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Abstract: A large-time Eulerian–Lagrangian stochastic approach is employed to: (1) estimate centroid
position uncertainty of contaminant plumes that originate from instantaneous point sources in
statistically stationary and isotropic porous formations; (2) assess the time needed for achieving
ergodic conditions, which would allow for the evaluation of local concentration values based on
the only ensemble mean distribution; (3) derive the concentration coefficient of variation (CV) as a
function of asymptotic macro-dispersion coefficients and centroid trajectory variances. The results
indicate that the decay time of plume position uncertainty is so large that there is practically no
chance for effective ergodicity. The concentration coefficient of variation is zero at the centroid but
rapidly increases when moving away from it. The dissipative effect of local dispersion in the presence
of relatively high Péclet numbers is considerably exalted by marked flow field heterogeneity, which
confirms the previously postulated synergic, non-additive effect of advection and local dispersion in
passive solute dilution. A further result from this study is the derivation of the power law that relates
dimensionless concentration micro-scale to dimensionless local dispersive area. The exponent of this
power law is the same that appears in the relationship between dimensionless Kolmogorov turbulent
micro-scale and flow Reynolds number.

Keywords: subsurface flow and transport; stochastic analytical approach; tracer
concentration prediction

1. Introduction

Protecting groundwater resources and attempting to limit the damages deriving from their
sometimes unavoidable deterioration is one of the main goals in the field of environmental engineering.
For that reason, many scientists in the last few decades have addressed, using different approaches,
all the issues related to water flow and solute transport in heterogeneous porous formations (among the
benchmark treatises: [1–3]). As a matter of fact, the marked heterogeneity of groundwater flow fields
considerably complicates the theoretical analysis, tying it to the choice of a well-defined reference
space–time scale and to the introduction of a number of simplifying assumptions. When affording
the study of porous media by the classic continuum theory (which averages the microscopic balance
equations over a representative elementary volume), one implicitly admits the existence of a lower-limit
natural scale. As a consequence, the unknown microscopic characteristics of the medium are
incorporated into macroscopic parameters that can more easily be estimated. However, as for the
complex pore network, at a field scale the aquifer can be so heterogeneous that a detailed description
of macro-units distribution is impossible (or at least impractical). Provided that it is not possible
to analyze the related flow and transport processes in a mathematically exact form, an acceptable
compromise is resorting to stochastic models that are able to consistently encompass their intrinsic
uncertainty (e.g., [2–6]). The geometrical organization of the porous formation will then be considered
only one of the infinite possible scenarios, all of them belonging to the same statistical population.
The characterizing physical properties will be interpreted as space–time random functions, operatively
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described by ensemble mean and expected deviation. Nevertheless, the statistical methods are only a
tool for handling phenomena that, while obeying basically deterministic laws, cannot be described at
an acceptable level of detail. Calculating ensemble mean and standard deviation of a random variable
provides an estimate of its most probable value and corresponding degree of reliability. The feasibility
and the usefulness of such an operation depends on the occurrence of the conditions for the validity of
the ergodic theorem (e.g., [7]). In simple words, the theorem postulates the possibility of assuming the
equivalence of spatial or temporal means of a given variable calculated in a single realization (in the
present case, the real aquifer) and theoretical point/instantaneous ensemble means of the same variable
referring to the whole statistical population. For this to be possible, it is required that the spatial
domain or the time interval used to compute the spatial/temporal means is much larger or longer
than the spatial domain or the time interval over which the values of the given variable are correlated
(or, equivalently, kept very close to each other). In the present study, the estimation of position and
dimensions of contaminant plumes and corresponding point concentrations in heterogeneous and
statistically isotropic saturated porous formations is addressed. In terms of position and dimensions,
the discussion is based on centroid and central inertia moments, as well as on the conditions under
which they can be considered as equivalent to same-order single-particle statistical moments; in terms of
point concentrations, the discussion is based on concentration ensemble mean, variance and coefficient
of variation (which in turn involve the single-particle moments as well as the statistics of the barycenter
of mass) and the conditions under which the Gaussian ensemble mean for point instantaneous mass
injection can be representative of the actual distribution. The mathematical treatment, which also hinges
on previous author’s results, makes use of both Lagrangian (e.g., [8–13]) and Eulerian (e.g., [14–16])
framework for tracer transport in heterogeneous flow fields.

