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Abstract: Recently, the Muth generated class of distributions has been shown to be useful for diverse
statistical purposes. Here, we make some contributions to this class by first discussing new theoretical
facts and then introducing a natural extension of it via the transmuted scheme. The extended class
is described in detail, emphasizing the characteristics of its probability and reliability functions,
as well as its moments. Among other things, we show that it can extend the possible values of the
mean and variance of the parental distribution, while maintaining symmetry or creating various
types of asymmetry. The mathematical inference of the parameters is also discussed. Special attention
is paid to the distribution of the new class using the log-logistic distribution as a parent. In an applied
work, we evaluate the behavior of the corresponding model by using simulated and practical data.
In particular, we employ it to fit two real-life data sets, one with environmental data and the other
with survival data. Standard statistical criteria validate the importance of the proposed model.

Keywords: transmuted class; Muth-G class; quantile function; moments measures; parametric
estimation; applications
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1. Introduction

The Muth distribution is a one-parameter lifetime distribution introduced by [1] demonstrating
a certain interest in the modelling of some reliability phenomenon. As an essential mathematical
definition, it has the following cumulative distribution function (cdf):

F(x; α) = 1− eαx− 1
α (e

αx−1), x > 0, (1)

where α ∈ (0, 1] is a shape parameter. The popularity of the Muth distribution is explained by the
combination of the following facts: (i) it corresponds to the classical exponential distribution with
parameter 1 when α tends to 0, (ii) its probability mass in the right tail is less than those of the
standard gamma, log-normal and Weibull distributions, (iii) it satisfies the variate generation property,
(iv) it satisfies the mode-median-mean inequality and (v) it has enough flexibility to fit properly certain
lifetime data sets, especially those resulting from the experiments of reliability. All these aspects are
detailed in [1–3]. Later, the Muth distribution has been extended through the power transform by [4].
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The perspective of generating new symmetric or asymmetric distributions from the Muth distribution
has been explored in [5] through the Muth generated (M-G) class of distributions.

Let us now present the M-G class constituting the basis of our study. First of all, it is defined by
the following cdf:

F(x; α, φ) = G(x; φ)−αe−[G(x;φ)−α−1]/α, x ∈ R, (2)

where G(x; φ) is the cdf of a parental continuous distribution having φ for parameter vector. This cdf
comes from the combination of the second type of the T-X transformation by [6] and the cdf of the Muth
distribution. That is, we have F(x; α, φ) = 1− F(− log[G(x; φ)]; α). With this construction, when α

tends to 0, F(x; α, φ) is reduced to G(x; φ). The probability density function (pdf) of the M-G class is
specified by

f (x; α, φ) = g(x; φ) [1− αG(x; φ)α] G(x; φ)−2α−1e−[G(x;φ)−α−1]/α, x ∈ R, (3)

where g(x; φ) refers to the pdf of the parental distribution, and the corresponding hazard rate function
(hrf) follows:

h(x; α, φ) =
g(x; φ) [1− αG(x; φ)α] G(x; φ)−2α−1e−[G(x;φ)−α−1]/α

1− G(x; φ)−αe−[G(x;φ)−α−1]/α
, x ∈ R.

Then, in order to illustrate the flexibility of the M-G class, Reference [5] considered the following
five special distributions: Muth uniform, Muth–Rayleigh, Muth–Lomax, Muth exponential and
Muth–Weibull distributions. Graphics reveal diverse curvatures for the related pdfs and hrfs,
proving their ability to model various types of phenomena. This is illustrated in [5] with the
Muth–Weibull distribution as the representative of the Muth class and the failure times aircraft
windshield data by [7]. In particular, Reference [5] proved that these data are better adjusted by the
Muth–Weibull model in comparison to several extensions of the Weibull models: the beta Weibull
model by [8], McDonald–Weibull model by [9], and exponentiated Weibull model by [10]. Other special
Muth distributions can be constructed and studied, symmetric or not, following the spirits of [11–14].

In this study, we first discuss two new facts about the M-G class. One is about the possible values
of α and the other is about the quantile function (qf). Next, we deepen the perspectives of the M-G class
by extending it through the use of the quadratic rank transmutation map. More precisely, we introduce
the transmuted Muth generated (TM-G) class of distributions defined by the following cdf:

F(x; Ω) = Tλ[F(x; α, φ)], x ∈ R, (4)

where Tλ(y) = y(1 + λ − λy), y ∈ (0, 1) is the quadratic rank transmutation map, λ ∈ [−1, 1]
and Ω = (λ, α, φ) is the vector containing all the parameters. We thus apply the general approach
developed by [15] to the M-G class. The idea is to offer an intermediate class between the exponentiated
generated class with power parameter 2 corresponding to λ = −1 (see [16]) and the Topp–Leone
generated class with power parameter 1 corresponding to λ = 1 (see [17]), the former M-G class being
obtained with λ = 0. The gain in transforming existing classes of distributions via the quadratic
rank transmutation map is now well-established, improving the possible values of the mean and
variance, while maintaining symmetry or creating skewness with varying kurtosis, etc. We may
refer to [18–23]. We make a theoretical work on the TM-G class, determining its main functions,
discussing the shape properties of the corresponding pdf and hrf, various moments through series
techniques and mathematical inference on the parameter by using the maximum likelihood approach.
Then, we illustrate the applicability of the new class by studying a special case based on the log-logistic
distribution. We develop the related model to fit two real-life data sets, one with environmental data
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and the other with survival data. The adequacy of the model reveals to be quite acceptable, and better
to competitors connected with the log-logistic model.

