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Abstract. The spectra of n-Laplacian operators (−Δ)n on finite metric
graphs are studied. An effective secular equation is derived and the spec-
tral asymptotics are analysed, exploiting the fact that the secular function
is close to a trigonometric polynomial. The notion of the quasispectrum
is introduced, and its uniqueness is proved using the theory of almost
periodic functions. To achieve this, new results concerning roots of func-
tions close to almost periodic functions are proved. The results obtained
on almost periodic functions are of general interest outside the theory of
differential operators.
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1. Introduction

1.1. Motivation

Quantum graphs have proved to be an important area of research in both
physics and mathematics. By quantum graphs, one understands ordinary dif-
ferential equations on metric graphs, coupled by matching conditions at the
vertices. Most works on the subject consider second-order (Schrödinger) dif-
ferential operators (see, for example, [8,20,21,25,28,34,36,40,41,45,51]), but
the methods developed can be generalised to differential expressions of arbi-
trary order. This has already been done in the case of first-order (Dirac and
momentum) and to some extent fourth-order operators (e.g. [11,13,22,27,32]).
The recent status of research in this area is well reflected in the monographs
[8,41].

Recent development in spectral theory of Schrödinger operators on metric
graphs has seen a connection with trigonometric polynomials and the classical
theory of almost periodic functions (see [12,47]). These studies were based on
the Gutkin–Kottos–Smilansky formula for the secular equation for the Lapla-
cian [28,35]

det [Se(k)Sv(k) − I] = 0, (1.1)

where Se and Sv are the edge and vertex scattering matrices (see Sect. 5),
respectively. For scaling-invariant vertex conditions, Sv is independent of the
energy, whilst the entries of Se are given by exponentials with real frequencies;
hence, the secular function is a trigonometric polynomial of the form

p(k) =
∑

j∈J

ajeirjk, (1.2)

where aj ∈ C and rj ∈ R, not necessarily rationally dependent. For gen-
eral vertex conditions and Schrödinger operators with nonzero potentials, the
eigenvalues are not given by zeros of trigonometric polynomials, but are asymp-
totically close to such zeros, leading to the notion of asymptotic isospectrality.
The approximating trigonometric polynomials correspond to Laplacians with
uniquely determined scaling-invariant vertex conditions. Due to the rigidity of
zeros of trigonometric polynomials, one may not only describe spectral asymp-
totics, but also solve certain inverse problems.

The present paper is devoted to the spectral theory of higher-order dif-
ferential operators on metric graphs, more precisely of n-Laplacians associated
with the differential expression

(
− d2

dx2

)n

on the edges. Our goal is twofold:

• to derive an efficient parameterisation of all self-adjoint vertex conditions
leading to an explicit secular equation generalising (1.1);

• to study spectral asymptotics for n-Laplacians with scaling-invariant con-
ditions,

postponing the analysis of general vertex conditions to the second part of our
study.

It appears that even the spectra of n-Laplacians with scaling-invariant
vertex conditions are hardly ever described by trigonometric polynomials or,
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even more generally, almost periodic functions. Nevertheless, we show that
such functions do play an important role in their spectral analysis. In particu-
lar we introduce the notion of the quasispectrum, which not only asymptotically
approximates the actual spectrum but is also unique. The quasispectrum co-
incides with the (2nth root of the) spectrum of a certain Dirac operator on
the same metric graph which itself is therefore described by zeros of a trigono-
metric polynomial. This is akin to determining the Laplacian spectrum from
the eigenvalues of the Schrödinger operator in earlier works. This once again
illustrates the power of almost periodic functions and the rigidity of their zeros.

A key ingredient in all of this is the study of roots of a certain class of
functions which are close to almost periodic functions, holomorphic perturba-
tions as we call them: we show that the roots of a holomorphic perturbation
of an almost periodic function are aymptotically close to those of the almost
periodic function. One can prove a kind of equivalence relation between such
functions, which has the consequence that two n-Laplacians are asymptotically
isospectral if and only if they have the same quasispectrum. For this purpose,
new results concerning (classical) almost periodic functions are proved; we
believe that these results have wider applications.

To understand why it is unavoidable to use almost periodic functions,
as opposed to more conventional approaches, we recall the asympotics for
the Schrödinger operator. The eigenvalues (discrete and accumulating towards
+∞) satisfy Weyl’s law [8,41]

λj = k2
j ∼

(π

L
)2

j2,

with L being the total length of the graph. However, no further refinement of
the asymptotics of the form kj = π

Lj + c0 + c−1j
−1 + · · · is possible unless the

graph is an interval or a loop. One may derive certain asymptotic expansions
of this type, but just for subsequences of eigenvalues like in [16].

In the first half of this paper, we revise the issue of vertex conditions.
There is already a well-established theory for parameterising self-adjoint ex-
tensions of symmetric operators by unitary matrices using boundary triples
(see [14,18,19,26,33]). Equivalent, more classical approaches include von Neu-
mann extension theory (see [56]) or Birman–Krein–Vishik theory (see [1]). For
Schrödinger operators on metric graphs, parameterisation of vertex conditions
via the scattering matrix has proved to be useful, not least due to clear physical
interpretation of the parameter. Our first goal was thus to establish a simi-
lar approach for n-Laplacians. Using unitary parameterisation via boundary
triples, one can easily describe which conditions are scaling-invariant, or non-
Robin, but the corresponding secular equation is difficult to analyse. Therefore,
we develop an alternative approach via the so-called vertex transmission ma-
trix which leads to a more effective secular equation, allowing one to study
spectral asymptotics. Note that in the case of the Laplacian (n = 1), the two
approaches are identical, and the parameter coincides with the vertex scatter-
ing matrix. Surprisingly the secular equation for higher-order operators has
not been written in any form yet.
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In the second half of the paper, the focus turns to almost periodic func-
tions, and from this, we establish spectral asymptotics for n-Laplacians with
scaling-invariant vertex conditions by comparing the secular equation with a
certain reference trigonometric polynomial, the set of whose positive roots we
identify as the quasispectum. As we have already mentioned, the quasispec-
trum is unique and can be interpreted as the spectrum of a Dirac operator.
This operator replaces the reference Laplacian (denoted L

Sv(∞)
0 in [47]) used

to describe the asymptotics for the Schrödinger equation.
Throughout this paper, we are focused on the 2nth derivative (−Δ)n,

but the results obtained open the way to studying spectral asymptotics for
arbitrary ordinary differential operators on graphs with the most general vertex
conditions and variable coefficients.

1.2. Vertex Conditions and Spectral Asymptotics

From a mathematical point of view, quantum graphs is a perfect area for exper-
iment relating to extension theory of symmetric operators. The most general
vertex conditions for self-adjoint extensions of symmetric operators can be de-
scribed using the theory of boundary triples [6], also [26,33]. For Laplacians on
metric graphs, all possible vertex conditions were first described in [34]; this
approach resembles our formula (2.5) and has the disadvantage of being non-
unique—multiplying all matrices Ar by an invertible matrix does not change
the linear solution subspace. Two alternative but complementing approaches
leading to unique set of parameters were suggested in [36] (in terms of a linear
subspace and a Hermitian matrix) and [45] (in terms of the vertex scattering
matrix). The first approach is efficient when working with the quadratic form
and therefore is efficient in proving spectral estimates, whilst the vertex scat-
tering matrix used in the second approach directly appears in the secular equa-
tion. Methods for estimating eigenvalues, such as graph surgery, are discussed
in [7,23,30,31,42,43,52], and properties of the ground state in the presence
of a potential in [39,46]. Spectral asymptotics are discussed in [16,37,47,48].
The notion of isospectrality for these operators was first discussed in [28] and
then in [4,5,53], and asymptotic isospectrality in [47]. Inverse problems are
addressed in [2,3,38,43,48,54,55].

In the case of bi-Laplacians, a characterisation of all vertex conditions
corresponding to self-adjoint operators can be found in [27]. More detailed
expositions involving spectra (e.g. Weyl asymptotics) for bi-Laplacians with
selected vertex conditions can be found for instance in [17]. See also [49] for
physical and [32] for mathematical interpretations of certain conditions. Vertex
conditions for differential operators of arbitrary order have been derived in [15];
the parameterisation again resembles our formula (2.5).

2. Differential Operators on Metric Graphs

Matrices of various sizes in terms of the natural numbers d and n, recurring
throughout this paper, will play a range of roles. The most important matrices
have sizes d× d, which for consistency we denote in bold, e.g. A, and nd×nd,
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which are double-struck, e.g. A. Those of other sizes have no special notation,
e.g. A, and in that case the dimensions are always specified.

2.1. Differential Operators: Metric Graphs and Vertex Conditions

Let E be a finite set of edges, that is, intervals taken from different copies
of R. Let N := |E| be the total number of edges, and d the total number of
endpoints. For the majority of this paper, we consider only compact graphs, so
the intervals are all bounded, in which case d = 2N . Labelling the edges in E
as e1, . . . eN , we shall label the endpoints x1, . . . , xd to satisfy ej = [xj , xN+j ]
for j = 1, . . . , N .1 Under this labelling, if j ≤ N then we call xj (the smallest
value in the interval) a left endpoint, whilst for N < j ≤ d, we call xj (the
largest value in the interval) a right endpoint. Where necessary, we denote by
e(xj) the edge that has xj as an endpoint.

Consider the set of all endpoints {xj}d
j=1 and its partition into M equiv-

alence classes v forming the vertex set V :

v′ ∩ v′′ = ∅, v′ �= v′′,⋃

v∈V

v = {xj}2N
j=1 .

The set of vertices induces an equivalence relation ∼ on the disjoint union of
edges as follows: given x, y ∈ ⊔e∈E e, we say that x ∼ y if and only if either

(i) x and y belong to the same edge e ∈ E and x = y, or
(ii) x and y are endpoints that belong to the same vertex v.

This equivalence relation yields a metric graph

Γ :=
⊔

e∈E

e

/
∼ . (2.1)

Given a metric graph Γ, we are interested in operators in the Hilbert
space L2(Γ) :=

⊕
e∈E L2(e). The inner product associated with this space is

the sum of standard L2 inner products on each edge e ∈ E. Explicitly, that is

〈φ, ψ〉 = 〈φ, ψ〉L2(Γ) :=
∑

e∈E

∫

e

φ(x)ψ(x) dx, φ, ψ ∈ L2(Γ). (2.2)

We usually omit the subscript when writing the L2(Γ) inner product.
The focus of this paper is on differential operators in L2(Γ) with formal

expression p2n for some n ∈ N, where p := −i d
dx . However, for later conve-

nience, the following conventions are stated more generally permitting n ∈ 1
2N.

The functions in the domain of such an operator are all from the Sobolev space

1In the case that E contains also semi-infinite edges, denote by Ei the subset of semi-infinite
intervals and Ec the subset of compact intervals. Write Ni := |Ei| and Nc := |Ec| so that
N = Nc + Ni and d = 2Nc + Ni. Now we label the edges e1, . . . eN , with ej semi-infinite if
j ≤ Ni, and compact otherwise, for 1 ≤ j ≤ d, and the endpoints x1, . . . , xd to satisfy

ej =

{
[xj , ∞), if j ≤ Ni,

[xj , xNc+j ], if j > Ni.
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H̃2n(Γ), which is the set of functions in L2(Γ) which on each edge e are con-
tained in the Sobolev space H2n(e) = W 2n

2 (e). In general, we shall impose
further restrictions on the domain in the form of linear conditions at the end-
points. To be able to write such conditions independently of the direction of
parameterisation of the edges, we define for each r = 0, 1, ..., 2n−1 the normal

rth derivative of ψ ∈ H̃2n(Γ) at the endpoint xj to be

∂rψ(xj) := σ(xj)r lim
x→xj

dr

dxr
ψ(x), (2.3)

where

σ(xj) :=

{
+1 if xj is a left endpoint,
−1 if xj is a right endpoint.

(2.4)

We then denote by ∂rΨ the vector of normal rth derivatives at all endpoints
of E (ordered according to the indices of the endpoints). We usually write
Ψ := ∂0Ψ.

Given n ∈ 1
2N, the most general (linear) boundary conditions that can

be imposed on functions in H̃2n(Γ) are of the form

2n−1∑

r=0

Ar∂
rΨ = 0, (2.5)

where A0, A1, . . . , A2n−1 are arbitrary l × d matrices for a certain l ∈ N.
Without loss of generality, it may be assumed that l ≤ 2nd since otherwise
there will certainly be redundancies. Taking l = 2nd is thus sufficient to express
all possible conditions using matrices of consistent dimensions.

The domain of an operator A in L2(Γ) given by Aψ = p2nψ with bound-
ary conditions (2.5) is

dom(A) =

{
ψ ∈ H̃2n(Γ) :

2n−1∑

r=0

Ar∂
rΨ = 0

}
. (2.6)

The conditions governed by (2.5) are called the vertex conditions for A. Note
that the matrices Ar are not uniquely determined by the solution space for
(2.5). For integer n, it will be established in Sect. 3.1 that any vertex conditions
leading to self-adjoint operators can be written in this form with l = nd.

The Hilbert spaces L2(Γ) and H̃2n(Γ) are independent of the vertex struc-
ture, i.e. how the edges are connected to one another. In other words, one
could substitute Γ with any other metric graph with the same edges, and the
Hilbert spaces would be the same. However, it is natural to assume that the
vertex conditions (2.5) of an operator in L2(Γ) respect the vertex structure
of Γ. This means that the conditions can be written separately connecting
boundary values associated with each vertex v. In other words, considering
equivalent conditions and simultaneously permuting the endpoints from C

d,
all matrices Ar can be put into the same block diagonal form determined by
the vertices. Moreover, such representation should be minimal in the sense that
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it is impossible to write equivalent vertex conditions with a finer partition of
the endpoints into equivalence classes.

Everything that has been said so far can clearly be adapted for more
general linear differential expressions a, but one would have to be more careful
when stating the admissible domains.

2.2. First-Order Operators

The first-order differential operators in L2(Γ) with expression p are the only
odd-ordered operators that will play a significant role in our studies (see for
instance [22]). Fixing l ≥ d, vertex conditions of any such operator with differ-
ential expression p can be expressed in the form A0Ψ = 0 for some l×d matrix
A0.2 Given such a matrix A0, denote by [A0] its equivalence class modulo left
multiplication by invertible l × l matrices. The vertex conditions correspond-
ing to any element of this class are equivalent. Denote by P[A0] the operator
P[A0]ψ = pψ with these vertex conditions. Defining the sign matrix

Σ := diag(σ(x1), . . . , σ(xd)), (2.7)

and σ(xj) is given by (2.4), the following simple result holds.

Lemma 2.1. The adjoint of the operator P[A0] is given by

P∗
[A0]

= P[B0Σ], (2.8)

where B0 is any l × d matrix with rank(B0) = d − rank(A0) and such that
A0B

∗
0 = 0.

