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Abstract

Background: Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can
differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine
applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs)
related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three
different days compared with day 0.

Results: Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database.
A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that
the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were
commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion
were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12,
and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched
from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE.

Conclusions: These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their
association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix
(ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT.

Keywords: Bone mesenchymal stem cells, Bioinformatics analysis, Osteogenic differentiation, Protein-protein
network
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Introduction
Mesenchymal stem cells (MSCs) are multipotent and
nonhematopoietic stromal cells that have the ability for
self-renewal [1]. MSCs are isolated from different
sources and their characteristics depend on the source
[2, 3] from which they are obtained. It is necessary to
identify the molecular mechanisms for osteogenic differ-
entiation in bone marrow MSCs (BM-MSCs) [4] that
have a high potential for osteogenesis. Because of their
ability to differentiate into osteoblasts, these cells have
been extensively used for regenerative medicine and the
cure of bone disorders. Osteogenic differentiation is a
programmed process, and the most current knowledge
has been obtained by determining the role of genes such
as runt-related transcription factors 2 (Runx2), distal-
less homeobox 5 (Dlx5), osteocalcin (OCN), and osterix
(Osx) [5]. In addition, other factors involved in osteo-
genic differentiation include bone morphogenetic pro-
teins (BMPs) [6], fibroblast growth factor (FGF) [7],
transforming growth factor-β (TGF-β) [6], hedgehog
(HH) [8], and microRNAs [9]. However, the role of
many genes and the relationship between them during
osteogenesis of MSCs is not completely understood, and
there is a need to focus on them to improve the know-
ledge of tissue and bone engineering.
For this reason, several hypotheses have been consid-

ered in this study as follows: the first hypothesis is that
NF-κB is an important mediator in osteogenesis promo-
tion by toll-like receptor 4 via the BMP2 pathway. Since
TLR4 from the lipopolysaccharide (LPS)-mediated path-
way plays an important role in osteogenesis. The TLR4
promotes osteogenic differentiation upon stimulation by
its ligand LPS [10]. Stimulation of TLR4 by LPS in hu-
man dental pulp stem cells (hDPSCs) activated NF-κB
by regulating the PI3K/AKT signaling [11]. However, the
mechanisms by which NF-κB regulates differentiation of
MSCs into osteoblasts are not well known.
The second hypothesis is that the genes in focal adhesion

signaling promote osteogenic differentiation, since the extra-
cellular matrix (ECM) can affect osteogenic differentiation
via focal adhesion kinase (FAK). Upon binding of the ligand
to integrins, FAK becomes activated [12]. Activation of FAK
is essential for MSCs to commit to osteoblasts [13]. FAK
phosphorylates PI3K and mitogen-activated protein kinases-
extracellular signal-regulated kinase-1/2 (MAPK-ERK1/2).
The third hypothesis is that stem-cell niche and

microenvironment mediate osteogenesis through the
PI3K/AKT signaling pathway, since it seems that the
PI3K/AKT is the central pathway in differentiating the
MSCs into the osteoblast.
Furthermore, as the role of the Wnt pathway in the

differentiation of MSCs into osteoblasts [14, 15], the
fourth hypothesis is that both canonical and non-
canonical Wnt pathways contribute to the regulation of
osteogenesis. Two known signaling pathways exist for
Wnt, canonical (Wnt/β-catenin) and non-canonical. The
non-canonical pathway contains the Wnt/planar cell po-
larity and the Wnt/calcium pathways [16, 17]. Therefore,
we examined how genes associated with the non-
canonical Wnt pathway might influence the differenti-
ation of MSCs into osteoblast. It seems that both the
FZD4 and SFRP1 perform their role via both focal and
non-focal pathways in osteogenesis.
To test these four hypotheses, we evaluated the gene ex-

pression profiling microarray data (GSE37558) at different
time points (days 8, 12, and 25) during osteogenesis of MSC
and focused on the main biological processes and KEGG
pathway enrichment of the differentially expressed genes
(DEGs) which were derived from the three different days
compared with day 0. The highlighted pathways in our study
were including LPS-mediated signaling pathway, focal adhe-
sion, PI3K/AKT, and Wnt pathway which play important
regulatory functions during the osteogenesis of hMSCs.

