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Nanoscale thin-film flows with thermal fluctuations and slip
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The combined effects of thermal fluctuations and liquid-solid slip on nanoscale thin-film flows are investigated
using stochastic lubrication equations (SLEs). The previous no-slip SLE for films on plates is extended to
consider slip effects and a new SLE for films on fibers is derived, using a long-wave approximation to fluctuating
hydrodynamics. Analytically derived capillary spectra, which evolve in time, are found from the new SLEs and
compared to molecular dynamics simulations. It is shown that thermal fluctuations lead to the generation and
growth of surface waves, and slip accelerates this growth. SLEs developed here provide useful tools to study
nanoscale film dewetting, nanofiber coating, and liquid transport using nanofibers.
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I. INTRODUCTION

The emergence of microfluidic and nanofluidic technolo-
gies has focused attention on the nature of liquid flows at the
nanoscale. Nanoscale flows can often behave in a manner that
is qualitatively different from those at the macroscale. One
important difference is the breakdown of the deterministic
description at the nanoscale and the increasingly dominant
role of thermal fluctutaions of liquid molecules. For example,
at the nanoscale, the position of a contact line in equilibirum is
not fixed, as deterministic models predict, but instead fluctu-
ates with a Gaussian probability distribution [1]; the breakup
of liquid nanojet in molecular dynamics simulations (MD)
shows a double-cone rupture profile, in contrast to the long-
thread profile predicted by deterministic equations [2], and
deterministic models fail to accurately predict the rupture time
of a dewetting polymer nanofilm [3,4].

Stochastic modeling is thus essential to capture nanoscale
flow physics, and broadly there are two options: a model based
on Langevin theory or one based on fluctuating hydrodynam-
ics (FH). Langevin theory is based on fluctuation-dissipation
theorem and its applications to stochastic modeling include
Brownian motion, single-file water transport in carbon nan-
otubes (CNT) [5], fluctuating contact lines [1,6], fluctuating
contact angles [7], and more. The equations of FH, proposed
by Landau and Liftshiz [8], are stochastic versions of the
Navier-Stokes (NS) equations, with thermal fluctuations mod-
elled by an additional random stress tensor. The applications
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of FH include the study of fluctuations in a dilute gas [9],
fluctuations in diffusively mixing fluids [10], and the rupture
of nanoscale liquid jets and films [2,4].

Thin-film flows are characterized by disparities of length
scale in different dimensions, i.e., the ratio of film width
to film length is very small: € = h/) < 1. This allows the
adoption of a long-wave approximation to derive lubrication
equations (LE) from the full governing equations, reducing
the dimensionality of the problem. In terms of macroscopic
thin-film flows, which are well studied, deterministic LEs
have been developed from NS: for liquid jets (which we here
refer to as the “jet LE”) to study breakup of liquid threads
[11]; for planar liquid films on plates (the “planar-film LE”)
[12], which has important applications in dewetting of poly-
mer films [3,13]; and for an annular liquid film on a fiber (the
“annular-film LE”) [14—17], which is used to predict surface
morphologies of falling liquid films down a fiber [14,15] and
fiber coating [16,17]. LEs are much simpler to solve than the
NS and can be easily extended to consider many interesting ef-
fects, such as electric field forces [18,19], Marangoni stresses
[20,21], and evaporation [22].

For thin-film and jet flows at the nanoscale, stochastic
lubrication equations (SLEs) are obtained from FH, also us-
ing the long-wave approximation. For example, Moseler and
Landman [2] proposed an SLE for nanojets (the “jet SLE”)
that is able to predict the double-cone rupture profile observed
in MD, unlike the jet LE. Later, based on the jet SLE, Eg-
gers [23] confirmed that thermal noise leads to a symmetric
self-similar rupture profile. Griin er al. [4] and Davidovitch
et al. [24] derived a SLE for planar liquid films on substrates
(the “planar-film SLE”) able to reconcile the discrepancy in
dewetting time between experiments [3] and solutions to the
planar-film LE. The rupture of thin films has subsequently
been widely investigated by numerical solutions to the planar-
film SLE [4,25-28], showing thermal fluctuations indeed
speed up the instability growth. Linear stability analyses of
the jet SLE and planar-film SLE lead to capillary spectra
of surface waves [29-33], which have been investigated in
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MD simulations [31-33] and experiments [30]. The analytical
solutions to SLEs in previous work [32,33] show thermal
fluctuations can massively amplify the growth of waves and
cause the dominant wavelength to evolve in time, in contrast
to a constant value predicted by LEs. Both the jet SLE and
planar-film SLE can be viewed as extensions of the jet LE
and planar-film LE with an additional, appropriately scaled,
noise term. However, an extension of the annular-film LE to
a stochastic version (an “annular-film SLE”) is performed for
the first time in this article.

Another aspect that makes nanoscale flows differ from
macroscale flows is the breakdown of the no-slip condition
and the greater importance of slip effects on flows. For exam-
ple, the fast water transport inside CNTs, which is far beyond
the predictions of no-slip hydrodynamics, can be attributed
to slip at the water-carbon interface [34]. This flow-rate
enhancement makes CNTs promising membrane materials
for ultrafiltration devices [35,36]. Despite lots of evidence
of slip in MD simulations and experiments, measured by
nonequilibrium simulations or shear-driven methods, physical
explanations for the origin of slip were not initially clear.
To resolve this issue, Bocquet and Barrat [37] proposed a
Green-Kubo-type expression for slip length, to identify slip as
a property derivable within thermal equilibrium, like viscosity,
providing a way to measure slip length in equilibrium simu-
lations. Notably, the slip length measured by nonequilibrium
simulations, like in Couette flows, find values that are constant
at low-shear rates but grow rapidly at high-shear rates [38].
The constant slip at low-shear rates is thus where nonequilib-
rium and equilibrium measurements should coincide [39].

