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In this reviewwe compiled recent advances concerning the cooperativemotion in crowded soft
matter systems. We tried to answer the question how to perform dynamic Monte Carlo
simulations of densemacromolecular systems effectively. This problem is not simple due to the
fact that the movement in such systems is strictly correlated which leads to cooperative
phenomena. The influence of crowding was found interesting especially for two-dimensional
cases, e.g., in membranes where the presence of macromolecules, proteins and cytoskeleton
often changed the mean-square displacement as a function of the lag time and anomalous
diffusion appeared. Simple models are frequently used to shed a light onmolecular transport in
biological systems. The emphasis was given to the Dynamic Lattice Liquid model. The latter
model became a basis for a parallel algorithm that takes into account coincidences of
elementary molecular motion attempts resulting in local cooperative structural
transformations. The emphasis is put on influence of the model of molecular transport on
the diffusion. The comparison to alternative approaches like single agentmodelwas carried out.
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INTRODUCTION

Molecular transport in crowded environments plays a key role in a variety of areas [1–4] while
dynamic behavior in such systems is not fully recognized and even its origin is debatable [5–10].
Major experimental techniques used for studies of transport in disordered systems are mainly
fluorescence correlation spectroscopy [11] and single particle tracking [12, 13]. The main parameter
describing the diffusive behavior is the mean square displacement of objects, defined as

〈Δr2(t)〉 � 1
n
∑n
i�1
[ri(t) − ri(0)]2 (1)

where ri(t) are the coordinates of the ith object while n stands for the number of mobile objects. The
diffusion is considered normal when 〈Δr2〉 is depends linearly on time. An anomalous diffusion is
considered when scaling of 〈Δr2〉 is different:

〈Δr2〉 ∼ tα (2)

In the case α < 1 a subdiffusive motion is present [5, 9]. Real experiments showed exponent α between
0.2 and 0.9 [5, 14] while computer simulations for matrices of obstacles revealed that at the
percolation threshold the exponent α approached the value 0.697 [10, 14–19] An anomalous
diffusion was found in several models but we are interested in the case of obstructive motion
where it is caused by the presence of other objects [5, 15, 16]. When the concentration of obstacles
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was below the percolation point an anomalous diffusion appeared
transient while above the threshold it remains anomalous all the
time [5, 17, 18]. Simple obstructive model was extended by
changing and differentiating size of obstructing objects, their
distribution [14, 19–21], mobility [22–24] or interactions
[23–27]. Most of the simulations of such systems were
performed by means of molecular dynamics employing coarse-
grained and atomistic representation [14, 17, 19, 20, 22–25,
28–32] as well as dynamic Monte Carlo [33, 34],
discontinuous molecular dynamics [21], and model based on
the Lorentz gas [35, 36]. The high densities and large time scales
caused significant computational problems. Most of Monte Carlo
simulation algorithms are not able to work at these conditions.
The only algorithms that can deal with this problem have to
include a cooperative motion where the motion of molecules is
correlated with the movement of its neighbors.

This work reviews the problem of dynamics in a soft matter
model employing the Dynamic lattice liquid (DLL) [37, 38] where
the correlations in motion between mobile objects were
introduced into the system. The most striking effects of
dynamics in disordered systems modeled as systems with
obstacles were compared to the results of a very popular SAM
where correlations in motion and hydrodynamic effects were
totally ignored [5].

