates or confidence in the
police. However, a series of simulation studies and applications analysing eco-
nomic and agricultural outcomes have shown that the SEBLUP tends to outper-
form EBLUP estimators when ρ moves away from zero -especially when it is
close to −1 or 1 (Chandra et al. 2007; Petrucci and Salvati 2006; Pratesi and
Salvati 2008). There are very few simulation studies that investigate the impact of
m, and the interaction between m and ρ, on the SEBLUP’s performance, and these
show contradicting results. Salvati (2004) examined the precision of SEBLUP
estimates for m equal to 25 and 50, and ρ = {±0.25,±0.5,±0.75}, and concluded
that the improvement in the estimates’ accuracy is higher when the spatial
autoregressive coefficient increases, but also that “benefit is bigger as the number
of small areas increase” (Salvati 2004:11). In policing research, the SEBLUP is
thus expected to produce more reliable estimates than the EBLUP when the values
of the variable of interest geographically cluster together, as observed in many
studies on crime and crime perceptions (Baller et al. 2001; Williams et al. 2019),
and when the number of areas for which we aim to produce estimates is large.
Therefore, in cases like the one encountered by Gemmell et al. (2004), who
produced estimates of drug use for ten local authorities in Greater Manchester,
the EBLUP is expected to produce better estimates than the SEBLUP due to the
small number of areas under study.

Asfar and Sadik (2016) analyzed the SEBLUP’s relative mean squared errors
under m equal to 16, 64 and 144, and they found large relative improvement of
SEBLUP estimates even when ρ is very small (ρ = 0.05) and small (ρ = 0.25), also
in cases of very few areas under study (m = 16). In addition, such improvement
was sometimes larger when m was equal to 16 than in cases of m equal to 64 and
144. These results are not consistent with other simulation studies, which show
that SEBLUP’s relative performance improves as the number of areas increases
(Salvati 2004), and the SEBLUP’s precision is not improved if ρ ≅ 0 in cases of m
equal to 25 and 50 (Salvati 2004), 61 (Petrucci and Salvati 2006), 23 (Chandra
et al. 2007) and 42 (Pratesi and Salvati 2008). Therefore, further research is
needed to understand how both ρ and m affect the SEBLUP’s relative precision,
and we assess the performance of the SEBLUP in Section 5.
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Simulation Study

In this section we describe the simulation study designed to assess the effect of m
and ρ on the SEBLUP’s performance in comparison to EBLUP and post-stratified
estimators.

Generating the Population and Simulation Steps

The population is generated based on previous simulation studies such as Petrucci and
Salvati (2006) and Pratesi and Salvati (2008). Similar approaches have also been used
in Asfar and Sadik (2016), Molina et al. (2009) and Salvati (2004). Simulation
parameters are based on previous simulation experiments to allow comparisons and
reproducibility. The population is generated following a linear mixed-effect model with
random area effects of neighboring areas correlated to the SAR dispersion matrix with
fixed autoregressive coefficient:

yij ¼ xijβ þ vi þ eij; i ¼ 1;…;m; j ¼ 1;…;Ni; ð9Þ

where xij is the value of the covariate x for unit j in area i, vi denotes the area effect and
eij is the individual error. The simulation parameters are given as follows: β = 0.74,
σ2
u ¼ 90, σ2 = 1.5 (Petrucci and Salvati 2006). v = [v1,…, vm]′ is generated from a

MVN 0;σ2
u I−ρWð Þ I−ρW0� �� �−1� 	

, a n d e ¼ e11; e12;…; eij;…; emNm

� �0
f r om a

N(0, σ2). xij values are generated from a uniform distribution between 0 and 1000 and
Ni = [N1,…,Nm] is generated from uniform distribution between 100 and 300. The

population size is N ¼ ∑
m

i¼1
Ni. Thus, we simulate 42 different populations based on

different values of spatial autoregressive coefficient, ρ = {0, ±0.25, ±0.5, ±0.75}, and
number of areas, m = {16, 25, 36, 64, 144, 225}. yij is then produced as a continuous
and normally-distributed variable with random area effects of contiguous areas. As a
result, area-level aggregates and estimates are continuous, normally distributed and
geographically aggregated, as is usually the case of many criminological variables such
as confidence in police services, fear of crime or general crime rates at large scales (Fay
and Diallo 2012; Williams et al. 2019; Whitworth 2012). Future research should also
examine different simulation parameters with smaller intra-class correlations.

All maps used are hypothetical maps based on perfect squares divided into m
number of areas, where the maximum number of neighbors is 8 and the minimum is
3 at the corners (see Fig. 1). Future research should conduct similar studies using more
realistic maps. Neighboring areas are defined based on a ‘Queen Contiguity’ matrix,
typically the most common structure used in simulation studies, which defines as
neighbors all areas that share borders or at least one vertex. The W matrix is
standardised by rows, so that every row adds up to 1.

