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Operator square roots are ubiquitous in theoretical physics. They appear, for example, in the Holstein-
Primakoff representation of spin operators and in the Klein-Gordon equation. Often the use of a perturbative
expansion is the only recourse when dealing with them. In this paper, we show that under certain conditions,
differential equations can be derived which can be used to find perturbatively inaccessible approximations to
operator square roots. Specifically, for the number operator 7 = a’a we show that the square root ~/2 near
7 = 0 can be approximated by a polynomial in 7. This result is unexpected because a Taylor expansion fails. A
polynomial expression in 7 is possible because i is an operator, and its constituents a and a’ have a non trivial
commutator [a, a’] = 1 and do not behave as scalars. We apply our approach to the zero-mass Klein-Gordon
Hamiltonian in a constant magnetic field and, as a main application, the Holstein-Primakoff representation of
spin operators, where we are able to find new expressions that are polynomial in bosonic operators. We prove
that these new expressions exactly reproduce spin operators. Our expressions are manifestly Hermitian, which

offers an advantage over other methods, such as the Dyson-Maleev representation.
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I. INTRODUCTION

Square roots of operators appear in a large number of
contexts in theoretical physics and also play an important role
in operator theory. In some cases, it is practical to calculate
the operator square root (OSR) using explicit formulas or by
diagonalizing the operator. Often, however, there is only a
very limited set of analytical tools to treat them, typically in
the form of perturbative expansions.

This is not because OSRs represent a niche problem. In-
deed, one of the earliest appearances was near the beginning
of quantum mechanics in the square root of the Klein-Gordon
equation [1-7]. Even for such an old problem it may prove
useful to have a larger analytical toolbox. Another promi-
nent example of OSRs occurs in the Holstein-Primakoff spin
representation [8,9], which is the usual starting point for spin-
wave-theory calculations. A third important OSR shows up in
the context of quantum information in the form of the fidelity
function [10-23] and the Bures metric [12,17,20,23-25], both
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used to quantify the closeness of two quantum states. The
purpose of the current paper is, however, not to review all
examples of OSRs, but to introduce a nonperturbative approx-
imation of OSRs.

Our method is inspired by several flow equation ap-
proaches to many-body problems. For instance, the Wegner
flow equation approach [26], which was applied to various
problems [26—40], allows for a nonperturbative diagonaliza-
tion of a Hamiltonian using flow equations for its couplings.
In this approach, the problem of diagonalization is recast in
terms of differential equations. Similar methods have recently
been used by some of us to find effective Floquet Hamilto-
nians [41] and various approximations to the time evolution
operator [42]. Differential equation approaches have also been
used in the method of unitary integration for the Liouville-
Bloch equation [43] and Lindblad equation [44]. We aim to
use a similar approach to approximate an operator square root.

The application that may be of most current interest is
the Holstein-Primakoff (HP) OSR. The HP representation is
typically used in the context of spin (local moment) models
to represent deviations around a well-defined spin order in
terms of a single species of boson per lattice site. It allows
for a perturbative expansion in the number operator of such
bosons and ultimately leads to linear [45] and nonlinear [46]
spin-wave descriptions of quantum magnets [9]. However, for
many systems of interest a ground-state spin ordering may be
unknown or fail to exist, such as in frustrated systems [47],

Published by the American Physical Society


https://orcid.org/0000-0003-1482-9234
https://orcid.org/0000-0002-3525-4145
https://orcid.org/0000-0002-0493-7568
https://orcid.org/0000-0001-9477-0804
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043243&domain=pdf&date_stamp=2020-11-17
https://doi.org/10.1103/PhysRevResearch.2.043243
https://creativecommons.org/licenses/by/4.0/

VOGL, LAURELL, ZHANG, OKAMOTO, AND FIETE

PHYSICAL REVIEW RESEARCH 2, 043243 (2020)

spin liquids [48-51], and one-dimensional systems [52]. In
such cases, the perturbative expansion often proves inaccurate
or inconvenient.

