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Abstract
The purpose of this study is to discuss the existence of solutions for a boundary value
problem at resonance generated by a nonlinear differential equation involving both
right and left Caputo fractional derivatives. The proofs of the existence of solutions are
mainly based on Mawhin’s coincidence degree theory. We provide an example to
illustrate the main result.
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1 Introduction and preliminaries
Mathematical structures describe the complex systems which involve multiple elements
and interact between one another in various forms. These interactions exist in physics,
electromagnetic, mechanics, biology, signal processing, finance, economics, and many
more. In order to make sense of the data extracted from such elements, the evolution of the
data against time is utilized. The immediate observation would be a system of differential
equations. Upon solving such differential equations, the obtained function will have some
information that can be used to extract and understand the data at hand and further pre-
dict the future information related to the data. A special class of differential equations are
boundary value problems (BVP) and nonlinear fractional integro-differential equations
[1, 2]. The fundamental investigation on these types of fractional differential equations is
pertinent in order to interpret the related data which evolve into such form. Thus to study
the solutions of existence and uniqueness of integro-differential equations might benefit
data modeling and formulation via fractional integro-differential equations.

Further, BVPs containing fractional derivatives also describe many phenomena in var-
ious modeling such as in science and engineering, in particular viscoelasticity, physics,
electromagnetism, biology as well as finance, in particular mixed fractional option pric-
ing, and more. The questions linked to the existence of solutions to BVPs for fractional
differential equations have been studied by researchers using different methods, here we
cite some such as fixed point theorems, the upper and lower solutions, Mawhin’s coinci-
dence degree theory, Laplace transform method, iteration methods, etc. [3–22].

In [23], the existence of solutions for integral boundary value problems of mixed frac-
tional differential equations under resonance was studied, and a very recent study [24] in-
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troduced a new method to convert the boundary value problems for impulsive fractional
differential equations to integral equations.

Recently much attention has been given to the solvability of such type of differential
equations that have left and right fractional derivatives. Further, several works are also
devoted to this type of study, for details, see [3, 4, 7, 12–14].

In this study, we consider the existence of solutions for the following type of equation:

(P)

⎧
⎨

⎩

Dθ
1– Dυ

0+ x(t) = f (t, x(t)), t ∈ (0, 1),

x(0) = 0, Dυ
0+ x(1) = Dυ

0+ x(0),

where f ∈ C([0, 1] × R,R), 0 < θ , and υ < 1 such that θ + υ > 1, while the notations Dθ
1–

and Dυ
0+ refer to the right and left fractional derivatives in the Caputo sense, respectively.

Note that problem (P) is at resonance since the homogeneous fractional boundary value
problem (BVP)

Dθ
1– Dυ

0+ x(t) = 0, t ∈ (0, 1),

x(0) = 0, Dυ
0+ x(1) = Dυ

0+ x(0)

has x(t) = ctυ , c ∈ R as nontrivial solutions.
In this study we establish sufficient conditions that will help us to show that there is

at least one solution for problem (P). Many difficulties will occur when we deal with the
presence of mixed type fractional derivatives having order less than one, and there are
only a few studies related to this case. Moreover, the current literature on the study of
BVP at resonance having mixed type fractional-order derivatives is not satisfactory and
the topic has not been extensively studied so far. There are some initial attempts such as
the following.

In [9], the authors studied, by means of Mawhin’s coincidence degree, the existence of
solutions in multipoint Riemann–Liouville sense fractional BVP on the half-line:

Dα
0+ u(t) = f

(
t, u(t), Dα

0+ u(t)
)
, t > 0, 1 < α < 2,

I2–α
0+ u(0) = 0, lim

t→∞ Dα–1
0+ u(t) =

m–2∑

i=1

βiDα–1
0+ u(ξi),

where 0 < ξ1 < · · · < ξm–2 < ∞, βi > 0, and i = 1, . . . , m – 1.
In [4], the authors investigated the existence and uniqueness of solution by the use of

some fixed point theorems for the following type BVP:

CDαRL
1– Dβ

0+ u(t) + λIp
0+ Iq

1– h
(
t, u(t)

)
= f

(
t, u(t)

)
, t ∈ (0, 1)

u(0) = u(ξ ) = 0, u(1) = δu(μ),

where 1 < α < 2, 0 < β < 1, 0 < ξ < μ < 1.
Similarly, under certain conditions on f in [14], the authors studied and proved, by us-

ing Krasnoselskii’s fixed point theorem, the existence of solutions for the following type
nonlinear BVPs:

CDα
1– Dβ

0+ u(t) = f
(
t, u(t)

)
, t ∈ (0, 1),
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u(0) = u′(0) = u(1) = 0,

which involve the right Caputo and the left Riemann–Liouville fractional derivatives, re-
spectively.