2. Methods

Let us consider steady flow and passive solute transport in statistically stationary and isotropic
porous formations. After [17,18], the following relationship governs the evolution of the expected
longitudinal inertia moment I11 of a plume that originates from an instantaneous point solute source at
x = 0: 〈

I11(t)
〉
= X11(t) − S11(t) (1)

where the angle brackets indicate the ensemble mean operator, t is the time, X11 the longitudinal
single-particle trajectory variance, S11 the longitudinal centroid trajectory variance:

S11(t) =
〈
S′21 (t)

〉
(2)

and S′1 the longitudinal deviatory centroid trajectory. For unit normalized total mass (M/n = 1, where
M indicates solute mass and n medium porosity):

Si(t) =
∫

xic(x, t)dx i = 1, 2, 3 (3)

where x is the position vector and c(x, t) the actual concentration distribution. From the mass
balance equation:

LADc(x, t) =
∂c
∂t

+ v · ∇c−D∇2c = 0 (4)

where LAD indicates the advection–dispersion operator, D the local dispersion coefficient and v the
zero-divergence velocity field, one obtains:

dS1

dt
=

d〈S1〉

dt
+

dS′1
dt

= V1 +

∫
v′1(x)c(x, t)dx (5)
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In Equation (5) and in what follows, V1 is the mean longitudinal velocity and v′1 the corresponding
deviatory component:

v′1 = v1 −V1 (6)

The underlying assumption for Equation (5) to be valid is that the concentration and its spatial
derivatives vanish at large distances from origin:

c,
∂c
∂xi
→ 0 xi → ±∞ i = 1, 2, 3 (7)

Ensemble averaging leads to:
d〈S1〉

dt
= V1 (8)

and, as a consequence:
dS′1
dt

=

∫
v′1(x)c(x, t)dx (9)

or:

S′1(t) =

t∫
0

∫
v′1(x)c(x, s)dxds (10)

The centroid trajectory variance is then obtained by:

dS′21
dt

= 2S′1
dS′1
dt

(11)

and:
d
〈
S′21

〉
dt

= 2
〈 t∫

0

∫ ∫
v′1(x)v

′

1(y)c(x, t)c(y, s)dxdyds
〉

(12)

Following the standard linearized transport formulation (e.g., [2]), the velocity field sampling
trajectory consists of a mean-velocity straight line (a + Vt), with a indicating the generic particle starting
position, only perturbed by the local dispersive Brownian displacement (XB). In these conditions:

c(x, t) =
∫
Ω0

C0(a)δ[x− a−Vt−XB(t)]da (13)

where Ω0 indicates the injection volume, δ the Dirac Delta, and C0(a) the initial concentration
distribution. As mentioned when introducing Equation (1), in the present study it is assumed that the
initial concentration distribution is a point-like one: C0(a)→ δ(a) . Therefore:

d
〈
S′21

〉
dt = 2

t∫
0

∫ ∫ ∫ ∫ 〈
v′1(x)v

′

1(y)
〉
δ[x−Vt−XB(t)]δ[y−Vs−YB(s)]·

fXBYB(XB, YB; t, s, D)dxdydXBdYBds
(14)

where fXBYB indicates the bivariate Normal probability density function of two different and statistically
independent Brownian trajectories (which are also not statistically related to the Darcian flow field):

fXBYB(XB, YB; t, s, D) = fXB(XB, t, D) fYB(YB, s, D) = 1
(4πD)3(ts)3/2

3∏
i=1

exp
(
−

X2
Bi

4Dt

)
·

exp
(
−

Y2
Bi

4Ds

) (15)
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From Equation (14), with Cv11(x− y) =
〈
v′1(x)v

′

1(y)
〉

indicating the longitudinal velocity stationary
covariance, one obtains:

d
〈
S′21

〉
dt

= 2

t∫
0

∫ ∫
Cv11(x− y) fXBYB(x−Vt, y−Vs; t, s, D)dxdyds (16)

or: 〈
S′21

〉
=

t∫
0

t∫
0

∫ ∫
Cv11(x− y) fXBYB(x−Vt1, y−Vt2; t1, t2, D)dxdydt1dt2 (17)

Resorting to the Fourier transformation, one can write:

Cv11(x− y) =
∫

Zv11(k) exp[ j2πk · (x− y)]dk (18)

where Zv11(k) is the co-called spectrum of the longitudinal velocity and j =
√
−1. Substitution of

Equation (18) into Equation (17) yields:

〈
S′21

〉
=

t∫
0

t∫
0

∫ ∫ ∫
Zv11(k) exp[ j2πk · (x− y)] fXBYB(x−Vt1, y−Vt2; t1, t2, D)dxdydkdt1dt2 (19)

Finally, the Cartesian space–time double integrations performed accounting for Equation (15)
lead to: 〈

S′21
〉
=

∫
Zv11(k)Γ(k, t)

(2πV · k)2 + 16π4D2k4
dk (20)

with:
Γ(k, t) = 1 + exp

(
−8π2Dk2t

)
− 2 cos(2πV · kt) exp

(
−4π2Dk2t

)
(21)

and k = |k|.
In the present work, we derive S11 for Gaussian isotropic log-conductivity covariance function:

CY(r) = σ2
Y exp

−πr2

4I2
Y

 (22)

where r = |r| is the scalar distance between two generic points of the domain, σ2
Y is the log-conductivity

variance and IY the log-conductivity integral scale. The corresponding spectrum is:

ZY(k) =
∫

CY(r) exp(− j2πk · r)dr = 8σ2
YI3

Y exp
(
−4πk2I2

Y

)
(23)

Note that considering a 3-D (three-dimensional) isotropic conductivity distribution makes sense in
the presence of relatively reduced horizontal extension of the geologic units, so that the corresponding
integral scale can be assumed of the same order of magnitude of the vertical one, which in turn is
controlled by the stratigraphic structure.