It is clear that at the nanoscale both slip and thermal fluc-
tuations play an important role. However, until now, these
effects have never been explored simultaneously for thin-film
flows, due to the lack of proper tools: The SLE proposed in
Refs. [4,24] does not model slip. In this paper, the planar-film
SLE is extended to consider slip effects and a new annular-
film SLE is derived, also with slip modelled. These newly
developed SLEs are validated against MD simulations and
used to study the effects of thermal fluctuations and slip on
capillary wave evolution of thin liquid films.

This paper is organized as follows. In Sec. II, we briefly
present the equations of FH. In Sec. III and Sec. IV, we
derive the planar-film SLE and annular-film SLE, with slip
effects, from FH, respectively. In Sec. V, the static spectra and
evolving spectra of capillary waves are derived. In Sec. VI, the
MD model of nanoscale liquid films, on both plates and fibers,
is introduced. Section VII, shows the comparison between
MD and SLE and includes discussion on the effects of thermal
fluctuations and slip. We conclude our findings and outline
future directions of research in Sec. VIII.

II. FLUCTUATING HYDRODYNAMICS

The equations of FH for incompressible constant-density
flow are given by [8]:

V.u=0, (1)

9
,0<8—l; +u-Vu> - Vp+uViu4Vor. ()

FIG. 1. Sketch of a liquid film on a plate, where & = h(x, t) is
the film thickness, A is the characteristic length, u is the x component
of liquid velocity, and ¢ is the liquid-solid slip length. The film has
depth L, in the y direction (into the page).

Here u, p, t, p, and u are the velocity field, density, time,
pressure, and viscosity, respectively. The random stress tensor
T captures thermal fluctuations, modelled by white noise with
zero mean and covariance

(T4 ) T, 1)
= 2UkpT (88 jm + b8 —x)8(t — 1), (3)

where x = (x,y,z) and (- - -) is the ensemble average.

III. PLANAR-FILM SLE WITH SLIP EFFECTS

For a two-dimensional (2D) film on a substrate (Fig. 1)
with thermal fluctuations but without slip, Griin et al. [4] de-
rived the planar-film SLE. To do this, a long-wave approxima-
tion to the equations of FH was adopted, i.e., € = hy/A < 1.
We extend this analysis to consider the effect of slip at the
liquid-solid interface, using a similar long-wave approxima-
tion to the equations of FH, but with a special treatment for
the slip boundary condition.

In terms of a 2D film on a plate, Eq. (1) in Cartesian
coordinates is

u OJw

— 4+ — =0, 4

ox 0z @
and Eq. (2) is

ou ou ou ap u  u
N—tu—twv—)=——+ul—5+-—

ot dx 0z dx 0xz 372
bt )
ow Jw Jw ap ’w  w
,O(E“rua—x-i-wa—Z) = — a—Z‘f‘M(W“ra—zz)
0 ad
+ awxz + a_ZwZZ' (6)

Here u and w are the x and z components of velocity, and ¥
is a 2D random stress tensor with zero mean and covariance
given by
(W10, ) Yim(x', 1)
ZMkBT

(818 jm + 8im8 ;)8 (x —x)8(z — 2)8(t — ).
@)

The factor 1/L, appears because the planar films we con-
sider here are quasi-2D (L, < L,), allowing all variables of

y
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interest to be averaged over the y direction; in particular,

1 L,
lﬁ = L_‘ f() 'L'dy
For boundary conditions, at z = h, we have the dynamic
condition:

(0+¥) - n=—[yV-n+¢()n, (®)

where o is the hydrodynamic stress tensor, y is the surface
tension, ¢(h) is the disjoining pressure, and n is the normal
vector at the surface,

(—0h/ox, 1)

=t 9
" V1 +(8h/0x)* ©

The kinematic condition at z = & is

oh oh
m +u oW (10)
At z = 0, Navier’s slip boundary condition is
u= E%, 11
0z
where £ is the slip length. The substrate is impermeable so that
w =0. (12)

To get a lubrication equation from governing equations
Egs. (4)-(12), we need to establish the leading-order terms of
Egs. (4)—(12) by their asymptotic expansion in €, for which we
use the scaling relations suggested by Griin et al. [4], before
then returning to the dimensional form of the equations for
ease of interpretation:

X =)C/)L, Z:Z/ho, th/ho, T = %t,

w hoé‘
W=— P=—p,
270) U

A
("pxx’ lIjzz) = _(Wxxa WZZ),
Uo b

U =u/uy,

ho
(\pxm ‘Ilzx) = _(wxm wzx)v
Uopt

Here nondimensional variables are upper case and uq is the
characteristic velocity.
Using these scaling relations, Eq. (5) and Eq. (6) become

R ou +U8U +W8U
eRe| — — —
oT X aZ

B 8P+ 8U+8U
o X2 972
9 ,

Ly . 14
Tzt x (4

&> Re ow —I—UaW +W8W
oT X 0Z

op ,02W N R
= —— g & —— —_—
X2 YA

d

9
2 2
+e2—W,, 42—, 15
Cox w7 e (15)

Here the Reynolds number Re = puphy/p is assumed to be
order one or smaller which is usually valid for nanoscale
flows. The leading-order form of the dimensional momentum
equations Eq. (5) and Eq. (6) are thus

a 9%u 0
0=—2L 14 + 5V (16)
ox az
_dp
0= 17
- (17)

On the other hand, the leading-order form of the incompress-
ible condition, Eq. (4), remains unchanged.
In the normal direction to the surface, the scaled dynamic
condition, Eq. (8), is
9’H/3X?
[1 4 2(0H/3X)2"

ow oH (JU ow
=eM2— —2— | —= +&*—
0Z X \ 9Z 0X

,(0H\* OH
+ ¢ B_X \pxx - a_X(lI"xz + \Ilzx) + \pzz ) (18)

P+T

and the scaled dynamic condition in the tangential direction to
the surface is

,0H ow U
ee—|2l = - —= )+ V¥, — V¥,
X Z 03X ;
OH\ [ (oU oW
1-¢&*— — )+, | =0.
el NGz ) o]
(19)
Therefore, the leading order of the dimensional dynamic

boundary conditions in the normal and tangential direction are
seen to be

= O°h + ¢ (20)
P="V5a ’
ou
3 + ¥ = 0. (21)
Z

The leading order of the kinematic condition is unchanged.
For the slip boundary Eq. (11), its scaled form is

£ oU

22
ho 0z 22)

Thus, the leading-order slip boundary depends on the ratio
£/hg. In the present work, we consider the slip is at the order
of hy so that the leading order of slip boundary condition is
unchanged from Eq. (11).