The outline of the study is as follows. In Section 2, the new facts about the M-G class, as well as
more information on the TM-G class, are provided. Technical results on the TM-G class are described in
Section 3. The practical side of the TM-G class is explored in Section 4 through the analysis of real-life
data. Section 5 is the concluding section.

2. The TM-G Class

In this section, we complete the motivations leading to the development of the M-G class with
some new facts, and end the presentation of the TM-G class.

2.1. New Facts about the Former M-G Class

Two new facts about the M-G class are formulated below. First, we can relax the possible range of
values for α, i.e., α ∈ (0, 1]. Indeed, for any α ∈ (−∞, 1]/{0},

• F(x; α, φ) can be defined as a continuous function; only an extension of continuity at the greater
point x0 such that G(x0; φ) = 0 is required when α < 0, depending on the support of G(x; φ),

• Standard arguments give limx→−∞ F(x; α, φ) = 0 and limx→+∞ F(x; α, φ) = 1, the infinite limits
being possibly adjusted according to the support of G(x; φ),

• In view of the definition of the pdf given as (3), it is clear that f (x; α, φ) ≥ 0 for x ∈ R; the sign of
α does not affect its positivity, implying that F(x; α, φ) is an increasing function with respect to x.

Consequently, the cdf (2) remains mathematically valid for α ∈ (−∞, 1]/{0}, allowing negative
values for α. This direction was not investigated in [24], and opens some interesting perspectives
of applications. In the next, we thus consider α ∈ (−∞, 1]/{0}. Note that, when α → 0, we arrive
at F(x; α, φ) = G(x; φ). Therefore, one can eventually define the M-G class with the parental cdf for
α = 0.

The second contribution concerns the qf of the M-G class. It was not determined in [5], but can
be with the use of the so-called Lambert function. Indeed, based on (2), the following equation:
F(Q(u; α, φ); α, φ) = u with u ∈ (0, 1) yields an identifiable function Q(u; α, φ); the qf of the M-G class
is given by

Q(u; α, φ) = QG

{[
−αW

(
− 1

α
e−1/αu

)]−1/α

; φ

}
, u ∈ (0, 1), (5)

where QG(u; φ) denotes the qf of the parental distribution and W(x) denotes the Lambert function
satisfying the following equation: W(x)eW(x) = x. One can mention that the Lambert function does not
have an analytical expression but is implemented in most of the mathematical softwares, making its
use straightforward in practice. These new facts will be used in the context of the TM-G class.

2.2. Distribution Functions

As sketched in the introduction, based on (4) and (2), the TM-G class is defined with the
following cdf:

F(x; Ω) = G(x; φ)−αe−[G(x;φ)−α−1]/α
[
1 + λ− λG(x; φ)−αe−[G(x;φ)−α−1]/α

]
, x ∈ R. (6)

We recall that α ∈ (−∞, 1]/{0}, λ ∈ [−1, 1], G(x; φ) is the cdf of a parental distribution which may be of
different nature in terms of symmetry, support, etc, φ is the related parameter vector and Ω = (λ, α, φ).
Furthermore, the pdf corresponding to G(x; φ) is denoted by g(x; φ). Clearly, the M-G class is obtained
by taking λ = 0. Furthermore, the possible negative and positive values of λ offer a certain analytical
versatility on the functions derived to F(x; Ω), as developed later. In addition, one can notice that,
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when α tends to 0, F(x; Ω) is reduced to Tλ[G(x; φ)], corresponding to the cdf of the transmuted
parental distribution.

We can derive the pdf of the TM-G class as

f (x; Ω) =

g(x; φ) [1− αG(x; φ)α] G(x; φ)−2α−1e−[G(x;φ)−α−1]/α
[
1 + λ− 2λG(x; φ)−αe−[G(x;φ)−α−1]/α

]
,

x ∈ R.

The characteristics of the shapes of f (x; Ω) are crucial for data fitting purposes; more f (x; Ω) has
diverse curvatures, more the related model will be flexible enough to fit diverse data sets. As shown
later, f (x; Ω) is also predominant in the definition of another important function of interest: the hrf.
It is also the main ingredient of the well-known transfer formula. Indeed, by introducing a random
variable X having f (x; Ω) as pdf, for any subset A ⊆ R and any function Υ(x), the transfer formula
states that

E(Υ(X)IA(X)) =
∫

A
Υ(x) f (x; Ω)dx, (7)

where IA(X) = 1 if {X ∈ A} is satisfied, and 0 otherwise, and E denotes the expectation operator.
In particular, for Υ(x) = 1, we get P(A) =

∫
A f (x; Ω)dx, which is the probability measure

characterizing the TM-G class. More generally, through the formula in (7), f (x; Ω) thus allows the
determination of various characteristics of the TM-G class, including central and dispersion parameters,
coefficient asymmetry, and index on the weight of the tails.

2.3. Reliability Functions

The survival function of the TM-G class can be expressed as

S(x; Ω) = 1− G(x; φ)−αe−[G(x;φ)−α−1]/α
[
1 + λ− λG(x; φ)−αe−[G(x;φ)−α−1]/α

]
, x ∈ R.

The hrf of the TM-G class follows from f (x; Ω) and S(x; Ω); it is obtained as

h(x; Ω) =

g(x; φ) [1− αG(x; φ)α] G(x; φ)−2α−1e−[G(x;φ)−α−1]/α
[
1 + λ− 2λG(x; φ)−αe−[G(x;φ)−α−1]/α

]
1− G(x; φ)−αe−[G(x;φ)−α−1]/α

[
1 + λ− λG(x; φ)−αe−[G(x;φ)−α−1]/α

] ,

x ∈ R.

The role of h(x; Ω) is of importance to determine the modelling capacities of the related model,
especially when we deal with a lifetime distribution. In this regard, we refer to [25].

