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COMMENT

A few basic concepts in
electrochemical carbon dioxide
reduction
Karen Chan 1✉

In this perspective, I discuss a few basic concepts in fundamental mechanistic
studies of electrochemical carbon dioxide reduction.

With the looming global environmental crisis, electrochemical CO2 reduction (CO2R) is a hot
topic. Excellent perspectives on mechanistic studies1–3, practical vapor-fed devices4, and tech-
noeconomic and system-level analyses5–7 have come out in the past few years, all with com-
pelling visions for the future. We can also harken back to Hori’s timeless review of his work over
several decades8, which seeded many of the impressive advances today. But as the French maxim
says: parfois, il faut reculer pour mieux sauter. Here, I showcase a few basic concepts in the
fundamental mechanistic studies of CO2R.

What computational electrocatalysis can and cannot do
In heterogeneous catalysis, periodic density functional theory (DFT) simulations have really
enabled us to computationally explore reaction mechanisms. For electrocatalysis, the “compu-
tational hydrogen electrode” model is our standard method to determine reaction thermo-
dynamics9. This method trivially translates simulations in vacuum to potential-dependent
energetics, without requiring we simulate explicitly the ions or potential.

Our models of the electrolyte and electrochemical reaction barriers, in contrast, are far from
convergent. Our field abounds with different approaches towards the electrolyte: implicit con-
tinuum models, explicit ab initio ones, or a hybrid of the two (Fig. 1a)10. We also have multiple
ways to obtain the potential and the potential dependence of the reaction energetics11. While
continuum approximations give us huge reductions in computational cost, we see significant
deviations in solvation energies determined with implicit vs. dynamic explicit water models12.
Furthermore, different ways to set up the applied potential result in differences in the computed
reaction energetics13. All these challenges could contribute to the wide range in the computed
energetics and mechanisms towards the various C2 products1.

Despite the difficulties in an ab initio treatment of electrochemical reaction barriers, we do need
kinetics for mechanistic understanding. Case in point: our evolving understanding of CO(2)R to
CH4 on Cu14. A thermodynamic analysis showed a proton–electron transfer to *CO to form *CHO
to be the rate-limiting step. Considering the corresponding barriers across different materials, we
suggested the transition state of this process to be the descriptor of activity. But when we simply
consider the kinetics of electrochemical reactions with multiple proton–electron transfers, we see
that this step cannot be rate limiting on Cu. The corresponding Tafel plots have defining features
that depend on the symmetry factor β (0 < β < 1) for the rate-limiting step, as well as the number of
proton–electron transfers preceding it, n. Figure 1b shows the Tafel slopes and the effect of pH
on the overpotential for alkaline solutions, where H2O as the proton donor. Experiments show
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CH4 activity to have a Tafel slope of <60mV/dec, and the positive
shift in overpotential with an increased pH is <60mV/pH unit, both
consistent with n > 0. Therefore, the rate-limiting step must occur
after the initial proton–electron transfer to *CO to form *CHO (or
*COH15) . And Hori, in fact, made these observations decades ago8.

To put some numbers on what we can do today, consider the
Arrhenius law,

TOF ¼ A exp � Ea
kT

� �
; ð1Þ

where A is the prefactor, TOF the turnover frequency, and Ea the
activation energy. Without even considering the electrochemical
environment, a typical DFT error in adsorption energy is 0.15 eV 16.
A shift in Ea of this magnitude gives a 300× change in the TOF at
room temperature! Depending on the reaction process at play, the
corresponding theoretical selectivities can have uncertainties that
approach 100%17. With electrochemical barriers, the uncertainties
are compounded by the challenges mentioned above.

So DFT-based kinetic models do not presently give us pre-
dictions of activity or selectivity to the precision of experiments
where mass transport and the surface structure of the catalyst are
carefully controlled. With error cancellation, we have much more
confidence in the relative: the relative magnitudes of barriers
within a given mechanism, as well as the relative activity across
catalysts16 and across reaction conditions18. Especially with our
present degree of accuracy, we should, wherever possible, couple
DFT models to ample feedback from experiment. Such joint
efforts have given us valuable insights into reaction mechanisms,
activity descriptors, and electrolyte effects1.