Results
Identification of differentially expressed genes (DEGs)
Analysis of microarray data from the GSE37558 study
enabled us to identify 4076 total DEGs by GEO2R.
There were 1234 upregulated DEGs and 1265 DEGs sig-
nificantly downregulated based on the criteria of the ad-
justed P values of < 0.01 and |logFC| > 0.5 (Fig. 1a, b).
On day 8, there were 817 upregulated DEGs, 775 upreg-
ulated DEGs for day 12 and 1054 for day 25. There were
805 downregulated DEGs on day 8, 899 on day 12, and
1080 on day 25. Interestingly, there were 582 DEGs with
a maximum similarity that were upregulated and 629
DEGs that had maximum similarity and were downregu-
lated on all 3 days. On day 25, a total of 267 upregulated
DEGs showed the most change in expression and 228
downregulated DEGs had the most change in expression
(Fig. 1a, b). Therefore, we focused on biological pro-
cesses (BP) terms and pathways related to these DEGs.

Gene ontology (GO) term enrichment analysis
GO biological processes (BP) analysis showed that angiogen-
esis, the non-canonical Wnt signaling pathway, and lipopoly-
saccharide (LPS)-mediated signaling pathway were
commonly upregulated DEGs on days 8, 12, and 25 (Fig. 1a).
DNA replication initiation and mitotic cytokinesis were the
most common downregulated DEGs for all 3 days (Fig. 1b).
The GO terms including molecular function (MF) and cellu-
lar component (CC) are also shown in Supplementary Fig 1.

KEGG pathway analysis
According to KEGG pathway analysis, the PI3K-Akt sig-
naling pathway, and focal adhesion were the most com-
monly upregulated DEGs for days 8, 12, and 25 (Fig. 1a)
DNA replication and the cell cycle were the most



Fig. 1 Venn diagram of biological process (BP) and KEGG pathway enrichment analysis on days 8, 12, and 25. a Upregulated differentially
expressed genes (DEG). b Downregulated DEGs. Common biology terms between the biological process and KEGG pathway were shown in the
same color
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commonly downregulated DEGs for all 3 days (Fig. 1b).
Focal adhesion was also upregulated on day 25 (Fig. 1a).

Construction of the protein-protein interaction (PPI)
network and screening of modules
We used Cytoscape software to visualize the PPI net-
work of the DEGs for the testing days (days 8, 12, and
25). The modules were extracted using MCODE
according to the number of nodes that were > 4 and a
node score of > 4. Enrichment analyses of the BPs and
the KEGG pathway of modules were performed (Supple-
mentary Table 1). Supplementary Table 1 list the mod-
ules of DEGs related to osteogenesis from BP and KEGG
pathway for days 8, 12, and 25. Of note, the cell cycle
and MAPK were enriched for all of the assessed days,
whereas the Wnt pathway was enriched only on days 8
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and 25. Supplementary Table 2 provides a list of the top
10 hub proteins identified by CytoHubba from Cytos-
cape for each of the days. The association of the hub
genes with the Wnt pathway was investigated. We fo-
cused on the CTNNB1(β-catenin) as the hub protein in-
volved in the Wnt signaling in upregulated DEGs for
days 8 and 25. CTNNB1 was shown in module 4, day 8
(Fig. 2c), and module 4, day 25 (Supplementary Fig 2).

Validation of microarray data
For verification of microarrays data by real-time PCR,
we selected some candidate transcripts for real-time
Fig. 2 Protein-protein interaction (PPI) network (STRING). a FRZB. b 14 gen
upregulation DEGs, and the green nodes indicated downregulation DEGs.
Module 4 (day 8).
PCR at days 8, 12, and 25. MAPK3 expression was
higher in differentiated MSCs at day 8 compared to days
12 and 25 (Fig. 3a). TLR4 expression on day 25 remark-
ably was enhanced rather than day 8 (Fig. 3b). The
CTNNB1 expression at 3 days increased compared to
the control group but there were no significant differ-
ences between the three groups (Fig. 3c). Time-
dependent changes in the expression of the MAPK3,
TLR4, CCNB1, and ITGA5 genes were concordant with
array results (Fig. 3a, b, d, e), and upregulation of
CTNNB1 and ITGAV genes also were in agreement at
3 days with our results (Fig. 3c, f).
es involved in the PI3K/AKT pathway. The red nodes indicated
c Presence of β-catenin in the protein-protein interaction (PPI) network.