2.4. Quantile Function

By solving the following equation: F(xu; Ω) = u for u ∈ (0, 1), we arrive at F(xu; α, φ) = [1 + λ−√
(1 + λ)2 − 4λu]/(2λ) for u ∈ (0, 1), implying that xu = Q{[1 + λ−

√
(1 + λ)2 − 4λu]/(2λ); α, φ}.

By virtue of (5), the qf of the TM-G class is given by

Q(x; Ω) = QG


[
−αW

(
− 1

α
e−1/α

(
1 + λ−

√
(1 + λ)2 − 4λu
2λ

))]−1/α

; φ

 , u ∈ (0, 1). (8)

The fact this qf is expressible is a plus for the TM-G class. It allows us to define various measures
of interest, such as the median, quartiles, octiles, as well as measures of asymmetry and kurtosis.
Furthermore, it is the main tool to generate values from any distribution of the TM-G class.
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3. Diverse Results

Diverse results on the TM-G class are now established.

3.1. Critical Points

The critical points of the functions f (x; Ω) and h(x; Ω) are of interests for the following reasons:
(i) a maximum for f (x; Ω) corresponds to a mode for the TM-G class and (ii) critical points for h(x; Ω)

into the support imply the presence of non-monotonic shapes. The generic equations allowing the
determination of such critical points are expressed below. First, a critical point for f (x; Ω) satisfies the
following general equation: d log[ f (x; Ω)]/dx = 0, that is

dg(x; φ)/dx
g(x; φ)

− α2 g(x; φ)G(x; φ)α−1

1− αG(x; φ)α
− (2α + 1)

g(x; φ)

G(x; φ)
+ g(x; φ)G(x; φ)−α−1

− 2λ
g(x; φ) [1− αG(x; φ)α] G(x; φ)−2α−1e−[G(x;φ)−α−1]/α

1 + λ− 2λG(x; φ)−αe−[G(x;φ)−α−1]/α
= 0.

Furthermore, a critical point for h(x; Ω) satisfies d log[h(x; Ω)]/dx = 0, that is

dg(x; φ)/dx
g(x; φ)

− α2 g(x; φ)G(x; φ)α−1

1− αG(x; φ)α
− (2α + 1)

g(x; φ)

G(x; φ)
+ g(x; φ)G(x; φ)−α−1

− 2λ
g(x; φ) [1− αG(x; φ)α] G(x; φ)−2α−1e−[G(x;φ)−α−1]/α

1 + λ− 2λG(x; φ)−αe−[G(x;φ)−α−1]/α

+
g(x; φ) [1− αG(x; φ)α] G(x; φ)−2α−1e−[G(x;φ)−α−1]/α

[
1 + λ− 2λG(x; φ)−αe−[G(x;φ)−α−1]/α

]
1− G(x; φ)−αe−[G(x;φ)−α−1]/α

[
1 + λ− λG(x; φ)−αe−[G(x;φ)−α−1]/α

] = 0.

From these equations, we see the complex roles of G(x; φ), α and λ in the determination of the
critical points. In particular, we can have several minima or maxima. If G(x; φ), α and λ are explicit,
with computational efforts, one can envisage determining them numerically through the use of standard
iterative techniques of Newton–Raphson types. We can also visualize them through a graphical analysis,
which remains the most simple approach when we deal with such sophisticated functions.

3.2. Series Expansions

For any integer m ≥ 1, as in [24], a series expansion for [F(x; Ω)]m can be investigated. Indeed,
by the classical binomial formula, we have

[F(x; Ω)]m = G(x; φ)−mαe−m[G(x;φ)−α−1]/α
[
1 + λ− λG(x; φ)−αe−[G(x;φ)−α−1]/α

]m

=
m

∑
k=0

(
m
k

)
(1 + λ)m−k(−1)kλkG(x; φ)−(k+m)αe−(k+m)[G(x;φ)−α−1]/α

=
m

∑
k=0

(
m
k

)
(1 + λ)m−k(−1)kλk[F(x; α, φ)]k+m.

Now, by using ([24] Equation (3.4)), with h = m + k, it comes directly

[F(x; α, φ)]k+m =
+∞

∑
z=0

sz,k(m; α)Ψz(x; φ),

where

sz,k(m; α) = e(k+m)/α
+∞

∑
j,u=0

(−1)j+z(k + m)z

αzz!

(
u
z

)(
α(j + k + m) + u− 1

u

)
, Ψz(x; φ) = G(x; φ)z.
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Therefore, we can express [F(x; Ω)]m as

[F(x; Ω)]m =
+∞

∑
z=0

tz(m; λ, α)Ψz(x; φ), tz(m; λ, α) =
m

∑
k=0

(
m
k

)
(1 + λ)m−k(−1)kλksz,k(m; α). (9)

The main interest of this expansion is that Ψz(x; φ) corresponds to the cdf of the famous
exponentiated-generated class, which has been examined through various parental distributions.
Therefore, some existing results can be directly used in the TM-G class. Note that, by choosing m = 1
in (9), we thus derive a tractable series for the cdf of the TM-G class.

