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Abstract
Single-person human pose estimation facilitates markerless movement analysis in sports, as well as in clinical applications.
Still, state-of-the-art models for human pose estimation generally do not meet the requirements of real-life applications.
The proliferation of deep learning techniques has resulted in the development of many advanced approaches. However,
with the progresses in the field, more complex and inefficient models have also been introduced, which have caused
tremendous increases in computational demands. To cope with these complexity and inefficiency challenges, we propose
a novel convolutional neural network architecture, called EfficientPose, which exploits recently proposed EfficientNets
in order to deliver efficient and scalable single-person pose estimation. EfficientPose is a family of models harnessing
an effective multi-scale feature extractor and computationally efficient detection blocks using mobile inverted bottleneck
convolutions, while at the same time ensuring that the precision of the pose configurations is still improved. Due to its low
complexity and efficiency, EfficientPose enables real-world applications on edge devices by limiting the memory footprint
and computational cost. The results from our experiments, using the challenging MPII single-person benchmark, show that
the proposed EfficientPose models substantially outperform the widely-used OpenPose model both in terms of accuracy and
computational efficiency. In particular, our top-performing model achieves state-of-the-art accuracy on single-person MPII,
with low-complexity ConvNets.

Keywords Human pose estimation · Model scalability · High precision · Computational efficiency · Openly available

1 Introduction

Single-person human pose estimation (HPE) refers to the
computer vision task of localizing human skeletal keypoints
of a person from an image or video frames. Single-
person HPE has many real-world applications, ranging from
outdoor activity recognition and computer animation to
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clinical assessments of motor repertoire and skill practice
among professional athletes. The proliferation of deep
convolutional neural networks (ConvNets) has advanced
HPE and further widen its application areas. ConvNet-based
HPE with its increasingly complex network structures,
combined with transfer learning, is a very challenging task.
However, the availability of high-performing ImageNet [9]
backbones, together with large tailor-made datasets, such
as MPII for 2D pose estimation [1], has facilitated the
development of new improved methods to address the
challenges.

An increasing trend in computer vision has driven towards
more efficient models [11, 38, 46]. Recently, Efficient-
Net [47] was released as a scalable ConvNet architecture,
setting benchmark record on ImageNet with a more com-
putationally efficient architecture. However, within human
pose estimation, there is still a lack of architectures that
are both accurate and computationally efficient at the same
time. In general, current state-of-the-art architectures are
computationally expensive and highly complex, thus mak-
ing them hard to replicate, cumbersome to optimize, and
impractical to embed into real-world applications.
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The OpenPose network [6] (OpenPose for short) has
been one of the most applied HPE methods in real-
world applications. It is also the first open-source real-
time system for HPE. OpenPose was originally developed
for multi-person HPE, but has in recent years been
frequently applied to various single-person applications
within clinical research and sport sciences [15, 32, 34].
The main drawback with OpenPose is that the level of
detail in keypoint estimates is limited due to its low-
resolution outputs. This makes OpenPose less suitable for
precision-demanding applications, such as elite sports and
medical assessments, which all depend on high degree
of precision in the assessment of movement kinematics.
Moreover, by spending 160 billion floating-point operations
(GFLOPs) per inference, OpenPose is considered highly
inefficient. Despite these issues, OpenPose seems to
remain a commonly applied network for single-person HPE
performing markerless motion capture from which critical
decisions are based upon [2, 56].

In this paper, we stress the lack of publicly available methods
for single-person HPE that are both computationally effi-
cient and effective in terms of estimation precision. To this
end, we exploit recent advances in ConvNets and propose
an improved approach called EfficientPose. Our main idea
is to modify OpenPose into a family of scalable ConvNets
for high-precision and computationally efficient single-person
pose estimation from 2D images. To assess the performance
of our approach, we perform two separate comparative studies.
First, we evaluate the EfficientPose model by comparing
it against the original OpenPose model on single-person
HPE. Second, we compare it against the current state-of-
the-art single-person HPE methods on the official MPII
challenge, focusing on accuracy as a function of the number
of parameters. The proposed EfficientPose models aim to
elicit high computational efficiency, while bridging the gap
in availability of high-precision HPE networks.

In summary, the main contributions of this paper are the
following:

– We propose an improvement of OpenPose, called
EfficientPose, that can overcome the shortcomings of
the popular OpenPose network on single-person HPE
with improved level of precision, rapid convergence
during optimization, low number of parameters, and
low computational cost.

– With EfficientPose, we suggest an approach provid-
ing scalable models that can suit various demands,
enabling a trade-off between accuracy and efficiency
across diverse application constraints and limited com-
putational budgets.

– We propose a new way to incorporate mobile Con-
vNet components, which can address the need for

computationally efficient architectures for HPE, thus
facilitating real-time HPE on the edge.

– We perform an extensive comparative study to evaluate
our approach. Our experimental results show that
the proposed method achieves significantly higher
efficiency and accuracy in comparison to the baseline
method, OpenPose. In addition, compared to existing
state-of-the-art methods, it achieves competitive results,
with a much smaller number of parameters.

The remainder of this paper is organized as follows:
Section 2 describes the architecture of OpenPose and
highlights research which it can be improved from.
Based on this, Section 3 presents our proposed ConvNet-
based approach, EfficientPose. Section 4 describes our
experiments and presents the results from comparing
EfficientPose with OpenPose and other existing approaches.
Section 5 discusses our findings and suggests potential
future studies. Finally, Section 6 summarizes and concludes
the paper.