To obtain the lubrication equation, Eq. (16) is integrated in
the z direction, and using Eq. (21) gives

au
Frl [( —h)— - wzx} (23)
Z

Integrating Eq. (23) from O to z then gives

1 1 <
’— Ul = —[(—zz—hz)@ - / wzx(z’)dz/}, (24)
wl\2 ox 0
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and u|,—o is determined as

ou
={—
u|z 0 3z

V4 0
= ——[h—” + Yelem 0] 25)
ml o

z=0

Thus the expression for velocity u is

1 1 d <
w= (L2 —ne—en)é? - / YoMz — Orloo |-
“w 2 dx 0

(26)

Integrating Eq. (4) in z from O to & and using the boundary
condition Eq. (10) and (12) give

ah a "
— =—— | udz 27)
8t 8)6 0

By substituting Eq. (26) into (27) one can obtain

LRI AT o
dt M 0x Vale)dzdz
h
+ / 51/’zx|z—0d2], (28)
0

where the mobility M(h) = 14 + £h?. For the above double
integral, integration by parts leads to

oh = 19 |:M(h)— f (h — D)VYpdz + Chip | = 0i|
ot pox
(29

Before simplifying the noise terms in Eq. (29), the covari-
ance of ¥,,|,—o has to be determined, which we will show is

given by
/ ’or ZMkBT ’ ’
(Waxle=0(x, Y l:=0 (X', 1)) = oL, S(x —x)é@ —1)
2 kgT
B §(x — X)8(t — 1),

v
(30)

Here n = /¢ is the so-called friction factor. Equation (30) is
inferred from Bocquet and Barrat’s Green-Kubo type expres-
sion of friction factor [37], which is

1 o0
/ (F(OF0)dt, 31)

= LLksT Jo

where Fy is the friction force at the wall (whose area is LL,)
along the x direction. As Fy = L,L, V|0, Eq. (31) leads to

LL, [®
—/0 (Yaxlz=0 (1)¥x|=0 (0))dt, (32)

kgT
which suggests that the friction factor is related to the
stochastic shear stress at the boundary. Notably, this ex-
pression for friction factor appears analogous to the Green-
Kubo expression for bulk shear viscosity, namely, pu =
kBLT Jo° (WY1 (0))dt (V is the volume of fluid), from
which one can obtain the covariance of bulk shear stress
(Vo)) = 28L8(x — x)8(z — 2)8(t —1') [40]. Thus the
covariance of V..|,—o, namely, Eq. (30), is obtained from
Eq. (32).

Now to simplify the noise terms in Eq. (29), we use the
method provided in Appendix A for the simplification of

]’]:

the stochastic integral. The two noise terms in Eq. (29) are
respectively simplified to

12 0
/ (h = 2)Ydz = |:/ (h—2) dZ} & = §h3$1,

(33)
EhWZx|z=0 =V Lh? 2. (34)

The /¢ in Eq. (34) comes from Eq. (30). The &; and &, have
zero mean and covariance

kgT
(&1, DE, 1) = ~ {3 S(x —x')st — 1), (35)
’or 2,l,Lk)BT ’ ’
(E2(x, 1)62(x', 1)) = L—S(X —x)é@ — 1), (36)
y
(E1(x, & (', 1)) = 0. (37)

Note that the noise term in the bulk is assumed to be uncorre-
lated to the value at the surface, Eq. (37), so that the two noise
terms can be combined together:

h
/ (h = D)adz + Chrloo (38)
0

1 1
= §h3§1 +VehEy =, §h3 +ehEs. (39)

Here &3 has the same covariance as & and &,. Thus we derive
the planar-film SLE with slip effects as

oh 19
= { (h)—+vM(h§} (40)

ot /L3

where p = —ys3 axz b+ ¢(h) is the driving pressure, and the
noise & (the subscript “3” is omitted) has zero mean and
covariance (§(x, )&, 1)) = 2“k’*T(S(x xN8(t —1t).

Notably, to derive the planar- film SLE including slip ef-
fects, it is essential to include a random friction force at the
liquid-solid interface as defined by Eq. (30). This finding was
also noticed in the study of Brownian motion of solid particles
within fluids when slip effects were prominent [41]. We also
note that there are several other ways [4,24,27,42] to simplify
the stochastic integral in Eq. (29). The fluctuation-dissipation
theorem is satisfied by the SLE: The variance of the noise
(the square of the prefactor to the noise term) is equal to the
mobility, which appears in the diffusion term (the first term of
the right-hand side of the SLE). For efficient numerical solu-
tions of stochastic partial differential equations such as this,
the reader is referred to the numerical integration schemes
discussed in Refs. [43,44].

The generalization of this 2D planar-film SLE to a 3D
version is quite straightforward, and one can obtain

oh 1
=Y {O()Vp +/O(h)s). (41)

ot
Here Q(h) = 1h* + ¢h?, p= —yAh+ ¢, and the noise g
has zero mean and covariance, (g;(x,y,t)g;(x',y',t")) =
2ukpT8;;6(x —x')8(y —y')8(t — '), where i and j denote
components of the noise vector.
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FIG. 2. Sketch of an annular liquid film on a fiber, where h =
h(z, t) is the outer radius of the film, X is the characteristic length,
and a is the fiber radius.