The classic first-order theory of steady flow in stationary porous media (e.g., [2]) straightforwardly
relates log-conductivity and velocity spectra by:

Zu11(k) =
3∑

p=1

3∑
q=1

VpVq

(
δp1 −

k1kp

k2

)(
δq1 −

k1kq

k2

)
ZY(k) (24)
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where δij indicates Kronecker Delta. Assuming that mean flow is directed along x1, with V = (V,0,0),
λi = kiIY, τ = tV/IY, λ = |λ| and:

F11(λ1,λ2,λ3) =

1−
λ2

1

λ2

2

(25)

one obtains: 〈
S′21

〉
σ2

YI2
Y
= 2

π2

∫ F11(λ1,λ2,λ3) exp(−4πλ2)

λ2
1+

4π2
Pe2 λ

4
·[

1 + exp
(
−

8π2

Pe λ
2τ

)
− 2 cos(2πλ1τ) exp

(
−

4π2

Pe λ
2τ

)]
dλ

(26)

where Pe = VIY/D indicates the Péclet number. The triple integration in Equation (26) can more easily
be afforded by switching to spherical coordinates:

λ1 = λ sinθ cosϕ
λ2 = λ sinθ sinϕ
λ3 = λ cosθ

(27)

Thus: 〈
S′21

〉
σ2

YI2
Y
= 2

π2

∞∫
0

π∫
0

2π∫
0

(1−sin2 θ cos2 ϕ)
2

exp(−4πλ2) sinθ

sin2 θ cos2 ϕ+ 4π2
Pe2 λ

2
·[

1 + exp
(
−

8π2

Pe λ
2τ

)
− 2 cos(2πλ sinθ cosϕτ) exp

(
−

4π2

Pe λ
2τ

)]
dϕdθdλ

(28)

and, in terms of dimensionless time derivative:

dS∗11

dτ
= 8

∞∫
0

π∫
0

2π∫
0

(
1− sin2 θ cos2 ϕ

)2
exp

(
−4πλ2

)
sinθλ2

4π2λ2 sin2 θ cos2 ϕ+ 16π4

Pe2 λ4

dΓ
dτ

dϕdθdλ (29)

where:
dΓ
dτ = − 8π2

Pe λ
2 exp

(
−

8π2

Pe λ
2τ

)
+ 2 exp

(
−

8π2

Pe λ
2τ

)
·[

2πλ sinθ cosϕ sin(2πλ sinθ cosϕτ) exp
(

4π2

Pe λ
2τ

)
+

4π2

Pe λ
2 cos(2πλ sinθ cosϕτ) exp

(
4π2

Pe λ
2τ

)] (30)

and S∗11 = S11/σ2
YI2

Y. The evaluation of the integrals in Equation (29) is performed after some
mathematical manipulation that transforms it into:

dS∗11
dτ = 16

∞∫
0

π∫
0

2π∫
0

(
1− sin2 θ cos2 ϕ

)2
sinθλ2

τ∫
0

exp
{
−

[
4π2

Pe (2τ− τ
′) + 4π

]
λ2

}
·

cos(2πλ sinθ cosϕτ′)dτ′dϕdθdλ
(31)

Note that the equivalence of Equation (31) and Equations (29) and (30) can easily be verified by
performing the integration over τ′. At large τ, taking the integral principal value, one obtains:

τ∫
0

exp
{
−

[
4π2

Pe (2τ− τ
′) + 4π

]
λ2

}
cos(2πλ sinθ cosϕτ′)dτ′ → exp

[
−

(
4π2

Pe τ+ 4π
)
λ2

]
·

τ∫
0

cos(2πλ sinθ cosϕτ′)dτ′ = exp
[
−

(
4π2

Pe τ+ 4π
)
λ2

] sin(2πλ sinθ cosϕτ)
2πλ sinθ cosϕ

(32)

and
dS∗11
dτ →

8
π

∞∫
0

π∫
0

2π∫
0

(1−sin2 θ cos2 ϕ)
2

cosϕ exp
[
−

(
4π2

Pe τ+ 4π
)
λ2

]
·

sin(2πλ sinθ cosϕτ)λdϕdθdλ
(33)
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Starting from Equation (33), we will examine two different cases: the behavior of the centroid
large-time variance for highly advective regimes (Pe→∞) and for advective-diffusive regimes (finite Pe).
In the first case, with τ/Pe ≈ 1:

dS∗11

dτ
=

16
√
πτ(

4π2

Pe τ+ 4π
)3/2

π∫
0

2π∫
0

(
1− sin2 θ cos2 ϕ

)2
sinθ exp

−π2 sin2 θ cos2 ϕ(
4π2

Pe τ+ 4π
) τ2

dϕdθ (34)