For the sake of reproducibility, we will make the Effi-
cientPose models available at https://github.com/daniegr/
EfficientPose.

2 Related work

The proliferation of ConvNets for HPE following the
success of DeepPose [54] has set the path for accurate HPE.
With OpenPose, Cao et al. [6] made HPE available to the
public. As depicted by Fig. 1, OpenPose comprises a multi-
stage architecture performing a series of detection passes.
Provided an input image of 368 × 368 pixels, OpenPose
utilizes an ImageNet pretrained VGG-19 backbone [41] to
extract basic features (step 1 in Fig. 1). The features are
supplied to a DenseNet-inspired detection block (step 2)
arranged as five dense blocks [23], each containing three 3×
3 convolutions with PReLU activations [20]. The detection
blocks are stacked in a sequence. First, four passes (step 3a-
d in Fig. 1) of part affinity fields [7] map the associations
between body keypoints. Subsequently, two detection
passes (step 3e and 3f) predict keypoint heatmaps [53] to
obtain refined keypoint coordinate estimates. In terms of
level of detail in the keypoint coordinates, OpenPose is
restricted by its output resolution of 46 × 46 pixels.

The OpenPose architecture can be improved by recent
advancements in ConvNets, as follows: First, automated
network architecture search has found backbones [47,
48, 62] that are more precise and efficient in image
classification than VGG and ResNets [21, 41]. In particular,
Tan and Le [47] proposed compound model scaling to
balance the image resolution, width (number of network
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Fig. 1 OpenPose architecture utilizing 1) VGG-19 feature extractor, and 2) detection blocks performing 4+2 passes of estimating part affinity
fields (3a-d) and confidence maps (3e and 3f)

channels), and depth (number of network layers). This
resulted in scalable convolutional neural networks, called
EfficientNets [47], with which the main goal was to provide
lightweight models with a sensible trade-off between model
complexity and accuracy across various computational
budgets. For each model variant EfficientNet-Bφ, from the
most computationally efficient one being EfficientNet-B0
to the most accurate model, EfficientNet-B7 (φ ∈ [0, 7] ∈
Z

≥), the total number of FLOPs increases by a factor of 2,
given by

(α · β2 · γ 2)φ ≈ 2φ . (1)

Here, α, β and γ denote the coefficients for depth, width,
and resolution, respectively, and are set as

α = 1.2, β = 1.1, γ = 1.15. (2)

Second, parallel multi-scale feature extraction has improved
the precision levels in HPE [25, 33, 44, 57], emphasizing
both high spatial resolution and low-scale semantics.
However, existing multi-scale approaches in HPE are
computationally expensive, both due to their large size and
high computational requirements. For example, a typical
multi-scale HPE approach has often a size of 16 − 58
million parameters and requires 10 − 128 GFLOPS [8, 33,
36, 44, 49, 57, 61]. To cope with this, we propose cross-
resolution features, operating on high- and low-resolution
input images, to integrate features from multiple abstraction
levels with low overhead in network complexity and with
high computational efficiency. Existing works on Siamese
ConvNets have been promising in utilizing parallel network
backbones [17, 18]. Third, mobile inverted bottleneck
convolution (MBConv) [38] with built-in squeeze-and-
excitation (SE) [22] and Swish activation [37] integrated
in EfficientNets has proven more accurate in image
classification tasks [47, 48] than regular convolutions [21,
23, 45], while substantially reducing the computational

costs [47]. The efficiency of MBConv modules stem from
the depthwise convolutions operating in a channel-wise
manner [40]. With this approach, it is possible to reduce the
computational cost by a factor proportional to the number
of channels [48]. Hence, by replacing the regular 3 × 3
convolutions with up to 384 input channels in the detection
blocks of OpenPose with MBConvs, we can obtain more
computationally efficient detection blocks. Further, SE
selectively emphasizes discriminative image features [22],
which may reduce the required number of convolutions and
detection passes by providing a global perspective on the
estimation task at all times. Using MBConv with SE may
have the potential to decrease the number of dense blocks
in OpenPose. Fourth, transposed convolutions with bilinear
kernel [30] scale up the low-resolution feature maps, thus
enabling a higher level of detail in the output confidence
maps.

By building upon the work of Tan and Le [47], we present
a pool of scalable models for single-person HPE that is able
to overcome the shortcomings of the commonly adopted
OpenPose architecture. This enables trading off between
accuracy and efficiency across different computational
budgets in real-world applications. The main advantage
of this is that we can use ConvNets that are small and
computationally efficient enough to run on edge devices
with little memory and low processing power, which is
impossible with OpenPose.

3 The EfficientPose approach

In this section, we explain in details the EfficientPose
approach. This includes a detailed description of the Effi-
cientPose architecture in light of the OpenPose architecture,
and a brief introduction to the proposed variants of Effi-
cientPose.
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3.1 Architecture

Figures 1 and 2 depict the architectures of OpenPose
and EfficientPose, respectively. As can be observed in
these two figures, although being based on OpenPose, the
EfficientPose architecture is different from the OpenPose
architecture in several aspects, including 1) both high
and low-resolution input images, 2) scalable EfficientNet
backbones, 3) cross-resolution features, 4) and 5) scalable
Mobile DenseNet detection blocks in fewer detection
passes, and 6) bilinear upscaling. For a more thorough
component analysis of EfficientPose, see Appendix A.

