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Abstract We work out in the forward limit and up to order
e6 in perturbation theory the collinear divergences. In this
kinematical regime we discover new collinear divergences
that we argue can be only cancelled using quantum inter-
ference with processes contributing to the gauge anomaly.
This rules out the possibility of a quantum consistent and
anomaly free theory with massless charges and long range
interactions. We use the anomalous threshold singularities to
derive a gravitational lower bound on the mass of the lightest
charged fermion.

1 Introduction

For theories with long range gauge forces as QED the IR
completion problem goes around the quantum consistency
of a quantum field theory with massless charged particles
in the physical spectrum. This is an old problem that has
been considered from different angles along the years (see
[1–4] for an incomplete list). As a matter of fact in Nature
we don’t have any example of massless charged particles. In
the Standard Model this is the case both for spin 1/2 as well
as for the spin 1 charged vector bosons. In the particular case
of charged leptons the potential inconsistency of a massless
limit should imply severe constraints on the consistency of
vanishing Yukawa couplings.

Technically the infrared (IR) origin of the problem is easy
to identify. In the case of massless charged particles radia-
tive corrections due to loops of virtual photons lead to two
types of infrared problems. One can be solved, in principle,
using the standard Bloch–Nordiesk-recipe [5] that leads to
infrared finite inclusive cross sections at each order in per-
turbation theory depending on an energy resolution cutoff.
In this case the infrared finite cross section is defined tak-
ing into account soft radiation. In the massless case we have
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in addition collinear divergences that contribute logarithmi-
cally to Weinberg’s B factor [5,6].1 The standard recipe used
to cancel these divergences requires to include in the defini-
tion of the inclusive cross section not only soft emission but
also collinear hard emission and absorption (i.e. photons with
energy bigger than the energy resolution scale) and to set an
angular resolution scale.

In [9] a unifying picture to the problem was suggested on
the basis of degenerations. The idea is to define, for a given
amplitude Si, f associated with a given scattering process i →
f an inclusive cross section formally defined as

∑

i ′∈D(i), f ′∈D( f )

|Si ′, f ′ |2 , (1)

where D(i) is the set of asymptotic states degenerate with
the asymptotic state i .

For the case of massless electrically charged particles the
degeneration used in [9] for the case where the asymptotic
state is a charged massless lepton with momentum p is a state
with the lepton having momentum p − k and an additional
on-shell photon with 4-momentum k collinear to p.2

At each order in perturbation theory the KLN recipe
demands us to sum over all contributions at the same order
in perturbation theory that we can build using degenerate
incoming and /or outgoing states. Among these are spe-
cially interesting the quantum interference effects with dis-
connected diagrams where the additional photon entering
into the definition of a degenerate incoming state is not inter-
acting. In particular these interference effects play a crucial
role to cancel collinear divergences in processes where the
incoming electron emits a collinear photon, see for instance
[9–11].

1 For more recent discussions on IR divergences see for instance [7,8]
and references therein.
2 For a recent discussion of the KLN theorem for QED see [10] and
references therein.
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The main target of this paper is to study the quantum
consistency of the KLN prescription to define a quantum
field theory of U (1) massless charged particles. At order e4

the KLN theorem cancels the excising collinear divergences
(see for example [9,10]). This is true because the kinematics
at this order in perturbation theory is such that the photon
momenta are equal, e.g. k = k′. As one goes to the next
order e6 one gets more possibilities for the kinematics of
the photons. If we would look there at the same kinemat-
ics k = k′ we would expect to see the cancelation of the
collinear divergent terms as we did at order e4. If we how-
ever choose a kinematics where the electron is forwardly
scattered the photon momenta are unequal k �= k′ which
gives new collinear divergences that should be canceled. In
trying to cancel these we summarize our findings in two main
claims. First of all we provide substantial evidence about the
existence of a KLN anomaly in the forward limit. We choose
the name “anomaly” because later we compare the newly
found collinear divergent term with the gauge anomaly dia-
grams. This anomaly is worked out up to order e6 in pertur-
bation theory in “Appendices C and D” explicitly. Secondly
we argue that canceling this KLN anomaly is only posible
if there exists a non-vanishing gauge anomaly to the U (1)

gauge theory. On one side we shall argue that the consis-
tency of the KLN prescription in the forward regime implies
the existence of a non vanishing gauge anomaly for the U (1)

gauge theory. This rules out the possibility of the existence of
a theory with massless charges and long range interactions
satisfying both KLN cancellation and being anomaly free.
Secondly combining the weak gravity conjecture [12] and
anomalous thresholds for form factors, we derive a grav-
itational lower bound on the mass of the lighter massless
charged fermion and a qualitative upper bound on the total
number of fermionic species with the same charge as the
electron.

2 The KLN-theorem: degeneracies and energy dressing

Let us briefly review the key aspect of the KLN theorem
[9]. In order to do that let us consider scattering theory for
a given Hamiltonian H = H0 + gHI and let us assume the
Hamiltonian depends on a parameter m. Assuming a well
defined scattering theory, the hamiltonian H can be diago-
nalized using the corresponding Møller operators U . Let us
denote Ei (g,m) the corresponding eigenvalues. If for some
value mc of the mass parameter we have degenerations i.e.
Ei (g,mc) = E j (g,mc) then the perturbative expansion of
Ui, j becomes singular at each order in perturbation theory.
Howeverat the sameorder in perturbation theory the quantity∑

a Ua,iU∗
j,a where we sum over the set of states degenerate

with the state a is free of singularities in the limit m = mc

leading to the prescription (1) for finite cross sections. The

former result is true provided Δa(g,m) = (H0 − E)aa has
a good finite limit for m = mc.

The quantum field theory meaning of Δ is the difference
of energy between the bare and the dressed state. The theo-
rem works if for fixed and finite UV cutoff the limit of this
dressing effect is finite in the degeneration limit.

For the case of QED and for m the mass of the electron,
degeneracies appear in the limit me → 0. As stressed in [9]
in this case the limit of Δ for me → 0 and fixed UV cutoff
is not finite. The problem is associated with the well known
behavior of the renormalization constant Z for the photon
field which goes as

Z = 1 − e2

6π2 log
Λ

me
. (2)

The origin of the problem is well understood. Using Källen-
Lehmann-representation to extract the value of Z from the
imaginary part of the bubble amplitude i.e. ImD(k2) for the
photon propagator D(k2), we get for massless electrons a
branch cut singularity in the physical sheet for the threshold
k2 = 0 where the on-shell photon can go into a collinear pair
of on-shell electron and positron.

In [9] this problem was explicitly addressed and the sug-
gested solution was to keepme = 0 but to add a mass scale in
the definition of Z (see [13]) associated with some IR resolu-
tion scale let us say δ. The logic of this argument is to assume
an IR correction of (2) where effectively me is replaced by δ

and to use this corrected Z to define a Δ non singular in the
limit me → 0. This should also hold for the renormalization
for the electric charge. How this potential solution of the sin-
gular limit of Δ will enter effectively in the KLN cancellation
is not obvious and not worked out in [9]. The connection with
the definition of charge in the forward limit (Thompson scat-
tering ) is the main reason we choose in order to check the
consistency of KLN theorem the forward kinematical regime
relevant for the definition of the electric charge.

Note that the singular limit of Z in the massless limit
is the IR version of the famous Landau pole problem for
QED. In this case we are not considering the limit where we
send the UV cutoff to infinity but instead the limit me → 0.
In the massless limit there are contributions to the Källen–
Lehmann-function coming from processes in which the on-
shell photon with energy ω produces a pair of electron
positron both collinear and on-shell. Incidentally note that
in principle we have contributions of amplitudes where the
on-shell photon decays into a set of a large number n of
electron–positron-pairs and photons where all of them are
on-shell and collinear. The approach of the KLN program
is to assume that after taking all these IR contributions into
account the resulting Z , for fixed UV cutoff, is finite in the
limit me → 0. This does not imply solving the UV problem
or avoiding the standard Landau pole, that depends on the
sign in (2) and that now will become dependent on the added

123



Eur. Phys. J. C (2020) 80 :946 Page 3 of 18 946

resolution scale δ. It simply means that for fixed UV cutoff
the limitme → 0 could be non singular. In section IV we will
revisit the consistency of the limit me → 0 from a different
point of view.

Can we check the consistency of the KLN proposal per-
turbatively? To the best of our knowledge the KLN program
of finding a redefinition of Z where the cancellation can be
defined in an effective way has not been developed. Thus
we should expect that perturbative violations of the KLN
theorem could appear whenever we work in the kinematical
regime where originally appears the singularity responsible
for the former behaviour of Z , namely in the forward regime
q2 = 0.