Proof. The domain of P∗
[A0]

is the set of φ ∈ L2(Γ) for which 〈φ,P[A0]ψ〉 is
bounded among ψ ∈ dom(A) with respect to the L2-norm. Taking ψ ∈ C∞

0 (e),
we see that dom(P∗

[A0]
) is contained in

⊕
e W 1

2 (e). For φ ∈ ⊕e W 1
2 (e), the inner

product equates to 〈pφ, ψ〉 − i〈ΣΦ,Ψ〉Cd . As ker A0 = ranB∗
0 for any matrix

B0 like in the statement of the lemma, this form is bounded if and only if
〈ΣΦ,Ψ〉Cd = 0 for all Ψ ∈ ranB∗

0 , that is if and only if ΣΦ ∈ ker B0. �

For instance, the minimal operator Pmin := P[I] is related to the maximal
operator Pmax := P[0] via P∗

min = Pmax. The product LD := PmaxPmin is
a Laplacian with Dirichlet vertex conditions at all endpoints, whilst LN :=
PminPmax has Neumann vertex conditions at all endpoints. The metric graphs
whose vertex structure is respected by the vertex conditions of these operators
have all their edges disconnected. On the other hand, given a metric graph Γ,
if PΓ

c is the operator which imposes continuity of functions in its domain at
the vertices of Γ, then (PΓ

c )∗ is the operator which imposes the condition that∑
xj∈v σ(xj)ψ(xj) = 0 at each vertex v. Then the domain of the Laplacian

LΓ
st := (PΓ

c )∗PΓ
c (2.9)

2It is of course sufficient to take l = d to encapsulate all such operators, as described in the
previous section for general n ∈ 1

2
N. However, in this notation we permit larger l for the

convenience of later proofs involving higher-order differential operators that are products of
first-order operators.
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consists of functions ψ ∈ H̃2n(Γ) satisfying continuity and the Kirchhoff con-
dition

∑
xj∈v ∂ψ(xj) = 0 at every vertex v: these vertex conditions for this

operator are frequently referred to in the literature as (among other names)
standard vertex conditions for Γ (see [45]). Note that representation (2.9) was
used in [24], leading to interesting results.

3. n-Laplacians on Metric Graphs

An n-Laplacian on Γ is an operator in L2(Γ) with differential expression
(−Δ)n, where −Δ := p2 = − d2

dx2 and n ∈ N: it shall always be assumed
that it has vertex conditions of the form (2.5). One may choose to assume
in everything which follows that the n-Laplacians in L2(Γ) respect the vertex
structure of Γ, except where explicitly stated otherwise. Our first task is to
establish which vertex conditions lead to self-adjoint operators.

3.1. Self-Adjoint n-Laplacians

To establish which vertex conditions correspond to self-adjoint n-Laplacians,
we define the minimal n-Laplacian in L2(Γ) to be the operator Amin := P2n

min

which has differential expression (−Δ)n and domain given by

dom(Amin) =
{

ψ ∈ H̃2n(Γ) : Ψ = ∂Ψ = · · · = ∂2n−1Ψ = 0
}

.

This is the symmetric n-Laplacian in L2(Γ) with the smallest domain charac-
terised by imposing vertex conditions on functions in H̃2n(Γ). We refer to its
adjoint Amax := A∗

min = P2n
max as the maximal n-Laplacian in L2(Γ), having

the same differential expression, but with the domain dom(Amax) = H̃2n(Γ).
Generically, neither of these operators respect the vertex structure of Γ. Every
self-adjoint n-Laplacian in L2(Γ) is an extension of Amin and a restriction of
Amax. To describe all such self-adjoint operators, one may use the formalism
of boundary triples.

Given a symmetric operator Amin in a Hilbert space H, a boundary triple
(H,Γ0,Γ1) for Amin consists of a Hilbert space H called the boundary space,
together with two boundary maps Γ0,Γ1 : dom(A∗

min)︸ ︷︷ ︸
⊂H

→ H such that

〈φ,A∗
minψ〉H − 〈A∗

minφ, ψ〉H = c (〈Γ0φ,Γ1ψ〉H − 〈Γ1φ,Γ0ψ〉H) ,

for some real constant c. The dimension of H must be equal to the defect index
of Amin (Theorem 1.5, Ch. 3, [26]); for n-Laplacians in L2(Γ), this will be nd.

Proposition 3.1 (Theorem 1.6, Ch. 3, [26]). Let (H,Γ0,Γ1) be a boundary triple
for an operator Amin on a Hilbert space H. Then an extension A of Amin is
self-adjoint if and only if there exists a dim(H) × dim(H) unitary matrix U

such that dom(A) is the largest subset of dom(A∗
min) on which

i(U − I)Γ0 = (U + I)Γ1

holds.
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The sesquilinear boundary form for the n-Laplacian Amax = A∗
min is

given by Ω(φ, ψ) = 〈φ, (−Δ)nψ〉 − 〈(−Δ)nφ, ψ〉 for all φ, ψ ∈ dom(Amax). To
derive an explicit expression, we define for each k ∈ R\{0} the boundary maps
Γ0(k),Γ1(k) : H̃2n(Γ) → C

nd by

Γ0(k)ψ =

⎛

⎜⎜⎜⎝

k2n−1I 0 . . . 0
0 k2n−2I . . . 0
...

...
. . .

...
0 0 . . . knI

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

Ψ
∂Ψ
...

∂n−1Ψ

⎞

⎟⎟⎟⎠ ,

Γ1(k)ψ =

⎛

⎜⎜⎜⎝

0 0 . . . (−1)n−1I
...

...
...

...
0 −kn−2I . . . 0

kn−1I 0 . . . 0

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

∂nΨ
∂n+1Ψ

...
∂2n−1Ψ

⎞

⎟⎟⎟⎠ .

(3.1)

Here, Cnd is the boundary space. Integration by parts implies that

Ω(φ, ψ) = − 1
k2n−1

{〈Γ0(k)φ,Γ1(k)ψ〉Cnd − 〈Γ1(k)φ,Γ0(k)ψ〉Cnd} , (3.2)

for φ, ψ ∈ dom(Amax), independently of k. Thus, (Cnd,Γ0(k),Γ1(k)) is a
boundary triple for Amin for any real k �= 0 .

The following type of result is a standard ingredient in the theory of
boundary triples. For Schrödinger operators on metric graphs, see Lemma
2.2, [34], equation (10), [29], Theorem 6, [36], and Theorem 2.6, [45]; these
results are summarised in Theorem 1.4.4, [8]. Our theorem can be seen as a
generalisation of these results in the Laplacian case, together with Theorem
3.1, [27] for bi-Laplacians, and Theorem 3.4, [15] for higher-order operators.
Operators here are not required to respect the vertex structure of Γ.

Theorem 3.2. Let A be an n-Laplacian in L2(Γ) with fixed vertex conditions.
For any given k ∈ R\{0}, let Γ0(k),Γ1(k) : H̃2n(Γ) → C

nd be the boundary
maps (3.1). Then, the following are equivalent:

(a) A is self-adjoint;
(b) there exists an nd × nd unitary matrix U(k) such that ψ ∈ dom(A) if

and only if

i(U(k) − I)Γ0(k)ψ = (U(k) + I)Γ1(k)ψ; (3.3)

(c) there exist a subspace X ⊆ C
nd and a Hermitian linear map T ∈ L(X)

such that ψ ∈ dom(A) if and only if

Γ0(1)ψ ∈ X, Γ1(1)ψ + TΓ0(1)ψ ∈ X⊥; (3.4)

(d) there exist matrices A0, A1, . . . , A2n−1 of size nd × d for which

n−1∑

j=0

(−1)jAjA
∗
2n−1−j (3.5)
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is Hermitian and the concatenated matrix (A0|A1|. . .|A2n−1) has maximal
rank nd, such that ψ ∈ dom(A) if and only if

2n−1∑

s=0

As∂
sΨ = 0. (3.6)

Proof. See “Appendix A.” �

Remark. The concatenated matrix (A0|A1|. . .|A2n−1) defining the vertex con-
ditions (3.6) of a self-adjoint n-Laplacian is unique up to left multiplication by
an invertible nd × nd matrix.

Example 3.3. A bi-Laplacian B in L2(Γ) is self-adjoint if and only if its vertex
conditions can be written in the form A0Ψ + A1∂Ψ + A2∂

2Ψ + A3∂
3Ψ = 0

for some 2d × d matrices A0, A1, A2, A3 such that A0A
∗
3 − A1A

∗
2 is Hermitian

and rank (A0|A1|A2|A3) = 2d.

For any prescribed k ∈ R\{0}, the unitary matrix U(k) serves as a
parameter for all self-adjoint n-Laplacians in L2(Γ). More precisely, writing
U(A; k) := U(k) to avoid ambiguity, the map U(A; k) �→ A gives a bijection
between the set of unitary nd × nd matrices and the set of all self-adjoint n-
Laplacians on graphs formed of the edges in E (not just those which respect
the vertex structure). The unitary parameter can be computed explicitly us-
ing formula (A.5) in “Appendix A,” given the vertex conditions written in
the form (3.6), and is a unitary matrix-valued holomorphic function of k. For
Laplacians, U(k) is just the vertex scattering matrix from the existing liter-
ature (see [45]). For higher n, it serves as an analogue purely by virtue of
equation (3.3), although is not itself a scattering matrix for the associated n-
Laplacian in any rigorous physical or mathematical sense. The matrix which
better fits that role is introduced in Sect. 4.2.

As in the Laplacian (n = 1) case, the unitary parameter easily allows
one to determine which endpoints are connected via the vertex conditions
and therefore to understand whether the vertex conditions are consistent with
the vertex structure or not. The vertices in the graph are determined by the
irreducible decomposition of U(k). More precisely, given a specific graph Γ,
the unitary matrices corresponding to self-adjoint n-Laplacians in L2(Γ) are
precisely those which have an irreducible block diagonal structure with respect
to the vertices; that is to say, if we reorder the rows and columns of U(k) to
group all boundary values of functions and derivatives at the same vertex
together, then U(k) should be block diagonal, and it should not be possible
to form smaller blocks by just permutations of endpoints. For instance, if the
unitary matrix is irreducible, then all endpoints are joined together in a single
vertex. In such a way, one can place restrictions on the unitary parameter so
as to only parameterise self-adjoint n-Laplacians which preserve the vertex
structure.

To ensure that in what follows we are dealing only with self-adjoint n-
Laplacians in L2(Γ), according to Theorem 3.2, we shall work from now on
under the following assumption:
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Assumption 3.4. The vertex conditions can be written in the form (3.3) for
some k ∈ R\{0} and some nd × nd unitary matrix U(k).

3.2. Elementary Spectral Properties

Having identified the self-adjoint Laplacians, our next goal is to analyse their
spectra. Everything that follows concerns only compact graphs, with the ex-
ceptions of the constructions of the vertex transmission matrix and vertex
scattering matrix in Sects. 4.1 and 4.2, respectively, which is valid even for
finite non-compact graphs.

Given an operator A with a real, discrete spectrum which is bounded
below, we shall denote its eigenvalues, counting multiplicities, by λ1(A) ≤
λ2(A) ≤ · · · . For λ ∈ R, denote by N (λ,A) the eigenvalue counting function
of A, that is the number of eigenvalues of A of value at most equal to λ.
Owing, in part, to the fact that finite rank perturbations in the resolvent sense
preserve the discreteness of the spectrum, one deduces the following theorem;
the reader is likely to be familiar with these results for other operators, for
which reason the proof is deferred to “Appendix A.”

Theorem 3.5. Let A be an n-Laplacian in L2(Γ), and suppose that Γ is com-
pact. Under Assumption 3.4:

(i) the spectrum of A is pure discrete;
(ii) if E has d endpoints and total length L, then for λ > 0,

L
π

λ1/2n − nd ≤ N (λ,A) ≤ L
π

λ1/2n + nd; (3.7)

(iii) the eigenvalues of A satisfy the Weyl law

λj(A) =
(π

L
)2n

j2n + O(j2n−1) (3.8)

as j → ∞.

Proof. See “Appendix A.” �

4. Transmission Matrices and the Secular Equation for
n-Laplacians

In the spectral theory of Laplace operators on metric graphs, the main ingredi-
ent of the scattering matrix approach to parameterising the vertex conditions
is that solutions to the equation −Δψ = k2ψ on the edges can be written in
a certain basis of incoming and outgoing waves: the corresponding amplitudes
are related via the unitary vertex scattering matrix (see [35,45]). For self-
adjoint n-Laplacians, one may also introduce a d × d vertex scattering matrix
(see Sect. 4.2), but for n ≥ 2 it does not work as a parameter: vertex condi-
tions are described by n2d2 real parameters, whilst vertex scattering matrices
contain just d2 real parameters.
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4.1. The Vertex Transmission Matrix

Let A be an n-Laplacian in L2(Γ) satisfying Assumption 3.4. Throughout the
rest of this paper, write ω := eπi/n. Any function ψ ∈ H̃2n(Γ) which satisfies
the formal differential equation

(−Δ)nψ = k2nψ (4.1)

on the edge e(xj) can be written in the form

ψ(x) =
n−1∑

l=0

al
je

iωlk|x−xj | +
n−1∑

l=0

bl
je

−iωlk|x−xj |, x ∈ e(xj), (4.2)

for some amplitudes al
j , b

l
j ∈ C corresponding to the endpoint xj . The terms

with amplitudes al
j serve as analogues of the incoming waves to the endpoint

xj (from the scattering theory of Laplacians), and in the same way, the terms
with amplitudes bl

j are the analogues of outgoing waves. Note that this analogy
is purely formal since only the amplitudes with l = 0 actually correspond to
plane waves. Writing the amplitudes as column vectors al := {al

j}d
j=1 and

bl := {bl
j}d

j=1 for l = 0, 1, . . . , n − 1, we can introduce a formal analogue of
the vertex scattering matrix for general n ∈ N, called the vertex transmission
matrix. This is defined to be the nd × nd matrix Tv(k) such that a function
ψ, which for each j has the form (4.2) in x in a neighbourhood of xj , satisfies
the vertex conditions of A if and only if the amplitudes solve

⎛

⎜⎜⎜⎝

a0

a1

...
an−1

⎞

⎟⎟⎟⎠ = Tv(k)

⎛

⎜⎜⎜⎝

b0

b1

...
bn−1

⎞

⎟⎟⎟⎠ . (4.3)

Note that this definition takes into account the vertex conditions only, and
so we consider the amplitudes independently of whether they correspond to
different endpoints of the same edge. This is necessary in order to be able to
determine Tv(k) uniquely. We may write Tv(A; k) = Tv(k) to avoid ambiguity.

The matrix can be constructed explicitly as follows: let ψ ∈ L2(Γ) be any
function which in a neighbourhood of each vertex xj has the form (4.2). Then
from the vertex conditions (3.6), we get the system of equations

Y(k)

⎛

⎜⎜⎜⎝

a0

a1

...
an−1

⎞

⎟⎟⎟⎠ = −Y(−k)

⎛

⎜⎜⎜⎝

b0

b1

...
bn−1

⎞

⎟⎟⎟⎠ , (4.4)

where the nd × nd matrix Y(k) is defined for all k ∈ C by

Y(k) :=

(
2n−1∑

s=0

(ik)sAs

∣∣∣∣∣

2n−1∑

s=0

(iωk)sAs

∣∣∣∣∣· · ·
∣∣∣∣∣

2n−1∑

s=0

(iωn−1k)sAs

)
. (4.5)
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This matrix is clearly not unique for A, but the associated linear relation (4.4)
is uniquely determined. Wherever Y(k) is invertible, we then have

Tv(k) = −Y(k)−1
Y(−k). (4.6)

In general, detY(k) may have nonzero roots which could be real, and thus,
Tv(k) may be not everywhere defined on R. Denote by sing(A) the set of values
of k ∈ C at which Y(k) is not invertible; it contains all singularities of Tv(k),
but it should be noted that some of these singularities may be removable. We
shall show that this set is finite.

