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Abstract
Let K be a field and put A := {(i, j, k,m) ∈ N

4 : i ≤ j and m ≤ k}. For any given A ∈ A
we consider the sequence of polynomials (rA,n(x))n∈N defined by the recurrence

rA,n(x) = fn(x)rA,n−1(x) − vnx
mrA,n−2(x), n ≥ 2,

where the initial polynomials rA,0, rA,1 ∈ K [x] are of degree i, j respectively and fn ∈
K [x], n ≥ 2, is of degree k with variable coefficients. The aim of the paper is to prove the
formula for the resultant Res(rA,n(x), rA,n−1(x)). Our result is an extension of the classical
Schur formulawhich is obtained for A = (0, 1, 1, 0). As an applicationwe get the formula for
the resultant Res(rA,n, rA,n−2), where the sequence (rA,n)n∈N is the sequence of orthogonal
polynomials corresponding to a moment functional which is symmetric.
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1 Introduction

Let N denotes the set of non-negative integers, N+ the set of positive integers and for given
k ∈ N+ we write N≥k for the set of positive integers ≥ k.

Let K be afield and consider the polynomials F,G ∈ K [x]. The resultantRes(F,G)of the
polynomials F,G is an element of K which gives the information of possible common roots.
More precisely, Res(F,G) = 0 if and only if the polynomials F,G has a common factor
of positive degree. The computation of resultants is, in general, a difficult task. Of special
interest is the computation of resultants of pairs of polynomials which are interesting from
either a number theoretic or analytic point of view. The classical result is the computation
of resultant of two cyclotomic polynomials �m,�n . More precisely, Apostol proved the
formula

Res(�m,�n) =
{
pϕ(n) if m

n is a power of a prime p,

1 otherwise,
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2 M. Ulas

where ϕ is the Euler phi function [1].
On the other side, we have a result of Schur which allow computation of resultants of con-

secutive terms in the sequence (rn(x))n∈N of the polynomials defined by a linear recurrence
of degree two. More precisely, if r0(x) = 1, r1(x) = a1x + b1 and we define

rn(x) = (anx + bn)rn−1(x) − cnrn−2(x), n ≥ 2,

with an, bn, cn ∈ C satisfying ancn �= 0. Under these assumptions, we have the following
compact formula proved by Schur [9] (see also [10, p. 143]):

Res(rn, rn−1) = (−1)
n(n−1)

2

n−1∏
i=1

a2(n−i)
i cii+1.

In factm Schur obtained a slightly different result, i.e., he obtained the expression for∏n
i=1 rn−1(xi,n), where xi,n is the i th root of the polynomial rn .
The importance of the Schur method lies in its applications in the computation of

discriminants of orthogonal polynomials. Indeed, Favard proved that each family of orthog-
onal polynomials corresponds with the sequence (rn(x))n∈N for suitably chosen sequences
(an)n∈N, (bn)n∈N and (cn)n∈N (for the proof of this important theorem see [2, Theorem 4.4]).
Computation of discriminants of certain classes of orthogonal polynomials can be found in
[10, Theorem 6.71].

The method of Schur was generalized by Gishe and Ismail [4]. As an application, the
authors reproved and generalized the result of Dilcher and Stolarsky from [3] concerning
the resultant of certain linear combinations of Chebyshev polynomials of the first and the
second kind. All these results were recently extended by Sawa and Uchida [8, Theorem 3.1]
by a clever application of the Schur method. However, in all mentioned results we have a
strong assumption on the sequence considered sequences of polynomials, i.e., the degree of
nth term need to be equal to n. Thus, it is natural to ask whether the method of Schur can be
generalized for other families of recursively defined polynomials. Of special interest is the
situation when the polynomial near rn−1 in the recurrence defining the sequence (rn(x))n∈N
is of degree ≥ 2. Moreover, one can ask whether the initial polynomials r0, r1 can have
degrees not necessarily equal to 0 and 1 respectively. The aim of this note is to offer such a
generalization and apply it to get some new resultant formulas. For the precise statement of
our generalization and the main result, we refer the reader to Sect. 3.