In [11] the authors presented a different but equivalent
procedure to cancel infrared and collinear (IRC) divergences,
where one has to sum either over degenerate initial or final
states. Briefly, the cut-method defines IRC finite S-matrices
by cutting the IRC divergent amplitude square and identify
then new amplitude squares at the same order in perturbation
theory. After summing over all these cutted diagrams the
IRC divergences cancel each other. Within this set of new
amplitude squares there occur diagrams that are interference
terms of purely disconnected and thus forward scattered par-
ticles with diagrams that ensure to have the correct order in
coupling constant, most properly loop diagrams. Some of
these interference terms are IRC divergent and hence con-
tribute to the cancelation of the IRC divergences and some
of them are IRC finite and therefore not contributing to the
cancelation scheme. A key difference however is that in the
forward scattering process we are looking at we have an addi-
tional constraint for the outgoing photon momenta, namely
qμ + kμ = k′μ. This constraint ensures, once integrate over
the photon momentum, that we will only get a single log(me)

divergence.

3 Degeneracies and anomalous thresholds

In scattering theory the existence of anomalous thresholds
for form factors of bound states is well known (see [14–16]).
The idea is simply to consider the triangular contribution to
the form factor of a particle A by some external potential.
If the particle A can decay into a pair of particles N and B
where only N interacts with the external potential we get the
triangular amplitude depicted in Fig. 1. If we now impose
all the internal lines to be on-shell we can find a critical
transfer momentum for which the corresponding amplitude
has a leading Landau singularity in the physical sheet. This
transfer momentum defines the anomalous threshold. This
leads to a logarithmic contribution to the amplitude and to a
non vanishing absorptive part forbidden by standard unitarity.
The simplest way to set when this singularity is physical
is using the Coleman–Grossman-theorem [17] that dictates

Fig. 1 Anomalous threshold in Breit frame

that the singularity is physical if the triangular diagram can
be interpreted as a space-time physical process with energy
momentum conservation in all vertices and with the internal
lines on-shell i.e. as a Landau–Cutkosky-diagram.

Let us now consider the degenerations as formally repre-
senting the massless electron as a composite state of electron
and collinear photon. In this case we can consider the tri-
angular contribution in Fig. 2 to the form factor where the
electron in the triangle interacts with the external potential.
In this case it is easy to see that an anomalous threshold can
appear only in the forward limit when the transfer momentum
q2 is zero (see “Appendix A”).

From the KLN theorem point of view we can associate
these kinematical conditions to the degeneration defined by
the absorption and emission process of a collinear pho-
ton with the same value of the 4-momentum k and with k
collinear to q. In this case the logarithmic divergence log(me)

of the anomalous threshold can be canceled with the corre-
sponding KLN sum.

However the KLN prescription in this forward limit allows
us to have different 4-momentum k and k′ for the absorbed
and emitted photon. If this amplitude is logarithmically diver-
gent it cannot be trivially canceled by a one loop contribution
to the form factor. Next we shall see that this is indeed the
case and that the only possible cancellation leading to a con-
sistent theory of massless charged particles is using quantum
interference with processes controlled by the triangular graph
defining the gauge anomaly of the underlying gauge theory.

Although in the case of massless QED we can still use
Furry’s theorem. It should be noticed that in the massless case
and using collinear external photons we have both helicity
preserving and helicity changing amplitudes that nullifies the
consequences of Furry’s theorem in the forward limit under
study.3

3 We thank the referee for pointing out the potential relevance of Furry’s
theorem in this context.
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Fig. 2 Landau Cutkosky diagram associated with the anomaly

4 The KLN anomaly

In this section we shall consider the absorption emission pro-
cess in the forward limit with k �= k′. Let us fix as data of
the form factor scattering process the 4-momentum of the
initial electron p and the exchanged energy-momentum that
will denote q. Let us denote the amplitude S(p, q). For these
data the KLN prescription requires to define the sum

∑

ni ,n f

|S(p, q; ni , n f )|2 , (3)

where ni and n f denote the different degenerate states con-
tributing to the process that are characterized by the number
ni of absorbed collinear photons attached to the incoming line
and the number n f of emitted collinear photons attached to
the outgoing line. All of these photons are assumed to have
energies bigger than the IR energy resolution scale set by the
Bloch-Nordiesk-recipe. Generically each term in the sum (3)
involves the integral over the 3-momentum of the collinear
photons within a given angular resolution scale. The ampli-
tudes in (3) contain internal lines with the corresponding
propagators being on-shell.

In what follows we shall be interested in the forward
corner of phase space characterized by vanishing transfer
momentum, i.e.

q2 = 0 . (4)

Fig. 3 These diagrams lead to a mass divergence once (1) is applied,
with the kinematics k′ = k + q

In the forward regime the first absorption emission process
contributing to the sum contains one absorbed photon and
one emitted photon. This process is characterized by the fol-
lowing set of kinematical conditions pq ≈ pk ≈ p′k′ ≈ 0.
This implies that in this corner of phase space the two prop-
agators entering into the amplitude are on-shell. This after
integration leads to a collinear divergence. Moreover in these
kinematical conditions we have

k′ − k = q (5)

and, as mentioned, in the forward limit the outgoing electron
has the same momentum as the in-coming one, i.e. p = p′.
Since for this amplitude both the absorbed and the emitted
photons are collinear to the incoming and outgoing electron
respectively, the KLN recipe indicates that this divergence
should be canceled by the collinear contribution of virtual
photons running in the loop.

In what follows we shall show that in the forward limit
emission absorption processes with k �= k′ lead to logarith-
mic divergences. The diagrams that lead to the collinear term
are given in Fig. 3. We work in the chiral basis and choose
the kinematics for the electron to run in z-direction. In the
“Appendix B” we explain the details and the notations used
in the calculation. We omit all terms that will not lead to a
collinear divergence. In these conditions we get for the ampli-
tudes for a forward scattered right-/left-handed electron

iMR = − ie3

√
2θ
[
ω(ω + ωq ) + (2E + ωλ)(2E + (ω + ωq )λ′)

]

Eωωq

(
θ2 + m2

E2

)

+ ie3

√
2θ
[−ωωq + (2E + ωλ)(2E + ωqλq )

]

Eω(ω + ωq )
(
θ2 + m2

E2

) , (6)
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iML = − ie3

√
2θ
[
ω(ω + ωq ) + (2E − ωλ)(2E − (ω + ωq )λ′)

]

Eωωq

(
θ2 + m2

E2

)

+ ie3

√
2θ
[−ωωq + (2E − ωλ)(2E − ωqλq )

]

Eω(ω + ωq )
(
θ2 + m2

E2

) . (7)

In order to use the KLN-theorem we need to perform the
integration over photon momenta

∫ d3k
(2π)32ω

, and taking into

account the constraint k′ = q + k, coming from the con-
servation of energy and momentum. The interesting part of
the integral is the one over the small angle θ , since there
the collinear divergence shows up. In the collinear limit
ω′ = ωq + ω and θ ′ = ωqθq

ω+ωq
(see “Appendix B”). Includ-

ing these constraints, and integrating over the phase space∫ d3k
(2π)32ω

with small angle θ gives

∫
d3k

(2π)32ω

1

4

∑

spins

|iM |2

=
∫

dω ω

(2π)2

e6

4E2ω2 log

(
Eδ

me

)[−ωωq + (2E + ωλ)(2E + ωqλq )

(ω + ωq )

−ω(ω + ωq ) + (2E + ωλ)(2E + (ω + ωq )λ
′)

ωq

]2

+ (
λ → −λ, λ′ → −λ′, λq → −λq

)
, (8)

where δ is a small angular resolution scale. The details of
the calculations can be seen in the “Appendix B”.

In summary for generic q and for emission absorption
processes we get a double pole for k = k′ that can interfere
with a disconnected diagram where the photon is not inter-
acting. For q2 = 0 we have a double pole on the kinematical
sub manifold defined by k − k′ = q that leads, for fixed q
and after integration over k, to a collinear divergence that
don’t interfere with disconnected diagrams where the pho-
ton is not interacting. Thus once we constraint the KLN sum
by the forward condition p = p′ we have obtained an addi-
tional collinear divergent contribution which is not canceled
by any known loop factor. We will refer to this contributions
as a KLN anomaly.