IV. ANNULAR-FILM SLE WITH SLIP EFFECTS

Consider now axisymmetric flow of an annular liquid film
on a fiber, see Fig. 2. Using the same procedure as for the
planar thin-film case, at leading order in € = hy/A <K 1, the
incompressible condition in cylindrical coordinates is

— + ——(@r)=0. (42)
Z r
Here w and u are the axial and radial components of velocity,

respectively. The governing momentum equations in cylindri-
cal coordinates (with only leading-order terms) become

ap 190 [ ow 19
= - - 4
0 Bz+'ur8r( 8r>+ (V§rz) (43)
9
0=_22 (44)
or

Here ¢,, is the rz component of the random stress tensor ¢,
which has zero mean and covariance,

kgT
(G, 2 08 2 1)) = & 28 — (= 2ot — ),

(45)

as we will show now. The covariance of 7 in cylindrical
coordinates is

(‘L’,/(V 9 Z,t)flm(r/, 9/1 Z/al/)>
2/1,]{3

(8118 jm + SimSj1)
x 8(r — )80 — 0)8(z — )8t —1)).  (46)

Due to the axisymmetry of the flow the variables of interest are

averaged over the azimuthal direction, e.g., { = % 02” td6.

Thus the covariance for the azimuthally averaged fluctuating
stress tensor is

<§ij(r7 Z9 t)é‘lm(r/a Z” t,)>

1 2 2w
= —2/ f (tt)dOdo’
Q2n) Jo Jo

MkB

(SII(SJm + Slmajl)a(r -r )S(Z —Z )5(t
(47)

At the free surface r = h, the dynamic condition in the
normal direction of the surface is

9%h 1
P=—V<a—zz—ﬁ>+¢- (48)

Notably, the term y % is not at leading order, but convention-
ally in this field it is st1ll included in the pressure in an attempt
to extend the validity of the model [11,15]. In the tangential
direction,

ow
u—+ ¢, =0. 49)
ar
The kinematic condition at r = h is
oh n oh (50)
— t+w— =u.
ot 0z

At the substrate surface r = a, the slip boundary is

={—, 51
w= Lt D

and the impermeability condition is
u=0. (52)

Integrating Eq. (43) twice and using two boundary condi-
tions Eq. (49) and (51) lead to an expression for velocity

1fr , 2 1, r 1 142 op
=—|-0r - — —h°1 - —a—-—— | |—
W M[4(r @) 2 og<a>+<2a 2a 0z
1 " ,
- _[/ é‘rz(r/)dr + E;rzlr:a:|~ (53)
M LJa
Using Eq. (42), Eq. (50), and Eq. (52), one can obtain

h— = ——/ rwdr. 54)

Substituting Eq. (53) into Eq. (54) results in

oh 1o 8p ,
hg = prr I:G(h)8 / / L (rdr dr

h
+ / Zré‘rzlr—udr]a (55)

where the mobility G(h) is
G(h)

—3h* — a* + 4a*h? + 4h* log(h/a) + 4(h? — a®) ' /a
16 ’

(56)
A simplification of the double integral in Eq. (55) leads to

S Lo dp ),
n Maz[ () Pyg / (2 — ), (rdr
+ %g(hz - az)grz|r=ai|- (57)

From Bocquet and Barrat’s expression of friction factor (in
cylindrical coordinates), the covariance of ¢,|,—, is found
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to be

kgT
(&rzlr=a (z, £)&r2lr=a (Z,, fl)) = e Bf 8(z — Z/)S(l — t/).

(58)

Now we are left with the task of finding an equivalent
stochastic partial differential equation that does not contain
integrals. Using the method in Appendix A, the two noise
terms in Eq. (57) are simplified respectively to

h hop2 22 V2
%/(#—ﬁxamh=[ @jﬁiw% B (59)

1aw—fmmm=1W—fW@m. (60)
2 2 a

Here the noise 8; and B, have covariance,

k
(Bi(z. OB 1) = "Ba&—zwa—t> ©61)
kgT
(Boz. a( 1)) = BB 5 — )6 — 1)), (62)
(Bi(z. B, 1)) = 0. 63)

Equation (63) results from the assumption that the bulk noise
is uncorrelated with the noise at the boundary, allowing the
two noise terms to be combined:

h
%/(W—#Manm+%a#—fkama

e S ¢
=[/ %W} 51+§(h2—a2)\/;/32

"=y’
[

= v G(h)ps. (64)

Here B3 has the same covariance as 8; and B,. Thus the
stochastic lubrication equation for an annular film on a fiber
with slip effects (the annular-film SLE) is derived as

h 1
?9; Py 0 |:G(h)— + v G(h) ,Bi| (65)

1 £
dr+ 2 (R — aP—ps
4 a

Here p= _V(azz — —) + ¢, and the noise B (the sub-
script “3” is omltted) has zero mean and covariance
(B(z,)B( 1)) = “2L8(z — 2/)8(t — t'). Notably, the de-
rived annular-film SLE can be viewed as an extension of the
existing annular-film LE [15]; an extension that constitutes the
addition of an appropriately scaled noise term.

V. STATIC AND EVOLVING CAPILLARY WAVE SPECTRA

The study of fluctuating capillary waves has long been the
interest of researchers, as they are essential to modern theories
of surface physics [45,46] and they contain information relat-
ing to the properties of liquid-solid systems [47], providing a
noninvasive method of measuring transport properties. Here,
the newly developed SLEs are used to investigate the effects
of thermal fluctuations and the slip length on the temporal

growth of capillary waves of thin liquid films (planar and
annular) in terms of their spectra.