In [19, 20], some partial treatments were provided for the following hybrid type nonlin-
ear fractional integro-differential equations:

(
Dαu

)
(t) + λu(t) = f

(

t, u(t),
∫ t

t0

(t – s)α–1

	(α)
g
(
s, u(s)

)
ds

)

, (1)

u(t0) = B0 ∈R,

where f , g are continuous functions and λ ∈ R
+ for all t ∈ J = [a, b]. Thus we check for a

solution of Eq. (1) subject to u ∈ C1(J ,R).
Next we recall the following definitions and auxiliary lemmas related to fractional cal-

culus theory, for details, see [17, 22, 25].

Definition 1 The left and right Riemann–Liouville fractional integrals with order θ > 0
on [a, b] of a function y are defined respectively by

Iθ
a+ y(t) =

1
	(θ )

∫ t

a
(t – s)θ–1y(s) ds, t > a,

Iθ
b– y(t) =

1
	(θ )

∫ b

t
(s – t)θ–1y(s) ds, t < b.

Definition 2 The left and right Caputo derivatives Dα
a+ and Dα

b– with order α > 0 on [a, b]
of the function y ∈ ACn[a, b] are defined by

Dθ
a+ y(t) =

1
	(n – θ )

∫ t

a
(t – s)n–θ–1y(n)(s) ds, t > a,

Dθ
b– y(t) =

(–1)n

	(n – θ )

∫ b

t
(s – t)n–θ–1y(n)(s) ds, t < b,

respectively, where n = [θ ] + 1, and [θ ] is the integer part of θ .

In the next lemma we present some properties associated with fractional integrals and
derivatives in the Caputo sense.

Lemma 3 The homogenous equation (fractional differential)

Dθ
a+ g(t) = 0

has a solution

g(t) =
n–1∑

i=0

ci(t – a)i,

and similarly,

Dθ
b– g(t) = 0
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has a solution

g(t) =
n–1∑

i=0

ai(b – t)i,

where ai, ci ∈ R, i = 1, . . . , n, and n = [θ ] + 1 if θ /∈ N = {0, 1, . . .} and n = θ if θ ∈N.

In addition, the following properties are correct:

Dθ
a+ Iθ

a+ y(t) = y(t), Dθ
b– Iθ

b– y(t) = y(t),

Dθ
a+ (t – a)γ –1 =

	(γ )
	(γ – θ )

(t – a)γ –θ–1,

and

Dθ
b– (b – t)γ –1 =

	(γ )
	(γ – θ )

(b – t)γ –θ–1, γ > [θ ] + 1.

Next we need the following definitions and a theorem for the development of our results.
Let X and Y be two Banach spaces (real), and let us define a linear operator L : dom L ⊂

X → Y . Then we have the following definition.

Definition 4 A linear operator L is called Fredholm operator with index zero if Im L is a
closed subset in Y and dim ker L = co dim Im L < ∞.

Now if we define P : X → X and Q : Y → Y as continuous projections such that Im P =
ker L, ker Q = Im L. Then

X = ker P ⊕ ker L, Y = Im Q ⊕ Im L,

which leads to

L|ker P∩dom L : dom L ∩ ker P → Im L

is invertible, and we denote its inverse by KP .

Definition 5 Let � ⊂ X be a bounded open subset and dom L ∩ � 	= ∅. Then the map N :
X → Y is called L-compact on � if the map QN(�) is bounded and further KP(I – QN) :
� → X is compact.

Note that since Im Q is isomorphic to ker L, that is, J : Im Q → ker L isomorphism, the
equation Lx = Nx is equivalent to

x = (P + JQN)x + KP(I – Q)Nx.

The next theorem is given in [21].

Theorem 6 Let L be a Fredholm operator with index zero and N be L-compact on �.
Further, the following conditions are satisfied:
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(1) Lx 	= λNx, ∀(x,λ) ∈ [(dom L\ker L) ∩ ∂�] × (0, 1);
(2) Nx /∈ Im L, ∀x ∈ ker L ∩ ∂�;
(3) If Q : Y → Y is a projection and deg(QN |ker L,� ∩ ker L, 0) 	= 0 such that Im L = ker Q,

then there is at least one solution for equation Lx = Nx in dom L ∩ �.