Example 4.1. Consider the bi-Laplacian B in L2([0,∞)) with vertex condi-
tions (3.6), where A0 = A2 = ( 1

0 ), A1 = ( 1
1 ), A3 =

(
1−1

)
. It follows from

Example 3.3 that it is self-adjoint. The matrix (4.5) is

Y(k) =
(

(1 + ik)(1 − k2) (1 − k)(1 + k2)
ik(1 + k2) −k(1 − k2)

)
.

Now, detY(k) is a polynomial of degree five and has five distinct roots forming
the set sing(B). It is clear for instance that 1 ∈ sing(B), and one finds that
this is a singularity of Tv which is not removable.

Lemma 4.2. Let A be an n-Laplacian in L2(Γ). Under Assumption 3.4,
(i) if k ∈ C\{0}, then k ∈ sing(A) if and only if there exists a non-trivial

solution of (4.4) with bl = 0 for all l = 0, . . . , n − 1;
(ii) 0 ∈ sing(A) ⊂ C\{z ∈ C : arg k ∈ (0, 1

2 arg ω) ∪ ( 1
2 arg ω, arg ω)},

(iii) |sing(A)| ≤ (n − 1)nd.

Proof. (i): For k �= 0, the matrix Y(k) is not invertible if and only if there
exists a nonzero vector a such that Y(k)a = 0.

(ii): It is clear from (4.5) that 0 ∈ sing(A). Consider the d-star graph and
on it the n-Laplacian with vertex conditions determined by U(A; k) .
Suppose for a contradiction that k ∈ sing(A) is such that arg k ∈
(0, 1

2 arg ω) ∪ ( 1
2 arg ω, arg ω). Now, part (i) implies that there exists a

vector a satisfying (4.4) with b = 0. By assumption, Re[iωlk] < 0 for all
l = 0, . . . , n−1, so every ψ decays exponentially along every half line (it is
not identically zero on at least one of these). Thus, ψ is an eigenfunction
of the n-Laplacian operator on the d-star graph with the aforementioned
vertex conditions. But by self-adjointness, the spectrum of this operator
is real, and so, we get a contradiction since k2n /∈ R.

(iii): By definition (4.5), it follows that detY(k) is a polynomial of degree at
most (n − 1)nd. By part (ii), detY(k) �≡ 0, and thus, it has at most
(n − 1)nd roots.

�

Remark. Given a bi-Laplacian B in L2(Γ), one can show that for k ∈ R\sing(B),
the operator B is self-adjoint if and only if Tv(k) = ( S B

C D ) for some matrices
S,B,C,D such that SS∗ = I, SC∗ = iB and CC∗ = i(D − D∗). In principle,
this can be generalised to parameterise higher-order n-Laplacians by Tv(k),
but U(k) is a much more convenient parameter.
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4.2. The Vertex Scattering Matrix

Given an n-Laplacian A in L2(Γ) satisfying Assumption 3.4, denote by Sv(k)
the upper left d × d block of Tv(k):

Tv(k) =

⎛

⎜⎝
Sv(k) ∗ . . .

∗ ∗ . . .
...

...
. . .

⎞

⎟⎠ . (4.7)

This is the matrix which relates the amplitudes a0 and b0 of classical incoming
and outgoing plane waves eik|x−xj | and e−ik|x−xj |, respectively. We refer to
Sv(k) as the vertex scattering matrix of A. If there is ambiguity, we may
write it as Sv(A; k). One can show that it is unitary on R and is thus defined
even when Tv(k) is not: since each entry of Sv(k) is then a bounded rational
function of k on R\sing(A), it can be extended to all of R by taking limits.
The proof of this is elementary but messy, so we defer it to “Appendix B.”

Theorem 4.3. Let A be an n-Laplacian in L2(Γ). Under Assumption 3.4, the
vertex scattering matrix Sv(k) is unitary for all k ∈ R.

Proof. See “Appendix B.” �

This fact is not surprising since the vertex scattering matrix as we define
it coincides with the scattering matrix from the mathematical scattering theory
(see [57]) for a certain pair of operators on the non-compact star graph with
different vertex conditions. This matrix will play a key role in analysing the
spectral asymptotics (see Sect. 6). In the case of the bi-Laplacian (n = 2) for
instance, given a physical network of beams, it should be possible to measure
Sv(k) for certain values of k by generating plane waves far along each beam
and measuring how these are scattered: for solutions with b1 = 0, we have
a0 = Sv(k)b0. However, unlike in the Laplacian case, in general for n ≥ 2,
knowledge of Sv(k) alone is not sufficient to determine the vertex conditions.
Nevertheless, if one can be sure that the vertex conditions are scaling-invariant
(Sect. 5), then one can determine a lot more about the vertex conditions from
Sv(k) (e.g. Corollary 5.4) even though we shall see that for such conditions
the matrix is constant.

4.3. The Edge Transmission Matrix

Let A be an n-Laplacian in L2(Γ) satisfying Assumption 3.4, and suppose, as
we shall for the remainder of the paper, that all N = d/2 edges are compact.
A function ψ is an eigenfunction of A if and only if it satisfies the differential
equation (4.1) on the edges, together with the vertex conditions. Every such
function can be written as (4.2) for all x ∈ e(xj). The amplitudes al

j , b
l
j are not

independent: one connection comes from the vertex conditions (c.f. (4.3)); the
other comes from the edges. On each (compact) edge, ψ has two expressions,
one associated with each endpoint. These expressions match if and only if

al
j = bl

j+Ne−iωlk�j ,

bl
j = al

j+Ne+iωlk�j ,
(4.8)
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for all j = 1, . . . , N = d/2, where 	j is the length of edge ej (c.f., for example,
[28]). This can be encoded into an nd×nd matrix Te(k) (like the edge scattering
matrix for Laplacians, c.f. [45]) such that the expressions match if and only if

Te(k)

⎛

⎜⎜⎜⎝

a0

a1

...
an−1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

b0

b1

...
bn−1

⎞

⎟⎟⎟⎠ . (4.9)

We refer to Te(k) as the edge transmission matrix corresponding to the set
of edges E. It is independent of the vertex conditions of A and hence also
independent of the topology of the induced graph ΓA . It is clear from (4.8)
that this matrix is given explicitly by

Te(k) =

⎛

⎜⎜⎜⎝

Se(k) 0 . . . 0
0 Se(ωk) . . . 0
...

...
. . .

...
0 0 . . . Se(ωn−1k)

⎞

⎟⎟⎟⎠ , (4.10)

where

Se(k) :=
(

0 eikΛ

eikΛ 0

)
, (4.11)

and Λ := diag(	1, . . . , 	N ) is the diagonal matrix whose nonzero entries are
the lengths of the (compact) edges. Comparing with [45], we see that Se(k) is
precisely the edge scattering matrix for Laplacians on the same set E of edges.

4.4. The Secular Equation

Theorem 4.4. Let A be an n-Laplacian in L2(Γ), and suppose that all of the
edges in E are compact. Under Assumption 3.4, nonzero spectrum of A is
given by the set of solutions λ = k2n to the equation

det[Y(k) + Y(−k)Te(k)] = 0, (4.12)

where Y(k) is expressed as (4.5) in terms of the vertex conditions (3.6), and
the geometric multiplicity of λ equals the dimension of ker[Y(k)+Y(−k)Te(k)].
Those values of k that are not in sing(A) are equivalently the solutions of

det[I − Tv(k)Te(k)] = 0. (4.13)

Proof. We saw in Sect. 4.1 that a nonzero function ψ of the form (4.2) in a
neighbourhood of each endpoint xj satisfies the vertex conditions of A if and
only if the amplitudes satisfy (4.4). Moreover, as all edges are compact, we
saw in Sect. 4.2 that (4.9) must hold. Thus, ψ is an eigenvector of A if and
only if both of these hold, equivalently, if and only if

[Y(k) + Y(−k)Te(k)]

⎛

⎜⎝
a0

...
an−1

⎞

⎟⎠ = 0. (4.14)
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A non-trivial vector solution of this equations exists if and only if k solves
(4.12). In other words, λ �= 0 is an eigenvalue of A if and only λ = k2n for
some solution k of (4.12) which one may assume without loss of generality is
such that arg k ∈ [0, π/n).

It remains only to check multiplicities. On each edge ej , where j =
1, . . . , N (= d/2), there is a bijection between the amplitudes a0

j . . . , an−1
j , b0

j ,

. . . , bn−1
j and solutions of the eigenvalue problem (−Δ)nψj = λψj on that

edge. Moreover, it follows from the relations (4.8) that there is a bijective cor-
respondence between the amplitudes a0

j , a
0
j+N , . . . , an−1

j , an−1
j+N associated with

that edge and the solutions of the eigenvalue problem along that edge via (4.2).
Hence, the vector solutions of equation (4.14) for fixed arg k are in bijection
with the λ = k2n eigenstates of the n-Laplacian. �
Example 4.5. Consider the bi-Laplacian B in L2([0, 	]) with the same vertex
conditions as the operator from Example 4.1, but now applied at both end-
points. One has

Y(k) =
(

(1 + ik)(1 − k2)I (1 − k)(1 + k2)I
ik(1 + k2)I −k(1 − k2)I

)
,

Te(k) =

⎛

⎜⎜⎝

0 eik� 0 0
eik� 0 0 0
0 0 0 e−k�

0 0 e−k� 0

⎞

⎟⎟⎠ .

The nonzero eigenvalues are then the values k2 for which k solves (4.12). It
follows from Example 4.1 that k = 1 is an irremovable singularity of Tv(k) for
this operator as well. However, one finds that if 	 = π, then k = 1 will be a
root of (4.12). Hence, in this case, one could not pick up the eigenvalue 1 using
the alternative equation (4.13).

Equation (4.13) serves as a secular equation for A, although the finite
number of possible instances where solutions of (4.12) coincide with singular-
ities of Tv(k) must be taken into account. It is a generalisation of the secular
equation for self-adjoint Laplacians L which has the form det[I−Sv(k)Se(k)] =
0, where Sv(k) and Se(k) are the vertex scattering matrix and the edge scat-
tering matrix respectivey for L (see, for example, [28,35,44]). Much more can
be said about the spectrum of L in the case that Sv is independent of k—
corresponding to so-called scaling-invariant vertex conditions—which is largely
due to the fact that in this case, the determinant is a trigonometric polyno-
mial (see, for example, [47]). It would then be a natural step to study the
n-Laplacians whose vertex conditions are such that Tv is independent of k. In
that case, sing(A) = {0} so equation (4.13) would give all of the (nonzero)
eigenvalues of A .

Remark. Whilst one could similarly derive a secular equation in terms of the
unitary parameter U, thereby avoiding the issue of singularities, the corre-
sponding (non-unitary) matrix for the edges is less versatile than Te due to
the particular choice of basis of solutions of (4.1) needed (c.f. “Appendix B”).
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5. Scaling-Invariant Vertex Conditions

Definition. The vertex conditions of differential operator in L2(Γ) are called
scaling-invariant if and only if, for any c > 0, ψ(x) satisfies the vertex condi-
tions on Γ whenever ψ(cx) does on cΓ.

Scaling-invariant vertex conditions have the characterising property that
λ is an eigenvalue of an n-Laplacian on E with such conditions if and only if
c2nλ is an eigenvalue of the n-Laplacian on cE with the same vertex conditions.

Given an n-Laplacian A in L2(Γ), not necessarily self-adjoint, its vertex
conditions (2.5) are scaling-invariant (i.e. hold independently of the choice of
scaling c > 0) if and only if they can equivalently be written

2n−1∑

r=0

crAr∂
rΨ = 0, ∀c > 0

⇒ A0Ψ = A1∂Ψ = · · · = A2n−1∂
2n−1Ψ = 0. (5.1)

Thus, A is a product of first-order differential operators, and in the notation
of Sect. 2.2, it can be expressed as

A = P[A2n−1Σ]P[A2n−2] . . .P[A1Σ]P[A0].

On the other hand, any operator of this form is an n-Laplacian with scaling-
invariant vertex conditions. We seek the subset of these which are also self-
adjoint.

Remark. For Laplacians (n = 1), the vertex conditions are scaling-invariant if
and only if the so-called Robin part of the associated quadratic form vanishes
(Theorem 2.1.6, [8]): these are precisely the Laplacians which can be written
as a product of a first-order operator and its adjoint. More generally, we claim
(though shall not prove in this paper) that self-adjoint n-Laplacians with non-
Robin vertex conditions are those which can be written in the form A = K∗K
for some nth derivative operator K. Then the following theorem will imply
that for n ≥ 2 scaling-invariant vertex conditions do not give all non-Robin
n-Laplacians.

Theorem 5.1. Let A be an n-Laplacian in L2(Γ) with vertex conditions (3.6)
and let k ∈ R\{0}. Under Assumption 3.4, the following are equivalent:

(a) A has scaling-invariant vertex conditions,
(b) A = P∗

1P
∗
2 . . .P∗

nPn . . .P2P1 for some first-order differential operators
P1, . . . ,Pn in L2(Γ),3

(c) A0A
∗
2n−1 = A1A

∗
2n−2 = · · · = An−1A

∗
n = 0,

(d) U is independent of k,
(e) Tv is independent of k,

3Naturally generalising (2.9).
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(f) there exist d × d unitary Hermitian matrices U1, . . . ,Un such that

U(k) =

⎛

⎜⎜⎜⎝

U1 0 . . . 0
0 −U2 . . . 0
...

...
. . .

...
0 0 . . . (−1)n−1Un

⎞

⎟⎟⎟⎠ . (5.2)

In this case, Uj is the vertex scattering matrix of the Laplacian

{
P∗

j Pj if j ∈ 2N + 1,

PjP
∗
j if j ∈ 2N + 2.

Proof. (a)⇔(b)⇔(c): Recall that A has scaling-invariant vertex conditions if
and only if the operator can be decomposed in the following way:

A = P[A2n−1Σ2n−1] . . .P[A3Σ]P[A2]P[A1Σ]P[A0],

in the notation of Sect. 2.2. Then A is self-adjoint and scaling-invariant if and
only if additionally P[A2n−1−jΣ] = P∗

[Aj ]
for all j, which by Lemma 2.1 is if and

only if AjA
∗
2n−1−j = 0 (and rank(Aj) + rank(A2n−1−j) = d).

(c)⇒(d),(f): The vertex conditions can be written A(k)Γ0(k)ψ = B(k)Γ1(k)ψ
for each k ∈ R\{0}, where A(k),B(k) are defined by (A.2) in the proof of
Theorem 3.2. If (c) holds, then one can assume without loss of generality that
the A(k),B(k) are block diagonal with blocks of size d × d, and in particular,
A(k)B(k)∗ = 0. But since these vertex conditions are also equivalent to (3.3),
there exists X ∈ GL(nd) such that XA(k) = i(U(k)− I) and XB(k) = U(k)+ I.
Then A(k)B(k)∗ = 0 implies that U(k) = U(k)∗. It then follows from (A.5)
that U(k) has the form (5.2). Moreover, (c) implies that in fact (A.3) and
(A.4) hold for all (complex) k ∈ C\{0}, whence U(k) is unitary for all k ∈ C,
and by (A.5), it is holomorphic. Liouville’s theorem then implies that it must
be constant.
(d)⇔(e): See Corollary B.2.
(d)⇒(a): By Theorem 3.2, the vertex conditions can be written in the form
i(U(k)−I)Γ0(k)ψ = (U(k)+I)Γ1(k)ψ for every k ∈ R\{0}. If U is independent
of k, then this implies that U must be block diagonal, consisting of blocks of size
d × d, and that in fact i(U− I)Γ0(k)ψ = (U+ I)Γ1(k)ψ = 0 for all k ∈ R\{0}.
Hence, the vertex conditions are scaling-invariant (c.f. (5.1)).
(f)⇒(a): If U(k) is of the form (5.2), then it is clear from the fact that the ver-
tex conditions can be written in the form (3.3) that they are scaling-invariant
(c.f. (5.1)).