5 The KLN anomaly and the triangular anomaly

From a perturbative point of view a crucial ingredient of
anomalies in four dimensions are triangle Feynman diagrams
with currents inserted at the vertices. This is the case for the
original ABJ anomaly [18,19] as well as for gauge anomalies.
The difference lies in the type of currents we insert in the
vertices.

The analytic properties of triangular graph amplitudes
were extensively studied in the early 60’s using Landau
equations [20,21] and Cutkosky rules [22]. As already men-
tioned it was first observed in [23] the existence, for triangu-
lar graphs, of singularities associated with non unitary cuts.

Fig. 4 The anomaly diagram with the non unitary cuts

These singularities are the anomalous thresholds [16] (see 1
for the relevant formulae).

In reference [24] it was first pointed out the connection of
the anomaly with the IR singularities of the corresponding
triangular graph amplitude. This approach was further devel-
oped in [17,25] in the context of t’Hooft’s anomaly matching
conditions [26].

Let us first briefly recall the analytic structure of anoma-
lies. In a nutshell given a triangular amplitude Γ μνρ for three
chiral currents let us denote Γ (q2) the invariant part of the
amplitude for q2 the relevant transfer momentum (see Fig. 4).
The anomaly is defined as the residue of Γ (q2) at q2 = 0,
i.e.

q2Γ (q2) = A , (9)

for A the c-number setting the anomaly. Standard disper-
sion relations connect (9) with the imaginary part of Γ (q2),
namely

ImΓ (q2) ∼ δ(q2) . (10)

The physical meaning of the singularity underlying the
anomaly requires to understand the analytic properties of the
full amplitude.

As already mentioned for the triangular graph we can
have normal threshold singularities as well as the anoma-
lous threshold singularities that correspond to the leading
Landau singularity. In the language of Landau equations the
normal threshold corresponds to the reduced graph where
the Feynman parameter α of one of the three lines is equal to
zero. In what follows we shall discuss the anomalous thresh-
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old.4 This corresponds to put the three lines of the triangle
on-shell. The threshold is determined by the value of transfer
momentum q2 at which the corresponding diagram with all
the internal lines on-shell and with external real photons is
kinematically allowed. For massless particles running in the
triangle this anomalous threshold exists and it is given by
q2 = 0. The corresponding discontinuity is determined by
Cutkosky rules as
∫

d4 p
∏

θ(p0
i )δ

(
p2
i

)∏
Ci , (11)

where the Ci are the physical values of the three amplitudes
determined by the non unitary cut (see Fig. 4).5 As shown in
[17] the discontinuity of the triangular amplitude goes as

qδ(q2) (12)

and it is non vanishing. Let us now look at this discontinuity
as an anomalous threshold. The physical process associated
with this discontinuity can be understood as a real incom-
ing photon that for massless charges decays into a pair of
collinear on-shell electron and positron. One piece of the
pair interacts with the external potential with some transfer
momentum and finally the pair annihilates giving rise to a
massless photon. Note that the discontinuity for the anomaly
graph relies on the fact that for massless charges the photon
can decay into a pair of on-shell collinear charged particles.
If we fix one chirality for the running electron this disconti-
nuity gives us the anomaly. To cancel the gauge anomaly for
U (1) we need to have real representations i.e. to add both
chiralities in the loop.

The decay of the photon into a pair of collinear mass-
less fermions can be formally interpreted as a degeneracy
between the photon and a pair of collinear massless charged
particles. From this point of view the anomaly is just the
anomalous threshold associated with this formal composite-
ness of the photon. In more precise terms what makes the
anomaly anomalous is the existence of an absorptive part
of the triangular amplitude that is expected, from standard
unitarity (only one cut), to vanish.6

Let us now relate the KLN anomaly and the triangular
anomaly. As discussed the KLN anomaly appears whenever
k �= k′ with zero transfer momentum (4). From the KLN
theorem point of view the contribution computed in the for-
mer section should cancel with some contribution to the form
factor of the electron.

4 Normal thresholds are relevant for the study of chiral anomalies in two
dimensions. In this case the leading singularity for the corresponding
two point diagram represents the η′ [27].
5 In (11) we have formally included in the Ci the propagator factors
distinguishing bosons from fermions in the cuted lines.
6 The anomaly matching [26] reflects that the discontinuity of the tri-
angular graph is the same for the IR and UV physical spectrum running
in the triangle.

Since we are working at order e6 we need, in principle,
to include all loop diagrams to this order in perturbation the-
ory contributing to the form factor. The interference term
of two-loop diagrams and the tree-level diagram and the
interference term of a one-loop diagram with one incom-
ing collinear photon and a tree-level diagram with also one
incoming collinear photon are of order e6. We treat these dia-
grams and its collinear divergent contribution to the ampli-
tude in the “Appendix C and D”. In “Appendix D” we show
that the two-loop contribution goes like log2(me) without
any subleading log(me) contribution and therefore can not
cancel the KLN anomaly. The interference term treated in
“Appendix C” is of order log(me) but will not cancel the
KLN anomaly as shown in “Appendix C”. Thus, the log-
divergent term in the amplitude square (8) can’t be canceled.
This is intuitively clear from the fact that the KLN anomaly
appears when k �= k′.

However, in this case we have the possibility of defin-
ing an interference term at this order in perturbation theory.
Namely, we can think a diagram where we have the electron
non interacting and where the companion collinear photon
is interacting through the triangular graph with the exter-
nal source. This allows k �= k′ in the forward limit where k
and k′ are both collinear to the momentum p of the electron.
The role of the triangular graph is to account for the differ-
ence between k and k′ and to provide the needed logarithmic
singularity. Thus for k �= k′ the only possible contribution
will come from the interference with the triangle diagram in
Fig. 5. Therefore for fixed chirality of the electron in Fig. 3
the only possibility to cancel the KLN anomaly is to assume
a non vanishing value for the triangular graph. However, this
is only possible if the corresponding gauge theory is anoma-
lous which cannot be the case. In fact once we sum over all
chiralities in the triangle we get a zero contribution to a form
factor with k �= k′. In summary we have shown that

TheKLNanomaly can be only canceled if the gauge theory
is anomalous i.e. ill defined.

Consequently we conclude that the the KLN anomaly can
be only canceled effectively adding a mass for the charged
fermions.

In summary the KLN anomaly in the forward limit with
k �= k′ corresponds to an anomalous threshold in the form
factor where it is the photon, the one that interacts with the
external potential. This can only take place through the tri-
angular graph and it is only non vanishing if the theory is
anomalous with respect to the underlying gauge symmetry.
In principle we could think we are missing some diagrams. In
this respect we have not a full fledged no go theorem but just
substantial amount of evidence on the impossibility to extend
the KLN recipe to the forward regime without running into
the quantum inconsistency associated with a gauge anomaly.
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Fig. 5 Anomaly triangle diagram with disconnected electron con-
tributing to the amplitude square

Note that this is the case in QED but not in massless scalar
QED where the problem is not appearing.7

Before finishing this section let us make two brief com-
ments that could help to clarify the argument. First of all note
that in [9] processes as the ones in Fig. 3 were considered. For
generic q this produces logarithmic divergences only in the
case k = k′ and these are compensated using a disconnected
diagram where the companion photons is not interacting. In
the particular case of q2 = 0 we have a collinear divergence
even for k �= k′ and the corresponding disconnected diagram
is now the one in Fig. 5 where we need to include the tri-
angular anomaly in the photon line. The second comment
concerns the recent discussion of symmetries in massless
QED [28]. The first thing to be noticed is that in the collinear
case the corresponding dressing using coherent states [29]
is ill defined (see [8] for a brief discussion). In the symme-
try language this could be interpreted as indicating that KLN
recipe is violating these symmetries. Actually a potential way
to interpret our result is that in the massless case the collinear
dressing in the forward limit q2 = 0 is actually incompatible
with non anomalous gauge invariance.8

In case the origin of the transfer momentum is gravita-
tional the situation is more interesting and richer. In fact in
this case although we keep the same electromagnetic degen-
eration due to collinear electromagnetic radiation the external

7 In principle we could think that the contribution of the anomalous
triangle could be canceled by a pair production process with the photon
in the final state replaced by a pair. However this possibility that we have
not considered in this paper will not help to cancel the KLN anomaly.
We thank the referee for pointing out this potential cancelation.
8 In [30] it is argued that non vanishing gravitational topological sus-
ceptibility implies the absence of massless fermions.

field, once it is assumed to be gravitational, can contribute
to the form factor due to the graviton photon vertex. The
analysis of this case is postponed to a future work.