Fig. 3 Real-time PCR validation of candidate mRNA at days 8, 12, and 25. a–f the mRNA levels of MAPK3, TLR4, CTNNB1, CCNB1, ITGA5, and
ITGAV were detected by real-time PCR (n = 3). All data are presented as mean ± SEM. **P < 0.01
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Discussion
Osteogenic differentiation is a complex process where the
interaction between genes and pathways has not been fully
discovered. According to the International Society of Cell
Therapy protocol, MSCs should possess the following three
characteristics: (i) have the capability to adhere to plastic sur-
faces; (ii) test positive for CD90, CD73, and CD105 and
negative for CD79, CD19, CD45, CD34, CD14 or CD11b,
and HLA-DR; and (iii) have the potential to differentiate into
osteoblasts, chondrocytes, and adipocytes in vitro [18]. In this
study, we intended to gain further insight into the identifica-
tion of hub genes and key pathways during the early, middle,
and late stages of osteogenic differentiation (days 0, 8, 12,
and 25) as common and individual pathways.

Both canonical and non-canonical Wnt pathways
contribute to regulation of osteogenesis
The Wnt pathway plays a role in the migration, growth,
cell fate determination, differentiation, and [19, 20] bone
differentiation [21]. There are four upregulated genes
(FRZB, FZD4, SFRP, and FZD1) in the non-canonical
Wnt pathway. This pathway is frequently upregulated on
days 8, 12, and 25 (Fig. 1a). FRZB had the highest logFC
for 3 days. The overexpression of FRZB by the Wnt/
CaMKII pathway promoted osteogenic but not by activa-
tion of the canonical pathway [22]. FRZB appears to be
important in the gene network (Fig. 2a). Its interaction
with canonical and non-canonical ligands has been re-
ported. FZD4 belongs to the Frizzled (FZD) family. Bind-
ing of Wnt to FZD4 activates canonical Wnt/β-catenin
signaling and promotes osteogenic differentiation. Re-
cent studies have shown that miR-139-5p binds to
CTNNB1 and FZD4, it reduces their expression and
then osteogenic differentiation is decreased [23]. It was
reported that mechanical stimulation promoted osteo-
genesis by the Wnt5a/FZD4 pathway in BM-MSCs via
the non-canonical Wnt pathway [24]. SFRP1 is another
upregulated gene in this pathway that has a role in the
inhibition of both the canonical and non-canonical path-
ways [25].
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NF-κB is an important mediator in osteogenesis
promotion by toll-like receptor 4 via the BMP2 pathway
LPS-mediated signaling pathway was another BP that
was upregulated for all 3 days (Fig. 1a). There were five
genes involved in this BP term (IL18, NFKBIA, TLR4,
SCARB1, and CD14). TLR4 and CD14 from this pathway
are two genes that are involved in the TLR4 signaling
pathway. Three accessory proteins, including MD2, LBP,
and CD14, have roles in TLR4 activation. LBP and CD14
facilitate the transfer of LPS to the TLR4/MD2 complex
[26]. A study reported that TLR2 and TLR4 ligands
(peptidoglycan and LPS, respectively) and TNF-α in-
crease osteogenic differentiation via activation of NF-κB
in human adipose tissue-derived stem cells (hADSC)
[27]. Taken together, these results suggest that NF-κB is
an important transcription factor in the regulation of
osteogenesis (Fig. 4a). Hess et al. have demonstrated that
NF-κB activation which is induced by TNF-α promotes
osteogenic differentiation by increasing BMP-2 and alka-
line phosphatase (ALP) expression [28].