Finally, suppose that any and thus all of the above hold. Then we have
A = P∗

1P
∗
2 . . .P2P1 for some first-order operators P1, . . .Pn. Now, the vertex

conditions for A can be written explicitly as
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(U1 − I)Ψ = (U1 + I)∂2n−1Ψ = 0,

(U2 − I)∂2n−2Ψ = (U2 + I)∂Ψ = 0,

(U3 − I)∂2Ψ = (U3 + I)∂2n−3Ψ = 0,

...

and the non-Robin Laplacians P∗
1P1,P2P

∗
2 ,P∗

3P3, . . . have vertex conditions

(U1 − I)Ψ = (U1 + I)∂Ψ = 0,

(U2 − I)Ψ = (U2 + I)∂Ψ = 0,

(U3 − I)Ψ = (U3 + I)∂Ψ = 0,

...

respectively. Thus, U1,U2,U3, . . . must be their respective vertex
scattering matrices (c.f. Theorem 3.2, or specifically for Laplacians: Theorem
2.1 in [45]). �

Example 5.2. Let Γ be a compact finite metric graph with vertices V , and let
B be the bi-Laplacian in L2(Γ) with vertex conditions:

⎧
⎪⎪⎨

⎪⎪⎩

ψ(xj) = ψ(xj′) ∀xj , xj′ ∈ vm,
∂ψ(xj) = 0 ∀xj ∈ vm,
∂2ψ(xj) arbitrary ∀xj ∈ vm,∑

xj∈vm
∂3ψ(xj) = 0,

for all vertices vm ∈ V . Note that no conditions are imposed on the second
derivates. This operator is the Friedrichs extension of the symmetric operator
whose only conditions are continuity of functions at the vertices of Γ (see
Example 4.5 in [27]). Clearly these vertex conditions are scaling-invariant:
in particular B = (PΓ

c )∗P ∗
minPminPΓ

c using the notation from Sect. 2.2. The
unitary parameter for B is

U(B; k) ≡
(
Sst 0
0 −I

)
,

where Sst is the vertex scattering matrix for the standard Laplacian LΓ
st =

(PΓ
c )∗PΓ

c mentioned in Sect. 2.2.

The remainder of the paper is focused on the situation in which the
vertex transmission matrix Tv is independent of k. To ensure that this is the
case, according to Theorem 5.1, we shall work with n-Laplacians satisfying
Assumption 3.4 together with the following:

Assumption 5.3. The vertex conditions are scaling-invariant, and all edges are
compact.

For bi-Laplacians satisfying these assumptions, one can establish the fol-
lowing relationship between the unitary parameter U and the vertex scattering
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matrix Sv. It can be generalised for higher-order operators, but the computa-
tions become more involved so we do not present that here.

Corollary 5.4. Let B be a bi-Laplacian in L2(Γ) satisfying Assumptions 3.4
and 5.3. Let Sv be the vertex scattering matrix for B, and let U1 and −U2 be
the unitary Hermitian diagonal blocks of the unitary parameter U as given by
(5.2). Then iI + Sv is invertible, and

U1 + U2 = −2i(iI − Sv)(iI + Sv)−1. (5.3)

In particular, Sv is the vertex scattering matrix for a self-adjoint scaling-
invariant bi-Laplacian if and only if there exist unitary Hermitian matrices
U1 and U2 such that Sv = i{2I + i(U1 + U2)}−1{2I − i(U1 + U2)}. It is
determined uniquely by the sum U1 + U2 and thus corresponds to every bi-
Laplacian with unitary Hermitian parameter U =

(
U1 0
0 U2

)
such that (5.3)

holds. Moreover:

(i) Sv = S∗
v if and only if U1 = U2, and in this case Sv = U1 = U2,

(ii) Sv = iI if and only if U1 = −U2.

Proof. See “Appendix B.” �

Remark. If U1 and U2 are unitary Hermitian matrices, then (U1 − U2)2 =
4I − (U1 + U2)2. Hence, one can use equation (5.3) to compute (U1 − U2)2

in terms of Sv. However, in general this is not sufficient to obtain U1 and U2,
and so, Sv does not uniquely determine the corresponding bi-Laplacian.

6. The Secular Equation for Scaling-Invariant Vertex
Conditions

6.1. More on the Secular Equation

For an n-Laplacian A in L2(Γ) satisfying Assumptions 3.4 and 5.3, the vertex
transmission matrix Tv is independent of k (Theorem 5.1), in which case the
‘secular equations’ (4.12) and (4.13) from Theorem 4.4 are completely equiv-
alent. We thus refer to the function

χ(k) = χ(A; k) := det[I − TvTe(k)] (6.1)

as the secular function for A, and the equation χ = 0 as the secular equation.
Let us decompose the transmission matrices Tv and Te(k) into blocks in

the following way:

Tv =
(

Sv Bv

Cv T̃v

)
, Te(k) =

(
Se(k) 0

0 T̃e(k)

)
. (6.2)

The (n−1)d×(n−1)d matrix T̃e(k) consists of sub-blocks of the form Se(ωlk)
for l ≥ 1, where we recall that ω := eπi/n. This means that if n ≥ 2, then
the secular function is in general not a trigonometric polynomial like it is for
Laplacians. The upside is that only Se(k) has much influence on the secular
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equation for large k since T̃e(k) → 0 exponentially as k → ∞. Indeed, dividing
χ(k) by an appropriate function (see Lemma 6.1) we get

F (k) = F (A; k) := det[I − SvSe(k) − X(k)], (6.3)

where X(k) = X(A; k) := BvT̃e(k)[I(n−1)d − T̃vT̃e(k)]−1CvSe(k). One needs
to be careful in specifying where F is well defined, but then equation F = 0 is
almost equivalent to the secular equation:

Lemma 6.1. Let A be an n-Laplacian in L2(Γ). Under Assumptions 3.4 and 5.3,
for any θ ∈ (0, π

n ), there exists γθ ≥ 0 such that the function F is well defined
in the sector {z ∈ C : | arg(z −γθ)| < θ}, and has the same roots as the secular
function χ counting multiplicities.

Proof. For l = 1, . . . , n − 1, we have |eiωlk| = e−|k| sin( πl
n +arg k) ≤ e−|k| sin( π

n −θ)

on the sector | arg k| < θ. Then T̃e(k) consists of exponentially decreasing
blocks Se(ωlk) for l = 1, . . . , n−1, so as T̃v is independent of k, there certainly
exists γθ > 0 such that the function

F̃ (k) := det[I(n−1)d − T̃vT̃e(k)] (6.4)

is bounded below by 1
2 on the shifted sector | arg(z − γθ)| ≤ θ and thus has no

zeros there. Then X(k) is well defined in this sector, and hence so is F . Since
χ(k) = F (k)F̃ (k), the result follows. �

6.2. The Associated Trigonometric Polynomial and Dirac Operator

Due to the exponentially decreasing nature of the matrix X(k), the function
F (k) is in some sense very close to the trigonometric polynomial

G(k) = G(A; k) := det[I − SvSe(k)]. (6.5)

This looks very much like the secular function for a self-adjoint Laplacian, but
in general this is not the case: despite being a constant unitary matrix, Sv is not
necessarily Hermitian (c.f. Theorem 2.1.6, [8]). For instance, by Corollary 5.4,
the scattering matrix for a self-adjoint bi-Laplacian with scaling-invariant con-
ditions is Hermitian if and only if A is the square of a Laplacian. Nevertheless,
the equation G = 0 is still the secular equation of a self-adjoint differential op-
erator: given a d × d unitary matrix U, consider the Dirac operator

DU =
(

i d
dx 0
0 −i d

dx

)
,

dom(DU) =
{(

ψ1

ψ2

)
∈ H̃1(Γ) × H̃1(Γ) : Ψ1 = UΨ2

}
.

(6.6)

Its spectrum is given by the roots of the secular function det[I − USe(k)]. In
the case that U := Sv (6.5) is its secular function.

As G is a trigonometric polynomial with fewer terms, its roots are easier
to compute than those of F , and one would hope to be able to use them to
asymptotically approximate the eigenvalues of A. More precisely, one would
expect that the roots of F become asymptotically closer to the roots of G.
To prove such a result for two functions f and g, we would need to compute
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integrals of f ′/f − g′/g along progressively smaller contours around more and
more distant roots, and show that these are zero. One would therefore hope
that they satisfy

lim
|z|→∞

z∈U
|f(z) − g(z)| = 0, lim

|z|→∞
z∈U

|f ′(z) − g′(z)| = 0 (6.7)

for some appropriate (unbounded) open set U . The sort of ‘appropriate set’
that we shall work with is what we refer to as a right half strip, namely
anything of the form

U = {z ∈ C : Re z > γ, a < Im z < b}, (6.8)

for a, b, γ ∈ R.

Definition. If g is a trigonometric polynomial, or more generally an almost
periodic function, then we shall refer to any holomorphic function f satisfying
(6.7) as a holomorphic perturbation of g on U .

For a complete proof of convergence of the roots of such functions, we
need some results from the theory of almost periodic functions (see Sect. 7).
The next lemma ensures that this theory would indeed be applicable to F and
G.

Lemma 6.2. Let A be an n-Laplacian in L2(Γ). Under Assumptions 3.4 and 5.3,
the function F (A; k) is a holomorphic perturbation of G(A; k) on any right
half strip U .

Proof. Fix θ ∈ (0, π
n ). It is sufficient to prove this result for any half strip which

is contained in the sector {z ∈ C : | arg(z − γθ)| ≤ θ}; recall from Lemma 6.1
that γθ ≥ 0 was chosen such that the function F̃ defined by (6.4) satisfies
|F̃ | ≥ 1

2 here.
Let Q be the following set of holomorphic functions defined on this sector:

Q :=

⎧
⎨

⎩k �→ 1
F̃ (k)a

M∑

m=1

cmeiζmk

∣∣∣∣∣∣

a,M ∈ N,
cm ∈ C,
ζm ∈ H+

⎫
⎬

⎭ ,

where H+ denotes the upper half plane. Observe that Q is invariant under
differentiation and multiplication by trigonometric polynomials. Given some
h(k) = F̃ (k)−a

∑M
m=1 cmeiζmk ∈ Q, as Im k is bounded on U there exists a

constant Ch > 0 such that |ei(Re ζm)k| = e−(Re ζm)Im k ≤ Ch for m = 1, . . . , M

whenever k ∈ U . Then |h(k)| ≤ 2aCh

∑M
m=1 |cm|e−(Im ζm)Re k, so h → 0 as

|k| → 0 on U . To complete the proof, it is thus sufficient to show that F −G ∈
Q.

Recall from definitions (6.3) and (6.5) that F (k) = det[(I − SvSe(k)) −
X(k)] and G(k) = det[I − SvSe(k)]. The entries of the matrix X(k) are all
from Q, whilst all entries of I − SvSe(k) are trigonometric polynomials. Now,
the expression

det[(I − SvSe(k)) − X(k)]
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can be written as a sum of determinants of matrices formed from combinations
of rows of I − SvSe(k) and X(k). The only one of these determinants which
does not involve rows of X(k) is equal to G(k) itself; the other determinants
are thus all elements of Q. Then F − G ∈ Q as required. �

6.3. Multiplicity of Eigenvalues

Given an eigenvalue λ = k2n of A, we refer to the dimension of the λ eigenspace
as the geometric multiplicity of λ and the order of k as a root of the secular
function as the algebraic multiplicity of λ.4 As usual, assume that A satisfies
Assumption 5.3. Now, Lemma 6.1 implies that the algebraic multiplicity is
equal to the order of k as a root of F , provided that k > γθ. Ideally, one would
prove that the latter equals the geometric multiplicity of the eigenvalue. Of
course, one can easily show that geometric multiplicity is at most equal to
algebraic multiplicity:

Lemma 6.3. Let A be an n-Laplacian in L2(Γ). Under Assumptions 3.4 and 5.3,
the geometric multiplicity of any positive eigenvalue λ > 0 of A is at most
equal to its algebraic multiplicity.

Proof. Let λ = k2n
0 be an eigenvalue of A with geometric multiplicity M . The

matrix I − TvTe(k0) has rank n − M ; in other words, any set of n − M + 1
of its columns is linearly dependent. Now, for each j = 1, . . . , M − 1, the jth
derivative of (6.1),

dj

dkj
χ(k) ≡ dj

dkj
det[I − TvTe(k)],

can be written as a sum of determinants of matrices each of which contains
at least n − j columns of the matrix I − TvTe(k). Thus, at k = k0, the jth
derivative of F vanishes. Hence, k0 is a zero of χ of order at least M . �

It would be convenient to be able to see equality of these multiplicities
in the same way as one can for Laplacians (see, for example, Theorem 3.7.1,
[8]) or, more usefully for us, the Dirac operator DU:

Lemma 6.4. The geometric multiplicity of any positive eigenvalue k > 0 of the
Dirac operator DU, defined by (6.6), is equal to its algebraic multiplicity as a
root of the secular function det[I − USe(k)].

Proof. The proof is identical to the proof of Theorem 3.7.1 in [8]: the eigenval-
ues eiθj(k) of the matrix USe(k) satisfy det[I − USe(k)] =

∏d
j=1(1 − eiθj(k)).

By unitarity of U, one has dθj

dk > 0 for every j according to Theorem 3.7.2
in [8]. Thus, the (algebraic) multiplicity of k as a root of det[I − USe(k)] is
equal to the multiplicity of 1 as an eigenvalue of the matrix USe(k). It is clear
from the definition of the operator that the latter is equal to the (geometric)
multiplicity of k as an eigenvalue of DU. �

4These notions should not be mixed with the geometric and algebraic multiplicities of non-
self-adjoint operators.
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Unfortunately, when n ≥ 2, the exponential components of Te(k) impede
this approach for n-Laplacians. To prove equality of the two notions of multi-
plicity for eigenvalues of A, at least for sufficiently large eigenvalues, we will
again appeal to the theory of almost periodic functions. The complete proof
is found in Theorem 6.3.

7. Almost Periodic Functions and Holomorphic Perturbations

We turn our attention now to the theory of almost periodic functions. For a
detailed study of these functions, the reader is referred to [10] or Chapter VI
in [50]. Before we recall the definition, we introduce the following conventions
that are used throughout this section.