The simulation consists in the following steps for each simulated population:

1. Selection of t = 1, …, T (T = 1000) simple random samples without replacement.
Sample sizes are drawn with the only constraint of a minimum of two units
selected in each area (Salvati 2004). The average sample size per area is n ¼ 48:8.
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2. In each sample, post-stratified, EBLUP and SEBLUP estimates are computed and
compared based on Pratesi and Salvati (2008). The post-stratified estimator is
given by the following:

bY i pstð Þ ¼ ∑ j∈si
yij
ni
; ð10Þ

where si is the set of ni sample units falling in area i.

3. The results are evaluated by the absolute relative bias, absolute relative error,
relative root mean squared error, and mean squared error averaged through the
samples and small areas (Petucci and Salvati 2006). These are denoted by ARB,
ARE, RRMSE, and MSE, and given by the following formulas, respectively:

ARB ¼ 1

m
∑
m

i

1

T
∑
T

t¼1

bY it

Y i
−1

 !










 ð11Þ

ARE ¼ 1

m
∑
m

i

1

T
∑
T

t¼1

Y it

Y i
−1





 



� �
ð12Þ

RRMSE ¼ 1

m
∑
m

i

MSE bY i

� 	1=2 �
Y i

ð13Þ

with

Fig. 1 Three examples of hypothetical maps used in simulation study
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MSE ¼ 1

m
∑
m

i

1

T
∑
T

t¼1

bY it−Y i

� 	2
; ð14Þ

where bY it denotes the estimate (post-stratified, EBLUP or SEBLUP) for small area i in
sample t and Yi the true value observed in the population for area i.

The simulation study has been coded in R software (Molina and Marhuenda 2015)
and results are detailed in Tables 1, 2, 3 and 4.

Results: Comparison of EBLUP and SEBLUP Estimates

Table 1 shows the RRMSE, ARB and ARE of post-stratified, EBLUP and SEBLUP
estimates from each simulated population. Both EBLUP and SEBLUP estimators
outperform post-stratified estimators in all cases, in terms of RRMSE and ARE,
regardless of the spatial correlation parameter and the number of areas under
study. The post-stratified estimator performs better in terms of ARB, as expected.
ρ and m do not affect the EBLUP or SEBLUP’s relative difference towards post-
stratified estimates regardless of the quality measure selected. The relative differ-
ence between post-stratified and SEBLUP estimates’ RRMSE, which expresses the
absolute percentage change of the estimate quality measure, has been calculated as
follows:

RD% ¼
RRMSE bδSEBLUP �

−RRMSE bY pstð Þ
h i

RRMSE bY pstð Þ
h i � 100 ð15Þ

Equation (15) gives the measure of efficiency of bδSEBLUP over bY pstð Þ estimates.
The relative difference between post-stratified and SEBLUP estimates’ RRMSE

varies between a maximum of −5.83% in the case of m = 64 and ρ = 0.75 and a
minimum of −14.29% in the case of m = 16 and ρ = 0, having also small values
such as −13.99% in the case of m = 25 and ρ = 0.25, −13.40% in the case of m =
144 and ρ = 0, and − 13.00% in the case of m = 144 and ρ = − 0.5. In other words,
neither ρ nor m can be used to interpret the increased precision, in terms of
RRMSE and ARE, of EBLUP and SEBLUP estimates when compared to post-
stratified estimates. However, both ρ and m have a large impact in the improve-
ment of the SEBLUP estimates, which perform substantially better than EBLUP
estimates for those cases with a medium and large spatial correlation parameter
(especially ρ = {±0.50, ±0.75}) and a large number of areas (notably m = {144,
255}) (see Tables 2, 3 and 4).

Table 2 shows the relative difference between EBLUP and SEBLUP estimates’
RRMSE, as shown in Eq. (15), formatting the cells based on a black-to-white
colour scale. Darker scales represent positive values, meaning a better perfor-
mance of EBLUP estimates with respect to their quality measure, and white scales
refer to negative values, which show that SEBLUP estimates improve their quality
measure when compared to EBLUP estimates. First, it is clear from Table 2 that
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Table 1 Estimates’ relative root mean squared error, absolute relative Bias and absolute relative error (×100)