A. Static spectra

The static spectrum of capillary waves on a planar film can
be determined by the equipartition theorem; this forms the
basis of classical capillary wave theory (CWT) [45,46,48]. For
a planar film influenced by the interfacial potential IT, whose
derivative is disjoining pressure ¢ = dh’ the free energy fi
(the subscript “1” denotes that variables are for planar films
henceforth) due to the change of surface area (in 2D configu-

ration) is
fi=Ly / W1+ (3h/3x)* — 1]dx

+1L / [TI(h(x)) — T (ho)]dx. (66)

For small deformations (3h/dx < 1), /14 (3h/dx)* —
~ 1@n/ox)>  and  TI(h) — T(ho) ~ L), (h — ho) +
; f;,,{l lho (h — ho)?, Eq. (66) is simplified to

Ji= ﬁ)//(3}1/3)6)261 +——
2 2 o

/ [h(x) — hol*dx.
(67)

Let us define the Fourier transform of 84 = h(x) — hg as
Sh = [ 8he™"#dx. From Parseval’s theorem, we can express
Eq. (67) in terms of Fourier modes:

1L,
== Sh 68
fi=377r 2.4 |$hI* +2L ahzmo}] G

As each summand appears quadratically, it has the same en-
ergy 2kBT from equipartition theorem, so that

1 L /1 1921\ ~ 2
—kpT = =2 Sy TF71 69
Sks %(2 +28W|J|| (69)

Thus, the well-known CWT for a planar film is derived
[45,46,48]:

L, ksT
Ly yq® + 9*T1/0R2 |y,

(16R1%)) = (70)

It is easy to extend consideration to an axissymmetric
annular film. The free energy for an annular film, f, (the
subscript “2” denotes that variables are for annular films
henceforth), is

h= ﬂhof {V(ah/az)z - ;l/—z[h(z) - ho]z}dz
0

Ry )
+ 7ho Evel lno[(z) — hol”dz, (71

so that in Fourier space

7Th0

fr=""

2,52 Y o2 82
Sh|” — =|6h sh|"). (72
T3 (v o + ) 72
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Applying the equipartition theorem, we obtain the static spec-
trum of an annular film,

PO L, ksT
(16h1%)2 = > > > T
27chy y (g2 — 1/h2) + 92T1/0h2 |,

(73)

B. Time-dependent spectra

The static spectrum from CWT does not describe how
capillary waves develop in time. For example, in the absence
of an interfacial potential, CWT cannot reveal how an ini-

tially smooth surface of a planar film with (|871|2) = O evolves

. . 02 .
into a rough surface with (|6h| ) = é—*’;”—qu To resolve this

problem, we perform a linear stability analysis of the newly
developed planar-film SLE and annular-film SLE to obtain
time-dependent spectra (for details, see Ref. [33]). For a pla-
nar film, with Eq. (40), one can obtain

- % )
(I8h(g, 1)1*)1 = |8h(q, 0)| e 21"

L ksT
= d [1—e

72w1(q)t]_
Ly yq*+ (dp/dh) |,

(74)

Here |cﬁl(q, O)|2 is the initial condition of the film surface and
the dispersion relation is

_M(ho)( 4 dg
= Y4
"

W]

qz). (75)
ho

For wave numbers with w;(g) > 0 and in the long-time limit
t — oo, Eq. (74) simplifies to Eq. (70). Thus the static spec-
trum from CWT is a special case of the time-dependent
spectrum derived here. We also note that the right-hand side
of Eq. (74) consists of two terms. The first term is from the
deterministic part of the SLE (namely, the LE) and the second
term comes from the stochastic part of the SLE [33].

For an annular film, the time-dependent spectrum derived
from the annular-film SLE is

~ . )
(|8h(q,t)|2)2 = |8h(q,0)| e 2w (q)t

n L, kgT
21cho y (g2 — 1/h2) + (d/dh) |,
x [1 — e 22@r, (76)
where the dispersion relation is
G(ho) 4 a0, 99| 5

= —q/h — . 77
o= [V(q q’/ 0)+dh hoq (77)
In the following sections we use S; = (|871(q, t)|2)l_ (i=

1, 2) for notational simplicity.

VI. MOLECULAR DYNAMICS SIMULATION

To validate the time-dependent spectra obtained from the
planar-film SLE and the annular-film SLE, MD simulations
are performed of nanoscale liquid films on planar and cylin-
drical substrates, using the open-source code LAMMPS [49].
Previously, we have validated the no-slip planar-film SLE [4]
using MD simulations as well [33]. All simulation domains
contain three phases with the liquid bounded by the vapor

Film on plate

Film on fibre

FIG. 3. Snapshots of a thin liquid film (a section) on a substrate
in MD. For planar films, (a) initial configuration with a smooth
surface; (b) surface roughening. For annular films, (c) initial con-
figuration; (d) beads formed due to the Rayleigh-Plateau instability.
L, is the film length, 4 is the film thickness for a planar film and film
radius for an annular film, and a is the fiber radius (y and 6 are into
the page).

above and the solid below, as shown in Figs. 3(a) and 3(b)
for a planar film and Figs. 3(c) and 3(d) for an annular film.

The liquid of the film is argon, simulated with
the standard Lennard-Jones (LJ) 12-6 potential: U (r;;) =
de;[(oy /rij)12 — (oy /rij)é], where [/ denotes liquid-liquid
interactions and ij represents pairwise particles. The energy
parameter &;; is 1.67 x 1072! J and the length parameter oy
is 0.34 nm. The temperature of this system is kept at T =
85 K or T* = 0.7¢;;/kg (* henceforth denotes LJ units). At
this temperature, the number density of liquid argon is nj =
0.83/ crﬁl. The number density of the vapor phase is 1/400n;.
For a planar substrate shown in Figs. 3(a) and 3(b), the solid
is platinum with a face centered cubic (fcc) structure and its
(100) surface in contact with the liquid. The platinum number
density is nj = 2.60/ Uﬁ. For a cylindrical substrate, the one in
Figs. 3(c) and 3(d) is generated by cutting out a cylinder from
a large cuboid of platinum. All solid substrates are assumed
to be rigid, which saves considerable computational cost. The
liquid-solid interactions are also modelled by the same 12-6
LJ potential with o;; = 0.80y; for the length parameter. For
planar films, three different values of the energy parameter are
used, in order to generate varying slip lengths: Case (P1) ¢;, =
0.65¢;;, Case (P2) g, = 0.35¢;;, and Case (P3) g, = 0.2¢y;.
For an annular film on a fiber: Case (A) &, = 0.7¢;;. The
cut-off distance, beyond which the intermolecular interactions
are omitted, is chosen as r.* = 5.50y;. The surface tension is
¥ = 1.52 x 1072 N/m (obtained from the virial expression)
and dynamic viscosity u = 2.87 x 10~* kg/(ms) (obtained
by the Green-Kubo method).