6 A lower bound for the electron mass

In the former section we have argued that a quantum the-
ory of massless charged fermions is inconsistent. The core
of the argument is that consistency requires to cancel the
KLN anomaly and that is only possible if the theory has non
vanishing U (1) gauge anomaly i.e. if the theory is by itself
inconsistent.

In what follows we shall put forward the following con-
jecture:

In a theory with minimal length scale L the minimal mass
of a U (1) charged fermion, for instance the electron, is given
by

me ≥ h̄

L
e− 1

e2ν , (13)

where e2 is the corresponding coupling and ν is the number
of fermionic species with charge equal to the electron charge.

Before sketching the argument let us make explicit the
logic underlying this conjecture. The bound (13) can be
naively obtained from the perturbative expression (2) as the
minimal mass of the electron consistent with pushing the per-
turbative Landau pole to h̄

L . To argue in that way will force
us to assume that the perturbative result for Z already rules
out the consistency of a theory of massless electrons. This
will contradict the basic assumption of the KLN theorem of
the potential redefinition of Z with a well defined me → 0
limit. Thus our approach to set a bound on the electron mass
will consist in looking for some anomalous threshold singu-
larity depending on the electron mass and to set the bound by
analyzing the limit me → 0 of these contributions to form
factors.

In order to look for the appropriated form factor we shall
use the constraints on the charged spectrum coming from the
weak gravity conjecture [12]. This conjecture is equivalent
to say that in absence of SUSY extremal electrically charged
black holes are unstable. This leads to the existence in the
spectrum of a particle with mass satisfying

m2
e ≤ e2M2

P . (14)

Once we accept the instability of charged black holes in
absence of SUSY we can compute the effect of this insta-
bility to the form factor of the charged black hole in the pres-
ence of an external electric potential. Denoting me the mass
of the minimally charged particle we have again the anoma-
lous threshold contribution where the black hole interaction
with the external potential is mediated by the charged par-
ticle through the corresponding triangular graph. Assuming
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Fig. 6 Anomalous threshold for the form factor of a RN black hole

all the particles in the process to be on-shell the anomalous
threshold is given by

t0 = 4m2
e −

(
M2

bh − M ′2
bh − m2

e

)2

M ′2
bh

, (15)

where we think the instability as the decay of a black hole
of mass M and charge Q into a smaller black hole of mass
M ′ and a particle with mass m and minimal charge e that we
will call the electron (see Fig. 6).

As shown in “Appendix A” for the typical gravitational
binding energy that we expect for a black hole the anomalous
threshold contribution to the corresponding amplitude will go
as

log

(
MP

me

)
, (16)

where we have used as UV cutoff the Planck mass.
The imaginary part of this amplitude can be interpreted

as an anomalous threshold to the absorptive part of the form
factor of the charged black hole in the presence of an external
electromagnetic field. Now we have what we were looking
for, namely a physical amplitude that depends on the electron
mass in a way that is singular in the massless limit. In order
to avoid the singular limit me → 0 we can impose, on the
basis of unitarity, that the corresponding amplitude is smaller
than one. If we do that we get

νC2 log

(
MP

me

)
≤ 1 , (17)

whereC represents the physical decay amplitude of the black
hole to emit an electron. If we assume this amplitude to be
proportional to the electromagnetic coupling we get the lower
bound above. Here ν is the number of charged fermionic

species with equal charge to the electron.9 Taking seriously
the former bound on the electron mass leads to an upper
bound on the number of fermionic species with the elec-
tron charge of the order of 11 species.10 The key point to be
stressed here is that in deriving this bound we don’t use the
perturbative Landau pole but instead the anomalous thresh-
old singularity we get assuming the gravitational instability
of RN extremal black holes.

A different way to understand the anomalous threshold is
as follows. For the case of standard black holes with entropy
N we should expect that the threshold for an absorptive part
should be t0 ∼ O(1/N ) in Planck units i.e. absorption of one
information bit. The existence of massless charged particles
pushes down this threshold to the anomalous value O(m2

e)

and therefore we could expect a lower information bound for
the mass of the electron me ∼ 1/N in Planck units for the
largest possible black hole. Thus and using a cosmological
bound for the largest black hole we could conclude that the
lower bound on the mass of electrically charged fermions is
given, in Planck units, by 1√

NH
with NH determined by the

Hubble radius of the Universe as
R2
H

L2
P

.

To end let us make a comment on (14). For equality this can

be written as e2 = m2
e

M2
P

. Thinking in a diagram representing

an energetic Planckian photon decaying into a set of n on-
shell pairs and estimating n ∼ MP

me
the former relation (14)

simply express the criticality condition [33] e2 ∼ 1
n typical

of classicalization.
Before ending we would like to make a very general com-

ment on black hole physics intimately related with the former
discussion. In [34] we put forward a constituent portrait of
black holes. The most obvious consequence of this model is
the prediction of anomalous thresholds in the corresponding
form factors at small angle. On the other hand these anoma-
lous thresholds define a canonical example of in principle
observable quantum hair.

7 Final comment

It looks like that nature abhors massless charged particles
whenever the charge is associated with a long range force as
electromagnetism. This is not a serious problem for confined
particles but it is certainly a problem for charged leptons.
Taken seriously, it will means that the limit with vanishing
Yukawa couplings should be quantum mechanically incon-
sistent. In string theory we count with a geometrical interpre-

9 The role of electrically charged species is analogous to the one sug-
gested originally by Landau [31] to lower the Landau pole.
10 Adding the effect of gravitational species [32] will multiply the for-
mer bound by a global suppression factor 1√

Ng
.
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tation of Yukawa couplings in terms of intersections [35] and
in some constructions based on brane configurations in terms
of world sheet instanton contributions. It looks like that a con-
sistency criteria for string compactifications should prevent
the possibility of massless charged leptons and consequently
of vanishing Yukawa couplings. The problem of a consis-
tent massless limit of leptons is on the other hand related
with the problem of naturalness in t’Hooft’s sense [26].
Naively the symmetry enhancement that will make natural
the massless limit is chiral symmetry. What we have observed
in this note can be read from this point of view. The IR
collinear divergences, if canceled in the way suggested by the
KLN-theorem, prevent the realization of this chiral symme-
try indicating the unnatural condition of the massless limit of
charged leptons. A hint in that direction was the observation
of [9] about the existence for massless QED of non vanishing
helicity changing amplitudes in the absence of any support-
ing instanton like topology. Thus, it looks that the existence of
a fundamental lower bound on the mass of charged leptons is
inescapable.
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Appendix A: Anomalous threshold kinematics

Let us consider the leading Landau singularity for the dia-
gram in Fig. 1. This corresponds to have all the internal lines
of the diagram on-shell satisfying energy momentum con-
servation in the three vertices. Following [16] the diagram
is presented in Breit frame. The transfer momentum is given
by −4p2, the normal threshold is given by 4M2

2 where M2

is the mass of the particle in the triangle interacting with the
external source. The anomalous threshold associated with the
leading Landau singularity is given by

t0 = 4M2
2 − M2

0 − M2
1 − M2

2

M2
1

, (A.1)

where t0 = −4p2
0. This is the minimum momentum where all

the particles in Fig. 1 can be on-shell. Here also the scattering
angles have to be below a small threshold which in our case
refer to the resolution scale angle δ. Note that this anomalous
threshold is independent on the energy of the process. The
reason for calling it anomalous is that it is smaller than the
normal threshold given by standard unitarity.

As discussed in the text the discontinuity associated with
this singularity can be computed using the Cutkosky rules
for the diagram. The corresponding amplitude contains a

term proportional to log
(

1 − t
t0

)
. For the diagram in Fig. 2

where we use the degeneration between the electron and a
pair electron and collinear photon (both on-shell) the anoma-
lous threshold gives the log(me) terms in the amplitude.

In order to get a clearer picture of the underlying kine-
matics we can compute the relative velocity v between the
two particles 1 and 2. This is given by the so called Källen-
function

v = A
(
M2

0 − M2
1 − M2

2

)
, (A.2)

with A2 = M4
0 +M4

1 +M4
2 −2M2

0 M
2
1 −2M2

0 M
2
2 −2M2

1 M
2
2 .

In the degenerate case with M0 = M2 = me and M1 = mγ

the mass of a photon we get the limit v = i∞ correspond-
ing to particles 1 and 2 moving collinearly i.e. they remain
coincident.