A (horizontal) strip is an open set S ⊂ C of the form

S = S(a, b) := {z ∈ C : a < Im z < b} (7.1)

for a < b. Given a strip S = S(a, b), we denote by Sη, for 0 < η � 1
2 (b − a)

sufficiently small, the partial strip Sη := S(a + η, b − η) in S. A closed strip
is the closure of a strip. Any intersection of a strip with a right half plane
H = {z ∈ C : Re z > γ}, for some γ ∈ R, is then a right half strip (c.f. (6.8)).
We typically denote segments of a specified strip S using something similar to
interval notation:

((γ1, γ2)) := {z ∈ S : γ1 < Re z < γ2},

[[γ1, γ2]] := {z ∈ S : γ1 ≤ Re z ≤ γ2}.
(7.2)

7.1. Almost Periodic Functions

Definition. A set T of real numbers is called relatively dense if there exists
some number 	 > 0 such that T ∩ J �= ∅ for any interval J ⊂ R of length
|J | ≥ 	.

Now let S be a strip.

Definition. A number τ is called an ε-shift of a function g : S → C if

|g(z + τ) − g(z)| < ε, ∀z ∈ S. (7.3)

Definition. A function g : S → C is called an (holomorphic) almost periodic
function if and only if it is holomorphic, and for every ε > 0, there exists a
relatively dense set of ε-shifts of g. This means that for every ε > 0, there
exists a set Tε of ε-shifts and a number 	ε > 0 such that for any interval J ⊂ R

with length |J | ≥ 	ε, there exists some τ ∈ Tε ∩ J such that (7.3) holds.

Trigonometric polynomials are all examples of almost periodic functions.
An equivalent definition of the set of almost periodic functions is the uniform
closure of the set of trigonometric polynomials as can be seen from the approx-
imation theorem (Proposition 7.1). For our purposes regarding the function
G(A; k) from Sect. 6.2, itself a trigonometric polynomial, it is enough to deal
only with these functions. However, many of the results that we shall need for
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trigonometric polynomials can be easily generalised to almost periodic func-
tions, and so, we include the theory here for completeness.

We start by listing four fundamental theorems from the existing literature
on the theory of almost periodic functions.

Proposition 7.1 (Approximation Theorem) (Paragraphs 84 & 107, [10]). A
holomorphic function g on a strip S is almost periodic on every partial strip
Sη of S if and only if for every ε > 0 there exists a trigonometric polynomial
pε on S such that

|g(z) − pε(z)| < ε, ∀z ∈ Sη, ∀η > 0. (7.4)

Proposition 7.2 (c.f. Paragraphs 46 & 105, [10]; Lemma 1, Sec. 2, Ch. VI, [50]).
Let g be an almost periodic function not identically equal to zero on the strip
S. Then for any η > 0 sufficiently small, there exist constants Mη, μη > 0 such
that

μη ≤ |g(z)| ≤ Mη, ∀z ∈ Sη

∖
⋃

zj∈g−1{0}
B(zj , η). (7.5)

Remark. As proved in [10], an almost periodic function g on S is uniformly
bounded by some Mη > 0 on the whole partial strip Sη, but we never use this
fact inside the discs B(z0, η) around zeros z0 of g.

Proposition 7.3 (Lemma 2, Sec. 2, Ch. VI, [50]). Let g be an almost periodic
function not identically equal to zero on the strip S. Then for each η > 0, there
exists N(η) ∈ N such that for every t > 0, there are at most N(η) roots of g
in the segment

Sη ∩ [[t, t + 1]].

Proposition 7.4 (Lemma 4, [47]). For any two trigonometric polynomials p1

and p2 on the strip S, there exists a function τ : R+\{0} → R
+\{0} such that

limδ→0+ τ(δ) = +∞ and that for each δ > 0, τ(δ) is a δ-shift for both p1 and
p2:

|pj(z + τ(δ)) − pj(z)| ≤ δ, ∀z ∈ S, j = 1, 2. (7.6)

An additional result that we shall use frequently without comment is
that the derivative of an almost periodic function is also an almost periodic
function (see Paragraph 105, [10]). Next we prove two more lemmas that are
needed for the main results in this section. The first of these is embedded in
the proof of Theorem 5 in [47], but we give a proof here for the purpose of
self-containment.

Lemma 7.5 Let z0 be a root of order M of the holomorphic almost periodic
function g on a strip S, and suppose that g has no other roots on or inside the
circle ∂B(z0, ε) ⊂ S for some ε � 1. Then for any K ∈ R there exists a shift
t ≥ K such that the shifted circle B(z0 + t, ε) contains precisely M zeros of g
counting multiplicities.
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Proof By assumption, there exists με > 0 such that με ≤ |g(z)| for all z ∈
∂B(z0, ε). Let η > 0 be such that B(z0, ε) ⊂ Sη. Then by Proposition 7.1, there
exists an approximating trigonometric polynomial p which satisfies |g(z) −
p(z)| < με

2 for all z ∈ Sη. These two inequalities imply in particular that
|p(z)| > με

2 on ∂B(z0, ε), and moreover, Rouché’s theorem applied to g and
p on the disc B(z0, ε) implies that p also has M roots in B(z0, ε), counting
multiplicities.

Let τ be the function from Proposition 7.4 for p1 = p and p2 = p′. Let
Mε > 0 be a constant such that

με

2
< |p(z)| < Mε, |p′(z)| < Mε, ∀k ∈ ∂B(z0, ε). (7.7)

Set δε := min
{

με

4 ,
μ2

ε

32Mε

}
< Mε. By Proposition 7.4, one can pick δ ∈ (0, δε)

such that τ(δ) ≥ K, and the following inequalities hold:

|p(z + τ(δ)) − p(z)| ≤ δ,
|p′(z + τ(δ)) − p′(z)| ≤ δ,

}
∀z ∈ ∂B(z0, ε). (7.8)

If z ∈ ∂B(z0, ε), then |p(z + τ(δ))| > |p(z)| − |p(z + τ(δ)) − p(z)| > με/4, so
|g(z)−p(z)| < με

4 < |p(z)| for all z ∈ ∂B(z0 +τ(δ), ε). Thus, Rouché’s theorem
applied to g and p on B(z0 + τ(δ), ε) implies that g and p also have the same
number of roots inside ∂B(z0 + τ(δ), ε) counting mulitplicities. It remains to
check that this number is M .

The quantity

I :=
1

2πi

∮

∂B(z0,ε)

(
p′(k + τ(δ))
p(k + τ(δ))

− p′(z)
p(z)

)
dz (7.9)

equals the difference between the numbers of roots of p in B(z0 + τ(δ), ε) and
in B(z0, ε). It has already been established that p has M roots in B(z0, ε). We
compute

|I| ≤ 1
2π

∮

∂B(k0,ε)

( |p′(z + τ(δ))||p(z + τ(δ)) − p(z)|
|p(z)||p(z + τ(δ))|

+
|p′(z + τ(δ)) − p′(z)||p(z + τ(δ))|

|p(z)||p(z + τ(δ))|
)

dz

≤ 1
2π

· 2πε · δ(Mε + δ) + (Mε + δ)δ
με

2 (με

2 − δ)
< 1,

with the final inequality holding due to the choice of δε, which shows that p
also has M roots in B(z0 + τ(δ), ε), and thus so does g. �

Lemma 7.6 Let g be an almost periodic function on a strip S, and let Z ⊂ S
be a closed strip or horizontal line. Suppose that for every (sufficiently small)
ε > 0, there exists K(ε) > 0 such that any root z0 of g with Re z0 > K(ε) has
a distance of at most ε from Z. Then every root of g is contained in Z.



Vol. 22 (2021) n-Laplacians on Metric Graphs 147

Proof Let z0 be an arbitrary root of g. By Lemma 7.5, there exists t > 0 such
that z0 + t > K( ε

2 ) + ε and B(z0 + t, ε
2 ) contains a root z̃0 of g. Now Re z̃0 >

K( ε
2 ), so by assumption dist(z̃0,Z) < ε

2 . Then it follows that dist(z0,Z) =
dist(z0 + t,Z) ≤ |(z0 + t)− z̃0|+dist(z̃0,Z) ≤ ε

2 + ε
2 = ε. Since Z is closed and

ε is arbitrary, it follows that z0 ∈ Z. �

7.2. Roots of Holomorphic Perturbations of Almost Periodic Functions

We are aiming to prove that if f is a holomorphic perturbation of an almost
periodic function g on some half strip H∩S (see Sect. 6.2), then their roots in
some sense converge to one another. This is what we expect for the functions
(6.3) and (6.5) from Sect. 6 for a given n-Laplacian with scaling-invariant
vertex conditions. Let us first make this convergence notion precise.

To be able to consider multiplicities of roots, we shall implicitly work
with multisets. That is to say, those roots of multiplicity m appear m times in
the (multi)set.

Definition Let P,Q ⊂ C be countable multisets. If they have no finite accumu-
lation points, then we say that P,Q are asymptotically close, written P ∼ Q, if
and only if they can be labelled P = {p0, p1, p2, . . . } and Q = {q0, q1, q2, . . . },
respecting multiplicities, in such a way that there exists an integer m ∈ Z such
that

lim
j→∞

|qj − pj+m| = 0. (7.10)

Observe that asymptotic closeness ∼ is an equivalence relation.
For our purposes, given a holomorphic perturbation f of an almost pe-

riodic function g on a right half strip H ∩ S, the multisets P and Q in this
definition will play the roles of the sets of roots of f and g inside H ∩ S. We
will show that these sets are asymptotically close.

We begin with a lemma which will allow us to group together the roots of
f and g into sets containing equally many of each, and such that the diameters
of these sets decrease to zero as we move to the right. From there, we can order
the roots to satisfy (7.10). To prove the lemma, we integrate the difference of
logarithmic derivatives of f and g along certain disjoint contours surrounding
the roots and conclude that these integrals must be zero (like in the proof of
Lemma 7.5). However, in order to use the bounds from Lemma 7.2, we cannot
simply take these contours to be circles of some specified radius, because it is
not guaranteed that the smaller discs around the roots of g (inside which the
bounds don’t apply) will not eventually intersect one of our contours.

Lemma 7.7 Let g be an almost periodic function on a strip S, let f be a holo-
morphic perturbation of g on the intersection of S with a right half plane H.
Then for any η > 0 and 0 < ε � 1 sufficiently small there exists Kη(ε) ∈ R

and a sequence {Oj
η(ε)}∞

j=0 of simply connected open sets in S such that all of
the following hold (Fig. 1):

(I) every root z0 of g in Sη with Re z0 > Kη(ε) is contained in an element
of {Oj

η(ε)}∞
j=0,
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×
•

•
×

•×

O1
η(ε)

Oj
η(ε)

Oj+1
η (ε)

O1
η(ε

′)
O2

η(ε
′)
O3

η(ε
′)

double
root of g

•×

•××

Re z = Kη(ε) Re z = Kη(ε′)

S S2η

Figure 1. Illustration of Lemma 7.7 with ε′ < ε. Crosses (×)
are roots of f and dots (•) are roots of g

(II) every root k0 of f in S2η with Re k0 > Kη(ε) is contained in an element
of {Oj

η(ε)}∞
j=0,

(III) every Oj
η(ε) contains equal (nonzero) numbers of roots of f and g counting

multiplicities,
(IV) diam(Oj

η(ε)) < ε for every j ∈ N,
(V) limε→0+ Kη(ε) = +∞,

and such that if further 0 < ε′ ≤ ε, then:
(VI) Kη(ε′) ≥ Kη(ε)

(VII) for every j′ ∈ N there exists j ∈ N such that Oj′
η (ε′) ⊆ Oj

η(ε),
(VIII) the line Re z = Kη(ε′) does not intersect with Oj

η(ε) for any j ∈ N.

Proof Step 1—Choosing Kη(ε). Fix η > 0 and for now, also ε > 0. Propo-
sition 7.3 implies that there is a number N(η/2) such that every segment
Sη/2 ∩ [[t, t + 1]] of width 1 contains at most N(η/2) roots of g. Take ξ > 0
with

ξ < min
{

η

4N(η/2)
,

ε

4N(η/2)

}
<

1
4N(η/2)

. (7.11)

By Proposition 7.2, there exist μξ,Mξ > 0 such that μξ ≤ |g(z)| ≤ Mξ for all
z ∈ Sη/2\

⋃
z0∈g−1{0} B(z0, ξ). By assumption, h := f − g and h′ satisfy (6.7)

on H ∩ S, so one may pick Kη(ε) ∈ R ∩ (H + 1) such that (Fig. 2)

|h(z)|, |h′(z)| ≤ min

{
μξ

2
,

μ2
ξ

4Mξ

}
, ∀z ∈ S : Re z > Kη(ε) − 1. (7.12)

Step 2—Constructing {Oj
η(ε)}. Consider the union of closed discs of ra-

dius 2ξ centred at the zeros of g. These discs are not necessarily disjoint. We
are concerned only with the connected components which contain at least one
root of g in Sη with real part greater than Kη(ε); ignore all others. The max-
imum number of discs comprising these connected components is N(η/2) for
otherwise there would certainly be a segment of Sη/2 of width 1 containing
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roots of g in Sη/2
with real part

greater than Kη(ε)

•

•

•
•

Re z = Kη(ε)

Sη/2

ξ1

Figure 2. Illustration of step 1 : In the non-shaded region, g
is bounded, and |f − g| and |f ′ − g′| are small

O1
η(ε)

C1
η(ε)

Oj
η(ε)

Cj
η(ε)

Oj+1
η (ε)

Cj+1
η (ε)

•

•

•
•

Re z = Kη(ε)

Sη
r1η(ε)

ξ

2ξ
rj
η(ε)

rj+1
η (ε)

Figure 3. Illustration of step 2 : constructing the sets Oj
η(ε)

more than N(η/2) roots of g, a contradiction. Moreover, these connected com-
ponents are contained in Sη/2. Let us briefly label them Cj

η(ε) for j ∈ N. As
they are closed, one may pick slightly larger radii rj

η(ε) with 2ξ < rj
η(ε) < 4ξ,

such that the open sets

Oj
η(ε) :=

⋃

z0∈g−1{0}∩Cj
η(ε)

B(z0, r
j
η(ε)),

are: i) disjoint, ii) contained in H ∩ Sη/2, and iii) their boundaries ∂Oj
η(ε)

contain no roots of f (Fig. 3).
Step 3—Equal numbers of roots in Oj

η(ε). For each j, the integral

1
2πi

∮

∂Oj
η(ε)

(
f ′(z)
f(z)

− g′(z)
g(z)

)
dz (7.13)

equals the difference between the numbers of roots of f and g inside Oj
η(ε)

counting multiplicities. By construction, we have μξ ≤ |g(z)| ≤ Mξ on ∂Oj
η(ε),
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hypothetical root k0 of f

•

•

×

O1
η(ε)

Oj
η(ε)

Oj+1
η (ε)

•
•

Re z = Kη(ε)

S2η

ξB(k0, ξ)

Figure 4. Illustration of step 4 : contradiction to the exis-
tence of a root k0 of f outside the sets Oj

η(ε)

and (7.12) holds there too, so one can compute

|I| ≤ 1
2π

∮

∂Oj
η(ε)

|h(z)||g′(z)| + |h′(z)||g(z)|
|g(z) + h(z)||g(z)| dz

≤ 1
2π

· N(η/2) · 2πrj
η(ε) ·

μ2
ξ

4Mξ
· Mξ + μ2

ξ

4Mξ
· Mξ

(μξ − μξ

2 ) · μξ
< ε.