The input of the network consists of high and low-
resolution images (1a and 1b in Fig. 2). To get the low-
resolution image, the high-resolution image is downsampled
into half of its pixel height and width, through an initial
average pooling layer.

The feature extractor of EfficientPose is composed of the
initial blocks of EfficientNets [47] pretrained on ImageNet
(step 2a and b in Fig. 2). High-level semantic information
is obtained from the high-resolution image using the initial
three blocks of a EfficientNet with φ ∈ [0, 7] (see (1)),
outputting C feature maps (2a in Fig. 2). Low-level local
information is extracted from the low-resolution image by
the first two blocks of a lower-scale EfficientNet-backbone
(2b in Fig. 2) in the range φ ∈ [0, 3]. Table 1 provides
an overview of the composition of EfficientNet backbones,
from low-scale B0 to high-scale B7. The first block of
EfficientNets utilizes the MBConvs shown in Fig. 3a and b,

whereas the second and third blocks comprise the MBConv
layers in Fig. 3c and d.

The features generated by the low-level and high-
level EfficientNet backbones are concatenated to yield
cross-resolution features (step 3 in Fig. 2). This enables
the EfficientPose architecture to selectively emphasize
important local factors from the image of interest and the
overall structures that guide high-quality pose estimation. In
this way, we enable an alternative simultaneous handling of
different features at multiple abstraction levels.

From the extracted features, the desired keypoints are
localized through an iterative detection process, where each
detection pass performs supervised prediction of output
maps. Each detection pass comprises a detection block
and a single 1 × 1 convolution for output prediction.
The detection blocks across all detection passes elicit the
same basic architecture, comprising Mobile DenseNets
(see step 4 in Fig. 2). Data from Mobile DenseNets are
forwarded to subsequent layers of the detection block using
residual connections. The Mobile DenseNet is inspired
by DenseNets [23] supporting reuse of features, avoiding
redundant layers, and MBConv with SE, thus enabling
low memory footprint. In our adaptation of the MBConv
operation (E-MBConv6(K × K, B, S) in Fig. 3e), we
consistently utilize the highest performing combination
from [46], i.e., a kernel size (K × K) of 5 × 5 and an
expansion ratio of 6. We also avoid downsampling (i.e.,
S = 1) and scale the width of Mobile DenseNets by
outputting number of channels relative to the high-level

Fig. 2 Proposed architecture comprising 1a) high-resolution and 1b)
low-resolution inputs, 2a) high-level and 2b) low-level Efficient-
Net backbones combined into 3) cross-resolution features, 4) Mobile

DenseNet detection blocks, 1+2 passes for estimation of part affinity
fields (5a) and confidence maps (5b and 5c), and 6) bilinear upscaling
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backbone (B = C). We modify the original MBConv6
operation by incorporating E-swish as activation function
with β value of 1.25 [16]. This has a tendency to accelerate
progression during training compared to the regular Swish
activation [37]. We also adjust the first 1 × 1 convolution
to generate a number of feature maps relative to the
output feature maps B rather than the input channels M .
This reduces the memory consumption and computational
latency since B ≤ M , with C ≤ M ≤ 3C. With
each Mobile DenseNet consisting of three consecutive
E-MBConv6 operations, the module outputs 3C feature
maps.

EfficientPose performs detection in two rounds (step
5a-c in Fig. 2). First, the overall pose of the person is
anticipated through a single pass of skeleton estimation (5a).
This aims to facilitate the detection of feasible poses and
to avoid confusion in case of several persons being present
in an image. Skeleton estimation is performed utilizing
part affinity fields as proposed in [7]. Following skeleton
estimation, two detection passes are performed to estimate
heatmaps for keypoints of interest. The former of these acts
as a coarse detector (5b in Fig. 2), whereas the latter (5c in
Fig. 2) refines localization to yield more accurate outputs.

Note that in OpenPose, the heatmaps of the final
detection pass are constrained to a low spatial resolution,
which are incapable of achieving the amount of details
that are normally inherent in the high-resolution input [6].
To improve this limitation of OpenPose, a series of three
transposed convolutions performing bilinear upsampling are
added for 8× upscaling of the low-resolution heatmaps (step
6 in Fig. 1). Thus, we project the low-resolution output onto
a space of higher resolution in order to allow an increased
level of detail. To achieve the proper level of interpolation
while operating efficiently, each transposed convolution
increases the map size by a factor of 2, using a stride of 2
with a 4 × 4 kernel.

3.2 Variants

Following the same principle as suggested in the original
EfficientNet [47], we scale the EfficientPose network
architecture by adjusting the three main dimensions, i.e.,
input resolution, network width, and network depth, using
the coefficients of (2). The results from this scaling are
five different architecture variants that are given in Table 2,
referred to as EfficientPose I to IV and RT). As can be
observed in this table, the input resolution, defined by the
spatial dimensions of the image (H ×W ), is scaled utilizing
the high and low-level EfficientNet backbones that best
match the resolution of high and low-resolution inputs (see
Table 1). Here, the network width refers to the number of
feature maps that are generated by each E-MBConv6. As
described in Section 3.1, width scaling is achieved using the
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Fig. 3 The composition of MBConvs. From left: a-d) MBConv(K ×
K, B, S) in EfficientNets performs depthwise convolution with filter
size K × K and stride S, and outputs B feature maps. MBConv∗
(b and d) extends regular MBConvs by including dropout layer and
skip connection. e) E-MBConv6(K ×K, B, S) in Mobile DenseNets