Introducing a binding energy as M0 + B = M1 + M2

we observe that for M0 < M1 + M2 the velocity u defined
above is imaginary reaching collinearity in the limit B → 0.
Moreover in the limit where M1 is much larger than M2 the
anomalous threshold can be approximated by:

t0 ≈ 4Bme

(
2 − B

me

)
. (A.3)

In the gravitational case t0 goes from zero in the limit B → 0
to the normal threshold 4m2

e in the limit of maximal gravita-
tional binding energy.

Appendix B: Notation and calculation for the amplitudes

We set the kinematics of the forward scattered right- or left-
handed electron in such way that the electrons runs with
momentum |p| along the z-axes, i.e. for the 4-momentum
of the electron we have

pμ =

⎛

⎜⎜⎝

E
0
0
|p|

⎞

⎟⎟⎠ , (B.4)
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where E is the energy of the electron. The Dirac spinor for the
right-/left-handed electron in chiral representation is given by

uR(p) :=
(

0
uR

)
and uL(p) :=

(
uL
0

)
, (B.5)

In the limit where the mass me of the electron goes to 0

uL = √
2E

(
0
1

)
and uR = √

2E

(
1
0

)
, (B.6)

and

pμ ≈

⎛

⎜⎜⎜⎝

E
(

1 + m2
e

2E2

)

0
0
E

⎞

⎟⎟⎟⎠ , (B.7)

holds. We work in Weyl (chiral) basis where the γ -matrices
are given by

γ μ =
(

0 σμ

σ̄μ 0

)
, (B.8)

with σμ = (1, σ i ) and σ̄ μ = (1,−σ i ), where σ i are the
standard Pauli matrices.

We start with the first amplitude of the diagrams in Fig. 3.
The notation will be iMR /iML is the amplitude where the
electron is right-/left-handed before and after the scattering.
We keep the electrons helicity equal in the scattering pro-
cess since we are not interested in helicity flipping processes.
Then, writing the amplitudes in terms of 2x2 matrices Fig. 3
gives the amplitudes

iMR
1 = −ie3 u

†
R ε′∗ · σ (p + k′) · σ̄ εq · σ (p + k) · σ̄ ε · σ uR

(2pk)(2pk′) ,

(B.9)

iML
1 = −ie3 u

†
L ε′∗ · σ̄ (p + k′) · σ εq · σ̄ (p + k) · σ ε · σ̄ uL

(2pk)(2pk′) ,

(B.10)

iMR
2 = −ie3 u

†
R ε · σ (p − k) · σ̄ εq · σ (p − k′) · σ̄ ε′∗ · σ uR

(2pk)(2pk′) ,

(B.11)

iML
2 = −ie3 u

†
L ε · σ̄ (p − k) · σ εq · σ̄ (p − k′) · σ ε′∗ · σ̄ uL

(2pk)(2pk′) ,

(B.12)

and

iMR
3 = ie3 u

†
R εq · σ (p − q) · σ̄ ε′∗ · σ (p + k) · σ̄ ε · σ uR

(2pk)(2pq)
,

(B.13)

iML
3 = ie3 u

†
L εq · σ̄ (p − q) · σ ε′∗ · σ̄ (p + k) · σ ε · σ̄ uL

(2pk)(2pq)
,

(B.14)

iMR
4 = ie3 u

†
R ε · σ (p − k) · σ̄ ε′∗ · σ (p + q) · σ̄ εq · σ uR

(2pk)(2pq)
,

(B.15)

iML
4 = ie3 u

†
L ε · σ̄ (p − k) · σ ε′∗ · σ̄ (p + q) · σ εq · σ̄ uL

(2pk)(2pq)
,

(B.16)

where we omitted the terms proportional to the electron mass
because they will give no collinear divergent term in the
limit m → 0 and a · b is the normal scalar product in
4d Minkowski space. The notation is εμ = εμ(λ, θ, φ),
ε′μ = εμ(λ′, θ ′, φ′), εq

μ = εμ(λq , θq , φq) with

εμ(λ, θ, φ) = 1√
cos2(θ) + 1

⎛

⎜⎜⎝

0
exp(−iλφ) cos(θ)

iλ exp(−iλφ) cos(θ)

− sin(θ)

⎞

⎟⎟⎠ ,

(B.17)

and kμ = kμ(ω, θ, φ), k′μ = kμ(ω′, θ ′, φ′), qμ =
kμ(ωq , θq , φq) with

kμ(ω, θ, φ) = ω

⎛

⎜⎜⎝

1
sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

⎞

⎟⎟⎠ , (B.18)

where ω is the energy, λ the polarization and θ and φ the
scattering angles of the corresponding photon. For example,
a photon with polarization vector εμ and λ = +1/−1 is an
incoming right-/left-handed photon.

In the collinear limit the angles θ , θ ′ and θq appearing in

the calculations are small, i.e. cos θ ≈ 1− θ2

2 , cos θ ′ ≈ 1− θ ′2
2

and cos θq ≈ 1 − θq
2

2 . So that together with (B.7) we can
approximate

2pk ≈ Eω

(
m2

e

E2 + θ2
)

, (B.19)

2pk′ ≈ Eω

(
m2

e

E2 + θ ′2
)

, (B.20)

2pq ≈ Eω

(
m2

e

E2 + θq
2
)

. (B.21)

A simple Taylor expansion to first order in θ and matrix mul-
tiplication shows that in general for the right-handed electron

(p ± k(ω, θ, φ)) · σ̄ ε(λ, θ, φ) · σ uR ≈ √
2θ
(
E ± ω

2
(1 + λ)

)
uR ,

(B.22)
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u†
R ε(λ, θ, φ) · σ (p ± k(ω, θ, φ)) · σ̄ ≈ √

2θ
(
E ± ω

2
(1 − λ)

)
u†
R ,

(B.23)

holds and for the left-handed electron

(p ± k(ω, θ, φ)) · σ ε(λ, θ, φ) · σ̄ uL ≈ √
2θ
(
E ± ω

2
(1 − λ)

)
uL ,

(B.24)

u†
L ε(λ, θ, φ) · σ̄ (p ± k(ω, θ, φ)) · σ ≈ √

2θ
(
E ± ω

2
(1 + λ)

)
u†
L ,

(B.25)

holds. These identities (also see [9]) will be used in the ampli-
tudes (B.9)–(B.16). Interesting is that there is no φ or φ′
dependence in the expressions (B.22)–(B.25). Furthermore,
for a small arbitrary angle θ we have

u†
R ε(λ, θ, φ) · σ uR = u†

L ε(λ, θ, φ) · σ̄ uL ≈ √
2Eθ .

(B.26)

The amplitudes from (B.9) to (B.16) simplify then to

iMR
1 = −ie3 θθ ′θq (2E + ω(1 + λ))

(
2E + ω′(1 + λ′)

)

√
2Eωω′

(
θ2 + m2

E2

) (
θ ′2 + m2

E2

) ,

(B.27)

iML
1 = −ie3 θθ ′θq (2E + ω(1 − λ))

(
2E + ω′(1 − λ′)

)

√
2Eωω′

(
θ2 + m2

E2

) (
θ ′2 + m2

E2

) ,

(B.28)

iMR
2 = −ie3 θθ ′θq (2E − ω(1 − λ))

(
2E − ω′(1 − λ′)

)

√
2Eωω′

(
θ2 + m2

E2

) (
θ ′2 + m2

E2

) ,

(B.29)

iML
2 = −ie3 θθ ′θq (2E − ω(1 + λ))

(
2E − ω′(1 + λ′)

)

√
2Eωω′

(
θ2 + m2

E2

) (
θ ′2 + m2

E2

) ,

(B.30)

and

iMR
3 = ie3 θθ ′θq (2E + ω(1 + λ))

(
2E − ωq(1 − λq)

)

√
2Eωωq

(
θ2 + m2

E2

) (
θq

2 + m2

E2

) ,

(B.31)

iML
3 = ie3 θθ ′θq (2E + ω(1 − λ))

(
2E − ωq(1 + λq)

)

√
2Eωωq

(
θ2 + m2

E2

) (
θq

2 + m2

E2

) ,

(B.32)

iMR
4 = ie3 θθ ′θq (2E − ω(1 − λ))

(
2E + ωq(1 + λq)

)

√
2Eωωq

(
θ2 + m2

E2

) (
θq

2 + m2

E2

) ,

(B.33)

iML
4 = ie3 θθ ′θq (2E − ω(1 + λ))

(
2E + ωq(1 − λq)

)

√
2Eωωq

(
θ2 + m2

E2

) (
θq

2 + m2

E2

) .