Since ε < 1, the integral (7.13) is zero, and thus, f and g have the same number
of roots inside Oj

η(ε).
Step 4—No roots outside

⋃
j Oj

η(ε). Suppose for a contradiction that
there is a root k0 of f in S2η with Re k0 > Kη(ε) which is not in Oj

η(ε) for any
j. As ∂B(k0, ξ) ∩ B(z0, ξ) = ∅ for every root z0 of g,
∣∣∣∣∣

1
2πi

∮

∂B(k0,ξ)

(
f ′(z)
f(z)

− g′(z)
g(z)

)
dz

∣∣∣∣∣ ≤ 1
2π

∮

∂B(k0,ξ)

|h(z)||g′(z)| + |h′(z)||g(z)|
|g(z) + h(z)||g(z)| dz

≤ 1
2π

· 2πξ ·
μ2

ξ

4Mξ
· Mξ + μ2

η

4Mξ
· Mξ

(μξ − μξ

2 ) · μξ

<
ε

N(η/2)
≤ ε,

whence as ε < 1, f and g have the same numbers of roots in B(k0, ξ). However,
this contradicts the fact that g cannot have any roots in this disc (Fig. 4).

Step 5—Induction. By this construction, Kη(ε) and {Oj
η(ε)} depend only

on the choice of ξ to satisfy (7.11). One may thus fix a strictly decreasing
sequence ξr → 0, and for each ε, pick ξ equal to the largest ξr such that (7.11)
holds. Properties (I)–(IV) will hold by steps 1–4, and moreover, they will still
hold if we pick Kη(ε) larger for a given ε. For any particular pair ε′ ≤ ε, it
is possible to choose Kη(ε′) greater than an arbitrarily large number whilst
satisfying the property that the line Re z = Kη(ε′) does not intersect with
Oj

η(ε) for any j, for otherwise by (7.11) it would contradict the fact that there
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are at most N(η/2) roots of g in a segment of width 1. But since we need only
consider the sequence ξr, it follows that we can do this inductively for all r,
thereby permitting the choice of Kη(ε) and {Oj

η(ε)}, for all ε sufficiently small,
such that (V)–(VIII) hold. �
Theorem 7.8 Let g be an almost periodic function on a strip S, let f be a
holomorphic perturbation of g on the intersection of S with a right half plane
H. If all roots of f are contained in some smaller horizontal closed strip or
horizontal line Z ⊂ S, then

(i) all of the roots of g are also contained in Z, and
(ii) f−1{0} ∩ H ∼ g−1{0} ∩ H, i.e. the sets of roots of f and g in H are

asymptotically close.

Proof Suppose that all roots of f are contained in Z.
(i): By Lemma 7.7, given η > 0 sufficiently small, there exists Kη( ε

2 ) such
that for every root z of g in Sη with Re z0 > Kη(ε), the disc B(z0,

ε
2 )

contains a root of f . By Lemma 7.6 for the strip Sη, every root of g in
Sη is in fact contained in Z. This is true for every such η, and thus, any
root of g is in Z.

(ii): Let P and Q be the sets of roots of f and g in H, respectively. Take η > 0
sufficiently small that Z ⊂ S2η, in which case all roots are in S2η. Then
by Lemma 7.7, there exists for each ε > 0 (sufficiently small) a number
Kη(ε) ∈ R and a sequence {Oj

η(ε)}∞
j=0 of open simply connected sets in S

satisfying properties (III)–(VIII) in the statement of the lemma, and such
that every root of f and g with real part greater than Kη(ε) is contained
in some Oj

η(ε).
Pick a strictly decreasing sequence εr → 0 with ε0 � 1. Write H = {z ∈

C : Re z > γ0} and γr := Kη(εr) for r ≥ 1. By (V) and (VI), the sequence
{γr}∞

r=0 is increasing with γr → ∞ as r → ∞, dividing the half strip H ∩ S
into segments ((γr−1, γr)) of finite length. By Proposition 7.3 and the identity
theorem, there are at most finitely many elements of P and Q in each segment
((γr−1, γr)) for r ≥ 1, and by (VIII), there are no elements of P or Q lying on
the boundaries of these segments.

Fix a labelling of all elements of Q = {q0, q1, q2, . . . } which exhausts the
elements in each successive segment before proceeding to the next. It remains
to find an appropriate labelling for the elements of P . Begin with the elements
in ((γ0, γ1)); the order does not matter. Let m := |Q ∩ ((γ0, γ1))| − |P ∩
((γ0, γ1))|. Within the segments ((γr, γr+1)), r ≥ 1, all of the roots of f and g
are contained inside elements of {Oj

η(εr)}∞
j=0 which by (VII) and (VIII) do not

overlap multiple segments. By (III), there are equal numbers of roots of f and g
counting multiplicities in each Oj

η(εr). One can therefore construct a bijection
Q\((γ0, γ1)) → P\((γ0, γ1)) such that qj is mapped to some element of P ,
which we call pj+m, in the same open set Oj

η(εr). Then limj→∞ |qj −pj+m| = 0
so P and Q are asymptotically close. �
Remark The roles of f and g cannot be exchanged in Theorem 7.8 because f is
in general not an almost periodic function. Nevertheless, under the hypotheses
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of this theorem, if we began by assuming that all roots of g were contained in
Z instead of the roots of f , then one could similarly show that

lim
K→∞

(
inf

k0∈f−1{0}∩Sη

Re k0>K

dist(k0,Z)

)
= 0.

It can be concluded from Theorem 7.8 that for an n-Laplacian A in
L2(Γ) satisfying Assumptions 3.4 and 5.3, the set of positive roots of G(A; k)
is asymptotically close to the set of positive roots of the secular function as
anticipated (and in that case, Z = R). Once the issue of eigenvalue multiplicity
is resolved (Sect. 8), it will follow that this is asymptotically close to the 2nth
root of the spectrum of A.

One could go further and ask what can be said about two n-Laplacians
which are asymptotically isospectral. In [47], it is proved that if two Laplacians
(n = 1) with scaling-invariant vertex conditions are asymptotically isospectral,
then they are actually isospectral. That relies on the following result:

Proposition 7.9 (Theorem 5, [47]). Let g1, g2 be almost periodic functions on
a strip S, let Sη be a partial strip for η sufficiently small and let H be a right
half plane. Enumerate the zeros of gi inside H ∩ Sη ⊂ S by z

(i)
1 , z

(i)
2 , . . . for

i = 1, 2. If there exists an injection ι : N → N such that

lim
j→∞

∣∣∣z(1)
j − z

(2)
ι(j)

∣∣∣ = 0, (7.14)

then all of the zeros of g1 inside the full partial strip Sη are zeros of g2 with
at least the same multiplicity.

What we call z
(2)
ι(j) here is referred to as a subsequence of z

(2)
j in the

statement of this result in [47], but it is clear from the proof that this can be
interpreted to mean that ι is an injection. Applying Proposition 7.9 symmet-
rically, with η chosen appropriately, we get the following:

Corollary 7.10 Let g1, g2,S,H be as in the statement of Proposition 7.9, and
suppose that all roots are contained in some smaller strip in S. If the set of
roots of g1 in H ∩ S is asymptotically close to the set of roots of g2 in H ∩ S,
then in fact g1 and g2 have equal roots in S counting multiplicities.

Now we can state a theorem that will allow something to be said about
asymptotic isospectrality for higher-order n-Laplacians.

Theorem 7.11 Let g1, g2 be almost periodic functions on a strip S. Let f1, f2 be
holomorphic perturbations of g1, g2, respectively, on the intersection of S with
a right half plane H. Suppose further that all roots of f1 and f2 are contained
in some smaller strip. Then the following are equivalent:
(a) g−1

1 {0} = g−1
2 {0}, i.e. g1 and g2 have the same roots counting multiplic-

ities,
(b) f−1

1 {0} ∼ f−1
2 {0}, i.e. the multisets of roots of f1 and f2 are asymptoti-

cally close.
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Proof Write the roots of fi as k
(i)
1 , k

(i)
2 , . . . and the roots of gi as z

(i)
1 , z

(i)
2 , . . .

for i = 1, 2. By Theorem 7.8, one can order the roots of f1, f2, g1, g2 such that

∃m1 ∈ Z : ∀ε > 0 : ∃R(1)
ε ∈ N : j > R(1)

ε ⇒ |z(1)
j − k

(1)
j+m1

| < ε,

∃m2 ∈ Z : ∀ε > 0 : ∃R(2)
ε ∈ N : j > R(2)

ε ⇒ |z(2)
j − k

(2)
j+m2

| < ε.

(a)⇒(b): If g−1
1 {0} = g−1

2 {0} counting multiplicities, then without loss of
generality one can assume that zj = z

(1)
j = z

(2)
j for all j. Hence, given any

ε > 0, if j > max{R
(1)
ε/2, R

(2)
ε/2}, then |k(1)

j+m1
− k

(2)
j+m2

| < ε. Thus,

lim
j→∞

∣∣∣k(1)
j+m1

− k
(2)
j+m2

∣∣∣ = 0,

from which it follows that f−1
1 {0} ∼ f−1

2 {0} according to our definition of
asymptotic closeness.
(b)⇒(a): If f−1

1 {0} ∼ f−1
2 {0}, then, without having to reorder the roots, there

exists a bijection π : N\{finite #integers} → N\{finite # integers} such that

∀ε > 0 : ∃Nε ∈ N : j > Nε ⇒ |k(1)
j − k

(2)
π(j)| < ε.

Since π is a bijection, given ε > 0 one can certainly pick N ′
ε > max{R

(1)
ε/3, Nε/3−

m1} such that π(j + m1) > R
(2)
ε/3 whenever j > N ′

ε. Thus, if j > N ′
ε, we have

∣∣∣z(1)
j − z

(2)
π(j+m1)+m2

∣∣∣

≤
∣∣∣z(1)

j − k
(1)
j+m1

∣∣∣+
∣∣∣k(1)

j+m1
− k

(2)
π(j+m1)

∣∣∣+
∣∣∣k(2)

π(j+m1)
− z

(2)
π(j+m1)+m2

∣∣∣
< ε.

Hence,

lim
j→∞

∣∣∣z(1)
j − z

(2)
π(j+m1)+m2

∣∣∣ = 0.

As π is a bijection, one can apply Proposition 7.9 symmetrically to conclude
that g1 and g2 have the same roots with equal multiplicities. �

8. Asymptotic Approximation of the Spectrum

8.1. The Quasispectrum

Definition Let χ be the secular function for an n-Laplacian A in L2(Γ) satisfy-
ing Assumption 3.4, and suppose that there exists an almost periodic function
g such that the sets of positive roots of χ and g are asymptotically close (ac-
cording to the definition in Sect. 7). Then the set

σq(A) := {z2n : Re z > 0, g(z) = 0} (8.1)

is called the quasispectrum of A.
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Theorem 8.1 Let A be an n-Laplacian in L2(Γ). Under Assumptions 3.4 and 5.3,
the quasispectrum σq(A) exists and is unique, and moreover, the almost peri-
odic function g from definition (8.1) can be taken equal to the trigonometric
polynomial G defined by (6.5). That is,

σq(A) = {k2n : k > 0, G(A; k) = 0} ⊂ R. (8.2)

Proof We shall first show that such a set σq(A) exists, given by (8.2). Let S
be some strip containing R. By Lemma 6.2, F is a holomorphic perturbation
of G on any half strip H ∩ S with the half plane H sufficiently far to the
right. By Theorem 4.4, the set σ(A)\{0} consists of the positive roots of
χ = FF̃ , so it follows from Lemma 6.1 that the roots of F in H ∩ S are
real. Then F and G satisfy the hypothesis of Theorem 7.8 with Z = R and
so F−1{0} ∩ H ∼ G−1{0} ∩ H. Defining σq(A) by (8.2), this implies that
σq(A) ∼ χ−1{0} ∩ R

+, and thus, σq(A) is the quasispectrum.
For uniqueness, let Σ1,Σ2 be two candidates for the quasispectrum, gen-

erated by respective almost periodic functions g1, g2. Then g−1
1 {0} ∩ H0 ∼

σ(A)1/2n ∼ g−1
2 {0} ∩ H0, where H0 := {z ∈ C : Re z > 0}. Since ∼ is an

equivalence relation, Corollary 7.10 implies that g−1
1 {0} = g−1

2 {0}, whence
Σ1 = Σ2. �

Upon combining Lemmas 6.1 and 6.2, and Theorems 7.8 and 8.1, it is
proved that

(
σq(A)

)1/2n ∼ χ−1{0} ∩ R+. (8.3)

However, we cannot yet state that (σq(A))1/2n ∼ (σ(A))1/2n because we have
not proved that the ‘equality’ of χ−1{0} ∩ R+ and (σ(A))1/2n counts multi-
plicities. The next lemma allows this conclusion to me made, and moreover,
to cater for more general cases, we relax Assumption 5.3 and work only under
Assumption 3.4, together with the following:

Assumption 8.2 All edges are compact. The quasispectrum exists and its el-
ements are the 2nth powers of the roots of the secular equation for a Dirac
operator DU of the form (6.6) for some d × d matrix U.

By Theorem 8.1, we know already that Assumptions 3.4 and 5.3 imply
that the operator satisfies Assumption 8.2.

Lemma 8.3 Let A be an n-Laplacian in L2(Γ). Under Assumptions 3.4 and 8.2,
the geometric multiplicity of any sufficiently large eigenvalue λ of A is equal
to its algebraic multiplicity.

Proof Consider the operator A ⊕ A in L2(Γ � Γ) = L2(Γ) ⊕ L2(Γ). Then
σ(A ⊕ A) = σ(A) � σ(A) so every eigenvalue λ of A ⊕ A has twice the
geometric multiplicity that it has as an eigenvalue of A. Consider also the
Dirac operator DU now as an operator in L2(Γ�Γ). Its nonzero eigenvalues are
given by the roots of the trigonometric polynomial G̃(k) := det[I − USe(k)],
all of which are real. Then every eigenvalue λ = k2n of D2n

U has twice the
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geometric multiplicity that k has as an eigenvalue of DU, since k is a root of
G̃ if and only if −k is a root.