adjusts MBConv6 with E-swish activation and number of feature
maps in expansion phase as 6B. All MBConvs take as input M feature
maps with spatial height and width of h and w, respectively. R is the
reduction ratio of SE

same width as the high-level backbone (i.e., C). The scaling
of network depth is achieved in the number of Mobile
DenseNets (i.e., MD(C) in Table 2) in the detection blocks.
Also, this ensures that receptive fields across different
models and spatial resolutions have similar relative sizes.
For each model variant, we select the number (D) of
Mobile DenseNets that best approximates the original depth
factor αφ in the high-level EfficientNet backbone (Table 1).
More specifically, the number of Mobile DenseNets are
determined by (3), rounding to the closest integer. In
addition to EfficientPose I to IV, the single-resolution model
EfficientPose RT is formed to match the scale of the

smallest EfficientNet model, providing HPE in extremely
low latency applications.

D = �αφ + 0.5� (3)

3.3 Summary of proposed framework

As can be inferred from the discussion above, the EfficientPose
framework comprises a family of five ConvNets (i.e., Effi-
cientPose I-IV and RT) that are constructed by compound
scaling [47]. With this, EfficientPose exploits the advances
in computationally efficient ConvNets for image recognition to

Table 2 Variants of EfficientPose obtained by scaling resolution, width, and depth

Stage EfficientPose RT EfficientPose I EfficientPose II EfficientPose III EfficientPose IV

High-resolution input 224 × 224 256 × 256 368 × 368 480 × 480 600 × 600

High-level backbone B0 (Block 1-3) B2 (Block 1-3) B4 (Block 1-3) B5 (Block 1-3) B7 (Block 1-3)

Low-resolution input − 128 × 128 184 × 184 240 × 240 300 × 300

Low-level backbone − B0 (Block 1-2) B0 (Block 1-2) B1 (Block 1-2) B3 (Block 1-2)

Detection block MD(40) MD(48) [MD(56)] × 2 [MD(64)] × 3 [MD(80)] × 4

Prediction pass 1 Conv(1 × 1, 2P, 1)

Prediction pass 2-3 Conv(1 × 1, Q, 1)

Upscaling [ConvT (4 × 4, Q, 2)] × 3

Mobile DenseNets MD(C) computes 3C feature maps. P and Q denotes the number of 2D part affinity fields and confidence maps, respectively.
ConvT (K × K, O, S) defines transposed convolutions with kernel size K × K , output maps O, and stride S

EfficientPose... 2523



Fig. 4 The MPII single-person pose estimation challenge. From left:
a) 10 images from the MPII test set displaying some of the variation
and difficulties inherent in this challenge. b) The evaluation metrics

PCKh@50 and PCKh@10 define the average of predictions within
τ l distance (l = 0.6d) from the ground-truth location (e.g., left elbow),
with τ being 50% and 10%, respectively

construct a scalable network architecture that is capable of
performing single-person HPE across different computa-
tional constraints. More specifically, EfficientPose utilizes
both high and low-resolution images to provide two sep-
arate viewpoints that are processed independently through
high and low-level backbones, respectively. The resulting
features are concatenated to produce cross-resolution fea-
tures, enabling selective emphasis on global and local image
information. The detection stage employs a scalable mobile
detection block to perform detection in three passes. The
first pass estimates person skeletons through part affinity
fields [7] to yield feasible pose configurations. The second
and third passes estimate keypoint locations with progres-
sive improvement in precision. Finally, the low-resolution
prediction of the third pass is scaled up through bilinear
interpolation to further improve the precision level.

4 Experiments and results

4.1 Experimental setup

We evaluate EfficientPose and compare it with OpenPose
on the single-person MPII dataset [1], containing images
of mainly healthy adults in a wide range of different out-
door and indoor everyday activities and situations, such as
sports, fitness exercises, housekeeping activities, and public
events (Fig. 4a). All models are optimized on MPII using
stochastic gradient descent (SGD) on the mean squared
error (MSE) of the model predictions relative to the tar-
get coordinates. More specifically, we applied SGD with
momentum and cyclical learning rates (see Appendix B
for more information and further details on the optimiza-
tion procedure). The learning rate is bounded according
to the model-specific value of which it does not diverge

during the first cycle (λmax) and λmin = λmax

3000 . The model
backbones (i.e., VGG-19 for OpenPose, and EfficientNets for
EfficientPose) are initialized with pretrained ImageNet weights,
whereas the remaining layers employ random weight
initialization. Supported by our experiments on training
efficiency (see Appendix A), we train the models for 200
epochs, except for OpenPose, which requires a higher
number of epochs to converge (see Fig. 5 and Table 5).

The training and validation portion of the dataset
comprises 29K images, and by adopting a standard random
split, we obtain 26K and 3K instances for training and
validation, respectively. We augment the images during
training using random horizontal flipping, scaling (0.75 −
1.25), and rotation (+/− 45 degrees). We utilize a batch size
of 20, except for the high-resolutional EfficientPose III and
IV, which both require a smaller batch size to fit into the
GPU memory, 10 and 5, respectively. The experiments are
carried out on an NVIDIA Tesla V100 GPU.