Instead, more symmetric spin representations such as
Schwinger bosons [9,53] and slave particle approaches
[54,55] are commonly used, but require the introduction
of auxiliary fields. Other fermionic approaches include the
Jordan-Wigner representation of spin-1/2 operators [56] and
its generally complicated-to-use generalizations to higher di-
mensions [57,58] and higher spin [59-61]. An important,
equivalent alternative to the HP representation that also uses a
single boson species, but avoids the square root, is the Dyson-
Maleev representation [62—65]. However, it has the drawback
of generically breaking Hermiticity. This is by no means an
exhaustive list of spin representations—indeed, other repre-
sentations can be be found in Refs. [66-71]. Since each of
the available approaches has its own unique advantages and
drawbacks, we will in this paper derive expressions for spin
operators that (i) involve only one boson species satisfying
the canonical bosonic commutation relation, (ii) preserve Her-
miticity, and (iii) do not include square roots of operators or
other nonpolynomial functions of operators.

Some of the expressions we derive were previously found
to finite order in Refs. [72,73] by a matching-matrix-elements
(MME) method and have also been usefully applied in
Ref. [74] to capture effects beyond the reach of a 1/S ex-
pansion (where S is spin length). Unlike the normal Taylor
expansion of the HP OSR, the MME expansion and our result
are able to correctly describe the symmetry in a Heisenberg
model with easy-plane anisotropy as we will see later in the
text. This is a long-standing problem and was discussed using
a slightly different approach in Ref. [75]. Our expansion thus
naturally captures the same physics. However, unlike previous
works, we present results to all orders and show that the ex-
pressions are exact when truncated to an appropriate order that
depends on the spin length S. This feature was missed in all
previous discussions we are aware of, since they focused en-
tirely on reproducing commutation relations of spin operators.
We, however, use a slightly softer exactness criterion. Namely,
we require only that the operators are block diagonal with
physical and unphysical subspace blocks. In the commutator
language we require that the commutators are reproduced up
to a term that acts exclusively on the unphysical subspace,
without coupling to the physical subspace. This is akin to
allowing an inaccessible “dark sector” in the spin-operator
algebra. A more detailed discussion of this rationale is given
in a later section.

Our hope is that such a representation may prove use-
ful in describing spectral features not readily captured by
conventional spin-wave theory, as is the case in, e.g., the
triangular-lattice antiferromagnet Ba;CoSb,O9 [74,76] and
quantum spin liquid candidates. Among the latter, the Kitaev
spin liquid [77-96] is receiving particularly intense attention,
since it hosts anyonic excitations of interest to topological
quantum computing. While the ideal model is solvable [77],
and its dynamics known [97], the description of realistic
candidate materials [98-100] requires additional Hamilto-
nian terms, which generically breaks integrability. Some such
candidates include «-RuCl; [101-114], Crl5 [115-119], and
honeycomb iridium oxides [120-123].

This paper is structured as follows. In Sec. II we discuss
how to compute square roots of operators by using a differen-
tial equation approach. In Sec. III we show how this formalism
may be used to find a series expansion for Vatanearata ~ 0
in terms of integer powers of (a'a), which is an unexpected
result because /x cannot be expanded in integer powers of
x near x = 0. Of course, since a'a is an operator, ada~0is
shorthand for “in the part of the Hilbert space where matrix
elements are close to zero.” We will use similar kinds of
shorthand throughout the text. This shows that a Taylor series
may not always be ideal for finding power-series expansions
of operator functions. In Sec. IV we then apply the method
to the Klein-Gordon particle in a magnetic field with small
or zero mass—such as in graphene. In Sec. V we present our
main application to the Holstein-Primakoff representation of
spin operators. We stress that the results we obtain are exact
expressions for spin operators that are polynomial in bosonic
operators. Lastly, we present our conclusion.