By differentiating with respect to x, we get the following series expansion:

f (x; Ω)[F(x; Ω)]m−1 =
+∞

∑
z=1

t∗z (m; λ, α)ψz(x; φ), (10)

where

t∗z (m; λ, α) =
tz(m; λ, α)

m
, ψz(x; φ) = zg(x; φ)G(x; φ)z−1,

provided that the sum exists according to all the quantities involved. A direct consequence is the
expansion of the pdf of the TM-G class by taking m = 1. More generally, the previous expansions
allow to define a lot of probabilistic measures and functions in a manageable way, such as the raw
moments, incomplete moments, negative moments, probability weighted moments, characteristic
function, mean deviations, functions related to the order statistics, along with their moments, exactly as
performed in ([24] Subsections 3.2–3.5). In particular, based on (7) and (10), most moments-type
measures or functions can be written under the following form:

Ξ(y; m, Ω)[r] = E(r(X)I(−∞, y)(X)[F(X; Ω)]m−1) =
∫ y

−∞
r(x) f (x; Ω)[F(x; Ω)]m−1dx

=
+∞

∑
z=1

t∗z (m; λ, α)υz(y; m, φ)[r],

where y ∈ R ∪ {+∞}, r(x) denotes a certain function related to the desired measure or function of
interest, and

υz(y; m, φ)[r] = z
∫ y

−∞
r(x)g(x; φ)G(x; φ)z−1dx.

For instance, the sth raw moment corresponds to Ξ(y; m, Ω)[r] with r(x) = xs, y → +∞ and m = 1,
the sth incomplete moment at y follows by taking r(x) = xs and m = 1, the (s, m− 1)th probability
weighted moment is obtained with r(x) = xs and y → +∞, the characteristic function at t ∈ R
corresponds to r(x) = eitx, i2 = −1, m = 1 and y→ +∞, and so on. In particular, from the raw moments,
one can define central and dispersion parameters, coefficient asymmetry, and index on the weight of the
tails. More details on the applications of such a series expansion approach can be found in [26].

3.3. Maximum Likelihood Approach: Theory and Practice

One of the main purposes of the TM-G class is to produce practical models for data analysis.
In this regard, we provide the theory on the related semi-parametric models through the use of the
maximum likelihood (ML) approach, as presented in [27]. The advantages of this approach are the
following ones: (i) We have theoretical guarantee of the efficiency of the estimates, (ii) useful statistical
objects such that confidence regions of the parameters can be derived, and (iii) we can define criteria
allowing to compare the fit behavior of several models.

Here, Ω = (λ, α, φ) is an unknown vector of parameters of interest. Furthermore, the following
notations are adopted: q is the number of components in φ, φs is the sth component of φ, and Ωs is the
sth component of Ω.
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Now, we introduce n i.i.d. random variables X1, . . . , Xn whose common distribution is specified
by the cdf of the TM-G class as defined by (6). Then, the ML random estimator of Ω is given as

Ω̂ = argmaxΩ `(Ω | X1, . . . , Xn),

provided it is unique, where `(Ω | X1, . . . , Xn) is the random log-likelihood function defined by

`(Ω | X1, . . . , Xn) =
n

∑
i=1

log[g(Xi; φ)] +
n

∑
i=1

log [1− αG(Xi; φ)α]− (2α + 1)
n

∑
i=1

log[G(Xi; φ)]

− 1
α

n

∑
i=1

G(Xi; φ)−α +
n
α
+

n

∑
i=1

log
[
1 + λ− 2λG(Xi; φ)−αe−[G(Xi ;φ)−α−1]/α

]
.

If the random log-likelihood function is differentiable with respect to Ω, the ML random estimator
satisfies the following system of equations: ∂`(Ω | X1, . . . , Xn)/∂Ω = 0q+2. By distinguishing the
main elements in the vector Ω, this system can be decomposed as

∂

∂λ
`(Ω | X1, . . . , Xn) =

n

∑
i=1

1− 2G(Xi; φ)−αe−[G(Xi ;φ)−α−1]/α

1 + λ− 2λG(Xi; φ)−αe−[G(Xi ;φ)−α−1]/α
= 0,

∂

∂α
`(Ω | X1, . . . , Xn) = −

n

∑
i=1

G(Xi; φ)α{α log[G(Xi; φ)] + 1}
1− αG(Xi; φ)α

− 2
n

∑
i=1

log[G(Xi; φ)]

− 1
α3

n

∑
i=1

G(Xi; φ)−α{α log[G(Xi; φ)] + 2} − n
α2

+
2λ

α2

n

∑
i=1

G(Xi; φ)−2αe−[G(Xi ;φ)−α−1]/α
[
α2G(Xi; φ)α log[G(Xi; φ)] + G(Xi; φ)α − α log[G(Xi; φ)]− 1

]
1 + λ− 2λG(Xi; φ)−αe−[G(Xi ;φ)−α−1]/α

= 0

and, for s = 1, . . . , q,

∂

∂φs
`(Ω | X1, . . . , Xn) =

n

∑
i=1

∂g(Xi; φ)/∂φs

g(Xi; φ)
− α2

n

∑
i=1

G(Xi; φ)α−1[∂G(Xi; φ)/∂φs]

1− αG(Xi; φ)α

− (2α + 1)
n

∑
i=1

∂G(Xi; φ)/∂φs

G(Xi; φ)
+

n

∑
i=1

∂G(Xi; φ)

∂φs
G(Xi; φ)−α−1

− 2λ
n

∑
i=1

[∂G(Xi; φ)/∂φs] [1− αG(Xi; φ)α] G(Xi; φ)−2α−1e−[G(Xi ;φ)−α−1]/α

1 + λ− 2λG(Xi; φ)−αe−[G(Xi ;φ)−α−1]/α
= 0.

The complexity of these equations is such that an explicit form of Ω̂ is impossible. However, some practical
issues exist when we deal with observed values, as discussed in the next paragraph. As a well-known
result, the asymptotic distribution of Ω̂ is the multivariate normal distributionNq+2(Ω, J(Ω)−1), where

J(Ω) =

{
−E

(
∂2`

∂Ωs∂Ωt
(Ω | X1, . . . , Xn)

)}
(s,t)∈{1,...,q+2}2

.