Let us describe the content of the paper in some details. In Sect. 2 we present remainder of
basic properties of the notion of resultant. In Sect. 3 we prove themain result of the paper, i.e.,
the expression of the resultant of consecutive terms of the sequence (rA,n)n∈N (Theorem 3.1).
Finally, in the last section, we apply our main result to present some applications. In partic-
ular, under some mild assumptions on the coefficients of recurrence defining the sequence
(rA,n)n∈N we present the expression for the resultant of the polynomials rA,n, rA,n−2.

2 Remainder on basic properties of resultants

Let K be a field and consider the polynomials F,G ∈ K [x] given by

F(x) = anx
n + an−1x

n−1 + · · · + a1x + a0,

G(x) = bmx
m + bm−1x

m−1 + · · · + b1x + b0.
(2.1)
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On a generalization of Schur theorem concerning resultants 3

The resultant of the polynomials F,G is defined as

Res(F,G) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − β j ),

where α1, . . . , αn and β1, . . . , βm are the roots of F and G respectively (viewed in an appro-
priate field extension of K ). There is an alternative formula in terms of certain determinant.
More precisely, Res(F,G) is the element of K by the determinant of the (m + n) × (m + n)

Sylvester matrix given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an an−1 an−2 . . . 0 0 0
0 an an−1 . . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . a1 a0 0
0 0 0 . . . 0 a1 a0
bm bm−1 bm−2 . . . 0 0 0
0 bm bm−1 . . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . b1 b0 0
0 0 0 . . . 0 b1 b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The expression of a resultant as a determinant of the Sylvester matrix allows to consider it
for polynomials with coefficients in commutative rings (even with zero divisors). However,
in the sequel we concentrate on the case when considered polynomials have coefficients in a
field K .

We collect basic properties of the resultant of the polynomials F,G:

Res(F,G) = amn

n∏
i=1

G(αi ) = bnm

m∏
i=1

F(βi ), (2.2)

Res(F,G) = (−1)nm Res(G, F), (2.3)

Res(F,G1G2) = Res(F,G1)Res(F,G2). (2.4)

Moreover, if F(x) = a0 is a constant polynomial then, unless F = G = 0, we have

Res(F,G) = Res(a0,G) = Res(G, a0) = am0 . (2.5)

The proofs of the above properties can be find in [6, Chapter 3]. Finally, we recall an
important result concerning the formula for the resultant of the polynomialG and F , provided
that F(x) = q(x)G(x) + r(x). More precisely, we have the following.

Lemma 2.1 Let F,G ∈ K [x] be given by (2.1) and suppose that F(x) = q(x)G(x) + r(x)
for some q, r ∈ K [x]. Then we have the formula

Res(G, F) = bdeg F−deg r
m Res(G, r).

The proof of the above lemma can be found in [7] (see also [3]).
For possible generalization of the notion of resultant for polynomials with many variables

we refer the reader to [5].
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4 M. Ulas

3 Generalization of Schur theorem

In this section we state and prove the main result of this paper: the generalization of Schur
theorem. Let K be a field. We define the set

A := {(i, j, k,m) ∈ N
4 : i ≤ j and m ≤ k}

and for given A ∈ A we consider the sequence of polynomials (rA,n(x))n∈N defined in the
following way:

rA,0(x) =
i∑

s=0

psx
s, rA,1(x) =

j∑
s=0

qsx
s,

rA,n(x) = fn(x)rA,n−1(x) − vnx
mrA,n−2(x) for n ≥ 2,

where

fn(x) =
k∑

s=0

an,s x
s .

We assume that ps, qs, vn, an,s ∈ K (in the appropriate range of parameters s, n) and
piq j an,k �= 0 for each n ∈ N≥2. Moreover, we assume that a2,kqi − v2 pi �= 0 for given i, k.
In other words deg rA,0 = i, deg rA,1 = j and deg fn = k for each n ∈ N≥2.