II. GENERAL FORMALISM

The goal of this section is to find an operator differential
equation that can be used to calculate a square root of two
operators, /0 + O,, where O; and O, are both operators
defined on the same complex Hilbert space /. We will make
two simplifying assumptions. First, we assume that a square
root of one of the operators, O;, is known or easy to cal-
culate. Second, we assume that the two operators commute,
[O1, O] = 0. Both these assumptions also have to be made
in order for a Taylor expansion in O, to be viable (the more
generic case is more involved; see Appendix A for details).
For instance, one could have O; = ¢l with ¢ € C, and O,
could be any other operator. It should be noted that the OSR
of an operator O; can have multiple branches, which may
seem like an ambiguity. However, the choice of branch will be
encoded in the initial conditions for the differential equations
we derive and should be informed by the problem at hand.
Different branch choices can lead to different physics; for
example, a branch with complex eigenvalues could not be
used to describe a Hermitian Hamiltonian. The way we will
compute +/O; + O, is by introducing the second operator O,
in infinitesimal steps. To keep track of the steps, we introduce
a dummy parameter s and define

OJ(s) =401 +50,. ()
Using the assumption [0}, O,] = 0, we find that sending
s — s+ ds gives

OJ(S + 8s) = 0\/(s) + 0, 2)

88
20 ,(s)
if &8s is infinitesimal, and we therefore did a Taylor expansion
of the right-hand side.

A Taylor expansion of the left side gives us the differential
equation

do s(s) 1
ds 20 RO)

0, 3

that makes it possible to find O J(s) by introducing O, via
infinitesimal steps. Note that this also means that /O, for the
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branch used needs to be invertible, or at least the limit of an
invertible operator as we will see in the upcoming section.

The issue with this equation is that calculating the inverse
of an operator is difficult. That is, we cannot easily make
an ansatz for O J(s) = Zn cn(s)On as a sum of operators
with s-dependent coefficients and solve this equation because
calculating the inverse of the ansatz is difficult.

This issue can be resolved with a little bit of extra work.
We define

0 (s) = ——. “4)

In this case, Eq. (3) becomes
dOJ(s) _ 1071
ds 2V

and we now need to find a differential equation for 07 (s),

()02, &)

which can be obtained by Taylor expanding 0:/1 (s+ds)ina
similar way to above,

One may insert Eq. (5) into Eq. (6), and we find after rear-
ranging that

1 d*0 ,(s) do _r(s)\*
JS__< «/S>‘ o

) —
277 ds? ds

The equation in this form is now useful to find coefficients

C; for an ansatz O J(s) =Y ca(s)0, because powers of this

operator are trivial to compute.

III. EXPANDING THE SQUARE ROOT OF
THE NUMBER OPERATOR

We may now use Eq. (7) to find an expansion of Vata.
In the language of the previous section, for this case, O, =
a’a and O, = 0*1, where 07 signifies a dummy variable that
eventually will take a directed limit to zero. One can make the
ansatz

Vsatam ) Cy(s)a@')a" ®)

and compare coefficients of (a')"a" to find a set of differential

dO:/l (s) 1
— = _E[O_fl ()170,. (6)  equations for C,. If we truncate at third order, we find
s
|
Cy=0,
C//(S) ,
= =G,
Cé’(s) _ _6C/( )C/( C C! _C 3 2! 3 9
5, 1$C([C (s) + Cy(5)] 1 (s) H(s), ©)]
GO _ —36C5(5)C5(s)[C; G Ci(s)] — 3C()C5(9)IC; 4C;,
4 28)C3 )| 1(S)+ 2(S)+ 3(5)] 1(3) 2(5)[ 1(S)+ 2(5)]
—9C} (5)C5(5)[C; (s) + 2C;(s)] — 10C;(s)* — 12C5(s)?
[
and initial conditions IV. APPLICATION TO THE KLEIN-GORDON
1 SQUARE ROOT
— / jr— / —
€123 =0, GO = 2./0F G =0 (10) The method for finding a nonperturbative expansion of

The initial conditions were found by comparison to the in-
finitesimal case that is accurately described by a first-order
Taylor series. Note that the term with #07 represents a direc-

tional limit that has to be taken at the end but 0" can first be
replaced by a dummy variable.

If we solve the equations, set s = 1, and take the limit for
0", we find that

V2-2

2
ata~a'a+ aa? a. (11)

3-3V2+43 5

+——a
6

One should note that this expression can be put in terms of
powers of 7 = a’a and is valid near a’a = 0. More precisely,
in what sense does this expansion converge to the correct
operator? The answer is that by including terms up to (a*)"a”
the n 4 1 lowest eigenvalues are exactly reproduced; higher
eigenvalues are approximated more accurately as well.