Since, for τ→∞ and τ/Pe ≈ 1, when performing the integration over ϕ one can assume:

exp

−π2 sin2 θ cos2 ϕ(
4π2

Pe τ+ 4π
) τ2

→
√
πδ(cosϕ)
π sinθτ(

4π2
Pe τ+4π

)1/2

, (35)

the solution of Equation (34) turns out to be:

dS∗11

dτ
→

8
1 + πτ

Pe
� 2 (36)

and S11(t) � 2σ2
YVIYt. Returning to Equation (1), with X11(t) = 2σ2

YVIYt (e.g., [2]):〈
I11(t)

〉
→ 2σ2

YIYVt− 2σ2
YIYVt = 0 (37)

Thus, for zero local dispersion, an initial point injection is expected to remain a point solute body,
randomly moving within the flow domain with high position uncertainty (S11≈X11). In the more
realistic case that Pe has a finite value, at large times (4π2τ/Pe>>4π) one gets:

dS∗11

dτ
=

2Pe3/2

π5/2τ1/2

π∫
0

2π∫
0

(
1− sin2 θ cos2 ϕ

)2
sinθ exp

(
−

sin2 θ cos2 ϕ

4
Peτ

)
dϕdθ (38)

and:

S∗11(τ) =
4Pe
π2

π∫
0

2π∫
0

(
1− sin2 θ cos2 ϕ

)2

cosϕ
Φ
(

sinθ cosϕ
2

√

Peτ
)
dϕdθ− const (39)

with Φ indicating Error Function. Note that the subtractive constant in Equation (39) comes from
the time integration in Equation (38) between zero and a time large enough for the asymptotic
approximation of the integrand function to be valid. The large-τ integration over ϕ, with Φ→1, would
invariably give zero, except for cosϕ = 0 (which happens twice: for ϕ = π/2 and ϕ = 3π/2). In this case,
the Error Function tends to 2/

√
π times its argument. The final result is therefore:

S∗11(τ)→
16Pe3/2

π5/2

√
τ− const (40)

and: 〈
I11(t)

〉
→ 2σ2

YIYVt + 2Dt−
16
π5/2

σ2
YI3

YV2

D3/2

√
t + const (41)

where 2Dt =
〈
X2

B1

〉
represents the contribution of the Brownian motion to X11. Incidentally, it can

be shown that at short times, even for Pe ,∞, S11 does not depend on it, is quadratic in τ and tends
to X11. Equation (41) says that, in asymptotic conditions and for non-negligible local dispersion,
a solute plume that originates from an instantaneous point source would see its expected longitudinal
dimension to increase in time due to two different mechanisms: the first, represented by the term 2Dt,
comes from pure local dispersion; the second, much more important, represented by a subtractive term
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that increases at a time rate lower than X11 (whose advection-related part, on the other hand, is not
affected by local dispersion—see [13]), comes from the fundamental interplay of local dispersion and
advection. Thus, in scalar transport and mixing in heterogeneous flow fields, the simple rule of effect
superposition does not apply. Note that, in the case of anisotropic porous formations (represented by
anisotropic Gaussian log-conductivity covariance function), Equation (40) would become:

S∗11(τ)→
16PeL

3/2e
π5/2ε3/2

√
τ− const (42)

with e = IYv/IYh indicating the anisotropy ratio (i.e., the ratio of vertical to horizontal log-conductivity
integral scale), ε = DT/DL indicating the local dispersion anisotropy ratio (i.e., the ratio of transverse to
longitudinal local dispersion coefficient) and PeL = UIYh/DL the longitudinal Peclét number. Provided
that both e and ε are typically < 1, the modified asymptotic two-particle covariance (Equation (42))
says that the more anisotropic the porous formation (i.e., the more layered-like), the less persistent the
solute particle correlation. This makes perfect sense because, in the presence of non-negligible local
dispersion, a pronounced stratification accelerates the sampling of markedly different velocity values.
On the other hand, the more anisotropic the local dispersion (with the critical transverse coefficient
that is much smaller than the longitudinal one), the weaker the dissipative effect and the slower the
loss of particle correlation.