The initial dimensions of a planar liquid film [see Fig. 3(a)]
are L, = 313.90 nm, L, = 3.14 nm and /o = 3.14 nm so that
L, > Ly, making the 3D MD simulations quasi-2D, which
allows us to consider large aspect ratio films and compare
to 2D theories. The substrate has a thickness of i, = 0.78
nm (composed of five layers of platinum atoms). The ini-
tial size of the annular film [see Fig. 3(c)] has film length
L, = 229.70 nm, outer radius 4y = 5.74 nm. As the fiber is cut
from a box of platinum with fcc structure, its size is defined
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45 45
b
0 @ & MD,t=0.17ns 0 ® 40 2 Noatp
4 MD,t=0.86ns Planar-film SLE
350 A MD,t=4.28ns
A MD,t=17.14ns
30 | Planar-film SLE

static capillary wave

FIG. 4. Slip effects on capillary spectra of a planar film. The comparison of spectra is made between MD results (triangles) and planar-film
SLE (solid lines) at four different times, along with the static spectrum (dash-dot line). (a) P1, £ = 0.68 nm, (b) P2, £ = 3.16 nm, and (c) P3,
¢ = 8.77 nm. Inset of (b) shows the comparison between MD results of P2 and no-slip planar-film SLE.

as the radius of cylinder a = 2.35 nm used to cut the substrate
out. Periodic boundary conditions (PBC) are applied in the x
and y directions of a planar system whilst vapor particles are
reflected specularly in the z direction at the top boundary of
the planar system. For annular films, PBC are applied in all
three directions. After initialization of the simulated systems,
the positions and velocities of the liquid and vapor atoms
are updated with a Nosé-Hoover thermostat (details of the
initialization of MD simulations are provided in Appendix B).

The liquid-vapor interface is defined as the usual equimolar
surface. After the interface is extracted from MD simulations
(see Ref. [33] for details), the interfacial profile is averaged
over the y direction for a planar film and over 6 direction for an
annular film. Then Fourier transforms of the interfacial profile
are performed and averaged over a number of independent
realizations (65 realizations for a planar film and 10 realiza-
tions for an annular film) to get the time-dependent spectra
of capillary waves S shown in Fig. 4, for planar films, and in
Fig. 6 for annular films.

VII. RESULTS AND DISCUSSION

A. Spectra of planar films

Figures 4(a)—4(c) show spectra of planar films with two
different slip lengths. Since the film thickness is larger than
the cut-off distance, there are no interactions between the film
surface and solid surface. As such, the disjoining pressure ¢
vanishes, which leads to w; > 0 for all wave numbers. This
means that, according to classic theory, the surface should re-

main smooth for an initially smooth surface ( |<S71(q, O)|2 =0)
shown in Fig. 1(a). However, as illustrated by Fig. 1(b), the
free surface becomes rough and the spectra of surface wave
evolve with time; see MD results (triangles) in Figs. 4(a) and
4(b). Notably, this growth is toward an upper limit, which
Ly kT
Ly yq*
this growth is driven purely by thermal fluctuations—the de-
terministic term in Eq. (74) makes no contribution to the
spectrum.

Notably, the no-slip planar-film SLE [4] cannot accurately
predict the MD results, as shown in the inset of Fig. 4(b).
However, using the measured slip length (¢ = 0.68 nm for P1,
£ =3.16 nm for P2, and £ = 8.77 nm for P3) and effective

is the static spectrum (orange dash-dot). Meanwhile,

thickness of fluid domain Ay = 2.90 nm (see Appendix C for
measurements of slip length and the definition of effective
thickness, arising from the fact that the hydrodynamic bound-
ary does not align with the solid surface), analytical spectra
from the newly derived planar-film SLE with slip (solid lines)
agree well with MD results [see Fig. 4(a) and Fig. 4(b)].
Notably, the agreement gets worse when slip length becomes
larger than the film thickness [see Fig. 4(c)]. In the derivation
of the SLE, the slip length is assumed to be of the same
order as the film thickness—so we can infer that the observed
worsening agreement is a result of this assumption becoming
progressively less valid. By comparing Fig. 4(a) and Fig. 4(b),
slip is shown to speed up the evolution of capillary spectra.
However, from Eq. (74), the spectra with different slip lengths
will approach the same static spectrum, as t — 0.

The dominant wave number g, decreases with time and is
found to be

1

- [15 m ’ (78)

A
|t
W18y e + hg)]
from Eq. (74) by requiring % = 0. This fascinating, entirely
nonclassical, result is confirmed by the MD results in Fig. 5.