m = 16 m = 25 m = 36 m = 64 m = 144 m = 225

ρ = −0.75 bY pstð Þ RRMSE% 12.91 12.50 14.54 12.61 13.08 13.18

ARB% 0.38 0.32 0.42 0.36 0.33 0.31

ARE% 8.95 8.55 10.09 8.78 9.07 9.15

δ̂
EBLUP RRMSE% 11.99 11.53 14.29 11.30 11.80 11.89

ARB% 2.95 2.50 3.85 2.58 2.80 2.57

ARE% 8.56 8.16 10.08 8.13 8.46 8.51

δ̂
SEBLUP RRMSE% 12.23 11.57 14.25 11.21 11.42 11.51

ARB% 2.99 2.53 3.87 2.57 2.78 2.55

ARE% 8.69 8.19 10.05 8.09 8.25 8.34

ρ = −0. 5 bY pstð Þ RRMSE% 12.32 13.09 12.40 12.99 12.92 13.15

ARB% 0.29 0.31 0.33 0.33 0.36 0.31

ARE% 8.57 9.07 8.57 9.04 8.94 9.12

δ̂
EBLUP RRMSE% 11.31 12.21 11.21 11.72 11.24 11.86

ARB% 2.59 2.40 2.31 2.66 2.65 2.90

ARE% 8.11 8.65 7.99 8.42 8.10 8.51

δ̂
SEBLUP RRMSE% 11.60 12.36 11.25 11.59 11.23 11.71

ARB% 2.66 2.46 2.36 2.65 2.63 2.87

ARE% 8.27 8.74 8.02 8.37 8.07 8.43

ρ = −0.25 bY pstð Þ RRMSE% 13.11 12.62 12.93 12.61 12.68 13.06

ARB% 0.35 0.31 0.24 0.29 0.29 0.31

ARE% 9.14 8.77 8.92 8.76 8.78 9.03

δ̂
EBLUP RRMSE% 12.35 11.40 11.71 11.49 11.18 11.34

ARB% 2.80 2.35 2.57 2.51 2.56 2.79

ARE% 8.79 8.16 8.35 8.23 8.04 8.18

δ̂
SEBLUP RRMSE% 12.50 11.52 11.71 11.41 11.09 11.25

ARB% 2.86 2.39 2.58 2.51 2.54 2.77

ARE% 8.88 8.22 8.34 8.20 8.02 8.15

ρ = 0 bY pstð Þ RRMSE% 11.97 12.47 12.77 12.65 12.69 12.99

ARB% 0.36 0.28 0.33 0.36 0.33 0.35

ARE% 8.34 8.65 8.86 8.75 8.79 8.97

δ̂
EBLUP RRMSE% 10.26 10.96 11.52 11.19 10.99 11.47

ARB% 2.38 2.60 2.95 2.61 2.76 2.63

ARE% 7.46 7.93 8.29 8.03 7.95 8.23

δ̂
SEBLUP RRMSE% 10.62 11.08 11.60 11.23 11.03 11.46

ARB% 2.59 2.67 3.00 2.63 2.77 2.62

ARE% 7.70 7.98 8.35 8.06 7.97 8.22

ρ = 0.25 bY pstð Þ RRMSE% 11.18 11.58 13.84 11.78 12.77 12.92

ARB% 0.27 0.31 0.44 0.25 0.31 0.33

ARE% 7.77 8.04 9.60 8.16 8.84 8.95

δ̂
EBLUP RRMSE% 9.99 9.96 12.39 10.29 11.48 11.32

ARB% 2.26 2.04 3.29 2.44 2.68 2.67

ARE% 7.20 7.20 8.91 7.41 8.22 8.16

δ̂
SEBLUP RRMSE% 10.15 10.12 12.59 10.30 11.45 11.29

ARB% 2.29 2.12 3.35 2.45 2.68 2.66

ARE% 7.29 7.30 9.01 7.41 8.21 8.15

ρ = 0.5 bY pstð Þ RRMSE% 11.25 15.13 12.92 15.23 12.26 12.97

ARB% 0.23 0.39 0.29 0.37 0.31 0.32
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SEBLUP estimates outperform EBLUP estimates, in terms of RRMSE, when the
spatial correlation parameter is large, while EBLUP estimates tend to be more
precise than the SEBLUP when ρ is close to 0. The SEBLUP is thus preferred
over the EBLUP to examine social issues that spatially cluster together, as is the
case of crime rates (Baller et al. 2001) and perceptions about crime and the police
(Jackson et al. 2013; Williams et al. 2019). Second, the relative difference between
EBLUP and SEBLUP estimates’ RRMSE shows that the benefit obtained by
borrowing strength from neighboring areas is larger as the number of areas
increases. For example, for m = 25 the relative difference of RRMSE shows that
SEBLUP estimates are more precise than the EBLUPs only when the spatial
correlation parameter is very large (ρ = 0.75), while the SEBLUP outperforms
the EBLUP in all cases for m = 255, even when ρ = 0. In other words, the EBLUP
is expected to outperform the SEBLUP in studies producing estimates for a small