COOPERATIVE MOTION IN SOFT MATTER

Crowded environments have a very complex structure spanning
many scales of size and are characterized by very complex
dynamics that lead to relaxation processes spanning many
time scales. Due to the high density of their physical state
(solution, mixture, glass or crystal), the transport of particles is
confined and connected with the motion of particles in the
vicinity. Despite this rather complicated picture, it is usually
possible to distinguish individual time scales [39–41]. The
shortest timescale τv corresponds to the time the molecules
vibrate around a position, which is the result of being
temporarily trapped by other molecules. It is obvious that
translational movements of molecules from their momentary
position require a more extended time scale τα, which is
related to the participation of molecules in cooperative
processes. Thus, paths of particles in a crowded environment
can be considered as a combination of two types of motion:
oscillations around a momentary position resulting from
entrapment by other molecules and not very frequent changes
of momentary position (translation). Thus, the flow of the fluid
on the macroscopic level corresponds to the time scale τα, for
which the alignment of the particles is no longer stable because
each of the molecules in this time scale can participate in the
movement. The above image of the movement of particles in a
liquid is generally accepted and well documented by molecular
dynamics simulation for dense systems of discs in which
Lennard-Jones potential interactions were used [42, 43] but it
is not obvious what exact conditions are required for a single
diffusion step. The known theories of the fluid transport
phenomena do not also closely examine this problem. The

Brownian motion theories [44, 45] treat the trajectories of
particles as random walks, and thus the time scale in which
the movements of particles are observed is much longer than the
time scale corresponding to the elementary diffusion step. The
“mode coupling” theory [40] considers several time scales, but so
far there is no precise picture of the memory function that would
allow considering the motion of molecules at the microscopic
level. In contrast, phenomenological models such as the free-
volume model [46] or the Adam-Gibbs model [47] lack a
microscopic picture of dynamics.

Cooperativity is considered to be one of the main factors
responsible for the relaxation mechanism in molecular fluids. It
has remained a poorly defined phenomenon for a long time. It
was especially difficult to associate cooperativity with a well-
defined microscopic image. The solution to this problem is
proposed by the DLL model [17, 19, 48].

THE MOST IMPORTANT RESULTS
FEATURING DYNAMIC LATTICE LIQUID

The DLL model is a simple model of fluid dynamics [49] which
takes into account the cooperative movement of molecules based
on the lattice structure. The position of the molecule in this model
corresponds to a lattice node. We assume that objects occupy all
places in the lattice, but the system has some additional
volume, which allows the objects to oscillate around the
position determined by the lattice site. We also assume that
the oscillations have a frequency of ]v �1/τv, which correspond
to a short time scale, i.e., the vibrations of particles around the
average location are associated with the place of temporary
entrapment by neighboring molecules. Each shift of a molecule
from an average position defined by a lattice node to another
lattice node (new average position) corresponds to a
translation and hence to a time scale τα; most attempts of
this translational movement fail. It results from the
assumption that the system remains quasi-continuous all
the time, i.e., that:

(1) in the system, no free spaces can be created, the sizes of which
would be comparable to the sizes of the molecules under
consideration,

(2) the excluded volume condition is fulfilled, i.e., a lattice node
cannot be occupied by more than one molecule at the
same time.

As a consequence of the assumptions presented above, most
attempts of a move are unsuccessful and after a time τ] the
molecule returns to its original position. The attempts that
coincide with other attempts of motion of two or more
adjacent molecules in combination with the formation of a
closed loop in which the total shift of the elements is
approximately 0 will be successful. In order to determine the
probability of such an event one has to calculate the probability of
the formation of a closed loop (for a given type of lattice) with
self-avoidance, i.e., a loop that does not intersect with itself.
Intensive research on this problem has led to a generally
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accepted result that the probability of the formation of such a loop
can be described by the expression [50]:

P(n) � Bn−hμn (3)

where n is the length of the loop, B is a constant depending on the
lattice type, μ is the effective coordination number of the lattice
(also called the connective constant) and the exponent h is a
positive quantity which weakly depends on the lattice type, i.e., its
coordination number and the dimension of space [17, 51]. If one
knows the probability, then one can determine the mean position
relaxation time corresponding to the time needed for the
molecule to change its position as:

τ � ⎛⎝B∑∞
3

n−h+1μn⎞⎠− 1

(4)