2 Some lemmas
Let X = C([0, 1],R) and operator L : dom L ⊂ X → X be given by

Lx = Dθ
1– Dυ

0+ x, (2)

where

dom L =
{

x ∈ X, Dθ
1– Dυ

0+ x ∈ X, x(0) = 0, and Dυ
0+ x(1) = Dυ

0+ x(0)
}

.

Let N : X → X be defined by Nx(t) = f (t, x(t)), then problem (P) is equivalent to the equa-
tion Lx = Nx for t ∈ [0, 1].

Lemma 7 Let L be given by (2), then

ker L =
{

x ∈ dom L, x(t) = a
tυ

	(υ + 1)
, t ∈ [0, 1], a ∈R

}

,

Im L =
{

y ∈ X,
∫ 1

0
sθ–1y(s) ds = 0

}

.

Proof Let x ∈ ker L. From Lemma 3, the equation Lx = 0 has a solution

x(t) = Iυ
0+ (a) + b =

a
	(υ)

∫ t

0
(t – s)υ–1 ds + b, a, b ∈R.

By applying the boundary conditions (BC), we can easily get b = 0, then it follows that
x(t) = a tυ

	(υ+1) , a ∈R.
Now, let y ∈ Im L, then there exists a function x ∈ dom L such that

Lx(t) = Dθ
1–

(
Dυ

0+ x(t)
)

= y(t). (3)

Applying the operator Iθ
1– then Iυ

0+ to both sides of equation (3), we get

x(t) = Iυ
0+ Iθ

1– y(t) + Iυ
0+ (a) + b = Iυ

0+ Iθ
1– y(t) +

a
	(υ)

∫ t

0
(t – s)υ–1 ds + b.

Condition x(0) = 0 implies

x(t) = Iυ
0+ Iθ

1– y(t) + Iυ
0+ (a).

Since Dυ
0+ x(1) = a = Dυ

0+ x(0) = Iθ
1– y(0) + a, thus Iθ

1– y(0) = 0, i.e.,

∫ 1

0
sθ–1y(s) ds = 0. (4)
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Conversely, let y ∈ X and satisfy (4), set x(t) = Iυ
0+ Iθ

1– y(t) + Iυ
0+ a, a ∈ R, then x ∈ dom L and

satisfies Lx = y, thus y ∈ Im L. It follows that the proof is complete. �

Lemma 8 The operator L : dom L ⊂ X → X is a Fredholm operator with index zero. The
linear projection operators P, Q : X → X satisfy

Px(t) = Dυ
0+ x(1)

tυ

	(υ + 1)
,

Qy(t) = θ

∫ 1

0
sθ–1y(s) ds.

Furthermore, the operator Kp : Im L → dom L ∩ ker P defined by Kpy = Iυ
0+ Iθ

1– y is the inverse
of L|dom L∩ker P and satisfies

‖Kpy‖ ≤ 1
(θ + υ – 1)

‖y‖. (5)

Proof The continuous operator Q is a projector, indeed

Q2y(t) = Q(Qy)(t) = θ

∫ 1

0
sθ–1Qy(s) ds = θ

∫ 1

0
sθ–1

(

θ

∫ 1

0
rθ–1y(r) dr

)

ds

=
(

θ

∫ 1

0
sθ–1

)(

θ

∫ 1

0
rθ–1y(r) dr

)

= θ

∫ 1

0
rθ–1y(r) dr = Qy(t).

It is easy to check that Im L = ker Q. Let y = (y – Qy) + Qy, then it follows that

y – Qy ∈ ker Q = Im L, Qy ∈ Im Q

and

Im Q ∩ Im L = {0},

so that X = Im L ⊕ Im Q. Then we obtain

dim ker L = 1 = dim Im Q = co dim Im L = 1,

that is, L is a Fredholm operator with index zero.
Now we claim that the continuous operator P is a projector. In fact

P2x(t) = P
(
Px(t)

)
=

(
Dυ

0+ Px
)
(1)

tυ

	(υ + 1)

=
tυ

	(υ + 1)
Dυ

0+ x(1)Dυ
0+

(
tυ

	(υ + 1)

)

(1)

= Dυ
0+ x(1)

tυ

(	(υ + 1))2 Dυ
0+

(
tυ

)
(1)

= Dυ
0+ x(1)

tυ

	(υ + 1)
= Px(t).
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Obviously, Im P = ker L. Then, setting x = (x – Px) + Px, we have that X = ker P + ker L.
Further this leads to ker L ∩ ker P = {0}, that is, X = ker L ⊕ ker P.