In particular, this asymptotic result is the main mathematical ingredient to determine confidence
regions for any sub-vector of Ω, including confidence intervals for each parameter.

In practice, we possess observed values of X1, . . . , Xn, say x1, . . . , xn. Then, the ML estimate Ω,
say Ω̃, is defined by the corresponding observation of Ω̂, that is

Ω̃ = argmaxΩ `(Ω | x1, . . . , xn).
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Numerous numerical techniques can be applied to determine Ω̃, as those developed in the package
AdequacyModel of the software R (see [28]). This package is very operational for data fitting and can
be used quite efficiently to use TM-G models; only the cdf and pdf are needed to be implemented,
and initial values are needed. In this regard, for the tested TM-G models, arbitrary initial values give
stable numerical results.

Furthermore, for the construction of practical confidence regions, we need to estimate the matrix
J(Ω). Here, we use the following approximation: J(Ω) ≈ Ĩ, where Ĩ denotes the observed information
matrix given as

Ĩ =
{
− ∂2`

∂Ωs∂Ωt
(Ω | x1, . . . , xn)

}
(s,t)∈{1,...,q+2}2

∣∣∣∣∣
Ω=Ω̃

.

With this approximation, an asymptotic confidence interval (CI) of Ωs at the level 100(1− ν)% for
ν ∈ (0, 1) is given by CI = [B−, B+], where

B− = Ω̃s − u1−ν/2

√
Ĩ−1
s,s , B+ = Ω̃s + u1−ν/2

√
Ĩ−1
s,s ,

Ω̃s is the sth component of Ω̃, Ĩ−1
s,s is the sth diagonal component of Ĩ−1 and u1−ν/2 = Qo(1− ν/2),

where Qo(y) denotes the qf of the standard normal distribution. The theory of the ML approach says
that, the larger n, the better the ML estimate, and the smaller the length of the CI.

4. Practice of a Special TM-G Model

We are now focusing on a special distribution of the TM-G class, emphasizing its ability to adapt
to real data.

4.1. Transmuted Muth Log-Logistic Distribution

There are as many distributions in the TM-G class as there are parental distributions.
Here, we chose the log-logistic distribution as parental distribution, aiming to extend it for more
statistical objectives. Basically, the log-logistic distribution is a continuous lifetime distribution used
in the study of certain lifespan of an event, as for cancer mortality after diagnosis or treatment. It is
also used in hydrology to model the flow of a river or the level of needs, and in economics to model
income inequality. From a probabilistic point of view, the log-logistic distribution corresponds to the
distribution of a random variable whose logarithm is distributed according to a logistic distribution.
It closely resembles the log-normal distribution, but was distinguished by thicker tails. Moreover, its cdf
admits an explicit expression, unlike the log-normal distribution. Further details on the log-logistic
distribution can be found in [29–31].

Here, we extend the log-logistic distribution by applying the transmuted Muth scheme,
as described in Section 2. First, we define the log-logistic distribution by the following cdf:

G(x; θ) = 1− (1 + xθ)−1, x > 0,

where θ > 0 is a shape parameter, the corresponding pdf being given as

g(x; θ) = θxθ−1(1 + xθ)−2, x > 0.

Then, based on (6), we introduce the transmuted Muth log-logistic (TMLL) distribution defined
by the following cdf:

F(x; Ω) =
[
1− (1 + xθ)−1

]−α
e−
{
[1−(1+xθ)−1]

−α−1
}

/α

×
{

1 + λ− λ
[
1− (1 + xθ)−1

]−α
e−
{
[1−(1+xθ)−1]

−α−1
}

/α
}

, x > 0,
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where Ω = (λ, α, θ). The corresponding pdf is obtained as

f (x; Ω) = θxθ−1(1 + xθ)−2
{

1− α
[
1− (1 + xθ)−1

]α} [
1− (1 + xθ)−1

]−2α−1
×

e−
{
[1−(1+xθ)−1}−α−1

]
/α
{

1 + λ− 2λ
[
1− (1 + xθ)−1

]−α
e−
{
[1−(1+xθ)−1]

−α−1
}

/α
}

,

x > 0.

The hrf of the TMLL distribution is specified by

h(x; Ω) = θxθ−1(1 + xθ)−2
{

1− α
[
1− (1 + xθ)−1

]α} [
1− (1 + xθ)−1

]−2α−1
e−
{
[1−(1+xθ)−1}−α−1

]
/α×{

1 + λ− 2λ
[
1− (1 + xθ)−1

]−α
e−
{
[1−(1+xθ)−1]

−α−1
}

/α
}

1−
[
1− (1 + xθ)−1

]−α e−{[1−(1+xθ)−1]
−α−1}/α

{
1 + λ− λ

[
1− (1 + xθ)−1

]−α e−{[1−(1+xθ)−1]
−α−1}/α

} ,

x > 0.

All the theory developed in the sections above can be applied to the TMLL distribution.
Here, we go straight to the point by performing a graphical study on the critical points and possible
shapes of f (x; Ω) and h(x; Ω). First, Figure 1 shows the possible shapes of f (x; Ω) by varying only
one of the parameters.
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Figure 1. Curves of the pdf of the TMLL distribution by varying (a) λ, (b) α and (c) θ.

In particular, we see that the TMLL distribution is mainly unimodal, and is versatile in skewness
and kurtosis. For the considered values of the parameters, λ mainly affects the degree of right-skewness,
α mainly impacts the peak of the pdf; we observe that increasing α clearly inceases this peak, and θ

shows a strong influence on the mode and the overall curvature, making the pdf possibly decreasing.
The decreasing property is mainly observed for the small values of θ.