B. Spectra of annular films

Figure 6 shows evolving spectra for the capillary waves of
an annular film. For wave number ghg > 1, the MD spectra
(triangles) at different times collapse to the static spectra

L. T
from the circumferential curvature results in a negative dis-
persion relation (see the inset of Fig. 6) so that the amplitude
will grow unboundedly until the film ruptures, where beads
are formed as shown in Fig. 1(d). Using the measured slip
length £ = 0 with the hydrodynamic boundary position at
a = 2.60 nm and the surface position at hy = 5.74 nm (see
Appendix C), the analytical spectrum from the annular-film
SLE (solid lines) is in reasonable agreement with MD re-
sults shown in Fig. 6. The difference between MD and the
annular-film SLE in terms of spectral amplitude increases
with time, and this is because the annular-film SLE overpre-
dicts the dispersion relation, as shown in the inset. By the
comparison of the dispersion relation to the full governing

. However, for ghy < 1, the Laplace pressure
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i; ] o MD,£=0.68 nm
A MD,£=3.16 nm
1E o MD,£=8.77nm
08 E Planar-film SLE, £ = 0.68 nm
Planar-film SLE, £=3.16 nm
06E Planar-film SLE, £ = 8.77 nm
’QQ
=
04 F
02

0.1 1 10
t [ns]

FIG. 5. Decrease of dominant wave number g, with time. Molec-
ular dynamics results are shown by symbols and planar-film SLE are
solid lines.

equations based on Stokes flow [15], it is known that the
accuracy of the deterministic annular-film LE depends on the
ratio a/hy with improving agreement for larger a/hy. Since the
dispersion relation of the annular-film SLE is the same as the
one of the annular-film LE, it is expected that the annular-film
SLE has better accuracy for larger a/hy as well (currently,
a/hy = 0.45).

As for the dominant wave number for a planar film,
the dominant wave number for an annular film also de-
creases with time but approaches a constant value which
is q,.ho = V2/2 from the annular-film LE. It is inter-
esting to know at what timescale the g, reaches the
constant value g,.. By requiring % =0 from Eq. (76),

25
0.018 o MD
o012 L
20} 3 o o
-’ .
' 0.006 P v
. o\
-0 '
15 F 0'008.0 02 04 06 08 1)0
& qh,
El N A MD, t=0.86ns
“ 10 A MD,t:4.28 ns
A MD,t=8.57ns
A Annular-film SLE
A A A . .
sl A static capillary wave
v A
A &L A
O 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

qhy

FIG. 6. Capillary spectra of annular films at different times, with
MD results (triangles) and annular-film SLE (solid lines). The inset
shows a comparison between MD and the lubrication model of pre-
dictions of the dispersion relation w,.

we obtain 22200 4y, (g )t[2 — 1/(qaho)*] + 1 — €22l =
0. When gghy is close to +/2/2, this expression is simplified to

,uhg 1
2yG(ho) t-

Thus, the timescale for the dominant wave number to reach

(qaho)* = (qacho)* + (79)

Gacho = V2 /218 ygTh}i) However, it is not feasible to extract
the dominant wave number from current MD simulations to
confirm Eq. (79), as the number of data points is too sparse,
as shown in Fig. 6. One would need to simulate a much longer
film to have data dense enough to verify Eq. (79), and the
computational cost of this is currently prohibitively high.

VIII. CONCLUSION

To investigate the combined effects of thermal fluctua-
tions and slip on thin-film flows at the nanoscale, we derive
stochastic lubrication equations for thin films on both plates
and fibers using the long-wave approximation to fluctuating
hydrodynamics, which are validated by molecular simulations
in terms of capillary wave spectra. To complete the derivation,
it is essential to include a random stress at the liquid-solid
interface and its covariance is related to the slip length. The
derivation process is general, as we demonstrated for films on
different substrate geometries, and can be extended to study
other thin-film flows at the nanoscale, like free liquid films
[50].

The analysis of SLEs here is linear, since our focus is
on the wave growth at early stages. In the future, it will
be interesting, using the developed SLEs, to investigate how
thermal fluctuations and slip influence the dynamics during
the nonlinear stages of film growth, such as on rupture profile,
rupture time and droplet distribution. The SLEs developed
here also provide useful tools to study nanoscale film dewet-
ting, nanofiber coating and liquid transport using nanofibers
[51] where thermal fluctuations and slip are expected to play
an important role.

Despite the successes, there are a number of ways in which
the models derived here can be improved to predict fluctuating
capillary waves. The SLEs are derived using a long-wave
approximation, which means the dynamics of capillary waves
with short wavelengths are inaccurate. To derive the SLEs, the
assumption of small slip length is adopted, which limits their
application to relatively small slip systems. A more general
model, beyond the current lubrication framework, is needed
to predict the growth of capillary waves in these more general
cases and presented in the future work.
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APPENDIX A: SIMPLIFICATION OF THE
STOCHASTIC INTEGRAL

Here the method to simplify the stochastic integral in
Eq. (29) for the planar film and in Eq. (57) for the annular
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film, is presented. The main result used, that we will derive in
this Appendix, is:

wy 1/2
f(z)zdz} N.  (AD

wy

wy

f(N(2)dz = [
Here AN is Gaussian white noise, with covariance
(NN () =B8(z —7') [the 8(x —x') and 8(t —t') are
transposed out the integral since the integral is performed only
in z direction], and f(z) is some function of z. The w; and w;
are non-Gaussian random variables that are uncorrelated with
N (but potentially correlated with each other). The N is a
single Gaussian random number with the same variance as A/
[i.e., var(N) = B]. To verify (A1) holds, we start by defining
a simple transformation:

Z— Wi

0= ——, (A2)
W — W
such that
w2 1
/ F@)dz = (ws — wy) / flada, (A3
wl 0
w2 1
/ FPdz = (ws — wy) / flayda.  (Ad)
wl 0
In discretized forms,
w2 — M
SN (@M= Vo Y @NL (@as)
w i=1
1 1 M
f FlN (@)da = \/% Y N (A6)
0 i=1

where M is the number of grid points (M — oco) and
(NiN;) = A8;;. Since Zf‘i, f(z)N; and Z?ilf(ai)J\/i are

Gaussian, and from Eq. (A4), one can show

M M

Y @ =) fl),

i=1 i=1

which means Zf‘i 1 f(z)N; and Zf‘i | f(;)V; have the same
variance and are thus equal. Therefore, it is found