Stem-cell niche and microenvironment mediate
osteogenesis through the PI3K/AKT signaling pathway
We observed that the PI3K/AKT pathway was upregu-
lated in every 3 days. There were 21 genes involved in
this pathway (Fig. 2b). Recently, results of a study have
shown that platelet-derived growth factor (PDGF) in-
creased osteogenic differentiation induced by TGF-β.
However, PDGF alone did not affect osteogenic differen-
tiation; rather, there was synergic cross-talk between the
PI3K/AKT (PDGF mediated( and the mitogen-activated
protein kinase (MAPK)/ERK kinase (TGF-β mediated(
pathways [29]. It was reported that the suppressor of
PDGF promoted adipogenesis via PI3K signaling [30].
We observed that, following stimulation of growth fac-
tors PDGFD and VEGFB, the receptor tyrosine kinases
PDGFRA and PDGFRB were activated, followed by up-
regulation of mitogen-activated protein kinase 2
(MAP2K2) of MAPK (for more details, see the next sec-
tion) and phosphoinositide-3-kinase regulatory subunit 1
(PIK3R1) that belongs to the PI3K pathway (Fig. 4a).
Although the PI3K/AKT signaling pathway is involved

in the osteogenesis process in humans and mice [31, 32].
In mice, the role of this pathway is shown in endochon-
dral ossification [33], this pathway also has a role in
many MSC functions [34]. In vitro, AKT contributes to
chondrogenesis and osteoblast development in metatar-
sal growth isolated from mice [35]. It has been reported
that the activation of PI3K/AKT signaling was important
in noncaveolar cholesterol-rich membrane raft likely for
human MSC osteogenesis [31].
Osteogenic differentiation in rat tendon stem cells

(TSCs) is affected by prostaglandin E2 that activates PI3K/
AKT signaling, resulting in osteogenic differentiation
induced by BMP [36]. Interestingly, BMP-2 appears to
mediate the effects of the PI3K/AKT pathway on osteo-
genesis. The role of BMP-2 has been shown in the com-
mitment of progenitors into osteoblasts and in the
stimulation of Runx2 and other transcription factors such
as Dlx3 and Dlx5 that promote osteogenesis [37, 38]. In
another study, it was suggested that AKT might not dir-
ectly mediate BMP-2 expression; rather, it promotes
osteogenesis possibly through a transcription factor such
as the NF-κB [36]. Induction of this pathway by insulin-
like growth factor (IGF) promoted osteoblast differenti-
ation through BMP. The role of IGFs also in bone forma-
tion and development is via the PI3K/AKT pathway [32].
Mukherjee et al. have demonstrated that AKT played a

role in all stages of osteogenic differentiation. The re-
sults of a study indicated that AKT2, but not AKT1, was
important in osteogenic differentiation through BMP-2
that AKT2 stimulated expression of the Runx2 gene
[39]. Overall, the PPI results in this pathway have re-
vealed the interaction of the PIK3R1 and integrin sub-
unit alpha V (ITGAV) which are important genes in this
network (Fig. 2b).

Upregulation of involved genes in the MAPK pathway led
to osteogenesis regulation
In our study, MAP2K2 from the PI3K-AKT pathway (on
day 3) and MAPK3 (on day 8) as a hub gene were upreg-
ulated. MAP2Ks, including MEK1 (MAP2K1) and MEK2
(MAP2K2), activate ERK1 (MAPK3) and ERK2
(MAPK1) [40]. Studies have shown that the MAPK path-
way is important for bone formation [41–43]. However,
the role of MAPKs in osteogenesis is contradictory. A re-
cent study has demonstrated that TRIB3 influenced prolif-
eration and differentiation in the middle stage of
differentiation by inhibiting the ERK1/2 [44]. As men-
tioned above, the molecular mechanism that TLR4 is in-
volved in controlling the fate of MSCs toward
osteogenesis is still uncovered. Upon MAP kinase kinases
(MKKs) activation in the TLR4 pathway, p38, JNK, and
ERK1/2 activated [45]. In the recent study, maximum ERK
activation was shown during osteogenesis of hADSCs at
day 7 when LPS stimulation was enhanced [46].
It has been recently demonstrated that JNK1 is a nega-

tive regulator of osteogenesis through BMP-2 by Runx2
phosphorylation [47]. JNK2 is needed in the late stage of
osteogenic differentiation [48]. Interestingly, in one
study, the results showed that JNK1 was involved in
mineralization in the late stage of osteogenic differenti-
ation and mediated increased expression of IGF2 and
VEGFα from proangiogenic factors [49]. p38 is a positive
regulator in OCN synthesis [50]. MAPK signaling could
be affected by various factors such as growth factors
(TGF-β, BMPs, and FGF2), integrins (ECM), and mech-
anical loading [51], which, in growth factors and

https://www.ncbi.nlm.nih.gov/pubmed/?term=Mukherjee%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19208758