The DLL algorithm is ergodic and the proof of micro-reversibility
can be easily obtained using the properties of the permutation
group [38]. It should be emphasized that all the above
considerations were carried out with the assumption that the
lattice is isotropic and the effective coordination number takes the
maximum value for a given lattice and that the system is densely
packed. In this case, the exclusion of the molecule from motion is
due to the continuity condition, but all attempts to move should
be considered as potentially possible. The situation presented
above corresponds to the so-called an athermal case, i.e., when the
system does not take into account other interactions apart from
the interactions related to the existence of the excluded volume.
The introduction of interactions and temperature will lead to
limitations of movement, and thus to a change in the effective
value of the coordination number, which determines the mobility
of the elements. Molecular Dynamics simulations revealed
similar to assumed in the DLL model vibrations and collective
jumps of group of atoms in densely packed disordered systems
like glasses and undercooled liquids [48]. This situation is
illustrated in Figure 1, where schemes of molecular dynamics
and DLL model are shown together with trajectories obtained in
simulations.

The DLL model became a starting point for the development
of other models based on the concept of cooperative dynamics.
After introducing constraints (stiff bonds) into this model the

structure and dynamics of macromolecular systems were studied
[51–55]. Two models of soft-material membrane were developed
directly from the DLL model which appeared to be appropriate
for studies of subdiffusive behavior [56, 57].

As mentioned earlier, the main feature of crowded
environments is the fact that the movement of an object is
closely correlated with the movement of neighboring objects.
The strong correlation in the motion between objects leads to a
significantly greater impact of obstacles (or other types of
restrictions) on the motion of individual elements as a result
of the transfer of hydrodynamic forces. It results in dramatic
changes in the objects trajectories, and thus in the dynamics in the
system. Hence, it is of interest to compare two extremely different
situations that correspond to a strong correlation in movement
(the DLL model) and a single agent model (SAM) case where
there are no such correlations at all. The diffusion coefficient D is
defined by the Einstein relation and for system in two dimensions
it can be calculated from the following formula [58].

〈Δr2〉 � 4Dt (5)

The assumption that the dependence of 〈Δr2〉 on time is linear is
not always valid and an anomalous diffusion appears in random
media. Impenetrable obstacles having the same size as mobile
objects were placed randomly and the concentration of obstacles
is defined as the ratio of the number of obstacles to the total
number of sites in the system. The percolation threshold due to
the presence of these obstacles is important here, as above this
threshold the motion is limited. The percolation threshold was
determined using the scaling analysis of the diffusion coefficient
[16]. The differences in the dynamic properties in both models
near the percolation threshold can be studied by monitoring the
behavior of 〈Δr2〉 what is presented in Figure 2A. The lowest
values of the exponent α found at the percolation threshold were
also marked: 0.697 from other simulations and theoretical
considerations [2, 17] and 0.37 found recently within the
frame of the DLL model. In the SAM model the mobility of
molecules is greater than that of the DLL model in spite of higher
concentration of obstacles. The main reason is the lack of any
correlations in motion of moving objects in the SAM model.
When correlations in motion are included into the model like in
the DLL case, many moving objects begin to play a role similar to

FIGURE 1 | The scheme of molecular dynamics simulations of hard disks (left), trajectories of simulated hard disks (middle), and a scheme of cooperative loops in
the dynamic lattice liquid model (right): green–a cooperative motion is possible, yellow, red and pink–no cooperative loop of motion.
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the obstacles (as a result of the proximity of obstacles) what
drastically affects the dynamics of the system. Subdiffusive
regions are better defined in the DLL model, thus the caging
effect is stronger here than in SAM. In the latter model such
regions appear very quickly and an initial region of a normal
diffusion is very short. The non-Gaussian parameter can give
additional insight into the dynamics in disordered system. This
parameter is defined as Ref. [9]:

α2(t) � 〈Δr4(t)〉
2〈Δr2(t)〉2 − 1 (6)