(AT)

w2 1
F@ON(@)dz = Vwy, — w /0 f@N(a)da. (A8)

wl

Due to the Gaussian property of Zfil f(z)N,, it can also be
shown that

1 1 1/2
/ f(a)f\/(a)da=< / f(a)%la) N. (A9)
0 0

Essentially, Eq. (A9) is a continuous form of Bienayme’s
formula. Finally, one can get

w2 1
/ FN(@)dz = wy — w, / fl@)N(a)da
wl 0
1 1/2
= [(wz —wy) / f(a)zda} N
0

w 1/2
= [ f(z)zdz:| N.

wy

(A10)

APPENDIX B: MD INITIALIZATION

For a planar film, a liquid film with thickness kg = 3.14
nm and vapor are equilibrated separately in periodic boxes
at T = 85 K. Then the film is deposited above the substrate
and with a vapor on top of the film. Because there exists a
gap (a depletion of liquid particles) between the solid and
liquid, arising from the repulsive force in the LJ potential, it
is necessary to deposit the liquid above the substrate by some
distance. The thickness of the gap is found to be about 0.2 nm
after which the liquid-solid system reaches equilibrium, so
that we choose a deposit distance d = 0.2 nm. This makes
the position of the film surface at iy + d = 3.34 nm, initially.
For an annular film, liquid molecules and vapor molecules are
equilibrated separately, in cuboid periodic boxes at T = 85 K.
Then an annular film is cut out from the cuboid box with an
outer radius at ip = 5.74 nm and an inner radius above the
fiber radius, with an interval 0.2 nm. Then the fiber is put
into the annular film and vapor placed to surround the film.
Notably, in this case, the position of film surface is still at
hy = 5.74 nm, initially.

APPENDIX C: MEASUREMENTS OF SLIP LENGTH

Since we have chosen varying liquid-solid interactions
for three cases (P1, P2, and A), it is necessary to know
what slip length those cases have. Slip length is thus mea-
sured by nonequilibrium simulations of pressure-driven flow
past a substrate surface as shown by the MD snapshots in
the top-left corner of Fig. 7 (for a planar film) and Fig. 8
(for an annular film). The pressure gradient is created by
applying a body force g to the fluid. The generated veloc-
ity distribution is u(z) = p—i(z —21)QRz —z1 — 2) + u, for a
planar film. Here z; and z, are positions of the hydrody-
namic boundary (HB) and free surface (FS) for a planar
film, respectively, and u;, is the slip velocity at the HB. For

an annular film, the axisymmetric velocity profile is u(r) =

0.6 6
16 /E'
05} L e 5
oot
8 Q==L
0.4 0.00 001 , 002 0034
£ 7] Z5 0 B
%03} 8 5
--4-- velocity 2*=0.01
02l density
0.1} s
7 -
7 // -
0.0 R

— 0
-10 8 6 4 -2 0 2 4 6 8 10 12

FIG. 7. Slip length measured by a flow past a plate for case P2.
Molecular dynamics calculations of velocity (triangles) are fitted
with analytical solutions (black solid lines) with the HB (z;) at the
first valley of MD density (yellow solid line) and FS (z») at 0.5x;.
The inset shows slip length as a function of driving force.
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FIG. 8. Slip length measured by a flow past a fiber for case Al.
Molecular dynamics calculations of velocity (symbols) are fitted
with analytical solutions (black solid lines) with the HB (7)) at the
first valley of MD density (orange solid line) profile and FS (r,) at
0.5n}.

—%[r2 — r? —2r3log(r/r2)] + us, where ry and r, are posi-
tions of the HB and FS for this system.

The precise location of two boundary positions for each
system is not trivial since there is an interfacial zone between
the two different phases (solid-liquid and liquid-vapor) as
demonstrated by the density distribution( the orange line in
Fig. 7 and Fig. 8). For the HB, research has shown it is
located inside the liquid, between the first-peak density and
the second-peak density, rather than being located at the solid
surface [37,52], by comparing the analytical solution and MD

measurements of the correlations of momentum density (an
offset which matters when the interfacial layer has comparable
width to the film). In line with this finding, we choose the
position of the HB at the first valley of the density distribution:
Zi = 1.30 for a planar film and r{ = 7.65¢ for an annular
film (see Fig. 7 and Fig. 8). The position of FS is determined
in the standard way by the location of the equimolar surface
where density is 0.5x], with z5 = 9.80 for a planar film and
ry = 16.55¢0 for an annular film (see Fig. 7 and Fig. 8).

After locating the boundary, the slip velocity is obtained by
fitting velocity profiles of MD data (symbols) with analytical
expressions of velocity (solid black lines) as shown in Fig. 7.
The slip length ¢ is the distance between the HB and the po-
sition where the the linear extrapolation of the velocity profile
vanishes. Figure 7 is, in particular, for the measurement of the
slip length of case P2 where the slip length is measured to be
£* =9.30 (3.16 nm). Two different values of driving force
g =0.01 and g* = 0.006 are used to demonstrate that the
measured slip length is a constant, independent of the driving
force (g < 0.01). However, as the inset shows, the slip length
does become force (shear)-dependent for g* > 0.01, which is
beyond the current consideration [38]. The driving forces in
the free-surface flows studied for capillary waves are small
enough that the assumption of a constant slip length holds.
In the same way, £ = 0.68 nm is measured for case P1 and
¢ = 8.77 nm for case P3. For an annular film, as shown in
Fig. 8, the slip length is £ = 0 nm (no-slip) for case A.

We note that as the HB does not align with the edge of the
solid, the effective thickness of the fluid domain simulated for
capillary waves is different to its initial thickness. For a planar
film, as the position of the initial free-surface is at 3.34 nm
(see Appendix B) and the HB is at z; = 0.44 nm, the effective
thickness of a planar film is 2.9 nm. For an annular film, this
means a = r; = 2.6 nm and outer radius /g is 5.74 nm.
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