It is important to stress that the square root /X is nonan-
alytic near x = (. Yet we were able to find an expansion in
terms of powers of x that is valid near x = 0.

an operator square root can of course also be used for the
Klein-Gordon square-root Hamiltonian for relativistic parti-
cles. Let us for instance consider the two-dimensional (2D)
Hamiltonian

H=m?+p?>+V(x,y). (12)

If this system is subjected to a constant magnetic field
given by A = g(—y, X), one may introduce the magnetic field
by minimal substitution p; — I1; = p; — A;, and one can in-
troduce creation and annihilation operators, a = x/% (IT, +
iTl,), to find the Hamiltonian

ata
H = JABIS\[1+ 5 + V(). (13)

where we introduced a shorthand S = "%BHB'. The operator

now bears a striking resemblance to the square root that ap-
pears in the Holstein-Primakoff spin representation, which we
will discuss later. A straightforward Taylor expansion of the
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square root in terms of 1/S already yields corrections

H 4|B|S L /1Bl + L/ 1 M +Vv,y) (14)
A —_ ) — - — X,
Vs TayiBs Y

to what one would expect from the nonrelativistic limit of
large mass

2

/2 2 A H_ 5
m* +I1* ~ m+ + Vix,y). (15)
2m

This approximation lifts the restrictions to large masses from
the nonrelativistic limit as long as one considers strong mag-
netic fields.

However, we can do better without the introduction of
further complications. That is, we can make the ansatz
V1+sata=Y, Cu(s)(a')'a", which means that we can
employ the first two differential equations from (10) to ap-
proximate the square root. For this we have to choose slightly
different initial conditions from those chosen previously,
Co(0) =1, Ci1(0) =0, C;{(0) =1/2, and let s run up to s =
1/(2S). The initial conditions are again found by comparison
to a first-order Taylor expansion. The result we find is

1 S
H ~ ./4B|S| 1 14+ — —1]—T12 | +V(x,y).
51 (e )] v

(16)
This new approximation is now more reliable for small |B|,
m, and level number n. This is seen most easily in the case
of V(x,y) =0, where it is easy to check that it reproduces
the lowest two energy levels n = 0, 1 exactly [recall that 1 =
a'a = STI?/(2|B)].

The advantage of this approximation over an exact solution
is that a quadratic V (x, y) can be added and an analytic solu-
tion of this approximate problem is still possible because this
is still a harmonic oscillator. Note that in this case we would be
able to find an approximation that is nonperturbative in 1/S.

V. RESUMMED HOLSTEIN-PRIMAKOFF EXPANSION

We will now turn to our most interesting application—an
expansion for the square root in the Holstein-Primakoff repre-
sentation of a spin operator.

A. Review of the method

The Holstein-Primakoff representation [8] of spin-S oper-
ators is given as

-
st =nv2s,1— L2,

28
™ =nv/2Sa" |1 — azj an
7= h(S —d'a).

A few notes are due. For finite S only finitely many bosonic
excitations correspond to physical states. That is, bosonic
excitations correspond to spin projections, i.e., $° can only
take eigenvalues in {—S, —S + 1, ..., S}. Hence, for spin S,
we have the restriction a’a < 28, which is also signaled by
the fact that the square root becomes imaginary for higher

occupation numbers. This means that the Hilbert space is
a Fock space, F(H) = @310 SH®", where S is the sym-
metrization operator and H®" denotes n tensor products of
the single-particle Hilbert space #. For spin S the physical
part of the Hilbert space is restricted such that it has the basis
{10}, ..., 1285)}.

B. Exactness of the Holstein-Primakoff approximation

To see that the Holstein-Primakoff representation is an
exact description of spin operators, it is enough to check that it
fulfills the correct spin algebra. For instance, [ST, $™] = 25%.