The evaluation of model accuracy is performed using the
PCKh@τ metric. PCKh@τ is defined as the fraction of
predictions residing within a distance τ l from the ground
truth location (see Fig. 4b). l is 60% of the diagonal d

of the head bounding box, and τ the accepted percentage
of misjudgment relative to l. PCKh@50 is the standard
performance metric for MPII but we also include the stricter
PCKh@10 metric for assessing models’ ability to yield
highly precise keypoint estimates. As commonly done in the
field, the final model predictions are obtained by applying
multi-scale testing procedure [44, 49, 57]. Due to the
restriction in the number of attempts for official evaluation
on MPII, we only used the test metrics on the OpenPose
baseline, and the most efficient and most accurate models,
EfficientPose RT and EfficientPose IV, respectively. To
measure model efficiency, both FLOPs and number of
parameters are supplied.
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Fig. 5 The progression of the mean error of EfficientPose II and OpenPose on the MPII validation set during the course of training

4.2 Results

Table 3 shows the results of our experiments with OpenPose
and EfficientPose on the MPII validation dataset. As
can be observed in this table, EfficientPose consistently
outperformed OpenPose with regards to efficiency, with
2.2 − 184× reduction in FLOPs and 4 − 56× fewer
number of parameters. In addition to this, all the model
variants of EfficientPose achieved better high-precision
localization, with a 0.8 − 12.9% gain in PCKh@10 as
compared to OpenPose. In terms of PCKh@50, the high-
end models, i.e., EfficientPose II-IV, managed to gain 0.6 −
2.2% improvements against OpenPose. As Table 4 depicts,
EfficientPose IV achieved state-of-the-art results (a mean
PCKh@50 of 91.2) on the official MPII test dataset for
models with number of parameters of a size less than 10
million.

Compared to OpenPose, EffcientPose also exhibited
rapid convergence during training. We optimized both
approaches on similar input resolution, which defaults to
368 × 368 for OpenPose, corresponding to EfficientPose
II. The training graph shown in Fig. 5 demonstrates that
EfficientPose converges early, whereas OpenPose requires
up to 400 epochs before achieving proper convergence.
Nevertheless, OpenPose benefited from this prolonged
training in terms of precision, with a 2.6% improvement
in PCKh@50 during the final 200 epochs, whereas
EfficientPose II had a minor gain of 0.4% (see Table 5).

5 Discussion

In this section, we discuss several aspects of our findings
and possible avenues for further research.

Table 3 Performance of EfficientPose compared to OpenPose on the MPII validation dataset, as evaluated by efficiency (number of parameters
and FLOPs, and relative reduction in parameters and FLOPs compared to OpenPose) and accuracy (mean PCKh@50 and mean PCKh@10)

Model Parameters Parameter reduction FLOPs FLOP reduction PCKh@50 PCKh@10

OpenPose [6] 25.94M 1× 160.36G 1× 87.60 22.76

EfficientPose RT 0.46M 56× 0.87G 184× 82.88 23.56

EfficientPose I 0.72M 36× 1.67G 96× 85.18 26.49

EfficientPose II 1.73M 15× 7.70G 21× 88.18 30.17

EfficientPose III 3.23M 8.0× 23.35G 6.9× 89.51 30.90

EfficientPose IV 6.56M 4.0× 72.89G 2.2× 89.75 35.63
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Table 4 State-of-the-art results in PCKh@50 (both for individual body parts and overall mean value) on the official MPII test dataset [1]
compared to the number of parameters

Model Parameters Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Pishchulin et al., ICCV’13 [35] − 74.3 49.0 40.8 32.1 36.5 34.4 35.2 44.1

Tompson et al., NIPS’14 [53] − 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6

Lifshitz et al., ECCV’16 [28] 76M 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0

Tang et al., BMVC’18 [50] 10M 97.4 96.2 91.8 87.3 90.0 87.0 83.3 90.8

Newell et al., ECCV’16 [33] 26M 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

Zhang et al., CVPR’19 [60] 3M 98.3 96.4 91.5 87.4 90.9 87.1 83.7 91.1

Bulat et al., FG’20 [5] 9M 98.5 96.4 91.5 87.2 90.7 86.9 83.6 91.1

Yang et al., ICCV’17 [57] 27M 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0

Tang et al., ECCV’18 [49] 16M 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3

Sun et al., CVPR’19 [44] 29M 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3

Zhang et al., arXiv’19 [61] 24M 98.6 97.0 92.8 88.8 91.7 89.8 86.6 92.5

OpenPose [6] 25.94M 97.7 94.7 89.5 84.7 88.4 83.6 79.3 88.8

EfficientPose RT 0.46M 97.0 93.3 85.0 79.2 85.9 77.0 71.0 84.8

EfficientPose IV 6.56M 98.2 96.0 91.7 87.9 90.3 87.5 83.9 91.2

5.1 Improvements over OpenPose

The precision of HPE methods is a key success factor for
analyses of movement kinematics, like segment positions
and joint angles, for assessment of sport performance
in athletes, or motor disabilities in patients. Facilitated
by cross-resolution features and upscaling of output (see
Appendix A), EfficientPose achieved a higher precision
than OpenPose [6], with a 57% relative improvement in
PCKh@10 on single-person MPII (Table 3). What this
means is that the EfficientPose architecture is generally
more suitable in performing precision-demanding single-
person HPE applications, like medical assessments and elite
sports, than OpenPose.

Another aspect to have in mind is that, for some
applications (e.g., exercise games and baby monitors), we
might be more interested in the latency of the system
and its ability to respond quickly. Hence, the degree of
correctness in keypoint predictions might be less crucial.