Figure 2 is about the possible shapes of h(x; Ω) for four sets of parameters.
We observe in Figure 2 that the hrf has decreasing, and increasing-decreasing shapes when

a maximum is observed. These characteristics are desirable for the modelling in diverse lifetime
phenomena, as discussed in [25].
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Figure 2. Curves of the hrf of the TMLL distribution for some values of λ, α and θ.

4.2. Parametric Estimation

The parameters of the TMLL model can be estimated through the ML approach, as developed
in Section 3.3. In order to check the convergence of the obtained estimates, we perform a simulation
study with samples of varying sizes. We thus examine the numerical properties of the corresponding
ML estimates, mean square errors (MSEs), and average lengths (ALs) and coverage probabilities (CPs)
of CIs at a certain fixed level.

More precisely, we generate N = 5000 random samples of n values from the TMLL distribution
defined with some (known) values of the parameters through the inverse transform sampling method.
Then, we determine the average ML estimates, MSEs and average ALs of CIs at the levels 90%, and 95%.
We do that for chosen increasing values of n, that is n = 20, 50, 100, 200, 300, and 1000, in order to see if
(i) the ML estimates tend to the true values of the parameters, (ii) the MSEs decrease to 0, (iii) the ALs
become smaller and (iv) the CPs tend to the expected values, i.e., 0.90 or 0.95, depending on the
considered level. The obtained results are put in Tables 1–3.

Table 1. ML estimates, MSEs, B−, B+, ALs and CPs under the following configuration: α = 0.2,
λ = −0.2, and θ = 1.2.

n par MLE MSE
Level 90% Level 95%

B− B+ AL CP B− B+ AL CP

20

α 0.4360 0.2005 −0.5415 1.4134 1.9548 0.5921 −0.7286 1.6006 2.3292 0.6208

λ −0.4365 0.2050 −2.3971 1.9241 4.3212 0.6242 −2.8108 2.3378 5.1486 0.6310

θ 0.9415 0.1400 0.0365 1.8465 1.8100 0.7012 −0.1368 2.0198 2.1567 0.7112

50

α 0.3404 0.1773 0.1178 0.9630 0.8453 0.6451 0.0369 1.0440 1.0071 0.6523

λ −0.3804 0.1419 −0.7885 0.0276 0.8160 0.6551 −0.8666 0.1057 0.9723 0.6702

θ 0.9694 0.1182 0.6082 1.2707 0.6625 0.7332 0.5448 1.3341 0.7894 0.7382

100

α 0.1628 0.1420 −0.2318 0.3573 0.5891 0.6822 −0.2882 0.4137 0.7019 0.7015

λ −0.1720 0.1136 −0.3389 0.1949 0.5338 0.6998 −0.3900 0.2460 0.6360 0.7124

θ 1.0131 0.0411 0.9900 1.4363 0.4463 0.7401 0.9473 1.4790 0.5317 0.7726
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Table 1. Cont.

n par MLE MSE
Level 90% Level 95%

B− B+ AL CP B− B+ AL CP

200

α 0.1629 0.1134 −0.0558 0.3816 0.4374 0.8013 −0.0977 0.4235 0.5211 0.8459

λ −0.2285 0.0739 −0.4217 0.0048 0.4264 0.8533 −0.4625 0.0456 0.5081 0.8624

θ 1.1433 0.0420 0.9701 1.3166 0.3466 0.8212 0.9369 1.3498 0.4129 0.8907

300

α 0.1884 0.0477 0.1272 0.4696 0.3424 0.8665 0.0944 0.5024 0.4079 0.9004

λ −0.2073 0.0552 −0.4626 −0.0519 0.4106 0.8727 −0.5019 −0.0126 0.4893 0.9148

θ 1.1714 0.0334 0.9778 1.2851 0.3073 0.8704 0.9483 1.3145 0.3662 0.9065

1000

α 0.1910 0.0429 0.1649 0.4171 0.2522 0.8934 0.1408 0.4413 0.3005 0.9395

λ −0.2035 0.0402 −0.4435 −0.1234 0.3201 0.8901 −0.4742 −0.0928 0.3814 0.9413

θ 1.1875 0.0277 1.0032 1.2319 0.2287 0.8941 0.9813 1.2538 0.2725 0.9420

Table 2. ML estimates, MSEs, B−, B+, ALs and CPs under the following configuration: α = 0.05,
λ = 0.1, and θ = 1.2.