Theorem 3.1 Under the above assumptions on A, rA,0, rA,1 and fn for n ∈ N≥2 we have the
following formula

Res(rA,n(x), rA,n−1(x))

= (−1)
∑n

u=2 eA(u)T (2k−m)(n−2)
A qm(n−1)

0 qk+ j−m−i
j

(
n−2∏
u=0

v
uk+ j
u+2

)
×

(
n−1∏
s=1

am(n−s−1)
s+1,0 a(2k−m)(n−s−1)

s+1,k

)
Res(rA,1(x), rA,0(x)),

where eA(u) = ((u − 2)k + j)((u − 1)k + j + 1) and

TA =
{
q j , if i < j ∨ (i = j ∧ m < k),
a2,kqi−v2 pi

a2,k
, if i = j ∧ m = k.

Proof For n ∈ N≥2 we write Rn = Res(rA,n, rA,n−1). First of all note that from the assump-
tions on i, j, k,m, the assumption a2,kqi − v2 pi �= 0 and simple use of the recurrence
relation defining the sequence (rA,n)n∈N we immediately note that the leading term Ln of
the polynomial rA,n is given by

Ln =
{
q j

∏n−1
s=1 as+1,k, if i < j ∨ (i = j ∧ m < k),

TA
∏n−1

s=1 as+1,k, if i = j ∧ m = k,

and it is non-zero. In consequence, we see that

deg rA,n = (n − 1)k + j .
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On a generalization of Schur theorem concerning resultants 5

In order to give the value of the constant term, say Cn , of rA,n , i.e., the value rA,n(0), we
consider two cases: m > 0 and m = 0. If m > 0, then by simple induction one can prove
that

Cn = rA,n(0) = q0

n−1∏
s=1

as+1,0.

If m = 0 then the value Cn = rA,n(0) satisfies the recurrence relation Cn = an,0Cn−1 −
vnCn−2. In the generality we are dealing here, we can not give an exact form of Cn and in
fact we will not need it.

We are ready to prove our theorem. However, in order to simplify the proof a bit, we first
compute the resultant of the polynomials rA,2(x), rA,1(x). We have the following chain of
equalities

R2 = Res(rA,2, rA,1) = Res( f2rA,1 − v2xmrA,0, rA,1)

= (−1) j(k+ j) Res(rA,1, f2rA,1 − v2xmrA,0) by (2.3)

= (−1) j(k+ j)qk+ j−(m+i)
j Res(rA,1,−v2xmrA,0) by Lemma 2.1

= (−1) j(k+ j)qk+ j−(m+i)
j (−v2)

j Res(rA,1, x)m Res(rA,1, rA,0) by (2.4)

= (−1) j(k+ j+1)v
j
2q

m
0 q

k+ j−m−i
j Res(rA,1, rA,0), by (2.2), (2.5)

where in the last equality we used the identity Res(rA,1, x) = rA,1(0) = q0.
Now let us assume that n ≥ 3 and consider the polynomials rA,n(x), rA,n−1(x). We have

the following chain of equalities:

Rn = Res(rA,n, rA,n−1) = Res( fnrA,n−1 − vnxmrA,n−2, rA,n−1)

= (−1)((n−1)k+ j)((n−2)k+ j) Res(rA,n−1, fnrA,n−1 − vnxmrA,n−2) by (2.3)
= (−1)((n−1)k+ j)((n−2)k+ j)L2k−m

n−1 Res(rA,n−1, −vnxmrA,n−2) by Lemma 2.1
= (−1)((n−1)k+ j)((n−2)k+ j)L2k−m

n−1 Res(rA,n−1, −vnxm)Res(rA,n−1, rA,n−2) by (2.4)
= (−1)((n−1)k+ j)((n−2)k+ j)L2k−m

n−1 (−vn)
(n−2)k+ j rA,n−1(0)m Rn−1 by (2.2), (2.5)

= (−1)eA(n)v
(n−2)k+ j
n L2k−m

n−1 Cm
n−1Rn−1.

Note that the first five equalities are true for all m ∈ N not only m > 0. We will need this
observation later.