Table 1 (continued)

m = 16 m = 25 m = 36 m = 64 m = 144 m = 225

ARE% 7.76 10.54 8.99 10.53 8.48 8.98

δ̂
EBLUP RRMSE% 9.85 13.24 11.81 14.12 10.73 11.50

ARB% 2.23 2.97 2.64 3.03 2.45 2.66

ARE% 7.04 9.58 8.48 9.99 7.72 8.27

δ̂
SEBLUP RRMSE% 10.01 13.36 11.66 13.99 10.63 11.26

ARB% 2.28 3.02 2.68 3.04 2.44 2.65

ARE% 7.13 9.65 8.41 9.95 7.67 8.13

ρ = 0.75 bY pstð Þ RRMSE% 12.81 11.02 13.06 11.15 15.71 15.06

ARB% 0.21 0.27 0.29 0.29 0.34 0.39

ARE% 8.88 7.65 9.08 7.69 10.88 10.42

δ̂
EBLUP RRMSE% 11.81 10.36 11.62 10.50 14.61 13.94

ARB% 2.64 2.11 2.84 1.97 2.95 2.84

ARE% 8.41 7.33 8.37 7.39 10.35 9.90

δ̂
SEBLUP RRMSE% 11.96 10.07 11.33 9.98 13.69 13.02

ARB% 2.66 2.13 2.86 1.98 2.95 2.82

ARE% 8.51 7.19 8.22 7.04 9.86 9.41

Table 2 Relative difference between EBLUP and spatial EBLUP’s RRMSE (×100)

m = 16 m = 25 m = 36 m = 64 m = 144 m = 255

ρ = -0.75
2.00 0.35 -0.28 -0.80 -3.22 -3.20

ρ = -0.5
2.56 1.23 0.36 -1.11 -0.09 -1.26

ρ = -0.25 1.21 1.05 0.00 -0.70 -0.81 -0.79

ρ = 0 3.51 1.09 0.69 0.36 0.36 -0.09

ρ = 0.25 1.60 1.61 1.61 0.10 -0.26 -0.27

ρ = 0.5
1.62 0.91 -1.27 -0.92 -0.93 -2.09

ρ = 0.75
1.27 -2.80 -2.50 -4.95 -6.30 -6.60
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number of areas (e.g. estimates of drug use for ten local authorities; Gemmell
et al. 2004); while the SEBLUP produces more reliable estimates when the
number of areas under study is large (e.g. estimates of perceived disorder for
282 neighborhoods; Buil-Gil et al. 2019). Therefore, both ρ and m need to be
taken into account to explain SEBLUP estimates increased precision in terms of
RRMSEs, and SEBLUP estimates perform better as the number of areas under
study increases.

Table 3 shows the relative difference between EBLUP and SEBLUP estimates’ ARB
and Table 4 shows the relative difference between their ARE. Looking at Table 3, it is
clear that SEBLUP estimates perform better than EBLUPs, in terms of ARB, when the
number of areas is large (especially m = {144, 255}), but not in cases of m = {16, 25,
36}. For m = 64, SEBLUP estimates’ ARB is only improved when ρ = − 0.5 and ρ = −
0.75. Again, while the ARB of SEBLUP estimates was not improved in any case for
m = {16, 25, 36}, such quality measure shows that SEBLUP estimates outperform
EBLUPs, in terms of ARB, in all simulations performed for m = 255.

Table 4 also shows that both ρ and m have a large impact to improve SEBLUP
estimates’ precision, now in terms of ARE. For example, for m = 25 the relative

Table 3 Relative difference between EBLUP and spatial EBLUP’s ARB (×100)

m = 16 m = 25 m = 36 m = 64 m = 144 m = 255

ρ = -0.75
1.36 1.20 0.52 -0.39 -0.71 -0.78

ρ = -0.5
2.70 2.50 2.16 -0.38 -0.75 -1.03

ρ = -0.25
2.14 1.70 0.39 0.00 -0.78 -0.72

ρ = 0
8.82 2.69 1.69 0.77 0.36 -0.38

ρ = 0.25
1.33 3.92 1.82 0.41 0.00 -0.37

ρ = 0.5
2.24 1.68 1.52 0.33 -0.41 -0.38

ρ = 0.75
0.76 0.95 0.70 0.51 0.00 -0.70

Table 4 Relative difference between EBLUP and spatial EBLUP’s ARE (×100)

m = 16 m = 25 m = 36 m = 64 m = 144 m = 255

ρ = -0.75
1.52 0.37 -0.30 -0.49 -2.48 -2.00

ρ = -0.5
1.97 1.04 0.38 -0.59 -0.37 -0.94

ρ = -0.25
1.02 0.74 -0.12 -0.36 -0.25 -0.37

ρ = 0
3.22 0.63 0.72 0.37 0.25 -0.12

ρ = 0.25
1.25 1.39 1.12 0.00 -0.12 -0.12

ρ = 0.5
1.28 0.73 -0.83 -0.40 -0.65 -1.69

ρ = 0.75
1.19 -1.91 -1.79 -4.74 -4.73 -4.95
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difference between EBLUP and SEBLUP’s ARE shows that EBLUP estimates outper-
form SEBLUPs in all cases except for ρ = 0.75; while for m = 144 such value shows a
better precision of SEBLUP estimates except when ρ = 0, and for m = 255 the SEBLUP
estimator produces better estimates than the EBLUP in every single case.