This reasoning is slightly restrictive, so let us soften it a
bit. The key feature of the Holstein-Primakoff representation
is that the spin operators ST % reproduce the exact spin
operators on the physical part of the Hilbert space and at the
same time have no elements that couple to the unphysical part
of the Hilbert space. That is, in the occupation basis they have

the form
§tt 0
St = ( plgs S+’_’z)’ (18)

unphys

In particular, for § = % the explicit form of ST in the occupa-
tion basis is

0 1

0 O

st = 0 w3 0o - 0| @19

0o .- 0

One sees that it splits into the physical (upper left quad-
rant of matrix) and unphysical (lower right quadrant) Hilbert
spaces, as in Eq. (18). The physical block is just the conven-
tional ST matrix for spin 1/2. Importantly, there is no coupling
between physical and unphysical parts of the Hilbert space.
This is what makes the method exact.

Note that because of this block structure, a spin Hamilto-
nian exactly written in the bosonic language will also separate
into physical and unphysical blocks because the product of
block-diagonal matrices stays block diagonal. That is, the
Hamiltonian is block diagonal of the form

H= (Hpohys 0 ) (20)

H, unphys

One now can see that diagonalizing the Hamiltonian, one will
find the exact physical eigenvalues and spurious unphysical
ones.

C. Usual approach: Taylor expansion

While the expressions in Eq. (17) provide an exact way
to represent the spin operators, this is not too useful by itself
because the square roots are impractical to work with. One
usually does a Taylor expansion around large S, using 1/S as
the expansion parameter.

1 1
St h«/ZS(l - Ecﬁa - He (da+d"a?)
1 T 2 2 B3
—12853(aa+3a a +a' a)a. 21
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This approach is most often also used in the case of § = %,
where it is slightly surprising that it is justified. To see why it
is justified, recall that as mentioned above for smaller spins
only states with few bosonic excitations, e.g., {|0), [1)} for
spin 1/2, are physical. Therefore, acting in this part of the
Hilbert space, a"'a|p11yS < 1, and the expansion is valid.
Although the expansion is useful, it is not exact when
truncated at any finite order. The spin operators S™~ no longer
separate into physical and unphysical blocks, but couple phys-
ical and unphysical parts of the Hilbert space. For example, for

spin 1/2 the spin operator St in Eq. (21) has the form

0 1
5
0 0|35
St 0 W3 o0 - 0| (@
0 0

One may see that physical and unphysical parts of the
Hilbert space get coupled by the term %ﬁ

Generically, a spin Hamiltonian using this approximate
bosonic language when expressed in occupation-number

space has the form

Hppys A
H=|"™ , 23
< A Hunphy8> *9

where A is the small coupling between physical and un-
physical parts of the Hilbert space. It leads to unphysical
contributions in the physical eigenvalues. The method is not
exact anymore.

D. Improved expansion

As mentioned, we can improve on the expansion. One may
use the differential equation (7) to find such an improved
expansion of the square root. As done previously, one may use
the ansatz (8) to introduce —“;—S“ by infinitesimal steps. How-
ever, because we need to decrease terms under the square root
rather than increase them, one has to replace d /ds — —d/ds
in (10). The second thing that changes compared with before
are two of the initial conditions

GO =1, Cj(0)=—3, (24)

while the other initial conditions in (10) remain unchanged.

The solution to these differential equations (10) for s = é
with the new initial conditions gives us an improved Holstein-
Primakoff expansion up to third order, which we will not
present here.

Rather, with additional work one may find that it is possible
to construct higher-order terms by the same scheme. After
analyzing additional orders one can see a pattern emerge. We

find that the full expansion is given as

S, ~ /28 [Z Q,,aT“a”:|a, Qo =1,
n=0
(25)

0= A=Y 0, A= [1-

n! s (n —m)! 28°

where we prove later that this amounts to exact expressions
for spin operators.
Let us for now truncate at n,,,x = 1 to find

S+%hm[l+ (,/1 —%—1)&;} (26)

and discuss the case of spin § = % to most easily see what kind
of improvement we achieved. One may note that an expansion
around large S gives back the results for the Taylor expansion.
In that sense our new expansion is a resummation of the Taylor
series.