(B.34)

Notice that the amplitudes of the left-handed electron just
differ by exchanging all polarizations of the photons to minus
the polarizations, i.e.

iML
i (λ, λ′, λq) = iMR

i (−λ,−λ′,−λq) . (B.35)

Thus, apart from now we will write down only the amplitudes
with the right-handed electron and get the amplitudes of the
left-handed electron by this simple relation (B.35).

We are interested in a very special corner of the phase
space where θ ′ and θq are very small but still bigger than m2

E2 ,

i.e. θ ′  m2

E2 and θq  m2

E2 .11 On the other side we allow θ

to be of the order of m2

E2 . Thus, θ ′  θ and θq  θ holds as
well. Furthermore, the phase space gets more restricted by
the fact that the electron is forward scattered, i.e. pμ

in = pμ
out.

The constraint from energy and momentum conservation is
then k′μ = qμ + kμ. This constraint in the collinear limit
gives

ω′ = ωq + ω , θ ′ = θq
ωq

ω + ωq
and φ′ = φq . (B.36)

The constraint φ′ = φq isn’t important since these angles
don’t appear in the amplitudes (B.27)–(B.34). Inserting the
constraints and using the special corner of phase space one
gets for the amplitudes

iMR
1 = −ie3 θ (2E + ω(1 + λ))

(
2E + (ω + ωq)(1 + λ′)

)

√
2Eωωq

(
θ2 + m2

E2

) ,

(B.37)

iMR
2 = −ie3 θ (2E − ω(1 − λ))

(
2E − (ω + ωq)(1 − λ′)

)

√
2Eωωq

(
θ2 + m2

E2

) ,

(B.38)

iMR
3 = ie3 θ (2E + ω(1 + λ))

(
2E − ωq(1 − λq)

)

√
2Eω(ω + ωq)

(
θ2 + m2

E2

) ,

(B.39)

iMR
4 = ie3 θ (2E − ω(1 − λ))

(
2E + ωq(1 + λq)

)

√
2Eω(ω + ωq)

(
θ2 + m2

E2

) ,

(B.40)

where we only kept the terms that will lead to collinear diver-
gent terms after the phase space integration

∫ d3k
(2π)32ω

of the
incoming collinear photon. Then summing up the amplitudes
gives

11 The reader may have noticed that in Fig. 3 we omit two diagrams
which are of the same topology. The reason is that these extra two
diagrams have 1/(pk′)(pq) propagators which won’t lead to collinear
divergence in this special corner of the phase space after applying the
KLN theorem.
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iMR =
4∑

i=1

iMR
i

= −ie3

√
2θ
[
ω(ω + ωq ) + (2E + ωλ)(2E + (ω + ωq )λ

′)
]

Eωωq

(
θ2 + m2

E2

)

+ ie3

√
2θ
[−ωωq + (2E + ωλ)(2E + ωqλq )

]

Eω(ω + ωq )
(
θ2 + m2

E2

) . (B.41)

Clearly the collinear divergence comes from when one inte-
grates the amplitude square over the θ since this is propor-

tional to
∫ δ

0 dθ θ θ2
(
θ2+m2

E2

)2 ∝ log
(
Eδ
me

)
. We are interested in

the full amplitude iM , where we want to sum over the elec-
tron polarizations. In general holds for a generic amplitude
ū′sM ur with an outgoing electron with spinor u′ and spin s
and an ingoing electron with spinor u and spin r

1

4

∑

s,r=± 1
2

∣∣ū′sM ur
∣∣2

= 1

4

∑

s,r=± 1
2

ū′sM ur ūrM †u′s

= 1

4

(
ū′ 1

2 M u
1
2 ū

1
2 M †u′ 1

2 + ū′− 1
2 M u− 1

2 ū− 1
2 M †u′− 1

2

+ū′ 1
2 M u− 1

2 ū− 1
2 M †u′ 1

2 + ū′− 1
2 M u

1
2 ū

1
2 M †u′− 1

2

)
.

(B.42)

The last two terms of Eq. (B.42) are the spin-flipping pro-
cesses of the amplitude or the helicity-flipping processes in
the collinear limit. Helicity-flipping processes don’t possess
collinear divergences, see e.g. [9]. Thus interesting for us are
the first two terms of (B.42). Then, the unpolarized amplitude
that will produce collinear divergences is given by

1

4

∑

spins

|iM |2 = 1

4

(∣∣∣iMR
∣∣∣
2 +

∣∣∣iML
∣∣∣
2
)

, (B.43)

where iML = ∑4
i=1 iML

i .
Now we can apply the KLN-theorem and integrate over the

phase space of the incoming photon
∫ d3k

(2π)32ω
, which is in the

collinear limit given by
∫ dωdθdφ ω2 sin θ

(2π)32ω
= ∫ dω ω

(2π)2

∫ δ

0 dθ θ ,

where we integrated
∫ 2π

0 dφ = 2π since the amplitudes do
not depend on φ. Then the collinear part of the unpolarized
amplitude is

∫
d3k

(2π)32ω

1

4

∑

spins

|iM |2

= 1

(2π)3

∫
dω ω

∫ δ

0
dθ θ

∫ 2π

0
dφ

1

4

∑

spins

|iM |2

=
∫

dω ω

(2π)2

e6

4E2ω2 log

(
Eδ

me

)[−ωωq + (2E + ωλ)(2E + ωqλq )

(ω + ωq )

−ω(ω + ωq ) + (2E + ωλ)(2E + (ω + ωq )λ
′)

ωq

]2

+ (
λ → −λ, λ′ → −λ′, λq → −λq

)
, (B.44)

which is the result we present in (8).

Appendix C: One-loop amplitude interfered with tree-
level amplitude

An other term that contributes to the order e6 in perturbation
theory is the interference of the amplitudes in Figs. 7 and 8.
The process in Fig. 7 describes an electron that scatters with
two incoming photons, one with momentum qμ which is the
transfer momentum and of course q2 = 0 holds as before and
one with momentum kμ which is a collinear photon. In order
to possibly contribute to the cancelation process of the KLN
anomaly in Sect. 5 the electron has to be forward scattered,
thus pμ

in = pμ
out. Then from the conservation of energy and

momentum we get the constraint qμ = −kμ, which means
in the notation of ““Appendix B”: ωq = −ω, θq = θ and
φq = φ. The same constraint holds also for the amplitudes
in the diagrams of Fig. 8. The amplitudes from Fig. 8 are
one-loop diagrams with a collinear incoming photon. We
will change from now on the notation a little bit and name
the amplitudes now iA instead of iM in order to keep it easier
to distinguish but nevertheless keep the rest of the notations
in “Appendix B” the same. Of course when ever a photon
runs in a loop it is no longer on-shell, i.e. k2

loop �= 0. Other
than in the appendix above we will write down the following

Fig. 7 Tree-level diagrams with a collinear, incoming photon at order
e2

Fig. 8 One-loop diagrams with a collinear, incoming photon at order
e4
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amplitudes non-approximatively, i.e. not in collinear limit,
and just later when apply the KLN theorem we will Taylor
expand the amplitudes in the collinear limit.

Appendix C.1: The tree-level amplitude at order e2

At this point we want to anticipate that the relation (B.35)
holds here and in the following as well, which can’t be
seen directly but was found during the calculations for this
appendix with the program Mathematica, i.e.

iAL(λ, λq) = iAR(−λ,−λq) . (C.45)

So we begin with the amplitude iAR
1 which is given by the

diagrams in Fig. 7 and gives

iAR
1 = −ie2ū Rp

[
/εq (/p + /k)/ε

2pk
− /ε(/p − /k)/εq

2pk

]
uRp

= −ie2u†
R

[
εq · σ (p + k) · σ̄ ε · σ

2pk
− ε · σ (p − k) · σ̄ εq · σ

2pk

]
uR .

(C.46)

for the amplitude where a right-handed electron is forward
scattered.

Then the matrix multiplication in Eq. (C.46) can be done
by hand or using Mathematica and gives

iAR
1 = −ie2 4E(1 − λλq cos2 θ) sin2

(
θ
2

)

(1 + cos2 θ)(E − |p| cos θ)
. (C.47)

The amplitude for the left-handed electron is the same as
the for the right-handed one, i.e. iAL

1 = iAR
1 , since we have

a multiplication of two polarizations λλq . This is the first
amplitude of the interference term that could cancel the KLN
anomaly.