Empirical Evaluation and Application: Confidence in Police Work
in London

In this section we assess and apply the SEBLUP in a real case scenario. We produce
direct, EBLUP and SEBLUP estimates of confidence in police work at ward level in
Greater London from Metropolitan Police Service Public Attitudes Survey (MPSPAS)
2012 data. Such an application provides further evidence about the SEBLUP perfor-
mance when applied to policing data. Moreover, this application produces a reliable
map of the confidence in police work in London and deepens the meso-level explan-
atory mechanisms of confidence in policing, by which we mean the proportion of
citizens who think the police do a good job (Jackson and Bradford 2010; Stanko and
Bradford 2009). We then draw the map of the distribution of confidence in policing in
London.

There are various reasons why this research has been conducted using London
survey data instead of any other city. First, London is one of the few cities with an
available local survey designed to measure the confidence in police work. Second, the
Greater London Authority website provides information about many auxiliary variables
that are relevant for this research and may be used as covariates. Third, London is a
well-researched city (Hutt et al. 2018; Jackson et al. 2013; Stanko and Bradford 2009)
and thus it is easier to exclude the possibility of drawing spurious associations due to
uncontrolled variables. And fourth, during preliminary conversation with Greater
London Authority’s officers it was acknowledged that this research’s potential insights
may be of great value for decision-making purposes.

Data and Methods

Data from the MPSPAS 2012 have been used to produce estimates of confi-
dence in police work. MPSPAS is an annual survey conducted by the Metro-
politan Police Service since 1983, which records information about perceptions
of policing needs, worry about victimization and perceived security and disor-
der. It consists on a face-to-face questionnaire conducted at the homes of
respondents, and it obtains responses from a random probability sample of
residents in each of the 32 boroughs in Greater London. Household addresses
are selected randomly in each borough, and then the person in each household
whose next birthday is closest to the date of the interview is asked to answer
the questionnaire. The sample is representative of residents aged 15 or over and
it should be large enough to allow analyses at borough level but not at smaller
scales. Access to the low level geographies of the MPSPAS was only granted
for the 2012 edition, and thus small area estimates of confidence in policing are
only produced for this year.
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Small area estimates will be produced at the ward level for the five London sub-
regions. Each sub-region contains a different number of wards: Central London is
composed of 114 wards in six boroughs, North London is composed of 61 wards in
three boroughs, South London is composed of 120 wards in six boroughs, East London
is composed of 192 wards in ten boroughs, and West London is composed of 140
wards within seven boroughs. The average sample size per borough is n ¼ 401:03
sd ¼ 3:82ð Þ and the average sample size per ward is similar in all sub-regions: in
Central London n ¼ 20:23, in the North n ¼ 19:02, in the South n ¼ 19:37, in the East
n ¼ 20:6, and inWest London n ¼ 19:44. On average, there are 19.85 citizens sampled
per ward. Note that three wards in Central London and fourteen in East London
suffered from zero sample sizes, and thus were not included in our analyses.
Regression-based synthetic estimates are used in these seventeen areas.

The variable used to measure confidence in police work has been obtained from the
question “Taking everything into account, how good a job do you think the police in
this area are doing?”, as suggested by Stanko and Bradford (2009). In order to produce
more easily interpretable results, responses were dichotomised to a 0–1 measure, where
1 refers to “Excellent” or “Good”, while “Very poor”, “Poor” and “Fair” responses
were recoded as 0. “Don’t know” answers were coded as missing data. We then
produce estimates of the proportion of people who think the police are doing a good
or excellent job in local area (defined in the survey as the area within about 15 min’
walk from home). Based on the literature review, we fitted EBLUP and SEBLUP
models using the following area-level covariates: proportion of black and minority
ethnic groups 2011, mean household income 2011–12, crime rate 2011–12, proportion
of residents born outside the UK 2011, and proportion of citizens unemployed 2011.
All covariates are recorded by the Greater London Authority’s Ward Profiles and Atlas
(https://data.london.gov.uk/dataset/ward-profiles-and-atlas). We found no available or
reliable estimates at the ward level of other covariates explored by previous literature,
such as residential instability, perceived disorder and collective efficacy, and thus these
are subject of future research.