If Amin denotes the minimal n-Laplacian in L2(Γ) (c.f. Sect. 3.1), then
Amin ⊕Amin is the minimal n-Laplacian in L2(Γ�Γ). Since Γ is compact and
has d endpoints, Γ � Γ has d edges and so

dim(ran(Amin ⊕ Amin − ζ)⊥) = 2nd, ∀ζ ∈ C\{0}
by the same argument used to derive (A.10) in the proof of Theorem 3.5.
Moreover, we have (Amin ⊕ Amin)ψ = (A ⊕ A)ψ = D2n

U ψ for any ψ ∈
dom(Amin ⊕Amin), and so, for ζ ∈ C not in the spectra of A or D2n

U , the rank
of

(A ⊕ A − ζ)−1 − (D2n
U − ζ)−1

∣∣
ran(Amin⊕Amin−ζ)

is at most 2nd. By Proposition A.1, for any interval J ⊂ R,

N (J,D2n
U ) − 2nd ≤ N (J,A ⊕ A) ≤ N (J,D2n

U ) + 2nd,

where N (J,T) denotes the number of eigenvalues of a self-adjoint operator T

in the interval J counting multiplicities. Hence, for any 0 < a < b,

N ([a, b],DU) − nd ≤ N ([a2n, b2n],A) ≤ N ([a, b],DU) + nd. (8.4)

Suppose for a contradiction that are infinitely many eigenvalues of A for
which the geometric multiplicity is strictly less than the algebraic multiplicity.
As a consequence of the following:

• geometric multiplicity is at most equal to algebraic multiplicity for eigen-
vales of A (Lemma 6.3),

• geometric multiplicity equals algebraic multiplicity for eigenvales of DU

(Lemma 6.4),
• the (multi)sets of positive roots of F and G̃ are asymptotically close

(Assumption 8.2),

we would get a contradiction to (8.4). This is seen as follows.
Fix ε � 1. Under Assumption 8.2, there exists m ∈ Z and Kε ∈ N such

that the roots (kj) of F and (zj)j of G̃ satisfy |zj −kj+m| < ε for all j ≥ Kε. By
Lemma 6.3 and the assumption that we are using to reach a contradiction, for
any r ∈ N, there must exist Rr ≥ Kε such that kj+r ≤ λj(A)1/2n whenever
j ≥ Rr. Moreover, by Lemma 6.4, the positive eigenvalues λj(DU) of DU

satisfy λj(DU) = zj . Then

λj+r−m(DU) − ε = zj+r−m − ε < kj+r ≤ λj(A)1/2n

for j ≥ Rr. By Proposition 7.3, there exists a number N such that there are
at most N roots of G̃ inside any interval of width 1 (> ε), and thus, the same
can be said of the total geometric multiplicity of eigenvalues of DU in such an
interval. Since r can be chosen arbitrarily large, in particular r > m+N +nd,
this contradicts (8.4). �

Using this result, we get the following:
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Theorem 8.4 Let A be an n-Laplacian in L2(Γ). Under Assumptions 3.4 and 8.2,
the set of 2nth roots of the spectrum σ(A) is asymptotically close to the 2nth
roots of the quasispectrum σq(A) counting multiplicities, that is,

(
σ(A)

)1/2n ∼ (
σq(A)

)1/2n
. (8.5)

The set (σq(A))1/2n can be interpreted as the positive spectrum of the self-
adjoint Dirac operator DU defined by (6.6) on the same set of edges.

Combining the results of Theorems 8.1 and 8.4, we can finally deduce
what we set out to prove: the spectrum of a scaling-invariant n-Laplacian on a
compact graph can be asympotically approximated by the easily determinable
roots of a trigonometric polynomial.

Corollary 8.5 Let A be an n-Laplacian in L2(Γ). Under Assumptions 3.4
and 5.3, the 2nth root of the spectrum σ(A) is asymptotically close to the
2nth root of the quasispectrum σq(A), given explicitly by (8.2), counting mul-
tiplicities. The set (σq(A))1/2n can be interpreted as the positive spectrum of
the Dirac operator DSv defined by (6.6) on the same set of edges, where Sv is
the vertex scattering matrix for A.

Note that the quasispectrum for a Laplacian L in L2(Γ) satisfying As-
sumptions 3.4 and 5.3 is simply σ(L)\{0}.

This approach to asymptotically approximating the eigenvalues of n-
Laplacians need not be restricted only to operators with scaling-invariant
conditions. As a very simple example, the Krein extension of the minimal
Laplacian on the interval [0, 	], which has vertex conditions

ψ(	) − ψ(0) = 	ψ′(0), ψ′(0) = ψ′(	), (8.6)

has positive eigenvalues are λj = k2
j , where the values kj are the positive roots

of the equation

sin
(

k	

2

)[
cos

(
k	

2

)
+

2
k	

sin
(

k	

2

)]
= 0. (8.7)

Theorem 7.8 can clearly be applied here to approximately solve this equation.
In particular, it follows that the spectrum of this operator is asymptotically
close to that of the Neumann (or Dirichlet) Laplacian on the same interval.

8.2. Quasiisospectrality

Definition We say that two n-Laplacians A1,A2 are quasiisospectral if they
have equal quasispectra.

Theorem 8.6 Let A1 and A2 be n-Laplacians in L2(Γ1) and L2(Γ2), respec-
tively, and suppose that they both satisfy Assumptions 3.4 and 8.2. Then the
following are equivalent:
(a) A1 and A2 are quasiisospectral, i.e. σq(A1) = σq(A2),
(b) A1 and A2 have asymptotically close 2nth roots of their spectra, i.e.(

σ(A1)
)1/2n ∼ (

σ(A2)
)1/2n.

Proof The result is a direct application of Theorem 7.11. �
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Remark Theorem 8.6 still applies if we instead assume that A1,A2 satisfy
Assumptions 3.4 and 5.3, as Theorem 8.1 implies that they also satisfy As-
sumption 8.2.

One could thus refer to two quasiisospectral n-Laplacians as asymptoti-
cally isospectral up to a possible shift in the eigenvalue count: the 2nth roots of
their eigenvalues satisfy limj→∞

∣∣∣k(1)
j − k

(2)
j+m

∣∣∣ = 0 for some m ∈ Z. Applying
Proposition A.1 to A1 and A2 one can estimate the possible shift |m| ≤ nd.

Example 8.7 Let B1,B2 be bi-Laplacians in L2(Γ) with scaling-invariant con-
ditions so that their unitary parameters have the form U(B1) =

(
U1 0
0 −U2

)

and U(B2) =
(

V1 0
0 −V2

)
for some unitary Hermitian matrices U1,U2,V1,V2

(Theorem 5.1). If U1 + U2 = V1 + V2, then B1 and B2 are quasiisospectral
(Corollary 5.4 and Theorem 8.6).

9. Conclusion

Thus, we have proved that the spectrum of any n-Laplacian with scaling-
invariant vertex conditions is asymptotically close to the set of (positive) zeros
of a trigonometric polynomial, naturally leading to the notions of the quasis-
pectrum (unique in our case) and asymptotic isospectrality. The trigonomet-
ric polynomial was interpreted as a secular function for a Dirac operator on
the same metric graphs and with uniquely determined vertex conditions. Our
analysis is based on the theory of almost periodic functions, and a few proven
abstract results definitely have potential applications far beyond the theory of
differential operators on metric graphs. The developed methods appear to be
very generalisable, using the rigidity of zeros of almost periodic functions allow-
ing one to treat much more general operators like n-Laplacians with arbitrary
(including non-scaling-invariant) vertex conditions and their perturbations by
lower differential expressions. This will be the subject of future work.
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Appendix A. Proofs for Section 3

In this section, we fill in the gaps that were left by omitting proofs in Sect. 3.

Proof of Theorem 3.2 (a)⇔(b): Direct application of Proposition 3.1.
(b)⇒(c): Take k = 1 in (3.3). Denote by P−1 the projection onto the −1
eigenspace of U(1), so I − P−1 is the projection onto the orthogonal comple-
ment. Define X := kerP−1. Applying P−1 to Eq. (3.3) with k = 1 yields
−2iP−1Γ0(1)ψ = 0, whence Γ0(1)ψ ∈ X for all ψ ∈ dom(A). Now define
T ∈ L(X) by

T = −i(I − P−1) (U(1) + I)|−1
X (U(1) − I)(I − P−1) (A.1)

= −i(I − P−1)(U(1) − I)(U(1) + I)−1(I − P−1),

observing that U(1)− I leaves X-invariant, and (U(1)+ I)−1 and U(1)− I com-
mute on X. It is easy to see that T is Hermitian. Moreover, (I−P−1){Γ1(1)ψ+
TΓ0(1)ψ} = 0 for all ψ ∈ dom(A) by (3.3), whence Γ1(1)ψ + TΓ0(1)ψ ∈ X⊥.
(c)⇒(d): Let B be an nd × nd matrix with X = ranB

∗, so X⊥ = kerB.
Now let A0 be an nd × nd with rankA0 = dim(X⊥) and whose columns are
vectors in X⊥. Then A0B

∗ = 0 and rank (A0|B) = nd. Define A := A0 − BT ,
so rank (A|B) = rank (A0|B) = nd, and (AB∗)∗ = −BTB

∗ = AB
∗ since T

is Hermitian. Now ψ ∈ dom(A) if and only if Γ0(1)ψ ∈ ranB
∗, Γ1(1)ψ +

TΓ0(1)ψ ∈ kerB, and in this case Γ0(1)ψ = B
∗v for some v ∈ C

nd, whence

AΓ0(1)ψ = AB
∗v = BA

∗v = B(A∗
0 − TB

∗)v = −BTB
∗v

= −BTΓ0(1)ψ = BΓ1(1)ψ.

On the other hand, W :=
{(

Γ0(1)ψ
−Γ1(1)ψ

)
: ψ ∈ dom(A)

}
is an nd-dimensional

vector space: it is the set of vectors w ∈ C
2nd such that (A|B)w = 0. But

since {( w0
w1 ) : v ∈ ranB

∗,−w1 + Tw0 ∈ kerB} is a subspace of W and this
also has dimension nd, they are equal. Thus, ψ ∈ dom(A) if and only if
AΓ0(1)ψ = BΓ1(1)ψ. Since AB

∗ is Hermitian and rank (A|B) = nd, this is
equivalent to (d).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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(d)⇒(b): For each k ∈ R\{0}, define

A(k) :=
(
k−(2n−1)A0

∣∣k−(2n−2)A1

∣∣· · ·∣∣k−nAn−1

)
,

B(k) :=
(
(−1)n−1A2n−1

∣∣(−1)n−2k−1A2n−2

∣∣· · ·∣∣k−(n−1)An

)
.

(A.2)

Then (d) is equivalent to the statement that the vertex conditions are given
by A(k)Γ0(k)ψ = B(k)Γ1(k)ψ where A(k)B(k)∗ is Hermitian and (A(k)|B(k))
has maximal rank nd. Then

(A(k) − iB(k))(A(k) − iB(k))∗ = (A(k) + iB(k))(A(k) + iB(k))∗ (A.3)

= A(k)A(k)∗ + B(k)B(k)∗

= (A(k)|B(k)) (A(k)|B(k))∗
. (A.4)

Now, the expression (A.4) has rank nd, and so, A(k) − iB(k) is invertible.
Then it follows that Eq. (A.3) implies that −(A(k) − iB(k))−1(A(k) + iB(k))
is unitary, and ψ ∈ H2n(Γ) satisfies the equation A(k)Γ0(k)ψ = B(k)Γ1(k)ψ
if and only if (3.3) holds with

U(k) = −(A(k) − iB(k))−1(A(k) + iB(k)). (A.5)

�
If J ⊆ R is an interval, then we define N (J,A) to be the number of

eigenvalues of A contained in J , including multiplicities. Then N (λ,A) =
N ((−∞, λ],A) according to notation introducted in Sect. 3.2. Before proving
Theorem 3.5, we quote the following well-known result.

Proposition A.1 (Theorem 3, Ch. 9, Sec. 3, [9]). Let A,B be self-adjoint
operators, and suppose that there exists some ζ ∈ ρ(A) ∩ ρ(B) for which the
operator

(A − ζI)−1 − (B − ζI)−1 (A.6)

has finite rank r. Then the spectrum of A in the bounded interval J ⊆ R is
pure discrete if and only if the spectrum of B in J is pure discrete. In this
case,

N (J,A) − r ≤ N (J,B) ≤ N (J,A) + r. (A.7)

Proof of Theorem 3.5 Consider the n-Laplacians AD := Ln
D and AN := Ln

N,
where LD and LN denote the Laplacians with Dirichlet and Neumann condi-
tions, respectively, at all endpoints. On a single interval e of length 	e, they
have eigenvalues λj(AD(e)) = λj(LN(e))n = ( π

�e
)2nj2n and λj(AN(e)) =

λj(LN(e))n = ( π
�e

)2n(j − 1)2n for j ≥ 1. Hence, for any λ > 0, we have
N (λ,AD(e)) = � �e

π λ1/2n� and N (λ,AN(e)) = � �e

π λ1/2n� + 1. Considering AD

and AN now as operators on all of E, it follows by summing over the edges
(of which there are 1

2d since all edges are compact) that

N (λ,AD) =
∑

e∈E

⌊
	e

π
λ1/2n

⌋
, N (λ,AN) =

∑

e∈E

⌊
	e

π
λ1/2n

⌋
+

1
2
d. (A.8)

It is clear then that AD,AN have pure discrete spectra with no finite ac-
cumulation points. Next we use the general fact that �∑N

n=1 an� − N <
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∑N
n=1�an� ≤ �∑N

n=1 an� ≤ ∑N
n=1 an for any positive numbers a1, . . . , aN .

Hence, if L :=
∑N

e∈E 	e is the total length of the graph, then it follows from
(A.8) that

N (λ,AD) ≤ L
π

λ1/2n, N (λ,AN) ≥ L
π

λ1/2n. (A.9)

Let Amin be the minimal n-Laplacian on E. Then for any ζ ∈ C\{0}, we
have

dim(ran(Amin − ζI)⊥) = nd (A.10)

since φ ∈ ran(Amin − ζI)⊥ if and only if (Δn − ζ̄I)φ = 0 as Amin is symmetric
and dom(Amin) is dense in H2n(Γ). Now, if ψ ∈ dom(Amin), then Aψ =
ADψ = ANψ, and in particular,

(A − ζI)−1 − (AD − ζI)−1
∣∣
ran(Amin−ζI)

= 0, ∀ζ ∈ ρ(AD) ∩ ρ(A),

(A − ζI)−1 − (AN − ζI)−1
∣∣
ran(Amin−ζI)

= 0, ∀ζ ∈ ρ(AN) ∩ ρ(A).

Now, the ranks of (A − ζ)−1 − (AD − ζI)−1 and (A − ζ)−1 − (AN − ζI)−1 are
both at most equal to the dimension of ran(Amin−ζI)⊥, which we have shown
to be nd. Since AD and AN have discrete spectra, Proposition A.1 implies that
the spectrum of A is also discrete, and in particular
L
π

λ1/2n − nd ≤ N (J,AN) − nd ≤ N (J,A) ≤ N (J,AD) + nd ≤ L
π

λ1/2n + nd,

for any bounded interval J ⊆ R. In particular by (3.7), the spectra of AD and
AN are nonnegative, so this inequality also holds for any upper semibounded
interval J . The Weyl law (3.8) follows directly. �

Appendix B. Further Properties of the Vertex Transmission
and Scattering Matrices

Finally, we give the remaining proofs of the properties of the vertex scattering
and transmission matrices. As always for n-Laplacians, we write ω := eπi/n.

Proof of Theorem 4.3 Let k ∈ R\sing(A). Given that A has vertex conditions
(3.6), one has Tv(k) = −Y(k)−1

Y(−k), where the matrices Y(±k) are defined
by (4.5). Now, one can always left-multiply the vertex conditions by any in-
vertible nd×nd matrix, say −2ikY(k), in which case without loss of generality
Y(k) = −2ikI, Y(−k) = 2ikTv(k). Define now

A(k) :=

(
n−1∑

s=0

(−1)sk2sA2s

∣∣∣∣∣

n−1∑

s=0

(−1)s(ωk)2sA2s

∣∣∣∣∣· · ·
∣∣∣∣∣

n−1∑

s=0

(−1)s(ωn−1k)2sA2s

)
,

B(k) :=

(
n−1∑

s=0

(−1)sk2s+1A2s+1

∣∣∣∣∣

n−1∑

s=0

(−1)s(ωk)2s+1A2s+1

∣∣∣∣∣

· · ·
∣∣∣∣∣

n−1∑

s=0

(−1)s(ωn−1k)2s+1A2s+1

)
.
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Then Y(±k) = A(k) ± ikB(k), and one can suppose without loss of generality
that

A(k) = ik(Tv(k) − I), B(k) = −(Tv(k) + I). (B.1)

Write Tv(k) in terms of its blocks as

Tv(k) =

⎛

⎜⎜⎜⎝

T0,0 T0,1 . . . T0,n−1

T1,0 T1,1 . . . T1,n−1

...
...