Fig. 4 Model of PI3K/AKT regulation and Wnt/β-catenin in osteogenic differentiation. Important pathways in osteoblast that promote
osteogenesis via PI3K/AKT and β-catenin. a PI3K/AKT and its relationship with growth factors, ECM attachment, IGF1, IGF2, LPS, and BMP2 are
illustrated in the top portion of this figure. The question mark next to PI3K/AKT/NF-κB indicates whether PI3K/AKT plays a significant role during
osteogenesis directly via BMP2 signaling or indirectly through the upregulation of NF-κB. b The interaction or connections of genes and
pathways with β-catenin are shown. Wnt/β-catenin interacts or is affected by FGF, IGF-1/IGF-2, IGFBP7, VEGF, integrin-ILK, ITGA11/β1, ITGA5/β1,
CDH11, ERK/MAPK, PI3K/AKT, IL-6, and adiponectin. The red star represents commonly upregulated genes on all 3 days. Only expression of MAPK3
(ERK1) at day 8, ITGA5 on days 8 and 25, and both IGFBP7 and ITGA11 at day 25 are represented. ECM, extracellular matrix; PI3K, phosphoinositide
3-kinase; MKK, MAP kinase kinases
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integrins, were consistent with our study (Fig. 4a). ERK
and p38 MAP kinase could play a role in osteoblast dif-
ferentiation through phosphorylation of osteogenic
differentiation-related genes such as RUNX2, Osx, and
DLX5 [51].
Genes in focal adhesion signaling promote osteogenic
differentiation
There were 14 genes (ITGA1, ITGA10, ITGB5, CTNNB1,
MYL9, VEGFB, LAMA2, COMP, ITGAV, PDGFRA,
PDGFRB, PDGFD, COL11A1, and PIK3R1) involved in
the focal adhesion pathway that upregulated on days 8–
25. We have observed the upregulation of integrin sub-
unit alpha 5 (ITGA5) on days 8 and 12. Hamidouche
et al. noted that FAK/ERK1/2-MAPKs and PI3K signal-
ing pathways promoted osteogenic differentiation
through induction of ITGA5 hMSCs [52]. It has been re-
ported that activation of ITGA5 induced both IGF2 and
IGFBP2 expressions via FAK, ERK1/2, and PI3K signaling,
which resulted in osteogenic differentiation in hMSCs
[53]. In another study, cilengitide (a cyclic RGD pentapep-
tide) is an ITGAV inhibitor [54] that can abolish ossifica-
tion in BM-MSCs [55]. The interaction between
osteopontin and integrin αv/β1 induced osteogenesis and
inhibited adipogenesis in MSCs [56]. Therefore, the bind-
ing of osteopontin, fibronectin, and other molecules in-
volved in osteogenic differentiation could determine the
possible balance between MSCs that commit toward adi-
pogenic or osteogenic differentiation [57]. We have ob-
served the upregulation of cadherin 11 (CDH11) on all 3
days. CDH11 is involved in cell connections and has a role
in cell signaling. CDH11 is expressed in osteoblasts osteo-
genesis. Its role in osteoblast commitment and osteogenic
differentiation has been reported [58]. Our data showed
that genes related to cell adhesion such as ITGA11 and in-
sulin-like growth factor binding protein 7 (IGFBP7) also
upregulated on day 25. Integrin α11 (ITGA11) is a recep-
tor for osteolectin that actives the Wnt pathway and pro-
motes osteogenesis [59]. Recently, Zhang et al. also
reported that the IGFBP7 gene promoted osteogenic dif-
ferentiation of hBM-MSCs by upregulation of the β-
catenin pathway [60].
Relationship between hub genes and Wnt pathway
during osteogenesis
The role of important hub genes including interleukin
(IL)-6, AKT1, VEGFA, CDK1, PLK1, CDC20, CCNA2,
MAPK3 (on day 8), and CTNNB1 (on days 8 and 25) in
the Wnt pathway was studied (Supplementary Table 2).
The inhibitory effects of IL-6 in osteoblast differenti-

ation in rheumatoid arthritis are due to its negative
interaction with the Wnt pathway [61]. In a study, Li
et al. suggested that the effect of IL-6 on inhibition of
osteogenic differentiation is due to its inhibitory effect
on the canonical Wnt pathway [62].
AKT1 is an important gene in the PI3K/AKT pathway.