Table 5 Model accuracy on the MPII validation dataset in relation to
the number of training epochs

Model Epochs PCKh@50

OpenPose [6] 100 80.47

OpenPose [6] 200 85.00

OpenPose [6] 400 87.60

EfficientPose II 100 87.05

EfficientPose II 200 88.18

EfficientPose II 400 88.56

In such scenarios, with applications that demand high-
speed predictions, the 460K parameter model, EfficientPose
RT, consuming less than one GFLOP, would be suitable.
Nevertheless, it still manages to provide higher precision
level than current approaches in the high-speed regime, e.g.,
[5, 50]. Further, the scalability of EfficientPose enables
flexibility in various situations and across different types of
hardware, whereas OpenPose suffers from its large number
of parameters and computational costs (FLOPs).

5.2 Strengths of the EfficientPose approach

The use of MBConv in HPE is to the best of our knowledge
an unexplored research area. This has also been partly our
main motivation for exploring the use of MBConv in our
EfficientPose approach, recognizing its success in image
classification [47]. Our experimental results showed that
EfficientPose approached state-of-the-art performance on
the single-person MPII benchmark despite a large reduction
in the number of parameters (Table 4). This means that the
parameter-efficient MBConvs provide value in HPE as with
other computer vision tasks, such as image classification
and object detection. This, in turns, makes MBConv a very
suitable component for HPE networks. For this reason, it
would be interesting to investigate the effect of combining it
with other novel HPE architectures, such as Hourglass and
HRNet [33, 44].

Further, the use of EfficientNet as a backbone, and the pro-
posed cross-resolution feature extractor combining several Effi-
cientNets for improved handling of basic features, are also
interesting avenues to explore further. From the present
study, it is reasonable to assume that EfficientNets could
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replace commonly used backbones for HPE, such as
VGG and ResNets, which would reduce the computa-
tional overheads associated with these approaches [21, 41].
Also, a cross-resolution feature extractor could be use-
ful for precision-demanding applications by providing an
improved performance on PCKh@10 (Table 6).

We also observed that EfficientPose benefited from com-
pound model scaling across resolution, width and depth.
This benefit was reflected by the increasing improvements
in PCKh@50 and PCKh@10 from EfficientPose RT
through EfficientPose I to EfficientPose IV (Table 3). To
conclude, we can exploit this to further examine scalable
ConvNets for HPE, and thus obtain insights into appropriate
sizes of HPE models (i.e., number of parameters), required
number of FLOPs, and obtainable precision levels.

In this study, OpenPose and EfficientPose were opti-
mized on the general-purpose MPII Human Pose Dataset.
For many applications (e.g., action recognition and video
surveillance) the variability in MPII may be sufficient
for directly applying the models on real-world problems.
Nonetheless, there are other particular scenarios that devi-
ate from the setting addressed in this paper. The MPII
dataset comprises mostly healthy adults in a variety of every
day indoor and outdoor activities [1]. In less natural envi-
ronments (e.g., movement science laboratories or hospital
settings) and with humans of different anatomical propor-
tions such as children and infants [39], careful consideration
must be taken. This could include a need for fine-tuning
of the MPII models on more specific datasets related to
the problem at hand. As mentioned earlier, our experiments
showed that EfficientPose was more easily trainable than
OpenPose (Fig. 5 and Table 5). This trait of rapid conver-
gence suggests that exploring the use of transfer learning on
the EfficientPose models on other HPE data could provide
interesting results.

5.3 Avenues for further research

The precision level of pose configurations provided by
EfficientPose in the context of target applications is a topic
considered beyond the scope of this paper and has for
this reason been left for further studies. We can establish
the validity of EfficientPose for robust single-person pose
estimation already by examining whether the movement
information supplied by the proposed framework is of
sufficiently good quality for tackling challenging problems,
such as complex human behavior recognition [12, 29]. To
assess this, we could, for example, compare the precision
level of the keypoint estimates supplied by EfficientPose
with the movement information provided by body-worn
movement sensors. Moreover, we could combine the
proposed image-based EfficientPose models with body-
worn sensors, such as inertial measurement unit (IMU) [27],

or physiological signals, like electrical cardiac activity
and electrical brain activity [14], to potentially achieve
improved precision levels and an increased robustness. Our
hypothesis is that using body-worn sensors or physiological
instruments could be useful in situations where body
parts are extensively occluded, such that camera-based
recognition alone may not be sufficient for accurate pose
estimation.

Another path for further study and validation is the
capability of EfficientPose to perform multi-person HPE.
The improved computational efficiency of EfficientPose
compared to OpenPose has the potential to also benefit
multi-person HPE. State-of-the-art methods for multi-
person HPE are dominated by top-down approaches,
which require computation that is normally proportional
to the number of individuals in the image [13, 59]. In
crowded scenes, top-down approaches are highly resource
demanding. Similar to the original OpenPose [6], and
few other recent works on multi-person HPE [19, 24],
EfficientPose incorporates part affinity fields, which would
enable the grouping of keypoints into persons, and thus
allowing to perform multi-person HPE in a bottom-up
manner. This would reduce the computational overhead into
a single network inference per image, and hence yield more
computationally efficient multi-person HPE.

Further, it would be interesting to explore the extension
of the proposed framework to perform 3D pose estimation
as part of our future research. In accordance with recent
studies, 3D pose projection from 2D images can be
achieved, either by employing geometric relationships
between 2D keypoint positions and 3D human pose
models [58], or by leveraging occlusion-robust pose-maps
(ORPM) in combination with annotated 3D poses [3, 31].