If m > 0, then from the above computations we have obtained recurrence relation for the
value of Rn = Res(rA,n, rA,n−1). More precisely, we have

Rn = (−1)eA(n)v
(n−2)k+ j
n L2k−m

n−1 Cm
n−1Rn−1.

We consider the case i < j ∨ (i = j ∧ m < k) first. By simple iteration of the above
recurrence together with the expression for R2, we obtain the formula

Rn = (−1)
∑n

u=3 eA(u)

(
n∏

u=3

v
(u−2)k+ j
u

) (
n−1∏
u=2

L2k−m
u Cm

u

)
R2

= (−1)
∑n

u=2 eA(u)v
j
2q

m
0 q

k+ j−m−i
j

(
n∏

u=3

v
(u−2)k+ j
u

)

×
[
n−1∏
u=2

(
qm0 q

2k−m
j

u−1∏
s=1

ams+1,0a
2k−m
s+1,k

)]
× R1.
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6 M. Ulas

We note the identity

n−1∏
u=2

u−1∏
s=1

ams+1,0a
2k−m
s+1,k =

n−1∏
s=1

am(n−s−1)
s+1,0 a(2k−m)(n−s−1)

s+1,k ,

and after simplification of the resulting expression we get the first formula from the statement
of our theorem with TA = q j .

Performing exactly the same reasoning as above we get the formula from the statement
in the case when i = k and m = k with TA = (a2,kqi − v2 pi )/a2,k .

Let us back to the case m = 0. We put R′
n = Res(rA,n(x), rA,n−1(x)). First of all let us

note that performing exactly the same reasoning as in the case of computation of R2 in case
when m > 0, we easily get the equality

R′
2 = (−1) j(k+ j+1)v

j
2q

k+ j−i
j Res(rA,1, rA,0).

Note that R′
2 is equal to R2 with m replaced by 0.

Let n ≥ 3. In order to find recurrence relation for R′
n we follow exactly the same approach

as in the case of Rn . In particular, we have

R′
n = (−1)((n−1)k+ j)((n−2)k+ j)L2k

n−1 Res(rA,n−1,−vn)Res(rA,n−1, rA,n−2)

= (−1)((n−1)k+ j)((n−2)k+ j)L2k
n−1(−vn)

(n−2)k+ j R′
n−1 by (2.5)

= (−1)eA(n)v
(n−2)k+ j
n L2k

n−1R
′
n−1.

Again, fromour reasoning, we see that R′
n is equal to Rn withm replaced by 0,wherewe taken

into account the convention that rA,n−1(0)0 = 1 for any value of rA,n−1(0). In particular, we
allow rA,n−1(0) to be 0.

Summing up, our formula for Res(rA,n, rA,n−1) from the statement of our theorem holds
for each m ∈ N. 	

Remark 3.2 The formula for Res(rA,n, rA,n−1) presented in Theorem 3.1 is not the most
general one. Indeed, one can consider slightly more general recurrence and obtain similar
result. More precisely, for given A ∈ A one can consider the sequence (gA,n(x))n∈N defined
in the following way:

gA,0(x) =
i∑

s=0

psx
s, gA,1(x) =

j∑
s=0

qsx
s,

gA,n(x) = fn(x)rA,n−1(x) − vnh(x)rA,n−2(x) for n ≥ 2,

where piq j �= 0 and

fn(x) =
k∑

s=0

an,s x
s, h(x) =

m∑
s=0

bsx
s,

where an,sbm �= 0 for each n ∈ N≥2. In particular h is fixed and does not depend on n.
Moreover, in order to guarantee the good behavior of degree of the polynomial gA,n we
need to assume a2,kqi − v2bm pi �= 0 for given k, i,m. With the above definitions and the
assumptions, we get the equalities deg gA,0 = i, deg gA,1 = j and for n ≥ 2 we have
deg gA,n = (n − 1)k + j . Thus we see that the leading term L A,n of the polynomial gA,n has
the form:

L A,n = TA

n−1∏
s=1

as+1,k,
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On a generalization of Schur theorem concerning resultants 7

where

TA =
{
q j , if i < j ∨ (i = j ∧ m < k),
a2,kqi−v2bm pi

a2,k
, if i = j ∧ m = k.