The activity towards CO and C2 products is driven by
field–dipole interactions
A special feature of CO(2)R is the importance of steps that do not
involve a proton–electron transfer (Fig. 1c). On weak binding
catalysts (e.g. Au19 and Fe-N-C20 catalysts), the rate of CO2R to
CO is limited by CO2 adsorption. On Cu catalysts, CO–CO
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Fig. 1 Some basic ideas from mechanistic studies of electrochemical carbon dioxide reduction. a Implicit, explicit, and hybrid approaches to model the
electrolyte in ab initio simulations. b In electrochemical reactions with multiple proton–electron transfers, the number of electrons n transferred prior to the
rate-limiting step determines both the Tafel slope and how changes in pH shift the activity. c Rate-limiting steps for CO2 reduction to CO (on weak binding
catalysts) and C2 products (on Cu) involve intermediates with large dipole moments μ, which interact with the interfacial electric field E. d The absolute
potential (e.g., U vs. SHE) determines the electric field at an electrochemical interface and the corresponding stabilization of the polar *CO2 and *OCCO
intermediates. Since the dipoles point away from the interface, the field-stabilization occurs at potentials below the potential of zero charge. A given field
stabilization corresponds to a more positive overpotential at higher pH (e.g., a 360mV shift between pH 7 and 13), which leads to higher CO(2)R activity at
higher pH. e The differences in hydrated cation sizes (e.g. hydrated Li+ vs. hydrated Cs+) lead to differences in the surface charge density and interfacial
field at a given applied potential. This model is an example of the Frumkin effect: the interfacial field (or equivalently the local potential drop) is the driving
force for electrochemical processes, and different compositions of the electric double layer give rise to different fields at a given applied potential.
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coupling limits the rate of CO(2) reduction to high-value C2

products such as ethanol and ethylene3.
Now, the dipoles of *CO2 and *OCCO interact strongly with

the interfacial electric field. And since the field depends on the
absolute potential, e.g. on an SHE scale, so does the activity of the
corresponding reactions. Figure 1d shows the variation of the
interfacial field E and the corresponding stabilization of the polar
intermediates vs. the potential U vs. SHE. On the other hand, the
overpotential η depends on U vs. RHE, which shifts on the SHE
scale by a Nernstian factor of 60 mV/pH unit. For reduction
reactions, a positive shift in η translates to higher activity. For
example, a shift in pH from 7 to 13 translates to a whopping shift
in η of +0.36 V! We can therefore think of the dramatic pH effect
for these products as simply arising from a shift in the RHE
reference potential.

We can use different labels for this phenomenon, such as single
electron transfer19 or decoupled proton–electron transfer3, but
the dipole-field vocabulary allows us to consider the reaction rate
in terms of dipoles of the intermediates, μ, and the interfacial
capacitance, Cdl. For example, the rate of CO2 adsorption and the
corresponding Tafel slope are as follows21,22:

j / exp � μ CO2ð ÞTS�E
kT

� �
; ð2Þ

Tafel slope ¼ ∂U
∂ log j

����
���� / 1

μ CO2ð ÞTSCdl
ð3Þ

and we can write analogous expressions for CO dimerization.
Note that the local [OH–], which increases with increasing

CO(2)R current, plays no direct role in promoting the rate of these
two steps23, since they are driven by the field alone. However, the
[OH–] can alter the CO2 concentration through the bicarbonate
equilibria, suppress CH4 formation14, and promote the activity
towards acetate, even at a fixed U vs. SHE24.

These very dipole–field interactions also rationalize the sensi-
tivity of activity to cation identity18 (Fig. 1e). In a classical picture
of the interface, the ion concentration is limited by the hydrated
ion size25. The smaller the size, the greater the surface charge and
interfacial field for a given applied potential, which increases Cdl.
The slightly smaller hydrated size of Cs+ vs. Li+ leads to the 1–2
orders of magnitude enhancement for the CO activity on Ag and
C2 activity on Cu.