The architecture of EfficientPose and the training process
can be improved in several ways. First, the optimization
procedure (see Appendix B) was developed for maximum
PCKh@50 accuracy on OpenPose, and simply reapplied
to EfficientPose. Other optimization procedures might be
more appropriate, including alternative optimizers (e.g.,
Adam [26] and RMSProp [52]), and other learning rate and
sigma schedules.

Second, only the backbone of EfficientPose was pre-
trained on ImageNet. This could restrict the level of accu-
racy on HPE because large-scale pretraining not only sup-
plies robust basic features but also higher-level semantics.
Thus, it would be valuable to assess the effect of pretraining
on model precision in HPE. We could, for example, pretrain
the majority of ConvNet layers on ImageNet, and retrain
these on HPE data.

Third, the proposed compound scaling of EfficientPose
assumes that the scaling relationship between resolution,
width, and depth, as defined by (2), is identical in HPE
and image classification. However, the optimal compound
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scaling coefficients might be different for HPE, where the
precision level is more dependent on image resolution,
than for image classification. Based on this, a topic for
further studies could be to conduct neural architecture
search across different combinations of resolution, width,
and depth in order to determine the optimal combination
of scaling coefficients for HPE. Regardless of the scaling
coefficients, the scaling of detection blocks in EfficientPose
could be improved. The block depth (i.e., number of
Mobile DenseNets) slightly deviates from the original depth
coefficient in EfficientNets based on the rigid nature of the
Mobile DenseNets. A carefully designed detection block
could address this challenge by providing more flexibility
with regards to the number of layers and the receptive field
size.

Fourth, the computational efficiency of EfficientPose
could be further improved by the use of teacher-student net-
work training (i.e., knowledge distillation) [4] to transfer
knowledge from a high-scale EfficientPose teacher network
to a low-scale EfficientPose student network. This tech-
nique has already shown promising results in HPE when
paired with the stacked hourglass architecture [33, 60].
Sparse networks, network pruning, and weight quantiza-
tion [11, 55] could also be included in the study to facilitate
the development of more accurate and responsive real-life
systems for HPE. Finally, for high performance inference
and deployment on edge devices, further speed-up could be
achieved by the use of specialized libraries such as NVIDIA
TensorRT and TensorFlow Lite [10, 51].

In summary, EfficientPose tackles single-person HPE
with an improved degree of precision compared to the
commonly adopted OpenPose network [6]. In addition
to this, the EfficientPose models have the ability to
yield high performance with a large reduction in number
of parameters and FLOPs. This has been achieved by
exploiting the findings from contemporary research within
image recognition on computationally efficient ConvNet
components, most notably MBConvs and EfficientNets [38,
47]. Again, for the sake of reproducibility, we have
made the EfficientPose models publicly available for other
researchers to test and possibly further development.

6 Conclusion

In this work, we have stressed the need for a publicly acces-
sible method for single-person HPE that suits the demands
for both precision and efficiency across various applica-
tions and computational budgets. To this end, we have
presented a novel method called EfficientPose, which is a
scalable ConvNet architecture leveraging a computationally
efficient multi-scale feature extractor, novel mobile detec-
tion blocks, skeleton estimation, and bilinear upscaling. In

order to have model variants that are able to flexibly find a
sensible trade-off between accuracy and efficiency, we have
exploited model scalability in three dimensions: input reso-
lution, network width, and network depth. Our experimental
results have demonstrated that the proposed approach has
the capability to offer computationally efficient models,
allowing real-time inference on edge devices. At the same
time, our framework offers flexibility to be scaled up to
deliver more precise keypoint estimates than commonly
used counterparts, at an order of magnitude less parameters
and computational costs (FLOPs). Taking into account the
efficiency and high precision level of our proposed frame-
work, there is a reason to believe that EfficientPose will
provide an important foundation for the next-generation
markerless movement analysis.

In our future work, we plan to develop new techniques to
further improve the model effectiveness, especially in terms
of precision, by investigating optimal compound model
scaling for HPE. Moreover, we will deploy EfficientPose on
a range of applications to validate its applicability, as well
as feasibility, in real-world scenarios.
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Appendix A Ablation study

To determine the effect of different design choices in
the EfficientPose architecture, we carried out component
analysis.

Training efficiency

We assessed the number of training epochs to determine
the appropriate duration of training, avoiding demanding
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Table 6 Model accuracy on the
MPII validation dataset in
relation to the use of
cross-resolution features

Model Cross-resolution features Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I � 0.72M 1.67G 83.56 26.35

EfficientPose I 0.68M 1.58G 83.64 25.79

EfficientPose II � 1.73M 7.70G 87.05 29.87

EfficientPose II 1.69M 7.50G 86.93 29.16

optimization processes. Figure 5 suggests that the largest
improvement in model accuracy occurs until around 200
epochs, after which training saturates. Table 5 supports this
observation with less than 0.4% increase in PCKh@50
with 400 epochs of training. From this, it was decided to
perform the final optimization of the different variants of
EfficientPose over 200 epochs. Table 5 also suggests that
most of the learning progress occurs during the first 100
epochs. Hence, for the remainder of the ablation study 100
epochs were used to determine the effect of different design
choices.

Cross-resolution features

The value of combining low-level local information with
high-level semantic information through a cross-resolution
feature extractor was evaluated by optimizing the model
with and without the low-level backbone. Experiments were
conducted on two different variants of the EfficientPose
model. On coarse prediction (PCKh@50) there is little
to no gain in accuracy (Table 6), whereas for fine
estimation (PCKh@10) some improvement (0.6 − 0.7%)
is displayed taking into account the negligible cost of
1.02 − 1.06× more parameters and 1.03 − 1.06× increase
in FLOPs.