Now, we show that a generalized inverse of L is KP . If we let y ∈ Im L, in view of Lemma 3,
it yields

(LKp)y(t) =
(
Dθ

1– Dυ
0+

)(
Kpy(t)

)
= Dθ

1– Dυ
0+ Iυ

0+ Iθ
1– y(t) = y(t),

and for x ∈ dom L ∩ ker P, we obtain

(KpL)x(t) = (Kp)Dθ
1– Dυ

0+ x(t) = Iυ
0+ Iθ

1– Dθ
1– Dυ

0+ x(t)

= x(t) + Dυ
0+ x(1)

tυ

	(υ + 1)
+ x(0).

Since x(0) = 0 and Px = 0, we get

(KpL)x(t) = x(t).

This shows that

Kp = (L|dom L∩ker P)–1.

Applying the definition of Kp, we obtain

∣
∣(Kpy)(t)

∣
∣ =

∣
∣Iυ

0+ Iθ
1– y(t)

∣
∣

=
1

	(θ )	(υ)

∫ t

0

(∫ r

0
(t – s)υ–1(r – s)θ–1 ds

)

y(r) dr

+
1

	(θ )	(υ)

∫ 1

t

(∫ t

0
(t – s)υ–1(r – s)θ–1 ds

)

y(r) dr

≤ 1
	(θ )	(υ)

(∫ t

0

(∫ r

0
(r – s)θ+υ–2 ds

)

y(r) dr

+
∫ 1

t

(∫ t

0
(t – s)θ+υ–2 ds

)

y(r) dr
)

=
1

	(θ )	(υ)(θ + υ – 1)

(∫ t

0
rθ+υ–1y(r) dr + tθ+υ–1

∫ t

0
y(r) dr

)

≤ 1
(θ + υ – 1)

‖y‖,

that is,

‖Kpy‖ ≤ 1
(θ + υ – 1)

‖y‖.

This completes the proof. �

3 Existence of solutions
In order to solve problem (P), we assume the following conditions:
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(H1) There exist some functions α,β ∈ C([0, 1],R+) such that

∣
∣f (t, x)

∣
∣ ≤ α(t)|x| + β(t), (6)

provided 1 – A‖α‖ > 0, where

A =
(

1
	(υ + 1)	(θ + 1)

+
1

(θ + υ – 1)

)

for t ∈ [0, 1] and x ∈ R.
(H2) There exists a constant M > 0 such that if |Dυ

0+ x(t)| > M, then

∫ 1

0
sθ–1f

(
s, x(s)

)
ds 	= 0. (7)

(H3) There exists a constant M∗ > 0 such that, for

x(t) = c0
tυ

	(υ + 1)
∈ ker L

with |c0| > M∗, either

c0

∫ 1

0
sθ–1f

(
s, x(s)

)
ds < 0 (8)

or

c0

∫ 1

0
sθ–1f

(
s, x(s)

)
ds > 0. (9)

Lemma 9 Consider that condition (H1) holds. Then N is L-compact on � where � is a
bounded open subset of X such that dom L ∩ � 	= ∅.

Proof We will show that QN(�) is a bounded operator and KP(I – QN)(�) is a compact
operator. Since � is a bounded set, then there is a constant r > 0 such that ‖x‖ ≤ r, ∀x ∈ �.
Let x ∈ �, then in view of condition (H1) we have

|QNx| ≤ θ

∫ 1

0
sθ–1∣∣f

(
s, x(s)

)∣
∣ds ≤ r‖α‖ + ‖β‖, (10)

which yields QN(�) is a bounded operator.
Next, we prove that KP(I – Q)N(�) is compact. For x ∈ �, and by condition (H1), we get

‖Nx‖ ≤ r‖α‖ + ‖β‖. (11)

On the other hand, using the definition of KP and together with (5), (10), and (11), we get

∥
∥KP(I – Q)Nx

∥
∥ ≤ 1

(θ + υ – 1)
∥
∥(I – Q)Nx

∥
∥
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≤ 1
(θ + υ – 1)

[‖Nx‖ + ‖QNx‖]

≤ 2(r‖α‖ + ‖β‖)
(θ + υ – 1)