Studies have been conducted about the cross-talk be-
tween Wnt/β-catenin and PI3K/AKT signaling pathways
[63, 64]. Han et al. have reported that inhibition of
PI3K/AKT suppressed transcription through β-catenin
in glioblastoma cells [64]. β-catenin can be directly
phosphorylated at Ser552 by AKT, which separates it
from cell-cell contact and increases translocation of β-
catenin into the nucleus, both in vitro and in vivo [65].
VEGFA plays a pivotal role in angiogenesis. Numerous

studies have assessed the role played by VEGFA in link-
ing osteogenesis and angiogenesis [66, 67]. In osteo-
blastic and endothelial cells, VEGF induced bone
formation through the β-catenin pathway [68]. Inhib-
ition of β-catenin or knockdown of Wnt4 in the MSCs
led to the return of proangiogenic effects induced by
Wnt signaling [69].
CDK1, PLK1, CDC20, and CCNA2 are genes involved

in the cell cycle. Proliferation and differentiation have
opposite connections [70]. In agreement with previous
studies, the genes related to the cell cycle were downreg-
ulated [71, 72]. The association between the Wnt system
and genes related to the cell cycle during osteogenesis
was less observed. A study suggested that the induction
of Wnt/β-catenin, by LRP6 phosphorylation is regulated
via Cyclin Y/CDK at the G2/M phase [73]. The canon-
ical Wnt pathway also plays an important role in cell
cycle control [74].
MAPK3 is related to the MAPK pathway. The results

showed that the ERK interacts with the Wnt/β-catenin
signaling pathway. It has also been shown that the ERK
pathway is involved in the differentiation of osteoblasts
through the regulation of RUNX2, β-catenin, and ATF4
[43]. The Wnt pathway is indirectly impacted by ERK/
MAPK signaling via inhibition of GSK-3β by p38, JNK,
and ERK [75].
The role of β-catenin was implicated in both canonical

Wnt pathways and cell-cell adhesion [16, 76]. In the ca-
nonical pathway, frizzled and LRP5/6 are activated by
Wnt ligands. In the presence of Wnt ligands, the de-
struction complex (GSK3, AXIN, and APC) is inhibited
and this inhibition helps the stabilization and transloca-
tion of β-catenin to the nucleus [77–80]. There is a site
on promoter of Runx2 for β-catenin/TCF-1, which acti-
vates expression of this gene and promotes osteogenic
differentiation [81]. Tornero-Esteban et al. investigated
the involvement of the Wnt and possible compensatory
mechanisms involve in the osteoarthritis (OA) patho-
physiology. They showed the increased levels of β-
catenin in OA-MSCs did not accompany increased
osteogenic suggesting that compensatory mechanisms
are involved in modulating transcriptional of osteogenic

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hamidouche%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=19843692


Table 1 List of samples accession (GSM) used at different four-
time points (days 0, 8, 12, and 25)

Time point Sample accession

0 GSM921574, GSM921575, GSM921576, and GSM921577

8 GSM921581, GSM921582, and GSM921583

12 GSM921584, GSM921585, and GSM921586

25 GSM921587, GSM921588, and GSM921589
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differentiation [82]. Due to the important role of β-catenin
in the Wnt pathway, in the next section, we evaluated the
β-catenin that interacts/or is affected by other pathways.