It will now be shown that the centroid variance coincides with the two-particle covariance
(see also [15] for steady stream-flow transport):

Sii ≡ Θii =
〈
X′i Y

′

i

〉
(43)

with X′i = Xi − 〈Xi〉 = Xi −Vit and Y′i = Yi − 〈Yi〉 = Yi −Vit representing the deviatory longitudinal
trajectory of two different particles. Indeed, from Equation (3):

〈
S2

i (t)
〉
=

∫ ∫
xiyi

〈
c(x, t)c(y, t)

〉
dxdy (44)

where, at large times, for unit normalized total mass and instantaneous point injection at x = 0 (see [19]):

c(x, t)c(y, t) =(2π)−3
∣∣∣∣∣∣ P W

W P

∣∣∣∣∣∣−1/2

exp

−1
2

[
(x−Vt)T(y−Vt)T

]( P W
WT P

)−1[
(x−Vt)
(y−Vt)

] (45)

with P = [Xii] and W = [Θii] indicating the diagonal tensors of one- and two-particle covariances
respectively, T vector-matrix transpose and |A| = det A. Therefore:

Sii(t) =
〈
S′2i (t)

〉
=

〈
S2

i (t)
〉
−

〈
Si(t)

〉2 =∫ ∫
xiyi

〈
c(x, t)c(y, t)

〉
dxdy−V2

i t2 = Θii(t)
(46)

Furthermore, in the regime of equilibrium between concentration large-scale irregularity
production and small-scale irregularity dissipation, the following relationship is valid for the
concentration variance, an important measure of concentration uncertainty:

σ2
c (x, t) =

〈
c′2(x, t)

〉
=

3∑
i=1

Θii(t)
(
∂
〈
c(x, t)

〉
∂xi

)2

(47)
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Equation (47) can be obtained from the following concentration variance approximation (see [6]),
which is valid for Gaussian and jointly Gaussian particle trajectories:

σ2
c (x, t) =

〈
c(x, t)2

〉
−

〈
c(x, t)

〉2 =

(2π)−3
∣∣∣∣∣∣ P W

W P

∣∣∣∣∣∣−1/2

exp

− 1
2

[
(x−Vt)T(x−Vt)T

]( P W
WT P

)−1[
(x−Vt)
(x−Vt)

]−{
(2π)−3/2

|P|−1/2 exp
[
−

1
2 (x−Vt)TP−1(x−Vt)

]}2
,

(48)

by equating to zero LADσ
2
c (x, t) with ∂Θii/∂t→ 0 . The structure of Equation (47) is clearly similar to

that involving turbulent velocity correlation and corresponding mean gradient after Prandtl:

〈
v′i v
′

j

〉
= l2i j

(
∂〈vi〉

∂x j

)2

(49)

where lij represents mixing length in the i–j plane. Thus, one can conclude that the role of Sii ≡ Θii is
that of solute transport (squared) mixing length in steady heterogeneous flow fields (that is, a sort
of tracer (squared) micro-scale). Interestingly enough, while Kolmogorov universal equilibrium
theory (e.g., [20]) gives the following order-of-magnitude relationship between the ratio of turbulence
micro-scale η to flow domain length L and flow Reynolds number:

η

L
≈ Re−3/4 (50)

the same power (−3/4) is found in the present study when analyzing the relationship between the
ratio of square root of Θ11 to average distance actually covered by the plume (Vt) and a dimensionless
number that is obtained as the ratio of squared local dispersive length to squared log-conductivity
integral scale. Indeed, from Equation (40):

√
Θ11

Vt
→

4σY

π5/4

Dt
I2
Y

−3/4

(51)

As a matter of fact, high Reynolds numbers pertain to flows that are increasingly chaotic and prone
to the loss of correlation among fluid trajectories, exactly like subsurface tracer transport processes
that are characterized by relatively high values of the ratio of local dispersive (diffusive-like) area to
log-conductivity high-correlation area.

In order to complete the mathematical treatment, and to derive the concentration coefficient
of variation, the transverse centroid variances/two-particle covariances (S22 and S33) as well as the
transverse macro-dispersion coefficients (Dm22 = (1/2)dX22/dt and Dm33 = (1/2)dX33/dt) are derived as
follows. First, rewriting Equation (26) for τ→∞ and i = 2,3 in spherical coordinates, one obtains:

Sii

σ2
YI2

Y

=
2
π2

∞∫
0

π∫
0

2π∫
0

Fii(λ,θ,ϕ) exp
(
−4πλ2

)
sinθ

sin2 θ cos2 ϕ+ 4π2

Pe2 λ2
dϕdθdλ (52)

where:
F22(λ,θ,ϕ) = sin4 θ sin2 ϕ cos2 ϕ (53)

and:
F33(λ,θ,ϕ) = sin2 θ cos2 θ cos2 ϕ (54)
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The integration over λ in Equation (52) is performed by taking the principal value:

∞∫
0

exp
(
−4πλ2

)
sin2 θ cos2 ϕ+ 4π2

Pe2 λ2
dλ �

1
sin2 θ cos2 ϕ

∞∫
0

exp
(
−4πλ2

)
dλ =

1
4 sin2 θ cos2 ϕ

(55)

The final result is:
S22

σ2
YI2

Y

=
S33

σ2
YI2

Y

=
2

3π
(56)

The asymptotic transverse macro-dispersion coefficients are derived after [21] obtaining:

Dmii
D

= σ2
Y

∞∫
−∞

Fii(λ1,λ2,λ3) exp
(
−4πλ2

)
λ2

λ2
1 +

4π2

Pe2 λ4
dλ+ 1 (57)

where:

F22(λ1,λ2,λ3) =
λ2

1λ
2
2

λ4
(58)

and:

F33(λ1,λ2,λ3) =
λ2

1λ
2
3

λ4
(59)

Switching to spherical coordinates and performing the triple integration, one gets:

Dm22

D
=

Dm33

D
=
σ2

Y
3

+ 1 (60)

The asymptotic longitudinal macro-dispersion coefficient for Gaussian log-conductivity covariance
and finite Péclet was already computed by [13]: as mentioned above when talking about

X11 = 2
t∫

0
Dm11(τ)dτ and Equation (41), its advective part does not differ from the high-Péclet

case. Thus:
Dm11

D
= σ2

YPe + 1 (61)

Finally, the concentration coefficient of variation:

CV(x, t) =
σc(x, t)〈
c(x, t)

〉 (62)

with σc(x, t) =
√
σ2

c (x, t), is obtained at large times from Equation (47) and the Gaussian ensemble
mean concentration, which is the solution of the constant–coefficient advection–dispersion equation
for instantaneous point source at x = 0:

〈
c(x, t)

〉
=

3∏
i=1

1
√

4πDmiit
exp

− (xi −Vδi1t)2

4Dmiit

 (63)

Accounting for Equations (40), (56), (60) and (61), one gets:

CV
(~
x, τ

)
�

√√√√√√√√ 4σ2
YPe3/2

π5/2
(
σ2

Y + 1
Pe

)2
τ3/2

(x̃1 − τ)
2 +

σ2
YPe2

(
x̃2

2 + x̃2
3

)
3π

(
σ2

Y
3 + 1

)2
τ2

(64)

with x̃i = xi/IY.
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3. Results

One of the main issues when dealing with the estimation of location, extension and peak
concentration values of contaminant plumes in heterogeneous subsurface flows concerns the predictive
ability of the ergodic spatial moments (

〈
Xi(t)

〉
and Xii(t)) and the corresponding Gaussian concentration

ensemble mean. As a matter of fact, when the conditions for the validity of the ergodic theorem were
achieved, and the statistics of the single solute particle could be substituted by the same-order spatial
moments referred to the single-realization plume, one would have:

√
Sii/〈Si〉 → 0 , SD(Iii)/〈Iii〉 → 0 ,

Si � 〈Si〉 → 〈Xi〉, Iii � 〈Iii〉 → Xii and the space–time distribution of the concentration in case of
instantaneous point source at x = 0 could be estimated by Equation (63) at a good level of approximation.
Therefore, before analyzing the large-time behavior of CV at a given short distance from the centroid and
at a fixed point in space, it is useful to evaluate the time needed for S11 (the macroscopic flow direction
is obviously the more critical one) to decrease to some small percentage ω of X11 = 2σ2

YVIYt + 2Dt:

τω =
tωV
IY

=
0.209Pe3

ω2
(
1 + 1

σ2
YPe

)2 (65)

Tables 1 and 2 respectively list, for σ2
Y = 0.1 and σ2

Y = 0.5, τω computed from Equation (65) when
ω = 0.1, 0.05 and 0.01, and Pe = 10, 100 and 500.

Table 1. Decay time of the ratio of two-particle to one-particle covariance. Pe: Péclet number;
ω: decay percentage.

ω Pe 10 100 500

0.1 5.225 × 103 1.727 × 107 2.511 × 109

0.05 2.09 × 104 6.909 × 107 1.004 × 1010

0.01 5.225 × 105 1.727 × 109 2.511 × 1011

Table 2. Decay time of the ratio of two-particle to one-particle covariance. Pe: Péclet number;
ω: decay percentage.

ω Pe 10 100 500

0.1 1.451 × 104 2.009 × 107 2.592 × 109

0.05 5.806 × 104 8.035 × 107 1.037 × 1010

0.01 1.451 × 106 2.009 × 109 2.592 × 1011

As one can see, except for Pe = 10 (a rather uncommon value of Péclet deriving from particularly
intense local dispersion, slow flow and reduced log-conductivity integral scale), τω is characterized
by very high values, even when one only requires that ω = 0.1 and the porous formation is mildly
heterogeneous (σ2

Y < 1). Consider, for example, τω for σ2
Y = 0.1 and Pe = 100: 1.727 × 107. That means

that, based on the large-time approximation for both X11 and S11, 1.727 × 107 times the ratio IY/V is
the time needed for a 90% reduction of the ratio S11/X11 (which still cannot be considered enough to
represent really ergodic conditions). Note that IY is usually in the order of meters and V is frequently
in the order of 10−6 to 10−5 meters/second. Therefore, one can conclude that there is practically no
chance to achieve the theoretical ergodic domain where c(x, t) =

〈
c(x, t)

〉
. The best one can do is

therefore to evaluate CV and eventually to estimate c(x, t) as
〈
c(x, t)

〉
plus a suitable multiple of the

standard deviation σc(x, t). By way of example, Figures 1–3 respectively show, for σ2
Y = 1, 0.5 and 0.1,

the large-time behavior of CV at a relatively short distance (r = |r| =
√

3IY) from the expected moving
centroid and peak of the Gaussian distribution (63)

〈
S(t)

〉
= (Vt, 0, 0), when Pe = 10, 100 and 500.
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Figure 1. Concentration coefficient of variation at a given distance from the moving centroid σ2
Y = 1.