Now, if we put Gn = Res(gA,n, gA,n−1) then, using essentially the same reasoning as in
the proof of Theorem 3.1, we get the recurrence relation for the sequence (Gn)n∈N+ in the
form:

Gn = (−1)eA(n)v
(n−2)k+ j
n L2k−m

A,n−1 Res(gA,n−1, h)Gn−1.

By independent computation we get the equality

G2 = (−1)eA(2)v
j
2q

k+ j−m−i
j Res(gA,1, h)G1,

and the explicit formula

Gn = (−1)
∑eA(u)

u=2 qk+ j−m−i
j T (n−2)(2k−m)

A

×
(
n−2∏
u=0

v
uk+ j
u+2

) (
n−1∏
s=1

a(2k−m)(n−s−1)
s+1,k Res(gA,s, h)

)
G1.

However, in order to compute Res(gA,n, gA,n−1) with the help of the above formula we
need to know the value of Res(gA,s, h) for each s = 1, . . . , n − 1, which in general is a
difficult task (due to the complicated and essentially unknown form of the coefficients or
gA,s). We have simple expression for Res(gA,s, h) only in the case when h(x) = xm . This is
exactly the case presented in Theorem 3.1.

4 Applications

In this section we offer some application of Theorem 3.1. We consider the sequence (rn)n∈N
governed by the recurrence: r0(x) = 1, r1(x) = a1x + b1 and

rn(x) = (anx + bn)rn−1(x) − cnx
mrn−2(x), n ≥ 2, (4.1)

where an, bn, cn ∈ K and ancn �= 0 for n ∈ N+ and m ∈ {0, 1}. For m = 0 we get the
recurrence considered by Schur. In this case the result of Schur gives the expression for
the resultant of the polynomials rn and rn−1. Now, we show that under some assumptions
on the sequences (an)n∈N+ , (bn)n∈N+ one can get nice expression for the resultant of the
polynomials rn, rn−2. More precisely, we prove the following

Theorem 4.1 Let m ∈ {0, 1}. Let an, bn, cn ∈ K for n ∈ N+ and suppose that ancn �= 0. Let
us consider the sequence of polynomials (rn(x))n∈N defined by (4.1) and suppose that for
each n ≥ 2 we have an−2bn = anbn−2. Moreover, let us put dn = an

an−2
. Then, if m = 0 the

following formulas hold:

Res(r2n, r2(n−1)) =
n−1∏
i=1

(a2i−1a2i )
4(n−i)(c2i c2i+1d2i+2)

2i ,

Res

(
r2n+1

a1x + b1
,

r2n−1

a1x + b1

)
=

n−1∏
i=1

(a2i a2i+1)
4(n−i)(c2i+1c2i+2d2i+3)

2i .
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8 M. Ulas

If m = 1 we have the following formulas:

Res(r2n, r2(n−1)) =
n−1∏
i=1

(a32i−1a
3
2i b2i−1b2i )

n−i (c2i+1c2i+2d2i+2)
2i ,

Res

(
r2n+1

a1x + b1
,

r2n−1

a1x + b1

)
= b1−n

1

n−1∏
i=1

b2i+1(a
3
2i a

3
2i+1b2i−1b2i )

n−i (c2i+2c2i+3d2i+3)
2i .

Proof In order to applyTheorem3.1 for computationofRes(r2n, r2(n−1)) andRes(r2n+1, r2n−1)

we need to express rn in terms of rn−2 and rn−4. First, solving (4.1) with respect to rn−1 we
get

rn−1 = 1

anx + bn
(rn + cnx

mrn−2),

rn−3 = 1

an−2x + bn−2
(rn−2 + cn−2x

mrn−4).