The Wnt/β-catenin pathway could interacts/or was
affected by other pathways associated with osteogenesis
The interaction between integrin-related signaling molecules
and the Wnt pathway suggested that integrin receptors are
associated with integrin-linked kinase (ILK) [83]. GSK3β is
phosphorylated following the activation of ILK [84]. Activa-
tion of Wnt/β-catenin and PI3K-Akt signaling pathways
drive osteogenic differentiation upon primed α5β1 integrin
using peptides in mesenchymal skeletal cells [85]. Another
study showed that osteolectin/α11β1 results in Wnt pathway
activation that increased nuclear β-catenin and finally pro-
moted osteogenesis [59]. CDH11 is involved in osteoblast
committed into the osteogenic lineage. Interestingly, adipo-
genesis was not affected by CDH11 and it may be mediated
via β-catenin [58]. A relationship between growth factors
and the Wnt signaling pathway during osteogenesis has been
reported. (IGF)-I and IGF-II can also affect the β-catenin sig-
naling pathway [86, 87]. IGFBP7 also induced osteogenesis
at day 25. FGF interacts with the Wnt/β-catenin pathway in
osteogenesis during the regulation of the transcription factor
of Osx [88]. The role of adiponectin as an adipocytokine has
been shown in bone formation through the Wnt/β-catenin
pathway [89]. Overall, Wnt/β-catenin interacts or is affected
by PI3K/AKT, ERK/MAPK, CDH11, integrins (integrin-ILK,
integrin α5β1, integrin α11β1), growth factors (FGF, IGF1/
IGF2, IGFBP7, and VEGF), IL6, and adiponectin (Fig. 4b).

Conclusion
In summary, PI3K and Wnt signaling are important path-
ways in osteogenic differentiation. IGF2 links integrin,
PI3K/AKT, and MAPK (JNK1). The extracellular environ-
ment can affect osteogenic differentiation PI3K/AKT me-
diated via the following: (1) LPS by TLR4; (2) integrins
from ECM by the binding of substances such as osteolec-
tin and osteocalcin, and activation of the FAK/MAPK
pathway; (3) IGF1 and IGF2 through IGFRs; (4) growth
factors via RTK; and (5) beta-catenin via Wnt pathway.
Whether PI3K/AKT promotes osteogenesis through
BMP2 directly or via NF-κB should be investigated. Taken
together, this study provides further insight into the role
of signaling pathways and their interaction in determining
the fate of mesenchymal stem cells into osteoblast.

Materials and methods
Microarray data analysis
Raw data related to expression profiling of GSE37558
[90] were taken from the Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) database.
GPL6947 platforms (Illumina HumanHT-12 v3.0 Gene
Expression beadchip) were used for the gene expression
profiles. In this study, we selected 13 samples from hu-
man BM-derived MSCs (hBM-MSCs) that had been cul-
tured in osteogenic differentiation medium at four-time
points (days 0, 8, 12, and 25). The control group com-
prised four replicates from day 0, and the differentiated
groups included three replicates for each time point
(days 8, 12, and 25). Sample accession (GSM) of
GSE37558 related to this study in four different days are
shown in Table 1.

Identification of differential gene expressions (DEGs)
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) was
used to identify the DEGs between the control group
(day 0) and differentiated groups (days 8, 12, and 25).
The DEGs were identified with adjusted P values of <
0.01 and |logFC| > 0.5.

Gene ontology (GO) and pathway enrichment analysis
Gene ontology (GO) for biological processes (BP), mo-
lecular function (MF), and cellular component (CC) in
addition to KEGG pathway enrichment analyses of dif-
ferential gene expressions were obtained using the Data-
base for Annotation Visualization and Integrated
Discovery (DAVID; https://david.ncifcrf.gov) for up- and
downregulated DEGs. P values of less than 0.05 were
considered to be the criteria. DAVID was also used to
analyze both GO ontology and the KEGG pathway of
the modules. Venn diagrams (http://bioinfogp.cnb.csic.
es/tools/venny/index.html) were used to identify up- and
downregulated DEGs for different days.