Appendix C.2: One-loop amplitudes

The one-loop amplitudes of the diagrams in Fig. 7 are given
by

i AR/L
2,1 = −e4

(2π)4
·

×
∫

d4k′
k′2

ū R/L
p γ μ(/p − /k′)/εq (/p − /k′ + /k)γμ(/p + /k)/ε u

R/L
p

[(p − k′ + k)2 − m2][(p − k′)2 − m2][(p + k)2 − m2] ,

(C.48)

i AR/L
2,2 = −e4

(2π)4
·

×
∫

d4k′
k′2

ū R/L
p /ε(/p − /k)γ μ(/p − /k′ − /k)/εq (/p − /k′)γμ uR/L

p

[(p − k′ − k)2 − m2][(p − k′)2 − m2][(p − k)2 − m2] ,

(C.49)

iAR/L
2,3 = −e4

(2π)4
·

×
∫

d4k′
k′2

ū R/L
p γ μ(/p − /k′)/εq (/p − /k′ + /k)/ε(/p − /k′)γμ uR/L

p

[(p − k′ + k)2 − m2][(p − k′)2 − m2]2 , (C.50)

iAR/L
2,4 = −e4

(2π)4
·

×
∫

d4k′
k′2

ū R/L
p γ μ(/p − /k′)/ε(/p − /k′ − /k)/εq (/p − /k′)γμ uR/L

p

[(p − k′ − k)2 − m2][(p − k′)2 − m2]2 , (C.51)

iAR/L
2,5 = −e4

(2π)4

×
∫

d4k′
k′2

ū R/L
p /εq (/p + /k)γ μ(/p − /k′ + /k)/ε(/p − /k′)γμ uR/L

p

[(p − k′ + k)2 − m2][(p − k′)2 − m2][(p + k)2 − m2] ,

(C.52)

iAR/L
2,6 = −e4

(2π)4

×
∫

d4k′
k′2

ū R/L
p γ μ(/p − /k′)/ε(/p − /k′ − /k)γμ(/p − /k)/εq uR/L

p

[(p − k′ − k)2 − m2][(p − k′)2 − m2][(p − k)2 − m2] .

(C.53)

The denominator of the type pk vanish in the collinear
limit if k2 is zero. So the interesting part of the one-loop
amplitude is the one coming from the poles pk′ = 0
(collinearly) with k′2 = 0. The pole 1/k′2 gives a contri-
bution iπδ(k′2). As in [5,6] shown the integral of

∫
dω′0

in the amplitudes (C.48)–(C.53) sets the loop-photon with
momentum k′ on-shell. We use the standard γ -matrices iden-
tity γ μγ αγ βγ νγμ = −2γ νγ βγ α and for the amplitudes
iA2,3 and iA2,4 we use a formula that can be easily can ver-
ified and only holds for the specific choice of spinors (B.6)
and using γ μ in Weyl representation: ū R/L

p γ μ[...]γμ uR/L
p =

−2ūL/R
p [...]uL/R

p , where [...] stands for any set of γ -matrices.
Then the amplitudes (C.48)–(C.53) are given by

iAR/L
2,1 = −ie4

(2π)3

∫
d3k′
ω′

ū R/L
p (/p − /k′ + /k)/εq (/p − /k′)(/p + /k)ε uR/L

p

[−2pk′ + 2pk − 2kk′](2pk′)(2pk) ,

(C.54)

iAR/L
2,2 = ie4

(2π)3

∫
d3k′
ω′

ū R/L
p /ε(/p − /k)(/p − /k′)/εq (/p − /k′ − /k) uR/L

p

[−2pk′ − 2pk + 2kk′](2pk′)(2pk) ,

(C.55)

iAR/L
2,3 = ie4

(2π)3

∫
d3k′
ω′

ūL/R
p (/p − /k′)/εq (/p − /k′ + /k)/ε(/p − /k′) uL/R

p

[−2pk′ + 2pk − 2kk′](2pk′)2 ,

(C.56)

iAR/L
2,4 = ie4

(2π)3

∫
d3k′
ω′

ūL/R
p (/p − /k′)/ε(/p − /k′ − /k)/εq (/p − /k′) uL/R

p

[−2pk′ − 2pk + 2kk′](2pk′)2 ,

(C.57)

iAR/L
2,5 = −ie4

(2π)3

∫
d3k′
ω′

ū R/L
p /εq (/p + /k)(/p − /k′)/ε(/p − /k′ + /k) uR/L

p

[−2pk′ + 2pk − 2kk′](2pk′)(2pk) ,

(C.58)

iAR/L
2,6 = ie4

(2π)3

∫
d3k′
ω′

ū R/L
p (/p − /k′ − /k)/ε(/p − /k′)(/p − /k)/εq u

R/L
p

[−2pk′ − 2pk + 2kk′](2pk′)(2pk) .

(C.59)

Comment on the amplitudes iAR
2,3 and iAR

2,4: The for-

mulas (C.56) and (C.57) for the amplitudes iAR
2,3 and iAR

2,4
show that the incoming photon with momentum kμ is non-
IR absorption in these two amplitudes, since this photon is
attached to an internal line so that there is no propagator with
1/pk in the amplitudes (see for example [5,6,36]).
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Appendix C.2.1: Symmetries between the amplitudes iAR/L
2,i

If one takes a closer look to the amplitudes (C.54)–(C.59)
one can manifest some symmetries between them. iA2,3 and
iA2,4 are related to each other as well as the other 4 ampli-
tudes. In the following we will omit the right-/left-labelling
of the amplitudes to keep it shorter. Writing the amplitudes
as functions of the polarisations of the photons λ, λq and the
energy of the incoming collinear photon ω then

iA2,4(λ, λq , ω) = iA2,3(λq , λ,−ω) , (C.60)

iA2,4(λ, λq , ω) = iA†
2,3(−λ,−λq ,−ω)

= iA2,3(−λ,−λq ,−ω) , (C.61)

holds for iA2,4. For the other amplitudes one can show that

iA2,2(λ, λq , ω) = iA†
2,1(−λ,−λq ,−ω)

= iA2,1(−λ,−λq ,−ω) , (C.62)

iA2,5(λ, λq , ω) = iA2,2(λq , λ,−ω) = iA2,1(−λq ,−λ, ω) ,

(C.63)

iA2,6(λ, λq , ω) = iA2,1(λq , λ,−ω) , (C.64)

holds. We want to anticipate that the integrals in (C.54)–
(C.59) are real, which can’t be seen directly since the numer-
ators have terms proportional to e±in(φ′−φ), with n = 0, 1, 2,
but this showed up during the calculations for this appendix.

Together with relation (C.45) one only has to calculate
iAR

2,1 and iAR
2,3 to get the complete amplitude iAR/L

2 =
∑6

i=1 iAR/L
2,i . There are two other symmetry in this ampli-

tude. The first is changing λ → −λ, λq → −λq and
ω → −ω, which is nothing else but having outgoing photons
in Fig. 8. The second is changing λ → −λq and λq → −λ,
which is exchanging the ingoing photon with momentum
kμ/qμ to an outgoing photon with momentumqμ/kμ. In other
words, the amplitudes of the diagrams with outgoing pho-
tons instead of ingoing once are the same as the amplitudes
in Fig. 8. This is the same behaviour as already seen for the
IR case in [6,9,10]. The symmetries can be seen in

iA2(λ, λq , ω)

=
6∑

i=1

iA2,i (λ, λq , ω)

= iA2,1(λ, λq , ω) + iA2,1(−λ,−λq ,−ω) + iA2,1(−λq ,−λ, ω)

+ iA2,1(λq , λ,−ω) + iA2,3(λ, λq , ω) + iA2,3(λq , λ,−ω)

= iA2,1(λ, λq , ω) + iA2,1(−λ,−λq ,−ω) + iA2,1(−λq ,−λ, ω)

+ iA2,1(λq , λ,−ω) + iA2,3(λ, λq , ω) + iA2,3(−λ,−λq ,−ω) ,

(C.65)

where the last two lines are related by (C.60) and (C.61).

The two determining amplitudes are (C.54) and (C.56)
which can be simplified to

iAR
2,1 = −ie4

(2π)3

×
∫

d3k′

ω′
u†
R (p − k′ + k) · σεq · σ̄ (p − k′) · σ(p + k) · σ̄ ε · σ uR

[−2pk′ + 2pk − 2kk′](2pk′)(2pk)
,

(C.66)

iAR
2,3 = ie4

(2π)3

×
∫

d3k′

ω′
u†
L (p − k′) · σ̄ εq · σ(p − k′ + k) · σ̄ ε · σ(p − k′) · σ̄ uL

[−2pk′ + 2pk − 2kk′](2pk′)2 .