Next, from the relation (4.1) with n replaced by n − 1 and the above expressions we get

1

anx + bn
(rn + cnx

mrn−2)

= (an−1x + bn−1)rn−2 − cn−1xm

an−2x + bn−2
(rn−2 + cn−2x

mrn−4).

(4.2)

Observing now that the condition anbn−2 = an−2bn implies that the expression

anx + bn
an−2x + bn−2

= an(anx + bn)

anan−2x + anbn−2
= an(anx + bn)

an−2(anx + abn
= an

an−2
= dn .

does not depend on x . Thus, the relation (4.2) can be rewritten in the following equivalent
form

rn = hn(x)rn−2 − cn−1cn−2dnx
mrn−4, (4.3)

where

hn(x) = an−1anx
2 + (anbn−1 + an−1bn)x − (cn + cn−1dn)x

m + bn−1bn .

First we consider the case m = 0. Having the above recurrence relation (4.3) it is an
easy task to get the expression for Res(r2n, r2(n−1)). Indeed, we replace n by 2n and apply
Theorem 3.1 to the polynomial rA,n(x) := r2n(x), n ∈ N, with

A = (i, j, k,m) = (0, 2, 2, 0), fn(x) = h2n(x), vn = c2n−1c2n−2d2n, TA = a1a2.

After necessary simplifications we get the expression from the statement of the theorem.
Next, we note that r1(x) = a1x + b1 and from the identity a1b3 = a3b1 we get r3(x) ≡ 0

(mod a1x + b1). In consequence, from the relation (4.3) we immediately get that r2n+1 ≡ 0
(mod a1x + b1) for each n ∈ N. Thus, in order to apply Theorem 3.1 we write rA,n(x) :=
r2n+1(x)
a1x+b1

for n ∈ N with

A = (i, j, k,m) = (1, 2, 2, 0), fn(x) = h2n+1(x), vn = c2n−1c2nd2n+1, TA = a2a3.

After necessary simplifications we get the first part of our theorem.
In case m = 1 we perform exactly the same reasoning. We replace n by 2n and apply

Theorem 3.1 to the polynomial rA,n(x) := r2n(x), n ∈ N, with

A = (i, j, k,m) = (0, 2, 2, 0), fn(x) = h2n(x), vn = c2n−1c2n−2d2n, TA = a1a2.
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On a generalization of Schur theorem concerning resultants 9

Finally, in order to consider the last formula from the statement of our theorem, we note
that r1(x) = a1x +b1 and from the identity a1b3 = a3b1 we get r3(x) ≡ 0 (mod a1x +b1).
In consequence, from the relation (4.3) we immediately get that r2n+1 ≡ 0 (mod a1x + b1)
for each n ∈ N. Thus, in order to apply Theorem 3.1 we write rA,n(x) := r2n+1(x)

a1x+b1
for n ∈ N

with

A = (i, j, k,m) = (1, 2, 2, 0), fn(x) = h2n+1(x), vn = c2n−1c2nd2n+1, TA = a2a3.

After necessary simplifications we get our last formula. 	

Remark 4.2 The condition saying that anbn−2 = an−2bn for n ∈ N≥3 seems to be quite
strong. However, it is clear that for bn = 0 this condition is satisfied. Notice that in this case
we deal with an important class of orthogonal polynomials which corresponds to moment
functionals which are symmetric. We recall the necessary definitions. Let (μn)n∈N be a
sequence of complex numbers and let L be a complex valued function defined on C[x]
satisfied the conditions

L[xn] = μn, L[α1F1(x) + α2F2(x)] = α1L[F1(x)] + α2L[F2(x)],
for each n ∈ N and α1, α2 ∈ C.

The moment functional is used in the definition of orthogonal polynomials. Indeed, the
sequence (Qn(x))n∈N is an orthogonal sequence if:

(1) deg Qn = n,
(2) L[Qm(x)Qn(x)] = 0 for m �= n and L[Qn(x)2] �= 0.

The moment functional is called symmetric if all of its moments of odd order are 0, i.e.,
L[x2n+1] = 0 for n ∈ N. However, this is equivalent with the condition bn = 0 for n ≥ 1 (see
[2, Theorem 4.3]) and guarantees the existence of our compact formula given in Theorem 4.1.