Skeleton estimation

The effect of skeleton estimation through the approximation
of part affinity fields was assessed by comparing the
architecture with and without the single pass of skeleton
estimation. Skeleton estimation yields improved accuracy
with 1.3 − 2.4% gain in PCKh@50 and 0.2 − 1.4% in
PCKh@10 (Table 7), while only introducing an overhead
in number of parameters and computational cost of 1.3 −
1.4× and 1.2 − 1.3×, respectively.

Number of detection passes

We also determined the appropriate comprehensiveness
of detection, represented by number of detection passes.
EfficientPose I and II were both optimized on three different
variants (Table 8). Seemingly, the models benefit from
intermediate supervision with a general trend of increased
performance level in accordance with number of detection
passes. The major benefit in performance is obtained by
expanding from one to two passes of keypoint estimation,
reflected by 1.6 − 1.7% increase in PCKh@50 and 1.8 −
1.9% in PCKh@10. In comparison, a third detection pass
yields only 0.5 − 0.8% relative improvement in PCKh@50
compared to two passes, and no gain in PCKh@10 while
increasing number of parameters and computation by 1.3×
and 1.2×, respectively. From these findings, we decided a
beneficial trade-off in accuracy and efficiency would be the
use of two detection passes.

Upscaling

To assess the impact of upscaling, implemented as bilinear
transposed convolutions, we compared the results of the
two respective models. Table 9 reflects that upscaling yields
improved precision on keypoint estimates by large gains
of 9.2 − 12.3% in PCKh@10 and smaller improvements
of 0.5 − 1.1% on coarse detection (PCKh@50). As
a consequence of increased output resolution upscaling
slightly increases number of FLOPs (1.04 − 1.1×) with
neglectable increase in number of parameters.

Appendix B Optimization procedure

Most state-of-the-art approaches for single-person pose
estimation are extensively pretrained on ImageNet [44, 61],

Table 7 Model accuracy on the
MPII validation dataset in
relation to the use of skeleton
estimation

Model Skeleton estimation Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I � 0.72M 1.67G 83.56 26.35

EfficientPose I 0.54M 1.37G 81.13 25.00

EfficientPose II � 1.73M 7.70G 87.05 29.87

EfficientPose II 1.27M 6.03G 85.75 29.67
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Table 8 Model accuracy on the
MPII validation dataset in
relation to the number of
detection passes

Model Detection passes Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I 1 0.52M 1.33G 81.85 24.51

EfficientPose I 2 0.72M 1.67G 83.56 26.35

EfficientPose I 3 0.92M 2.02G 84.35 26.42

EfficientPose II 1 1.24M 5.92G 85.42 28.01

EfficientPose II 2 1.73M 7.70G 87.05 29.87

EfficientPose II 3 2.22M 9.49G 87.55 29.61

Table 9 Model accuracy on the
MPII validation dataset in
relation to the use of upscaling

Model Upscaling Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I � 0.72M 1.67G 83.56 26.35

EfficientPose I 0.71M 1.52G 82.42 14.02

EfficientPose II � 1.73M 7.70G 87.05 29.87

EfficientPose II 1.73M 7.37G 86.56 20.66

Fig. 6 Optimization scheme displaying learning rates λ and σ values corresponding to the training of EfficientPose II over 100 epochs
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enabling rapid convergence for models when adapted to
other tasks, such as HPE. In contrast to these approaches,
few models, including OpenPose [6] and EfficientPose, only
utilize the most basic pretrained features. This facilitates
construction of more efficient network architectures but
at the same time requires careful design of optimization
procedures for convergence towards reasonable parameter
values.

Training of pose estimation models is complicated
due to the intricate nature of output responses. Overall,
optimization is performed in a conventional fashion by
minimizing the MSE of the predicted output maps Y with
respect to ground truth values Ŷ across all output responses
N .

The predicted output maps should ideally have higher
values at the spatial locations corresponding to body part
positions, while punishing predictions farther away from the
correct location. As a result, the ground truth output maps
must be carefully designed to enable proper convergence
during training. We achieve this by progressively reducing
the circumference from the true location that should be
rewarded, defined by the σ parameter. Higher probabilities
T ∈ [0, 1] are assigned for positions P closer to the ground
truth position G (4).

Ti = exp

(
−‖Pi − G‖2

2

σ 2

)
(4)

The proposed optimization scheme (Fig. 6) incorporates
a stepwise σ scheme, and utilizes SGD with momentum of
0.9 and a decaying triangular cyclical learning rate (CLR)
policy [42]. The σ parameter is normalized according to the
output resolution. As suggested by Smith and Topin [43],
the large learning rates in CLR provides regularization in
network optimization. This makes training more stable and
may even increase training efficiency. This is valuable for
network architectures, such as OpenPose and EfficientPose,
less heavily concerned with pretraining (i.e., having larger
portions of randomized weights). In our adoption of CLR,
we utilize a cycle length of 3 epochs. The learning rate
(λ) converges towards λ∞ (5), where λmax is the highest
learning rate for which the model does not diverge during
the first cycle and λmin = λmax

3000 , whereas σ0 and σ∞ are the
initial and final sigma values, respectively.

λ∞ = 10
log (λmax )+log (λmin)

2 · 2σ0−σ∞ (5)
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