. (12)

It follows that

KP(I – Q)N(�)

is actually uniformly bounded.
Now we prove KP(I – Q)N(�) is equicontinuous. For this, let x ∈ �, and for any t1, t2 ∈

[0, 1], t1 < t2, we have

∣
∣
(
KP(I – Q)Nx

)
(t1) –

(
KP(I – Q)Nx

)
(t2)

∣
∣

=
∣
∣Iυ

0+ Iθ
1– (I – Q)Nx(t1) – Iυ

0+ Iθ
1– (I – Q)Nx(t2)

∣
∣

=
1

	(υ)

∣
∣
∣
∣

∫ t1

0
(t1 – s)ν–1Iθ

1– (I – Q)Nx(s) ds

–
∫ t2

0
(t2 – s)υ–1Iθ

1– (I – Q)Nx(s) ds
∣
∣
∣
∣

≤
∫ t1

0

(
(t1 – s)ν–1 – (t2 – s)υ–1)∣∣Iθ

1– (I – Q)Nx(s)
∣
∣ds (13)

+
∫ t2

t1

(t2 – s)υ–1∣∣Iθ
1– (I – Q)Nx(s)

∣
∣ds.

Let us estimate the term |Iθ
1– (I – Q)Nx(s)|. We have

∣
∣Iθ

1– (I – Q)Nx(s)
∣
∣ =

1
	(θ )

∫ 1

s
(r – s)θ–1∣∣(I – Q)Nx(r)

∣
∣dr

≤ 2(r‖α‖ + ‖β‖)
	(θ + 1)

,

thus it is bounded and (13) becomes

∣
∣
(
KP(I – Q)Nx

)
(t1) –

(
KP(I – Q)Nx

)
(t2)

∣
∣

≤ 2(r‖α‖ + ‖β‖)
	(θ + 1)

(∫ t1

0

(
(t1 – s)ν–1 – (t2 – s)υ–1)ds +

∫ t2

t1

(t2 – s)υ–1 ds
)

=
2(r‖α‖ + ‖β‖)

	(θ + 1)

(
t1

ν – t2
ν + 2(t2 – t1)υ

υ

)

→ 0, as t1 → t2.

Thus it follows that KP(I – Q)N(�) is equicontinuous on [0, 1]. Hence, we easily deduce
that KP(I – QN) : � → X is a compact operator. �

Lemma 10 Let �1 = {x ∈ dom L\ker L : Lx = λNx for some λ ∈ (0, 1)}. If condition (H1)
holds, then �1 is bounded.
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Proof Suppose that x ∈ �1, then x = (x–Px)+Px ∈ dom L\ker L. That is, (I –P)x ∈ dom L∩
ker P and Px ∈ ker L, i.e., LPx = 0, thus from Lemma 8, we get

∥
∥(I – P)x

∥
∥ =

∥
∥KpL(I – P)x

∥
∥ ≤ 1

(θ + υ – 1)
∥
∥L(I – P)x

∥
∥

=
1

(θ + υ – 1)
‖Lx‖ =

1
(θ + υ – 1)

‖Nx‖

≤ 1
(θ + υ – 1)

(‖α‖‖x‖ + ‖β‖). (14)

That means

‖Px‖ ≤ ‖Dυ
0+ x‖

	(υ + 1)
. (15)

Since Lx = λNx, then

∣
∣Dυ

0+ x(t)
∣
∣ = λ

∣
∣Iθ

1– f
(
t, x(t)

)∣
∣ ≤ 1

	(θ + 1)
(‖α‖‖x‖ + ‖β‖), (16)

then (15) can be estimated as

‖Px‖ ≤ (‖α‖‖x‖ + ‖β‖)
	(υ + 1)	(θ + 1)

. (17)

Using (14) and (17) yields

‖x‖ ≤ ‖Px‖ +
∥
∥(I – P)x

∥
∥

≤ (‖α‖‖x‖ + ‖β‖)
	(υ + 1)	(θ + 1)

+
(‖α‖‖x‖ + ‖β‖)

(θ + υ – 1)

= A
(‖α‖‖x‖ + ‖β‖),

thus

‖x‖ ≤ A
1 – A‖α‖‖β‖ < ∞,

which shows that �1 is a bounded set. �

Lemma 11 Assume that (H2) holds. Then the set

�2 = {x ∈ ker L : Nx ∈ Im L}

is bounded.