This condition is satisfied by the Legendre, Hermite, Chebyshev, Bessel, Lommel . . . and
many other sequences of orthogonal polynomials (see [2, Chapter V]). We present three
illustrative examples.

Example 4.3 The sequence (Pn(x))n∈N of Legendre polynomials is given by P0(x) = 1,
P1(x) = x and the recurrence relation

Pn(x) = 2n − 1

n
x Pn−1(x) − n − 1

n
Pn−2(x) for n ≥ 2.

In particular, we have

an = 2n − 1

n
, bn = 0, cn = n − 1

n
.

It is clear that an−2bn = anbn−2(= 0) for n ≥ 2 and we get

dn = (n − 2)(2n − 1)

n(2n − 5)
.

After necessary simplifications, we get the following formulas:

Res(P2n(x), P2(n−1)(x))

=
n−1∏
s=0

(
s(2s − 1)(4s + 3)

(s + 1)(2s + 1)(4s − 1)

)2s (
(4s + 1)(4s + 3)

2(s + 1)(2s + 1)

)4(n−s−1)

,
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Res

(
P2n+1(x)

x
,
P2n−1(x)

x

)

=
n−1∏
s=0

(
s(2s + 1)(4s + 5)

(s + 1)(2s + 3)(4s + 1)

)2s (
(4s + 3)(4s + 5)

2(s + 1)(2s + 3)

)4(n−s−1)

,

with the convention that 00 = 1. As a simple consequence of our computations, we get that
the polynomials Pn, Pn−2 are co-prime or their only common root is x = 0 for each n ∈ N≥2.

Example 4.4 In the case of theHermite polynomials (Hn)n∈Nwehave H0(x) = 1, H1(x) = x
and, for n ≥ 2, we have the recurrence relation

Hn(x) = 2xHn−1(x) − 2(n − 1)Hn−2(x).

In particular, we have

an = 2, bn = 0, cn = 2(n − 1).

It is clear that an−2bn = anbn−2(= 0) for n ≥ 2 and we get that dn = 1. In consequence,
after necessary simplifications, we get the following formulas:

Res(H2n(x), H2(n−1)(x)) = 27n(n−1)
n−1∏
s=1

((2s − 1)s)2s,

Res

(
H2n+1(x)

x
,
H2n−1(x)

x

)
= 27n

2−3n−2
n−1∏
s=1

((2s + 1)s)2s .

Example 4.5 UsingTheorem3.1weprove a resultant formula for the sequence of polynomials
with combinatorial coefficients. For given a ∈ N and n ∈ N we consider the polynomial

Vn(x) =
n∑

i=0

(
2i

i

)(
2(n − i)

n − i

)
xi .

The sequence (Vn(x)n∈N is not a sequence of orthogonal polynomials. It is clear that V0(x) =
1, V1(x) = 2(x + 1). For n ≥ 2, the recurrence relation

Vn(x) = 2(2n − 1)

n
(x + 1)Vn−1(x) − 16(n − 1)

n
xVn−2(x).

holds. This relation can be proved easily by induction on n with the help of the recurrence
satisfied by the sequence of central binomial coefficients (

(2n
n

)
)n∈N. We omit the details. Now

in order to get the formula for Res(Vn(x), Vn−1(x)) it is enough to apply Theorem 3.1 with

A = (0, 1, 1, 1), q0 = q1 = 2, an,0 = an,1 = 2(2n − 1)

n
, vn = 16(n − 1)

n
.

After necessary simplifications we get the formula

Res(Vn(x), Vn−1(x)) = 23n(n−1)
n−1∏
s=1

(
s

2s + 1

)s (
2s + 1

s + 1

)n−1

.

Note that the sequence of polynomials (Vn(x))n∈N (or to be more precise: the recurrence
relation defining the sequence) satisfies also the assumption of Theorem 4.1. Thus, one can
also compute the value of the resultant Res(Vn(x), Vn−2(x)).
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