Direct estimates of the proportion of residents who think that police services do a
good or excellent job are produced from the following estimator (Horvitz and
Thompson 1952):

Ŷi dirð Þ ¼ N−1
i ∑ j∈siwi jyi j; ð16Þ

where wij corresponds to the survey weight of unit j from area i (provided by the
original survey), and yij is the score of unit j from area i. Original survey weights are
computed as the proportional distribution by borough of all citizens aged 15 or more
across London (derived from Census data) divided by the proportional distribution of
the unweighted sample by borough. In order to produce the SEBLUP estimates, a first-
order ‘Queen Contiguity’ structure is used to define neighboring areas.

Estimates Reliability Measures

In order to assess the estimates produced in each sub-region, Table 5 shows direct,
EBLUP and SEBLUP estimates’ average RRMSE, as well as the average Relative
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Difference (RD%) between EBLUP and SEBLUP’s estimates RRMSE. The direct
estimates’ RRMSE is the Coefficient of Variation (Rao and Molina 2015), while the
EBLUP estimates’ RRMSE is obtained from Prasad-Rao analytical approximation
(Prasad and Rao 1990) and SEBLUPs’ RRMSEs have been produced using an analyt-
ical approximation as in Molina et al. (2009).

Table 5 shows that direct estimates are the least precise (larger RRMSE) in all cases,
as expected. SEBLUP estimates are more reliable than EBLUPs, in terms of RRMSE, in
all six scenarios. The RD% shows that the averaged increased precision of SEBLUP
estimates compared to EBLUPs is larger as both the ρ and m increase. First, although ρ
is similar in North (ρ= 0.03) and East London (ρ=0.06), the RD% shows better results
in the East (RD% ¼ –1:89) compared to the North (RD% ¼ –0:28) partly due to the
larger m in East London (m=178). Then, even though the low ρ partly explains the
small increased precision of SEBLUP estimates when compared to EBLUPs, the spatial
autocorrelation parameter cannot be used on its own to explain why such increased
precision is higher in the case of m = 178 than m = 61. Second, although m is slightly
larger in South London (m=120) compared to Central London (m=111), the RD% is
higher in Central London (RD% ¼ −7:25) due to the high spatial autocorrelation
parameter (ρ = 0.74). Finally, the best relative results of the SEBLUP estimator have
been obtained in Central London, where both m (111) and ρ (0.74) are large, and West
London for the same reason (m=140 and ρ=0.60). In the case of all areas, m is large
(610) and ρ is equal to 0.46, and thus the averaged Relative Difference between
EBLUP and SEBLUP’s estimates RRMSE is quite high (RD% ¼ −4:76). These results
provide empirical evidence to support the simulation study results: the SEBLUP should
be used in those studies producing estimates of geographically concentrated phenom-
ena (Baller et al. 2001) for a large number of areas; while the EBLUP is preferred when
producing estimates of non-geographically concentrated phenomena with a small
spatial autocorrelation coefficient for a small number of domains.

Table 5 also shows that the level of spatial clustering of the public confidence in
police work is much larger in Central and Western London than in the North and East,
and there is a medium level of spatial concentration in the South. In other words, while
neighboring areas tend to show similar values of confidence in the police in Central and
Western London, and thus policing interventions may be planned for groups of areas, in

Table 5 Estimates’ quality measures

Central North South East West All areas

ρ 0.74 0.03 0.38 0.06 0.60 0.46

m 111 61 120 178 140 610

RRMSE% bY dirð Þ
h i

18.31 20.30 17.93 20.64 19.55 19.40

RRMSE% δ̂
EBLUP

h i
11.05 14.38 11.24 13.44 14.04 12.21

RRMSE% δ̂
SEBLUP

h i
10.31 14.45 11.18 13.69 13.97 11.91

RD% δ̂
EBLUP

; δ̂
SEBLUP

h i
−7.25 −0.28 −2.05 −1.89 −5.27 −4.76
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the North and East place-based policing strategies should be adjusted to the character-
istics and needs of each small area.

Mapping the Confidence in Police Work

Goodness-of-fit indices are analyzed to assess the models used in this application. Log-
likelihood, AIC and BIC measures show that the SEBLUP model has a better goodness
of fit than the EBLUP, and thus we focus on its results (see Table 6).

Table 7 shows the results of the EBLUP and SEBLUP models fitted to produce
estimates of confidence in police work for all London wards. All covariates but the
crime rate show significant relations with the confidence in police work (Kwak and
McNeeley 2017; Wu et al. 2009). The proportion of citizens unemployed is the most
important covariate introduced in our area-level SEBLUP model, followed by the
concentration of ethnic minorities and the proportion of immigrants (Dai and
Johnson 2009; Kwak and McNeeley 2017; Sampson and Bartusch 1998; Wu et al.
2009). The mean income also shows a significant but smaller positive relation with the
confidence in the police.