In the occupation basis we find

0 1
0 O

St = 0

-3 0 -~ 0] @7

0o .. 0
Therefore the spin operator reproduces the physical matrix
elements of S*, and the physical block does not couple to
the unphysical block, as in Eq. (18). One can show also
more explicitly that there is no coupling between physical and
unphysical parts of the Hilbert space

(0IS™I1) =,
(28)
(n#0IST|1) = (n|ST|0) = (0IST|n # 1) = 0.

In the same sense as before, this method therefore allows
us to reproduce the exact eigenvalues of the Hamiltonian. In
this sense it is exact.

Of course, this first truncated expression is not exact for
higher spins S because couplings to the nonphysical states

reappear. We can obtain exact expressions also for § > % by
setting fimax = 2. Similarly to the S = % case these expres-
sions reproduce all physical matrix elements. The proof is
given in Appendix B but is essentially the same as for spin
1/2. A list of explicit expressions for spin operators up to

S = 3 is given in Appendix C.

E. Commutator properties and exactness
for the improved expansion

One may ask what happens to commutators. Here, the spin-
1/2 case again is instructive,

[ 2
[St,S7] ~ 25KS* — 3K2 [s(z 4— i 4) + 1}1%2.

(29)

While the commutator is not exactly reproduced, we can
immediately recognize that this is not important because the
extra term a'”a? does not couple unphysical and physical parts
of the Hilbert space and solely affects the unphysical parts. It
is therefore of no physical consequence.

This additional term was often understood as rendering the
expressions for spin operators approximate [72]. After all, the
most commonly used criterion for ruling out if an operator can
be expressed in a certain way is by checking the commutation
relations. Here, we stress that this criterion can be softened.
Namely, it can be enough to reproduce commutation relations
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up to the addition of a term that acts solely in the unphysical
part of the Hilbert space and does not couple to the physical
part of the Hilbert space.

In some cases, more stringent exactness criteria have been
applied, such as requiring that all nonphysical matrix elements
vanish [71]. This type of criteria can simplify formal quantum
statistical treatments, since one does not have to be careful
about excluding nonphysical states in sums over states. How-
ever, in practice these approaches are cumbersome because
the associated expansions are infinite and more complicated.
Therefore this is only an advantage at the purely formal level.

F. Additional properties of the expansion and comparison
with other expansions

One may wonder how this expansion compares with a
more conventional Dyson-Maleev expansion with St = fia
and S~ = ha’(2S — a’a). Our method has the advantage that
St and S~ are treated on the same footing and therefore
are related by conventional Hermitian conjugation. This guar-
antees that the approach will not break Hermiticity in the
conventional sense, unlike the Dyson-Maleev expansion.

Next one may wonder if an additional perturbative expan-
sion around classical spin configurations may be stacked on
top of the expansion as is done for the more conventional 1/S
expansion in nonlinear spin-wave theory [46]. One may there-
fore be tempted to identify § = (v1 — 3z — 1) in Eq. (26)
as an expansion parameter since it corresponds to fluctuation
corrections around a classical ground state. That is, one would
write ST & iv/2S [1 4 8a’ala. This, however, is not possible
and becomes clear if one considers that S¢ = 1/2[S*, S7].
Then, one can write

1
§7 = E[S+’ ST1~ S +2528 +8*)a'a+382S(a")*a*. (30)
Sr

We find that the physical part of S* has contributions from
different orders of §. This of course means that any expansion
in 6 will treat $* and S$*” on unequal footing, even at low
orders in such an expansion. This, for instance, will result in
an unphysical breaking of symmetries in a Heisenberg model
or similar even at the lowest-order expansion. Therefore &
cannot be used as an expansion parameter. Additionally, there
is no other obvious choice of expansion parameter, and ad
hoc expansions in powers of a also lead to unphysical re-
sults in nonlinear spin-wave theories. Therefore it seems that
the expansion does not allow for an additional perturbative
expansion in terms of fluctuations around a classical spin
configuration. A mean-field-theory treatment must include all
the terms that are needed to accurately describe spin S for each
operator St and S~

G. Symmetries and exact properties in the improved expansion

To study symmetries in the new expansion, we consider the
Hamiltonian for the Heisenberg model with easy-plane single-
ion anisotropy,

H=Y [JSi-Si1 +D(s7)]. 31)

Let us first recognize that for § = % the single-ion
anisotropy (S} )2 should result in a trivial number (87 )2 = i
that does not affect the spin-wave excitation spectrum. How-
ever, in the usual Taylor expansion with S* ~ a — *a'a® one

1
2
finds that
(Y =1+ %(ZaT2 +2d'a—2d'a® — 30"
+ aa® — 24" + 2a7dd + atta? +24%), (32)

which has unphysical contributions in the physical part of the
Hilbert space, e.g., a'a. In other words, the Taylor expansion
introduces unphysical artifacts.