CV is the concentration coefficient of variation; τ is the dimensionless time.

Figure 2. Concentration coefficient of variation at a given distance from the moving centroid σ2
Y = 0.5.

CV is the concentration coefficient of variation; τ is the dimensionless time.
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Figure 3. Concentration coefficient of variation at a given distance from the moving centroid σ2
Y = 0.1.

CV is the concentration coefficient of variation; τ is the dimensionless time.

Note that based on the large-time concentration variance in Equation (47), the concentration
coefficient of variation is zero at

〈
S(t)

〉
and increases with increasing distance from it. That means

that the reliability of the concentration estimates deteriorates as their value decreases. As one can see,
for given log-conductivity variance, CV is an increasing function of Pe. On the other hand, the three
figures reveal that, whereas for diffusive or mildly advective regimes (Pe = 10 and Pe = 100), the level
of heterogeneity expressed by σ2

Y only slightly affects CV, in the case of markedly advective regimes
(Pe = 500), a more heterogeneous log-conductivity distribution (σ2

Y = 1) leads to faster CV reduction
and, therefore, faster solute plume dilution. From a quantitative standpoint, Figure 3 (the worst
scenario) says that a weakly heterogeneous formation in a markedly advective transport regime could
require a travel distance of up to 10,000 integral scales to allow a standard deviation equal to 20%
of the (relatively close to the peak) expected concentration value. For IY = 1 m, that would mean
10 km: that is, a travel distance hardly compatible with the typical dimensions of a hydraulically
continuous aquifer and a residence time much larger than the typical times of technical interest. Finally,
Figures 4–6 show the large-time behavior of CV at a fixed point in space (x1 = 5000IY, x2 = 1IY, x3 = 1IY).
Such a type of estimate (a sort of “Eulerian” CV) could be useful, as an example, when choosing the
best location of agricultural or urban supply wells in the presence of possible upstream groundwater
pollution sources.
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Figure 4. Concentration coefficient of variation at a fixed point in space σ2
Y = 1. CV is the concentration

coefficient of variation; τ is the dimensionless time.

Figure 5. Concentration coefficient of variation at a fixed point in space σ2
Y = 0.5. CV is the concentration

coefficient of variation; τ is the dimensionless time.
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Figure 6. Concentration coefficient of variation at a fixed point in space σ2
Y = 0.1. CV is the concentration

coefficient of variation; τ is the dimensionless time.

As one can see, the concentration coefficient of variation experiences its minimum in
correspondence of the centroid passage (τ = 5000). Overall, the values of CV at different times
are always very high, except for very small Péclet. Obviously, it should be observed that the expected
concentration quickly goes to zero far from the peak and the evaluation of the corresponding CV makes
sense only if the toxicity threshold is very low. As for CV at a fixed distance from the moving centroid
(the “Lagrangian” CV), we see that advective regimes are characterized by lower uncertainty when
coupled with higher heterogeneity.

Thus, one can conclude that in transport processes that are dominated by advective mechanisms,
the dissipative effect of local dispersion is exalted by flow field heterogeneity. This fully confirms what
was postulated by [6] in terms of synergetic non-additive effect of advection and local dispersion in
tracer dilution.