Table 6 Goodness-of-fit indices of EBLUP and SEBLUP models of confidence in police work

Central North South East West All areas

EBLUP Log-likelihood 60.54 23.34 58.23 77.46 52.63 266.55

AIC −121.43 −35.12 −107.78 −140.79 −98.56 −519.11
BIC −98.23 −25.99 −90.32 −117.34 −80.02 −488.22

SEBLUP Log-likelihood 69.06 27.40 60.56 80.28 56.80 275.58

AIC −126.12 −40.81 −109.12 −148.56 −101.61 −535.58
BIC −109.86 −30.14 −92.39 −129.47 −83.96 −499.86

Table 7 EBLUP and SEBLUP models of confidence in police work (all areas)

EBLUP SEBLUP

Coeff. SE t-value p value Coeff. SE t-value p value

(Intercept) 0.615 0.05 10.24 0.000 0.588 0.06 9.32 0.000

Proportion minorities −0.114 0.08 −1.37 0.049 −0.112 0.09 −1.17 0.048

Mean income 0.001 0.00 3.20 0.001 0.001 0.00 3.09 0.002

Crime rate −0.001 0.00 −0.69 0.132 −0.001 0.00 −0.99 0.123

Proportion immigrants −0.027 0.09 −1.13 0.037 −0.031 0.09 −1.12 0.036

Proportion unemployed −0.317 0.15 −1.90 0.004 −0.293 0.17 −1.70 0.009

AIC −519.11 −535.17
BIC −488.22 −499.86
Spatial correlation 0.46
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Figure 2 shows the geographical distribution of SEBLUP estimates of confi-
dence in police work at ward level in Greater London, where lighter scales of grey
indicate a lower proportion of citizens who think that police do a good or excellent
job, and darker scales of grey shows higher confidence in police work. The
highest estimates of confidence in police work have been found in eight wards
located in Central London, six of which are in Kensington and Chelsea (Chelsea
Riverside (97.3%), Campden (89.99%), Earl’s Court (86.66%), Courtfield
(86.28%), Queen’s Gate (85.47%) and Brompton and Hans Town (84.62%)) and
two in Westminster (Lancaster Gate (88.46%) and Marylebone High Street
(88.38%)). There are also high proportions of citizens who think that police do
a good job in some western areas of Harrow, Richmond upon Thames and
Hammersmith and Fulham. The lowest proportions have been estimated in
Alexandra, located in Haringey (43.79%), followed by 27 eastern wards distrib-
uted among Lewisham, Newham, Barking and Dagenham, Redbridge, Tower
Hamlets, Barking and Dagenham and Greenwich. From a broader perspective,
these results add evidence to the estimates produced by the London Mayor’s
Office for Policing and Crime (https://maps.london.gov.uk/NCC/) at a larger
geographical scale, which show the highest levels of trust in policing in Central
and Southwest London and lower trust in the police in East and North London.

Fig. 2 Proportion of citizens who think the police do a good or excellent job (SEBLUP estimates). Division
based on quartiles
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Model Diagnostics

We provide diagnostics of our spatial models by analysing the normality of
SEBLUP standard residuals. Residuals are produced as suggested by Petrucci
and Salvati (2006:178) and normal q-q plots are shown in Fig. 3. Most residuals
show no important deviations. The Shapiro-Wilk test for normality fails to reject
the null hypothesis of normal distribution in all five cases: W = 0.984 and p −
value = 0.204 in the case of Central London, W = 0.969 and p − value = 0.128 in
the model fitted for North London, W = 0.967 and p − value = 0.089 for South,
W = 0.939 and p − value = 0.079 in the case of East London, and W = 0.975 and p
− value = 0.098 for West London. We also fail to reject the null hypothesis of
normal distribution for the model fitted with all areas: W = 0.964 and p − value =
0.121.

Discussion and Conclusions

Place-based policing requires the incorporation of SAE when producing maps of
confidence in police work at small geographical levels. By producing reliable small
area estimates of confidence in policing, we allow for advanced spatial analyses to
explain its distribution and provide precise maps to develop place-based interventions
to enhance confidence in police work and reduce crime and disorder. While police
records are easily geocoded and mapped, advanced statistical analyses are required to
produce reliable estimates of survey-recorded confidence in the police. Small

Fig. 3 Normal q-q plots of standardised residuals of SEBLUP estimates
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geographical areas are unplanned domains in most crime surveys, and thus model-
based SAE is needed to produce estimates of adequate precision (Rao and Molina
2015). Due to the typically high levels of spatial autocorrelation of confidence in
policing, we propose making use of the SEBLUP to increase the reliability of estimates
produced from crime surveys. The simulation study and application results allow
examining the cases in which the SEBLUP produces better estimates than traditional
model-based estimators when applied to policing data. Our estimates of confidence in
police work not only have tactical and strategical value to design place-based policing
interventions, but they also are important from an accountability point of view:
government and auditors’ inspections into the police expect that police forces enhance
their public confidence and legitimacy (HMICFRS 2017).