In the new expansion for § =
a — a'a® and find that

%, however, we have St =

(P = L+ L@@ +d%a + 2478 +ad). (33
The additional nonconstant terms we find have nonzero contri-
butions only in the nonphysical part of the Hilbert space and
do not couple to the physical part of the Hilbert space. This
can easily be verified explicitly by computing the operator in
the occupation-number basis using Eq. (27). The nonphysical
terms are therefore of no consequence for physical states
and could just as well be dropped. This means that the new
expansion properly reproduces the fact that (S7)* contributes
only a trivial scalar for spin 1/2.

Next we recall that the Hamiltonian is symmetric with re-
spect to the symmetry generated by the generator g = ), S7,
ie., C = [H, g] = 0. Again we will only check spin 1/2 for
simplicity, but similar results will hold for higher spins. Let
us first see what happens if we use the usual Taylor expansion
approach to compute the commutator. We find that

1 N N ]
C = Z EaLlaHl(Za} +a; aiz - afzai — 2a,-)

3
+ 3—2aj+12af+1(2a} + ajaiz - a?za,- — 2a,-)
+@ < @+, (34)

where (i) <> (i + 1) is shorthand for the same terms with
i and i+ 1 switched. Here, we can see that the opera-
tors in the first line couple the physical two-site states in
Ap = {10);:10) 15 11)i10) 415 10); 1) ;15 11);11) 41} to nonphys-
ical two-site states in A,, = {|n);|m);|(n > 1)V (m > 1)},
which are the states where at least one of the two sites is
more-than-single occupied. The symbol Vv denotes the inclu-
sive “or” (disjunction) operator.
For the new expansion, on the other hand, we find that

3 i 2 12
C= 4 Z (i ai[al —ai + alaf —a"a;]

i
2 o1 I P2
+a; a [ai+l — @iyl a0 — Ay a,-+1]). (35)

From here one may observe the term ajzcﬁ to see that
only matrix elements for the unphysical states A,, will be
nonzero. The operator also does not couple to the physical
states in A,. We can hence conclude that unlike the Taylor
expansion, the bosonic expressions for the spin operators in
the new expansion do not break symmetries present in the
original spin-operator language.
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VI. CONCLUSION

We were able to demonstrate the surprising result that the

square root of an operator Vo may be expanded in an integer
power series around O = 0. We believe that the approach can
be usefully applied to other operator square roots in theoretical
physics and that the observation is useful for finding better ex-
pansions of other operator functions where a Taylor expansion
fails.

The methods described in this paper allowed us to find a
significant nonperturbative improvement on the Taylor expan-
sion for the Holstein-Primakoff realization of spin operators.
We expect these results to be useful to better treat spin models
in different mean-field approaches if there is no clear classical
spin configuration around which one could expand. We there-
fore hope that the approach will prove useful for the study of
spin liquid phases.

Note added. Recently, expressions equivalent to those in
(25) in closed form were also found by elegant alternative
means via a Newton series expansion [124].

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [125].
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APPENDIX A: MORE GENERIC CASE
FOR OPERATOR SQUARE ROOT
An operator square root

S=+0;+680,

with small § < 1 can generically be treated as follows. One
may write

(AD)

5% =0, +80, (A2)

and make the ansatz § = /O; + 85, to find

SoS1 + $1S0 = 0. (A3)

This equation is a Lyapunov equation, which for Sy Hermi-
tian with positive spectrum can be solved for S; as
o0
S = / dte " 0y, (Ad)
0
which can be seen if it is inserted in the equation above and a

chain rule for differentiation is used. Therefore to linear order
one finds

o0
VO + 80, ~ JO, +5/ dte V0" 0,e VO (A5)

0

It is easy to see that this, with the assumption [0, O,] = 0
we made earlier in the text, reduces to a Taylor-series result.
This result, however, is much more cumbersome, and we will
therefore not work on it further.