This model of the ion effects is an echo of the decades-old
“Frumkin diffuse layer correction” to Butler–Volmer kinetics26.
This correction accounts for the impact of the composition of the
double layer on the local potential drop, which determines the
corresponding reaction rate. Beyond electrostatics, specific che-
mical interactions between ions with the surface or adsorbate may
also play a role, and both cations and anions can act as
buffers27,28.

The dependence of CO(2)R on adsorbate–field interactions
shows us that, in addition to optimizing the adsorption energies
of critical intermediates, we can look to tuning Cdl and μ towards
higher activity (Eq. 3). Our models suggest that we can tune the
former through the electrolyte, and the latter in single-atom
catalysts, where the localization of charge on the active site is
affected by the coordinating atoms22.

We need TOF estimates to evaluate intrinsic activity, and
Cu’s still the best (but don’t give up)
What do we know about the activity of existing catalysts? Selec-
tivities are often represented by Faradaic efficiencies: FEi ¼ ji

jtot
,

where ji is the partial current density of product i and jtot the total
current density. While selectivities are a critical performance metric,
FEi’s can’t be used to evaluate the intrinsic activity towards a given

product, especially as they shift with respect to changes in the
activities of all other products. The intrinsic activity, as determined
by the reaction energetics, can really only be evaluated by TOFs
(Eq. 1). In practice, we approximate TOFs by partial current den-
sities normalized to the electrochemically active surface area
(ECSA), jECSA / ρsiteTOF, where ρsite is the density of the active site.
Comparisons of intrinsic activity with jECSA are therefore accurate
within the variations of ρsite among samples, the uncertainty in the
ECSA, and the degree of mass transport limitations.

Surface reaction energetics on different facets typically differ by
0.1–1 eV 29, which translates to variations in the corresponding
TOFs by orders of magnitude (Eq. 1). Shifts in jECSA of around an
order of magnitude (or less) between catalysts with different surface
structures are more likely to arise from a change in ρsite than a
change in the predominant active site or facet. Recent reviews have
shown that nano-structured Cu and Cu-based bimetallics show
similar jECSA to those on Cu foils1,2. To date, I am not aware of a
new catalyst with intrinsic activity towards C2 products that
unequivocally exceeds that of Cu foil. Ongoing efforts to obtain
single crystal measurements with product quantification can rigor-
ously evaluate theoretical predictions of the most active Cu facet(s).

The increased C2 selectivities on various high surface area Cu
catalysts actually arise from the suppression of other products,
such as CH4 and H2

1,2. Under alkaline conditions, H2 suppres-
sion cannot arise from local changes in pH, since H2O is the
proton donor. Perhaps nanostructuring shifts the structure and
activity of water, such that products that are limited by
proton–electron transfer steps are suppressed.

And why haven’t we found alternatives to Cu that either match
or exceed its intrinsic activity towards C2 products? Stability is a
possible culprit: leaching or surface restructuring, which can be
driven by the presence of elements that strongly bind *CO. But I
know no fundamental limitation on the existence of stable and
active alternatives, especially if we expand our search to emergent
classes of materials beyond binary combinations of transition
metals30,31. Furthermore, improvements in catalytic efficiency are
still needed5,6. With a rigorous consideration of surface stability,
the discovery of new catalysts beyond Cu remains a worthwhile
and important pursuit.

Outlook
Even as we develop practical devices and systems for CO2R, we
still face fundamental challenges at the level of reaction
mechanisms and intrinsic activity. These challenges range from
simulating electrochemical kinetics to the discovery of new cat-
alysts beyond Cu. Tremendous opportunity lies in overcoming
them. With the increasing dialogue among us and the diversity of
expertise we are bringing together—I envision that our collective
efforts will ultimately contribute to establishing a sustainable
carbon cycle.
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