We have assessed the SEBLUP performance under different scenarios with unequal
number of areas and spatial correlation parameters. Our results show that the SEBLUP
tends to outperform the EBLUP not only when ρmoves away from zero and is close to
1 and − 1, but also when m is large. The SEBLUP performs better as the number of
areas under study increases, while the EBLUP estimator outperforms the SEBLUP both
when ρ ≅ 0 and m is small. Future work will investigate the SEBLUP using different
simulation parameters with smaller intra-class correlations and more complex contigu-
ity matrices, such as second-order ‘Queen Contiguity’ and distance weighted matrices.
Furthermore, future research will examine whether small area estimators that borrow
strength from temporal series, such as the Rao and Yu (1994) model, provide more
reliable estimates in policing research, since confidence in policing is known to be quite
stable over time and thus temporally correlated random effect can be used in this field.

From a substantive perspective, our estimates show that citizens are more confident
in policing in most Central and Southwestern London neighborhoods, while estimates
show a lower confidence in the police in East and North London. Unlike previous
research, our estimates are produced at a ward level and thus allow not only for
mapping the distribution of confidence in police work at a large scale, but these also
bring to light internal heterogeneity in the levels of confidence at a neighborhood level.
In Central London, for example, estimates are significantly higher in the northern part
of the River Thames, where Westminster and Kensington and Chelsea are located, than
in the Southern part of the river. Although crime rates are higher in the northern part of
the river, these do not appear to be as significant as the unemployment rate and
concentration of minorities, which are more prominent in the southern part of Central
London, to explain the distribution of confidence in policing. Our estimates also allow
distinguishing clear differences within West London, where confidence in police is
clearly higher in most Hounslow wards than in the majority of Ealing neighborhoods,
where unemployment and deprivation is more common. These estimates are useful to
develop more accurate explanations of the distribution of confidence in police work and
to design place-based policing strategies to increase the public confidence in policing
and their cooperation with police services.

The unemployment rates, concentration of minorities and immigrants and average
income have shown to be good area-level predictors of the confidence in police work
(Bradford et al. 2017; Dai and Johnson 2009; Jackson et al. 2013; Kwak and McNeeley
2017; Sampson and Bartusch 1998; Wu et al. 2009). The two most important covariates
(among those included in our models) to explain the geographies of confidence in
police work in London are the unemployment rates and concentration of ethnic
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minorities. As argued by Sampson and Bartusch (1998:801): “perhaps we should not
be surprised that those most exposed to the numbing reality of pervasive segregation
and economic subjugation become cynical about human nature and legal systems of
justice”. High levels of unemployment and ethnic segregation, as forms of deprivation,
might explain that neighbors’ local identities shaped by deprivation are less willing to
trust and cooperate with police services (Kwak and McNeeley 2017), but also with
other government services (Dai and Johnson 2009). Other researchers argue that this
might also be due to an excessive police control and use of force on certain commu-
nities with larger concentration of minorities (Dai and Johnson 2009). Open access to
Metropolitan Police stop and search data was available only after 2015 and the spatial
information about police use of stop and search was available only since mid-2016, and
thus we could not include this covariate in our analyses (based on survey data from
2012). However, our area-level estimates of confidence in police work from 2012 show
a significant negative Spearman correlation with the proxy measure of stop and search
in 2017 (stop and search count: ρ=−0.22, p value < 0.01; stop and search per resident:
ρ =−0.16, p value < 0.01). Thus, future research with newer survey data should
incorporate this covariate to explore the effect of stop and search on the confidence
in police work. Similar mechanisms are used to explain the effect of the concentration
of immigrants and average income in the confidence in police work, although these
show smaller coefficients in our study. Immigrants and citizens with low income tend to
cluster in areas with large levels of concentrated disadvantage -and possibly higher
police control and use of force- where social attitudes of distrust towards the police are
likely to emerge.

Future research with newer survey data will focus on scoping for other available
covariates (e.g. residential instability, collective efficacy, stop and search) to estimate
confidence in the police at a ward or smaller spatial levels; and to examine causal
mechanisms between economic deprivation, ethnic segregation and confidence in
police work (Dai and Johnson 2009). Further research will also replicate similar
analyses in other cities and countries with different social and demographic character-
istics (and available survey data) to assess the generalizability of the current study’s
findings. In addition, new SAEmethods are needed that deal with semicontinuous zero-
inflated skewed data in policing data (see Dreassi et al. 2014). By expanding the body
of research that makes use of SAE techniques in policing research and practice, these
methods may become a core tool in survey-based crime analysis and place-based
policing.
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