. . .
...

Tn−1,0 Tn−1,1 . . . Tn−1,n−1

⎞

⎟⎟⎟⎠ (B.2)

so that in particular Sv(k) = T0,0. Then we can express the vertex conditions
(3.6) explicitly in terms of Tv(k):
for s = 0, . . . , n − 1, we have

A2s =
(−1)sik1−2s

n

⎛

⎜⎜⎜⎜⎜⎝

n−1∑
l=0

ω−2slT0,l − I

...
n−1∑
l=0

ω−2slTn−1,l − ω2s(n−1)I

⎞

⎟⎟⎟⎟⎟⎠
,

A2s+1 =
(−1)s+1k−2s

n

⎛

⎜⎜⎜⎜⎜⎝

n−1∑
m=0

ω−(2s+1)mT0,m + I

...
n−1∑
m=0

ω−(2s+1)mTn−1,m + ω(2s+1)(n−1)I

⎞

⎟⎟⎟⎟⎟⎠
.

(B.3)

By Theorem 3.2, A is self-adjoint if and only if (3.5) is Hermitian, that is
equivalently, if and only if

n−1∑

j=0

A2jA
∗
2n−1−2j (B.4)

is Hermitian.
For each j = 0, . . . , n−1, let [A2jA

∗
2n−1−2j ]0,0 denote the upper left d×d

block of A2jA
∗
2n−1−2j . Since ω = ω−1,

[A2jA
∗
2n−1−2j ]0,0 =

(−1)nik−(2n−3)

n2

{
n−1∑

l,m=0

ω(2n−1)mω−2j(l+m)T0,lT∗
0,m

+
n−1∑

l=0

ω−2jlT0,l −
n−1∑

m=0

ω(2(n−j)−1)mT∗
0,m − I

}
, (B.5)

for j = 0, . . . , n − 1. If (B.4) is Hermitian, then so is
∑n−1

j=0 [A2jA
∗
2n−1−2j ]0,0.

As
∑n−1

j=0 ω2jr = 0 whenever r is not divisble by n, we have

n−1∑

j=0

[A2jA
∗
2n−1−2j ]0,0
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=
(−1)nik−(2n−3)

n2

{
n−1∑

l,m=0

ω(2n−1)m

⎛

⎝
n−1∑

j=0

ω−2j(l+m)

⎞

⎠T0,lT∗
0,m

+
n−1∑

j,l=0

ω−2jlT0,l −
n−1∑

m=0

ω(2n−1)m

⎛

⎝
n−1∑

j=0

ω−2jm

⎞

⎠T∗
0,m − nI

}

=
(−1)nik−(2n−3)

n

{
T0,0T∗

0,0 +
n−1∑

m=1

ω(2n−1)mT0,n−mT∗
0,m + T0,0 − T∗

0,0 − I
}

.

(B.6)

Now, i
∑n−1

m=1 ω(2n−1)mT0,n−mT∗
0,m and i{T0,0 − T∗

0,0} are both Hermitian,5

whereas i{T0,0T∗
0,0 − I} is anti-Hermitian. Since k ∈ R, it follows that (B.6) is

Hermitian if and only if T0,0T∗
0,0 − I = 0, that is, if and only if T0,0 is unitary.

Note that Sv(k) is a rational matrix defined on C\sing(A), where sing(A) is
a finite set according to Lemma 4.2. But we have just proved that Sv(k) is
unitary on R\sing(A), and thus, the poles at the points of R ∩ sing(A) are
removable. �

Consider, for each j = 1, . . . , d, the basis {ξl
j(k;x), ηl

j(k;x) : l = 0, . . . , n−
1} of formal solutions to the differential equation (4.1) on R which is deter-
mined uniquely by the following conditions:

∂rξl
j(k;xj) =

⎧
⎪⎨

⎪⎩

kl, if r = l,

+i(−1)n−1−lk2n−1−l, if r = 2n − 1 − l,

0, otherwise,

∂rηl
j(k;xj) =

⎧
⎪⎨

⎪⎩

kl, if r = l,

−i(−1)n−1−lk2n−1−l, if r = 2n − 1 − l

0, otherwise.

(B.7)

for l = 0, 1, . . . , n − 1. It satisfies the property that ηl
j(k;x) = ξ̄l

j(k;x) for all
k ∈ R and x ∈ e(xj). For Laplacians (n = 1), the basis is identical to that
used to construct the vertex transmission matrix in Sect. 4.1, consisting of
ξ0
j (k;x) = eik|x−xj | and η0

j (k;x) = e−ik|x−xj |. However, in general this is not
the case. See for instance the basis for bi-Laplacians (n = 2), stated explicitly
in the proof of Corollary 5.4 later in this appendix.

Any function ψ ∈ L2(Γ) which statisfies the differential equation in a
neighbourhood of the vertices can be written for x ∈ e(xj) near to the endpoint

5It can be seen that the former is Hermitian since ωn = −1, so ω(2n−1)n = −1, and thus,
(

i

n−1∑

m=1

ω(2n−1)mT0,n−mT∗
0,m

)∗
= −i

n−1∑

m=1

ω−(2n−1)mT0,mT∗
0,n−m

= i

n−1∑

m=1

ω(2n−1)(n−m)T0,mT∗
0,n−m,
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xj with respect to this basis as:

ψ(x) =
n−1∑

l=0

αl
jξ

l
j(k;x) +

n−1∑

l=0

βl
jη

l
j(k;x), ∀x ∈ e(xj). (B.8)

For any set of amplitudes, ψ is a solution of the differential equation on the
edges. Let us discuss under which conditions the function satisfies the vertex
conditions

∂lψ(xj) =

⎧
⎨

⎩

kl(αl
j + βl

j), if l = 0, 1, . . . , n − 1,

i(−1)n−lkl(α2n−1−l
j − β2n−1−l

j ), if l = n, n + 1, . . . , 2n − 1,
(B.9)

for all j = 1, . . . , d and l = 0, . . . , n − 1, which can be rearranged to

αl
j :=

1
2k2n−1

(k2n−1−l∂lψ(xj) − i(−1)n−lkl∂2n−1−lψ(xj)),

βl
j :=

1
2k2n−1

(k2n−1−l∂lψ(xj) + i(−1)n−lkl∂2n−1−lψ(xj)).
(B.10)

If we build these amplitudes into column vectors αl = {αl
j}d

j=1, βl = {βl
j}d

j=1,
as we did with the amplitudes in the original basis, then we observe the fol-
lowing:
⎛

⎜⎝

α0

...
αn−1

⎞

⎟⎠ =
1

2k2n−1

⎛

⎜⎝

k2n−1Ψ − i(−1)n−1∂2n−1Ψ
...

kn∂n−1Ψ − ikn−1∂nΨ

⎞

⎟⎠ ≡ 1

2k2n−1
(Γ0(k) − iΓ1(k)),

⎛

⎜⎝

β0

...
βn−1

⎞

⎟⎠ =
1

2k2n−1

⎛

⎜⎝

k2n−1Ψ + i(−1)n−1∂2n−1Ψ
...

kn∂n−1Ψ + ikn−1∂nΨ

⎞

⎟⎠ ≡ 1

2k2n−1
(Γ0(k) + iΓ1(k)).

(B.11)

Now as a direct consequence of Theorem 3.2, we deduce the following:

Lemma B.1 Let A be an n-Laplacian in L2(Γ) satisfying Assumption 3.4. A
function ψ ∈ L2(Γ) given, for each j = 1, . . . , d, in a neighbourhood of the
endpoint xj by (B.8) satisfies the vertex conditions for A if and only if

⎛

⎜⎝
α0

...
αn−1

⎞

⎟⎠ = U(k)

⎛

⎜⎝
β0

...
βn−1

⎞

⎟⎠ . (B.12)

With this, we conclude by proving two results that were relied upon in
Sect. 5.

Corollary B.2 Let A be an n-Laplacian in L2(Γ). Under Assumption 3.4, U(k)
is independent of k if and only if Tv(k) is independent of k. In this case,
Tv := Tv(k) ≡ Tv(1) satisfies T

2
v = I and has the form

Tv =

⎛

⎜⎜⎜⎜⎜⎝

Sv ∗ . . . ∗ ∗
∗ ∗ . . . ∗ ∗
...

...
. . .

...
...

∗ ∗ . . . ∗ ∗
∗ ∗ . . . ∗ S∗

v

⎞

⎟⎟⎟⎟⎟⎠
. (B.13)
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Proof For each endpoint, we have introduced two bases with respect to which
one can write functions ψ satisfying the differential equation (4.1). Let R ∈
L(C2nd) be the invertible linear transformation mapping the vector repre-
senting such functions in the U basis {ξl

j(k;x), ηl
j(k;x) : j, l} to the T basis

{e±iωlk|x−xj | : j, l}. Thus, the amplitudes in (4.2) and (B.8) are related via

R

(
α
β

)
=
(

a
b

)
.

It is clear from the construction (B.7) that R is independent of k.
Let k1, k2 ∈ R\sing(A) be distinct. Under Assumption 3.4, given some

arbitrary vector b ∈ C
nd, according to definition (4.3) the vector

(
Tv(k1)

I

)
b

represents some function ψ in the T basis solving (−Δ)nψ = k2n
1 ψ and sat-

isfying the vertex conditions: the amplitudes are considered independent of
whether they correspond to different endpoints of the same edge or not. Then
by Lemma B.1, there exists β ∈ C

nd such that
(
U(k1)

I

)
β = R−1

(
Tv(k1)

I

)
b (B.14)

since the right-hand side represents ψ in the U basis. For this β, the vector(
U(k2)

I

)
β represents some φ in the U basis solving (−Δ)nψ = k2n

1 ψ in neigh-
bourhoods of the vertices and satisfying the vertex conditions. Thus, there
exists b′ ∈ C

nd such that

R

(
U(k2)

I

)
β =

(
Tv(k2)

I

)
b′ (B.15)

as the left-hand side represents φ in the T basis.
If U(k) is independent of k, then it follows from (B.14) and (B.15) that

b = b′, and hence, Tv(k1)b = Tv(k2)b. Since b ∈ C
nd was arbitrary, we

conclude that Tv(k1) = Tv(k2) for all k1, k2 ∈ R\sing(A). As sing(A) is finite,
Tv(k) must be constant on R. By an almost identical argument, the converse
also holds.

Under Assumption 3.4, we have Tv(k) = −Y(k)−1
Y(−k) for all k ∈

R\sing(A), where Y(k) is defined by (4.5) and we recall that sing(A) is the
finite subset of C on which Y(k) is not invertible. It follows that Tv(−k) =
(Tv(k))−1 for all k ∈ R\(sing(A) ∩ −sing(A)). If we additionally impose As-
sumption 5.3, then Tv is independent of k, and so sing(A) = {0}. Thus,
Tv = T

−1
v and so T

2
v = I.

Finally, to see that Tv has the form (B.13), consider any ψ ∈ L2(Γ)
solving (4.1) in a neighbourhood of the endpoints, written in the T basis. Near
each xj , it has the form (4.2). Observe that one could equivalently write this
as

ψ(x) =

{
n−2∑

l=0

al+1
j eiωlκ|x−xj | + b0

je
iωn−1κ|x−xj |

}

+

{
n−2∑

l=0

bl+1
j e−iωlκ|x−xj | + a0

je
−iωn−1κ|x−xj |

}
,
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where κ = ωk. If Tv(k) is independent of k, then we have both
⎛

⎜⎜⎜⎝

a0

a1

...
an−1

⎞

⎟⎟⎟⎠ = Tv

⎛

⎜⎜⎜⎝

b0

b1

...
bn−1

⎞

⎟⎟⎟⎠ ,

⎛

⎜⎜⎜⎝

a1

...
an−1

b0

⎞

⎟⎟⎟⎠ = Tv

⎛

⎜⎜⎜⎝

b1

...
bn−1

a0

⎞

⎟⎟⎟⎠ .

Putting b1 = · · · = bn−1 = 0, we have a0 = Svb0 from the first equation, and
b0 = Tn−1,n−1a0 from the second, in the notation of (B.2). Since Sv is unitary
and a0 is arbitrary, we have b0 = S∗

va
0 for all a0 ∈ C

d, whence Tn−1,n−1 = S∗
v.

�
Proof of Corollary 5.4 The construction (B.7) leads to the following explicit
expressions for elements of the U basis {ξl

j(k;x), ηl
j(k;x) : j, l} (for n = 2):

ξ0
j (k;x) := 1

2{e+ik|x−xj | + 1+i
2 (e−k|x−xj | − iek|x−xj |)},

ξ1
j (k;x) := + 1

2i{e+ik|x−xj | − 1+i
2 (e−k|x−xj | − iek|x−xj |)},

η0
j (k;x) := 1

2{e−ik|x−xj | + 1−i
2 (e−k|x−xj | + iek|x−xj |)},

η1
j (k;x) := − 1

2i{e−ik|x−xj | − 1−i
2 (e−k|x−xj | + iek|x−xj |)}.

For ψ ∈ L2(Γ) solving (4.1), let a0,a1,b0,b1 be the vectors of amplitudes
with respect to the T basis {e±iωlk|x−xj | : j, l} and α0,α1,β0,β1 be the vectors
of amplitudes with respect to the U basis. Comparison of (B.8) with (4.2)
implies that

a0 = 1
2 (α0 − iα1), a1 = 1

2

[
1+i
2 (α0 + iα1) + 1−i

2 (β0 − iβ1)
]
,

b0 = 1
2 (β0 + iβ1), b1 = 1

2

[
1−i
2 (α0 + iα1) + 1+i

2 (β0 − iβ1)
]
.

Lemma B.1 implies that α0 = U1β
0 and α1 = −U2β

1, so one can express
the amplitudes a0,a1,b0,b1 in terms of β0 and β1 only. By Corollary B.2, Tv

is constant and has the form Tv =
(

Sv B
C S∗

v

)
for some B,C. Thus, substituting

these amplitudes into (4.3) gives
1
2{(1 + i)(U1β

0 − iU2β
1) + (1 − i)(β0 − iβ1)}

= C(β0 + iβ1) + 1
2iS

∗
v{(1 + i)(U1β

0 − iU2β
1) − (1 − i)(β0 − iβ1)}

for all β0,β1 ∈ C
d. One can eliminate C by restricting to β1 = iβ0 and

supposing that the resulting equation holds for all β0 ∈ C
d. This implies that

S∗
v{2I − i(U1 + U2)} = −i{2I + i(U1 + U2)}. Taking the conjugate of this

gives

{2I + i(U1 + U2)}Sv = i{2I − i(U1 + U2)}. (B.16)

It is obvious that the matrix 2I + i(U1 + U2) is invertible since U1,U2 are
unitary Hermitian and cannot have i as an eigenvalue. It follows from equation
(B.16) that iI+Sv = 4i{2I+i(U1+U2)}−1, and thus, iI+Sv is invertible. The
remaining statements can be verified by simple computations: in particular, if
Sv = S∗

v, then one can show that (U1−U2)2 = 0, which implies that U1 = U2

since U1,U2 are Hermitian. �
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