n par MLE MSE
Level 90% Level 95%

B− B+ AL CP B− B+ AL CP

20

α 0.1146 0.4112 −0.7105 0.8197 1.5301 0.7008 −0.8570 0.9662 1.8231 0.7154

λ −0.1034 0.2164 −0.6624 0.4556 1.1180 0.6542 −0.7694 0.5626 1.3321 0.6712

θ 1.2189 0.2340 0.7031 1.7347 1.0316 0.6831 0.6044 1.8335 1.2291 0.7020

50

α 0.0122 0.2647 −0.0305 0.7554 0.7859 0.7198 −0.1057 0.8306 0.9364 0.7352

λ −0.2200 0.1948 −0.5348 0.0948 0.6296 0.6928 −0.5951 0.1551 0.7502 0.7221

θ 1.1291 0.1969 0.8248 1.4334 0.6086 0.7353 0.7665 1.4917 0.7252 0.7519

100

α 0.0148 0.0604 −0.2415 0.2712 0.5127 0.7402 −0.2906 0.3203 0.6109 0.7649

λ 0.1411 0.0440 −0.1570 0.4192 0.5763 0.7550 −0.2122 0.4744 0.6866 0.7711

θ 1.1448 0.0132 0.9439 1.3456 0.4017 0.7841 0.9055 1.3841 0.4786 0.8005

200

α 0.0328 0.0483 −0.0172 0.2887 0.3059 0.8436 −0.0465 0.3180 0.3645 0.8627

λ 0.0763 0.0688 −0.1359 0.2884 0.4243 0.8532 −0.1765 0.3290 0.5055 0.8658

θ 1.1589 0.0256 0.9808 1.2570 0.2762 0.8401 0.9544 1.2834 0.3290 0.8749

300

α 0.0695 0.0024 −0.0549 0.1939 0.2489 0.8673 −0.0788 0.2178 0.2965 0.9064

λ 0.0871 0.0088 −0.1021 0.2764 0.3784 0.8792 −0.1383 0.3126 0.4509 0.9064

θ 1.1682 0.0026 1.0794 1.3171 0.2377 0.8798 1.0566 1.3398 0.2832 0.9121

1000

α 0.0805 0.0010 0.0078 0.2132 0.2054 0.8902 −0.0119 0.2328 0.2447 0.9442

λ 0.0915 0.0011 −0.1288 0.1719 0.3008 0.8890 −0.1576 0.2007 0.3583 0.9381

θ 1.1920 0.0014 1.0681 1.2558 0.1878 0.8956 1.0501 1.2738 0.2237 0.9425

From Tables 1–3, it is clear that the ML estimates converge to the corresponding values of the
parameters. Furthermore, when n increases, the MSEs decrease to 0, the ALs becomes smaller and the
CPs tend to the considered level value. This motivates us to use the ML approach in estimation of the
parameters of the TMLL model.
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Table 3. ML estimates, MSEs, B−, B+, ALs and CPs under the following configuration: α = 0.6,
λ = −0.5, and θ = 0.9.

n par MLE MSE
Level 90% Level 95%

B− B+ AL CP B− B+ AL CP

20

α 0.2021 1.3511 −1.7312 2.1354 3.8666 0.6104 −2.1014 2.5056 4.6070 0.6451

λ 0.0356 0.9516 −3.4211 3.4924 6.9135 0.5923 −4.0831 4.1543 8.2374 0.6048

θ 1.2562 1.3025 0.6648 1.8475 1.1827 0.6826 0.5516 1.9607 1.4092 0.7025

50

α 0.4018 0.6149 −0.1362 0.9997 1.1359 0.6531 −0.2449 1.1085 1.3534 0.6821

λ −0.2286 0.8551 −1.2861 0.4288 1.7149 0.6223 −1.4503 0.5930 2.0433 0.6473

θ 1.0176 0.0212 0.4496 1.4256 0.9760 0.7055 0.3561 1.5190 1.1629 0.7224

100

α 0.4209 0.5360 0.1773 0.6645 0.4872 0.7270 0.1307 0.7111 0.5804 0.7305

λ −0.3615 0.6607 −0.5020 −0.2209 0.2812 0.6969 −0.5290 −0.1939 0.3350 0.7095

θ 1.0351 0.6346 0.8569 1.2134 0.3564 0.7532 0.8228 1.2475 0.4247 0.7610

200

α 0.5365 0.4155 0.3647 0.7082 0.3436 0.8316 0.3318 0.7411 0.4094 0.8454

λ −0.3646 0.4301 −0.4944 −0.2347 0.2597 0.8253 −0.5193 −0.2099 0.3094 0.8611

θ 0.9970 0.4514 0.8556 1.1383 0.2828 0.8570 0.8285 1.1654 0.3369 0.8911

300

α 0.6506 0.3953 0.5141 0.7871 0.2730 0.8753 0.4880 0.8133 0.3253 0.9141

λ −0.5095 0.4003 −0.5916 −0.4274 0.1642 0.8892 −0.6073 −0.4116 0.1957 0.9274

θ 0.9148 0.3868 0.8086 1.0209 0.2123 0.8685 0.7883 1.0412 0.2530 0.9207

1000

α 0.6105 0.3308 0.4987 0.7224 0.2237 0.8944 0.4773 0.7438 0.2665 0.9453

λ −0.5053 0.2671 −0.5570 −0.4537 0.1033 0.8978 −0.5668 −0.4438 0.1230 0.9485

θ 0.9058 0.3095 0.8252 0.9863 0.1612 0.8901 0.8097 1.0018 0.1920 0.9422

4.3. Applications

We now apply the TMLL model, along with the ML approach, to show its adequacy with
environmental and survival data. The two considered data sets are described below.

Data set I: the first data set is obtained from [32]. It contains 30 successive values of March
precipitation (in inches) in Minneapolis. The data are as follows:

0.77; 1.74; 0.81; 1.20; 1.95; 1.20; 0.47; 1.43; 3.37; 2.20; 3.00; 3.09; 1.51; 2.10; 0.52; 1.62; 1.31; 0.32; 0.59;
0.81; 2.81; 1.87; 1.18; 1.35; 4.75; 2.48; 0.96; 1.89; 0.90; 2.05.

Data set II: the second data set is obtained from [33]. It represents the survival times (in days) of
72 guinea pigs infected with mortal bacteria (tubercle bacilli). The data are as follows: 0.10; 0.33; 0.44;
0.56; 0.59; 0.72; 0.74; 0.77; 0.92; 0.93; 0.96; 1.00; 1.00; 1.02; 1.05; 1.07; 1.07; 1.08; 1.08; 1.08; 1.09; 1.12; 1.13;
1.15; 1.16; 1.20; 1.21; 1.22; 1.22; 1.24; 1.30; 1.34; 1.36; 1.39; 1.44; 1.46; 1.53; 1.59; 1.60; 1.63; 1.63; 1.68; 1.71;
1.72; 1.76; 1.83; 1.95; 1.96; 1.97; 2.02; 2.13; 2.15; 2.16; 2.22; 2.30 ; 2.31; 2.40; 2.45; 2.51; 2.53; 2.54; 2.54; 2.78;
2.93; 3.27; 3.42; 3.47; 3.61; 4.02; 4.32; 4.58; 5.55.