If we set O = O(s), O, = dd—?y', and § = ds, we find that a
derivative of the square-root map is

d o do
—/0(@s) = / dte” OWﬂe— o (A6)
ds 0 ds

APPENDIX B: REPRODUCING SPIN-S
OPERATORS EXACTLY

Let us first prove that truncating (25) at np,x = 28 pro-
duces terms that do not couple to the nonphysical parts of the
Hilbert space. In the number basis we find that

m!
(m—D"

25
(m|S*In) = AV2S8, 0 1v/n Y O (B1)
=0

The only a priori nonzero matrix element that could couple
physical and unphysical parts of the Hilbert space isn = 25 +
1 and m = 28S. It is zero if

iQ 28! _, )
"os—n

1=0
which we checked explicitly for spins S = %, ..., 16 using

MATHEMATICA and expect to be true in general.

Furthermore, we also checked explicitly that the other
nonzero matrix elements for the physical couplings, i.e., n <
25 4+ 1 and m = n — 1, agree with the ones given by the exact
Holstein-Primakoff expansion.

(m|STIn) = iv/288y5-1,/1 — ;n—sx/ﬁ (B3)
That is, we just needed to show that
28
Z 0 _m - =" (B4)
L= m = 1)) 28

for all m € Nt/2 and m < 2S. Again using MATHEMATICA,
we found this to hold at the minimum up to spin S = 16 and
expect it to be true generally.
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APPENDIX C: EXPLICIT EXPRESSIONS FOR HIGHER SPIN S

In this Appendix we give exact expressions for spin operators of spins up to S = 3. For this, one first has to solve (25) for the

different Q,, given below.

Qo =1,
0 =\J1-~ -1,
28
1 2 [s-1
Q2—§<— —§+ T-{-l),

1 2 6 S—1
= (3424 Ja—2_6/2—_2
2 12(\/ S+\/ S S

S —2+6V5—14+/S—-2/45-6-2,45-2

Q4 245
—10/S =2 —20/S —1—2/S+ /45— 10+ 10/4S — 6 + 5,/45 —2
05 = 22073 ,
06 — JS—3+15JS—2+15JS—1+\/§—3\/4S—10—10«/45—6—3\/45—2. 1
7204/S

This result may now be inserted into S} = /iv/2S [Ziio Q,a""a"a, and we set the appropriate values for S to find the exact

expressions for spin operators up to spin S = 3, given below.

1§t

SZE 720—(11‘612,
s=1: ¥ Vst ﬁ)“+<1 1)*23
= —_= a — a a — —l)a a,
h V2
3 St
S=—-: —
2 h
S§=2 M 2a + (V3 2)”+<1 N
= — = 44 — a'a — J—
h V2
5 St
S=—-:1 —
2 h

o 1
=V3a+ (W2 —V3a'd® + S - W2 +3)at’d + 6(‘/21 —6v6 —3)a'a*,
1 1
)aT2a3 + 6(3‘/— —3V2 - Daa* + 5(3‘6 —2v3 - D',

=5a + 2 - «/g)afa2 + %(«/3 ++/5— 4)a+2a3 + %(\/5 —3/3-V5+ 6)cﬁ3a4

1 . 1
+ ﬁ(ﬁ A2+ 63 —Tatd + m(lOﬁ —10v3 = V54 5)a" b,

+
S =23: 7:\/Ea—i-(\/_—«/g)afaz-i-(l—x/g—i-\/g)aﬂaS-I—é(«/g+3\/_—«/6—6)a4(3a4

1 _ 1
+ﬁ(\/§—4\/_—4«/§+\/6+12)a14a5+@(10\/§—5\/§+5\f—\/6—19)aT5a6

1
+ %(15«/5 — 2073 — 6v/5 + V6 + 24)a'’d’. (€2)
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