Proof Let x ∈ �2. Since x ∈ ker L, then x(t) = a tυ
	(υ+1) , a ∈ R, Im L = ker Q, and QNx = 0.

Therefore

∫ 1

0
sθ–1f

(
s, x(s)

)
ds = 0.
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Condition (H2) implies that there exists τ ∈ [0, 1] such that |Dυ
0+ x(τ )| ≤ M, thus |a| ≤ M,

so ‖x‖ ≤ M
	(υ+1) , hence �2 is a bounded set. �

Lemma 12 Assume that conditions (H2) and (H3) hold. Then the set

�3 =
{

x ∈ ker L : –λJx + (1 – λ)QNx = 0,λ ∈ [0, 1]
}

is bounded, where J : ker L → Im Q is a linear isomorphism given by

J
(

c
tυ

	(υ + 1)

)

= c, ∀c ∈ R, t ∈ [0, 1].

Proof Let x0 ∈ �3. Since λJx0 = (1 – λ)QNx0, then

λc0 = (1 – λ)θ
∫ 1

0
sθ–1f

(
s, x0(s)

)
ds.

If λ = 0, then
∫ 1

0
sθ–1f

(
s, x0(s)

)
ds = 0.

From condition (H2), there exists ς ∈ [0, 1] such |Dυ
0+ x0(ς )| = |c0| ≤ M, thus ‖x0‖ ≤ M

	(υ+1) .
If λ = 1, then c0 = 0. Now let 0 < λ < 1, and assume that (8) holds. Since x0(t) = c0

tυ
	(υ+1) ∈

ker L, with |c0| > M∗, then

λc2
0 = (1 – λ)c0θ

∫ 1

0
sθ–1f

(
s, x0(s)

)
ds < 0,

which contradicts the fact that λc2
0 ≥ 0. So |c0| ≤ M∗, which gives ‖x0‖ = |c0|

	(υ+1) , that means
�3 is bounded. Similarly, if we assume that (9) holds, then

�3 =
{

x ∈ ker L : λJx + (1 – λ)QNx = 0,λ ∈ [0, 1]
}

is a bounded set. �

Theorem 13 Assume that conditions (H1)–(H3) hold. Then problem (P) has at least one
solution in X.

Proof We can easily prove that using Lemma 8 and Lemma 9, the conditions of Theorem 6
are satisfied. Then the proof follows similar steps as in [15]. �

Example 14 Consider problem (P) with

θ = 0.5, and υ = 0.8,

f (t, x) = 10–1(1 + t)| sin x| + e–t , (t, x) ∈ [0, 1] ×R,

then condition (H1) is fulfilled. In fact,

∣
∣f (t, x)

∣
∣ ≤ α(t)|x| + β(t), with α(t) = 10–1(1 + t),β(t) = e–t .

We have A = 4.5448 and 1 – A‖α‖ = 0.54552 > 0.
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Condition (H2) holds, indeed

∫ 1

0
sθ–1f

(
s, x(s)

)
ds ≥

∫ 1

0
sθ–1e–s ds = 1.4936,

thus condition (H2) is satisfied for any constant M > 0.
Condition (H3) is also satisfied. In fact, for M∗ = 1 > 0, such that for any

x(t) = c0
tυ

	(υ+1) ∈ ker L with |c0| > M∗, we have

∫ 1

0
sθ–1f

(
s, x(s)

)
ds ≥ 1.4936 > 0.

Then

c0

∫ 1

0
sθ–1f

(
s, x(s)

)
ds > 0, if c0 > 0

or

c0

∫ 1

0
sθ–1f

(
s, x(s)

)
ds < 0, if c0 < 0.

We conclude by Theorem 13 that problem (P) has a solution in X.

4 Conclusion
Nonlinear fractional integro-differential equations are important and widely applied in
many areas. In particular to have mixed fractional terms on both sides, that is, having
fractional integrals or fractional derivatives on the left- and right-hand side respectively, is
an important class that is not fully studied in the literature. There are some real difficulties
to examine the existence and uniqueness of solutions for these types of equations, and
further properties for these types of equations have been studied by few researchers using
different techniques (see, for example, [4, 9, 14] for partial treatment).

In this work we establish sufficient conditions and prove that there is at least one solution
for problem (P):

⎧
⎨

⎩

Dθ
1– Dυ

0+ x(t) = f (t, x(t)),

x(0) = 0, Dυ
0+ x(1) = Dυ

0+ x(0) for t ∈ (0, 1),

under certain condition.
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