Table 4 presents the descriptive statistics of these data sets.

Table 4. Statistical description of the two data sets.

Data Set n Mean Median Standard Deviation Skewness Excess of Kurtosis

I 30 1.68 1.47 1.00 1.03 0.93
II 72 1.77 1.50 1.04 1.31 1.85

It is clear that the data sets mainly differ in their kurtosis nature. Now, we aim to compare the fit
power of the TMLL model with those of the following famous models:
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• Burr XII (BXIII) with cdf defined by

F(x; α, β) = 1− (1 + xα)−β, x > 0,

where α > 0 and β > 0.
• Beta log-logistic (BLL) (see [34]) with cdf specified by

F(x; α, θ, λ) =
1

B(λ, α)

∫ 1−(1+xθ)−1

0
tλ−1(1− t)α−1dt, x > 0,

where B(λ, α) denotes the classical beta function, α > 0, θ > 0 and λ > 0.
• Muth (M) model with cdf given as (1) with parameter α > 0.

As a first step, we determine the ML estimates of all the parameters of the models in Tables 5 and 6,
for data sets I and II, respectively.

Table 5. ML estimates with their corresponding standard errors for data set I.

Model λ α θ β

TMLL −0.9716 −0.1834 2.6321 -
(0.6601) (0.5570) (0.4147) -

BXII - 3.2554 - 0.5769
- (0.6454) - (0.1371)

BLL 37.4470 32.9595 0.3851 -
(6.2045) (7.6753) (0.7332) -

M - 0.1846 - -
- (0.0906) - -

Table 6. ML estimates with their corresponding standard errors for data set II.

Model λ α θ β

TMLL −0.7209 −0.5432 2.8084 -
(0.2989) (0.2616) (0.2220) -

BXII - 3.8132 - 0.4782
- (0.5440) - (0.0792)

BLL 4.2308 2.6652 1.3490 -
(5.4761) (4.2066) (1.1359) -

M - 0.1492 - -
- (0.0555) - -

From these tables, concerning the TMLL model, we see that the parameter λ is estimated
“relatively far” to 0, motivating the use of the transmuted scheme. Furthermore, the parameter α

is negatively estimated, attesting the importance of the new remarks formulated in Section 2.1.
We now compare the models through the following well-established criteria: Akaike and Bayesian

information criteria (AIC and BIC), Cramer–von Mises (W), and Anderson–Darling (A). Roughly
speaking, the smaller the values of these criteria, the better the model is in the fit of the data.
The R software is used, along with the package AdequacyModel by [28]. Tables 7 and 8 collect the
obtained results.

Table 7. Values of statistical criteria for models comparison for data set I.

Model AIC BIC W A

TMLL 84.2478 88.4514 0.0357 0.2313
BXII 85.7804 88.5827 0.0696 0.4299
BLL 85.0294 89.2330 0.0377 0.2427
M 99.4455 100.8467 0.2470 0.8927
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Table 8. Values of statistical criteria for models comparison for data set II.

Model AIC BIC W A

TMLL 191.9918 198.8218 0.0491 0.3234
BXII 200.8386 205.3920 0.1193 0.8993
BLL 200.3750 207.2050 0.0964 0.7178
M 251.0743 253.3510 0.1651 0.9750

Since it has the smallest values of AIC, BIC and A the TMLL model is the best among them
all, for the two data sets. In particular, it outperforms the BLL model, and thus represents a better
extension of the log-logistic model for the considered data sets.

We now illustrate graphically the adequacy of the model by plotting the following objects:

• The curve of the estimated cdf of the TMLL model, i.e., F(x; Ω̃), as well as the curves of the
estimated cdfs of the other models over the curve of the empirical cdf for data sets I and II in
Figures 3 and 4, respectively.

• The curve of the estimated pdf of the TMLL model, i.e., f (x; Ω̃), as well as the curves of
the estimated pdfs of the other models, all over the histogram for data sets I and II in
Figures 5 and 6, respectively.

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

cd
f

TMLL
BLL
BXII
M

Figure 3. Curves of the estimated cdfs of the considered models over the empirical cdf for data set I.
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Figure 4. Curves of the estimated cdfs of the considered models over the empirical cdf for data set II.
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Figure 5. Curves of the estimated pdfs of the considered models over the histogram for data set I.
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Figure 6. Curves of the estimated pdfs of the considered models over the histogram for data set II.

Visually, the fits of the TMLL model are quite satisfying, as anticipated.

5. Concluding Remarks and Perspectives

This study contributes to the development of the M-G class by showing new facts, and by
proposing a motivated extending class, called the transmuted Muth generated class of distributions.
We derive several of its probabilistic and analytical properties, including the expressions of the pdf and
hrf, discussions on their critical points, expression of the qf, series expansions for various moments and
theory on the parametric estimation of the parameters. Then, a focus is put on the special distribution
of the TM-G class, called the transmuted Muth log-logistic distribution. We show that this distribution
is flexible enough to fit various symmetrical or right-skewed data. Combined with the maximum
likelihood approach, the fit behavior of the model is discussed through the analysis of two real data sets.
The adequacy of the new model is quite satisfactory, beating the one of the famous beta log-logistic
model. As further developments, one can investigate other special distributions of the TM-G class,
as those having support in (0, 1) or R, finding applications in diverse regression models. The regression
aspect, however, needs further investigations in the future.
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