4. Discussion and Conclusions

The protection of groundwater resources, and the prediction of the time evolution of their accidental
contamination, is one of the priorities in the field of environmental engineering. Many researchers in
the last few decades have addressed theoretical, computational and experimental issues related to water
flow and solute transport in heterogeneous porous formations. The importance of theoretical studies
in this field (against the costs of extensive field surveys and the computational burden of realistic
numerical simulations) resides in the possibility to design better targeted, smaller-scale interventions.
Note that groundwater transport theories are typically applied to the saturated zone of aquifers.
As a matter of fact, within the vadose zone, the lack of hydraulic continuity implies the absence of a
longitudinal gradient. Fluid displacement only occurs along the vertical direction due to gravity and
suction and usually ends (rather quickly) at the aquifer phreatic surface (or at the impervious boundary
in the presence of semi-dry layers). One could say that infiltration across the unsaturated zone can
eventually be viewed as the pre-initial condition for saturated transport. Moreover, the ubiquitous
asymptotic character of the analytical formulations would not be consistent with the reduced temporal
horizon of contaminant motion driven by gravity and capillary forces. Finally, the dangerousness of
pollution events is mostly related to downstream propagation and its typical space–time uncertainty.
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The present study makes use of a combined Eulerian–Lagrangian stochastic approach to
evaluate centroid position uncertainty in the case of passive contaminant plumes originating from
an instantaneous point source in statistically stationary and isotropic saturated porous formations,
to assess the time needed for achieving the so-called ergodic conditions (which would allow for the
evaluation of point concentrations based on the only Gaussian ensemble mean distribution), and to
derive the large-time concentration coefficient of variation as a function of asymptotic macro-dispersion
coefficients and centroid trajectory variances. The Eulerian part of the present formulation consists of
making use of the advection–dispersion equation to derive the governing equation of the plume centroid
second-order statistics and the equilibrium concentration variance approximation. The Lagrangian part
consists of expressing the actual concentration distribution and, as a consequence, all its moments in
terms of solute particle actual trajectories and related statistics. The results indicate that, even in mildly
heterogeneous aquifers and mildly advective regimes, there is practically no chance to achieve the
theoretical ergodic domain. Therefore, estimating the concentration coefficient of variation is essential
for the prediction of point levels of exposure to toxic non-reactive substances accidentally carried out
by groundwater, even at large times after contamination. The large-time coefficient of variation is zero
at the moving centroid. At (short) fixed distances from it, CV is an increasing function of Péclet for
given log-conductivity variance, and decays in time at a rate that is higher for more heterogeneous
log-conductivity distributions. The concentration coefficient of variation evaluated at a fixed point in
space experiences its minimum in correspondence of the centroid passage, but rapidly increases when
the peak of the distribution moves away. Its values are always very large, except for unrealistically small
Péclet. Obviously, it must be stressed that the expected concentration quickly goes to zero far from the
peak of the distribution and the evaluation of the corresponding CV makes sense if the toxicity threshold
is very low (which is the case for several contaminant chemicals). For both CV at a fixed distance
from the moving centroid (the “Lagrangian” CV) and CV at a fixed point in space (the “Eulerian”
CV), we see that the advective regimes (high Péclet) are characterized by lower uncertainty when
coupled with higher heterogeneity. Thus, one can conclude that in the presence of relatively high Péclet
numbers (transport processes dominated by advection), the dissipative effect of a relatively weak local
dispersion is enhanced by large values of log-conductivity (and velocity) variance. As a matter of fact,
large log-conductivity (and velocity) variance imply highly irregular concentration distributions and,
as a consequence, large mass fluxes based on Fick’s law and more efficient homogenization processes.
This fully confirms what was previously postulated by the author in terms of synergetic non-additive
effect of advection and local dispersion in passive solute dilution. In the present study, it has also
been shown that the ratio of the square root of the two-particle covariance (a sort of passive scalar
micro-scale) to the average distance actually covered by the plume is proportional to the power −3/4
of the ratio of squared local dispersive length to squared log-conductivity integral scale. This is the
same type of power law that governs the relationship between dimensionless turbulent Kolmogorov’s
micro-scale and Reynolds number. As a matter of fact, momentum and mass transfer by chaotic flows
are related by Reynolds’ analogy. The square root of the two-particle covariance can be considered as
the tracer transport microscale and, therefore, the equivalent of Kolmogorov microscale η. The ratio
of Kolmogorov microscale to the representative flow domain dimension L scales with the power
−3/4 of Reynolds number. Reynolds number measures the relative magnitude of inertial and viscous
effects, which can respectively be associated with the tendency of the flow to chaos and fast-decaying
trajectories correlation, and to order and long-range trajectories correlation. As mass transport is an
intrinsically unsteady process, the equivalent of L must be represented by the travel distance Vt, which
measures the portion of the domain actually sampled by the solute body. Finally, the role of Reynolds
number must be played by the ratio of two quantities that respectively symbolize uncorrelated and
correlated particle displacements: the transverse area of the local dispersive spot about the average
longitudinal trajectory (proportional to Dt) and the correlated area (proportional to IY

2).
Finally, a further issue when dealing with real porous formations may be represented by their

confinement by natural or artificial boundaries. In mathematical terms, confinement is equivalent to the
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exclusion of the contribution from the wave-number region around k = (0,0,0) (that is, the contribution
from the largest scales of heterogeneity). As a consequence, in this case, log-conductivity and velocity
could be considered as periodic functions to be expanded in Fourier series with a finite maximum
period. With Fvii(k) indicating the discrete spectrum of the pair (v′i, v′i), one obtains at t→∞, from
Equation (20) rewritten for the generic i:

〈
S′2i

〉
= Θii =

∫
Zvii(k)Γ(k, t)

(2πV · k)2 + 16π4D2k4
dk (66)

the following asymptotic two-particle covariance:

〈
S′2i

〉
= Θii =

∑
k,0

Fvii(k)

(2πV · k)2 + 16π4D2k4
= const (67)

Asymptotically constant two-particle covariance is synonym of large-time complete dilution,
which can be associated with maximum system entropy as for any confined domain (see [6] for
subsurface flow transport and [22] for stream-flow suspended load transport).
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