Construction of protein-protein interaction (PPI) network
and screening of modules
We used the Search Tool for the Retrieval of Interacting
Genes (STRING; version 11; string-db.org/) database to
analyze the interactions among the DEGs. A cutoff value
of greater than 0.4 was used to evaluate the protein-
protein interaction (PPI) network. Visualization of the
PPI networks was performed by Cytoscape (version
3.7.1, http://www.cytoscape.org/). The Cytoscape String-
App was used to retrieve the functional enrichment of
up- and downregulated DEGs at days 8, 12, and 25. The
top 10 proteins were ranked by topological analysis
methods using CytoHubba. We found the most similar
proteins in the following methods: MNC, degree, EPC,

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://david.ncifcrf.gov
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://string-db.org
http://www.cytoscape.org/


Table 2 List of primers used for real-time PCR to validate microarray analysis

Target gene Primer sequence Accession number Product size

GAPDH F: CTCATTTCCTGGTATGACAACGA
R: CTTCCTCTTGTGCTCTTG

NM_001357943.2 122 bp

CTNNB1 F: AATGCTTGGTTCACCAGTG
R: GGCAGTCTGTCGTAATAGCC

NM_001330729.2 176 bp

MAPK3 F: TGACCATATCTGCTACTTCCTC
R: GGTATAGCCCTTGGAGTTCAG

NM_001040056.3 250 bp

ITGAV F: GCAACAGGCAATAGAGAT
R: TGCTGAATCCTCCTTGACAA

NM_002210.5 262 bp

ITGA5 F: GCTGTGACTACTTTGCCGTG
R: CGAGTTGTTGAGATTCTTGCTG

NM_002205.5 176 bp

CCNB1 F: GCTGGGTGTAGGTCCTTG
R: CCTGCCATGTTGATCTTCG

NM_031966.4 149 bp

TLR4 F: TGATGTCTGCCTCGCGCCTG
R: AACCACCTCCACGCAGGGCT

NM_138554.5 98 bp
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and closeness. Key modules in the PPI network were
identified by using the Cytoscape plugin Molecular
Complex Detection (MCODE, version 1.5.1). The cri-
teria were both a node score and node number greater
than 4.

Cell culture
Human BM-MSCs were obtained from the Royan Stem
Cell Bank. The study protocol was approved by the
Royan Institute ethical committee board. All the experi-
ments were designed in three biological replicates. The
cells were cultured in α-MEM (Gibco, cat. no. 12571)
with 10%FBS (Gibco, cat. no. 10082139), 100 U/ml peni-
cillin (Gibco, cat. no. 15070063), and 100 mg/ml strepto-
mycin. After 24 h, the cells were induced with
osteogenic medium containing DMEM supplemented
with 10%FBS, 50 μg/mL ascorbic acid (Sigma-Aldrich,
cat. no. A8960), 10 mM β-glycerophosphate (Sigma-Al-
drich, cat. no. 154804-51-0), and 1 × 10−8 M dexametha-
sone (Sigma-Aldrich, cat. no. D4902) for days 8, 12, and
25. The media was replaced every 3 days, and the
characterization of osteogenic was performed by alizarin
red and Oil Red O staining (Supplementary Fig 3).

Validation of microarrays data by real-time PCR
The real-time PCR was performed for the validation of
microarray data. The expression level of mRNAs for
CTNNB1, MAPK3, ITGAV, ITGA5, CCNB1, and TLR4
were evaluated by a real-time PCR System. We isolated
total RNA by TRI reagent (Sigma-Aldrich, T9424) from
cultured MSCs in osteogenic medium on days 8, 12, and
25. cDNA was synthesized from 1 μg total RNA using
the PrimeScriptTMRT reagent Kit (Takara Perfect Real
Time). All reactions were carried out duplicate by using
StepOnePlus Real-time PCR System (Applied biosystems
life technologies, ABi). GAPDH was used as a reference
gene to normalize the expression of all target genes. All
tested groups compared to the control group (day 0).
The △△Ct method was used to analyze Q-RT PCR data
for quantitative analysis. The specific primers sequence
for each gene is shown in Table 2.

Statistical analysis
Statistical analyses were performed using Prism statis-
tical software (version 8). The statistical significance of
the differences between groups at days 8, 12, and 25 was
performed by the Kruskal-Wallis test.
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The online version contains supplementary material available at https://doi.
org/10.1186/s40246-020-00293-1.
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Additional file 2:. Supplementary Table 1. Biological process (BP) and
KEGG enrichment analyses of the differentially expressed genes in the
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