The α2 parameter measures the deviation of the distribution of
object’s displacements from the Gaussian distribution. Therefore,
it can be treated as a measure of the dynamic heterogeneity of a
given system and α2 remains near zero in the case of a normal
diffusion and its value increases when dealing with a non-Fickian
diffusion. Inset to Figure 2A shows the variation of α2 with time
for both models in the vicinity of the percolation threshold. The
presence of a distinct peak on the DLL curve confirms stronger
heterogeneity of motion, i.e., caging effects in the DLLmodel [36].
It was already confirmed that this heterogeneity was correlated
with structural heterogenicity [17]. One can distinguish three
regimes on Δr2 curves: normal, subdiffusive and normal again. As
the first one is also well defined we were able to calculate a
diffusion coefficient and called it a short-time diffusion
coefficient. The diffusion coefficient was determined according
to Eq 5 for short time and long time and presented in Figures 2B
as a function of the obstacles concentration. Short time diffusion
coefficients decrease exponentially with the obstacle
concentration while those determined long time decrease
considerably stronger. For both models a rapid decrease of
long time diffusion coefficient is visible near the percolation
threshold. A universal scaling formula relates the long time
diffusion coefficient in the vicinity of the percolation threshold
cp:D ∼ εμ where ε�|c–cp|/cp and µ is a critical exponent. In the case
of SAM µ � 1.31 as predicted by the theory [58] but in the case of
the DLL model µ � 4.34 [17] what in turn leads to different values
of the exponents: α ≈ 0.37 and 0.37 for SAM and DLL models
respectively. Changes of the dynamic of the system when
approaching the percolation threshold resembles the glass
transition although both of these are completely different
phenomena. Moreover, we can actually observe a breakdown
of the Stokes-Einstein relation. According to the Stokes-Einstein
relation the product Dη/T (and hence Dτ/T) should remain
constant (η is the dynamic viscosity, τ is the structural
relaxation time and T is the temperature) as a function of T.
In our work we did not use the temperature explicitly but it can be
assumed that the concentration of the obstacles c plays a role of
the temperature (however, one has to remember that the regarded
phenomena are of a quite different nature). In Ref. [48] we
concluded that the product βc (β is a constant and c is a
concentration of obstacles) can be interpreted as a factor
(−E/kT) (here β corresponds to E/k and c corresponds to 1/T).
Thus, the equation Dη/T can be written in the form Dτc as the
relaxation time was obtained by averaging the waiting time for a
move in the DLLmodel for a given concentration of obstacles (the

FIGURE 2 | The comparison of dynamic lattice liquid and single agent
model models near the percolation point. <Δr2> vs. time for concentrations of
obstacles indicated in top left corner (the inset shows the non-Gaussian
parameter vs. time near the percolation threshold) (A); short-time (S) and
long-time (L) diffusion coefficient D as functions of the obstacles concentration
(B); the product Dτc as a function of the obstacles concentration (C).
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discussion on the waiting time was also give in Ref. [48]).
Figure 2C presents the dependency of Dτc on the obstacle
concentration c. One can observe that for low obstacle
concentrations which corresponds to high temperatures the
product Dτc remains approximately constant but for the
concentrations c ≈ 0.26 a rapid decrease of Dτc is observed
what suggests the breakdown of Stokes-Einstein relation
similarly as near the glass transition.

CONCLUSIONS

The example of DLL showed that the introduction of a
cooperative model of transport led to the dramatic changes
in the motion of objects in disordered systems. The deviations
from a normal diffusion are definitely more pronounced in the
DLL model cooperative motion assumed here generates
additional caging effect. The percolation threshold and
critical exponents were found to be dependent on the model
of transport. Although the DLL model had been designed and
initially developed for studies of liquids it found application in
soft matter systems like membranes, porous materials,
polymers and gels [51–55, 59–62]. The mechanism of
molecular transport introduced in DLL was also found to be

applicable in soft matter reproducing the dynamic behavior in
many systems including biological materials. The case of
macromolecular systems containing long chains is much
more difficult for studies under the DLL model because
relaxation of such systems via cooperative loops is very long
but it possible to study the entire process of polymerization
[37, 38]. It has also be noted that it is possible to introduce the
temperature into this model via free-volume or directly in
potentials of interaction.
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