(C.67)

We can now move forward to perform the integral
∫ d3k′

ω′ =∫
dω′dθ ′dφ′ω′ sin θ ′, where we will see that in fact the ampli-

tudes A2,i are real after the integration.

Appendix C.2.2: Details of the
∫ 2π

0 dφ′ integral

In the denominator φ′ appears only in the kk′ = k · k′, where
k and k′ are on-shell. The nominators of iAR

2,1 and iAR
2,3

are calculated by Mathematica and have terms that go like
e±in(φ′−φ), with n = 0, 1, 2. Then there are integrals of the
form

∫ 2π

0

e±in(φ′−φ)

a + b cos(φ′ − φ)
dφ′ , (C.68)

where a and b are independent of φ′ and φ. All integrals
including sin(n(φ′ − φ)) vanish, as well as the one with
n = 0, i.e. the one with a constant term. The non-vanishing
integrals are

∫ 2π

0
dφ′ cos(φ′ − φ)

a + b cos(φ′ − φ)
= 2π

b
, (C.69)

∫ 2π

0
dφ′ cos(2(φ′ − φ))

a + b cos(φ′ − φ)
= −4πa

b2 . (C.70)

In the integration the variables are a = −2pk′ + 2pk −
ωω′(1 − cos θ cos θ ′) and b = 2ωω′ sin θ sin θ ′. We won’t
write down the amplitudes iAR

2,1 and iAR
2,3 after the

∫ 2π

0 dφ′
integration, since these terms are quite long and there is no
greater benefit from knowing these formulas. So that we go
on to the next integration.

Appendix C.2.3: Details of the
∫

dθ ′ integral

The next step is the
∫

dθ ′ integral, where the log(me) diver-
gences will appear. In the following we will keep terms that
are finite after the

∫
dθ ′ integration and the terms that are log-

arithmic divergent. What we will omit are terms that go as the
mass of the electronme since they will vanish in the collinear
limit where me → 0. In the logarithmic divergent terms we
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will have to use an angle regulator δ which is a small angle
between the electron and the collinear photon in the loop.12

In the finite terms we can perform the full integration, mean-
ing integrate over θ ′ from 0 to π . In the following we will
skip some intermediate steps and write down the amplitude
iAR

2 after the two angle integrations
∫

dθ ′dφ′ sin θ ′, since
the formula for the full amplitude iAR

2 is shorter than all the
single amplitudes iAR

2,i . Then the integrals are performed by
Mathematica and give the result

iAR
2 = ie4

(2π)3

∫
dω′ 4π

ω2(E − |p| cos θ)(1 + cos2 θ)(1 + cos θ)

×
{
ω′ cos θ

[
2E(1 + (2 + λλq ) cos θ)−ω(λ−λq )(1−cos2 θ)

]

+ω sin2 θ
[
E(λ − λq ) cos θ+2ω(1−λλq cos2 θ)

]
log

(
Eδ

m

)}

+ ie4

(2π)3

∫
dω′ 2π

Eω(1 + cos2 θ)

×
{[

E(λ − λq ) cos θ+ω(1 − λλq cos2 θ)
](

1−2 log

(
Eδ

me

))

+4Eω′

ω
(1 + λλq ) cot2 θ

}
. (C.71)

The first two lines come from iAR
2,1+iAR

2,2+iAR
2,5+iAR

2,6,
which can be seen from the factor pk = ω(E − |p| cos θ) in
the denominator, and the third line comes from iAR

2,3 + iAR
2,4.

What also can be seen is that there is no IR divergence in the
one-loop amplitude after performing the

∫
dω′ integration,

which is conform with [5,6] since the B-factor vanishes in
the forward scattering.

Appendix C.3: The interference term

In order to see if there is a cancelation with (8) to the
order e6 one has to apply the KLN theorem to the unpo-
larized interference term of the amplitude iA1 and iA2,
i.e. iAR

1

(
iAR

2

)∗ + iAL
1

(
iAL

2

)∗ + h.c., where we used (B.43).
The contribution is given by

1

4

∫
d3k

(2π)32ω

[
iAR

1

(
iAR

2

)∗ + iAL
1

(
iAL

2

)∗ + h.c.
]

.

(C.72)

In the following we again just calculate the contribution com-
ing from the iAR

1

(
iAR

2

)∗
since we can apply the relation

(C.45) to get the contribution coming from the amplitude
with the left-handed electron.

12 As it was the case in “Appendix B”, where we also had to put a
regulator for the angle between the electron and the absorbed collinear
photon connected to the external line of the electron.

Appendix C.3.1: Small angle approximation

A Taylor expansion for small θ of the expressions in (C.47)
and (C.71) gives

iAR
1 ≈ −ie2(1 − λλq )

θ2

θ2 + m2

E2

, (C.73)

iAR
2 ≈ ie4

(2π)2

∫
dω′ 1

ω2

{
2ω′ 3 + λλq

θ2 + m2

E2

+ θ2

θ2 + m2

E2

×
[
− ω′

2E

(
2ω(λ − λq ) + E(1 + λλq )

)

+ ω

E

(
2ω(1 − λλq ) + E(λ − λq )

)
log

(
Eδ

me

)]}

+ ie4

(2π)2

∫
dω′

{[
λ − λq

ω
+ 1 − λλq

E

](
1

2
− log

(
Eδ

me

))

+ θ2(1 + λλq )

4

⎡

⎣
1 − 2 log

(
Eδ
me

)

E
+ 22

15

ω′

ω2

⎤

⎦

+ω′(1 + λλq )

3ω2 − 2ω′(1 + λλq )

ω2θ2

}
. (C.74)

where as usual in the collinear limit (see [9]) 2pk = 2ω(E−
|p| cos θ) ≈ ωE(θ2 + m2/E2).

From the Taylor expansion of the two amplitudes we can
see that once the KLN theorem is applied the interference
term will have collinear divergences coming from the term
proportional to θ2/(θ2 + m2/E2)2. And there will be terms
that are collinearly divergent coming only from the loop inte-
gration from the previous “Appendix C.2.3”.

The interference term of iAR
1 and

(
iAR

2

)∗
involves the

following multiplication of terms with the polarisations of
the photons

(1 − λλq)(3 + λλq) = 2(1 − λλq) , (C.75)

(1 − λλq)(1 + λλq) = 0 , (C.76)

(1 − λλq)(λ − λq) = 2(λ − λq) , (C.77)

(1 − λλq)(1 − λλq) = 2(1 − λλq) , (C.78)

where λ2 = 1 and λ2
q = 1 is used. The integral of interest is

then

∫
d3k

(2π)32ω

(
iAR

1

(
iAR

2

)∗ + h.c.
)

=
∫

dω ω

δ∫

0

dθ θ

2π∫

0

dφ
(

iAR
1

(
iAR

2

)∗ + h.c.
)

≈ − e6

(2π)4

∫
dω

∫
dω′

δ∫

0

dθ
θ

ω

⎧
⎪⎨

⎪⎩
2ω′ 2(1 − λλq )θ

2

(
θ2 + m2

E2

)2 + θ4

(
θ2 + m2

E2

)2

×
[
−2

ωω′

E
(λ − λq ) + 2

ω

E

(
2ω(1 − λλq ) + E(λ − λq )

)
log

(
Eδ

me

)]
⎫
⎪⎬

⎪⎭
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+ e6

(2π)4

∫
dω

∫
dω′

δ∫

0

dθ θ
θ2

θ2 + m2

E2

[
λ − λq + ω

E
(1 − λλq )

]

×
(

1 − 2 log

(
Eδ

me

))
. (C.79)

Then one can use the following identities

∫ δ

0 dθ θ
θ2

(θ2 + m2

E2 )2
= −1

2
+ log

(
Eδ

me

)
, (C.80)

∫ δ

0 dθ θ
θ4

(θ2 + m2

E2 )2
= δ2

2
, (C.81)

∫ δ

0 dθ θ
θ2

θ2 + m2

E2

= δ2

2
, (C.82)

to simplify the interference term

∫
d3k

(2π)32ω

(
iAR

1

(
iAR

2

)∗ + h.c.
)

≈ e6

(2π)4

∫
dω

∫
dω′

{
−2

ω′

ω
(1 − λλq )

(
1 − 2 log

(
Eδ

me

))

+δ2
[
−ω′

E
(λ − λq ) + 2ω(1 − λλq ) + E(λ − λq )

E
log

(
Eδ

me

)]}

+ e6

(2π)4

∫
dω

∫
dω′ δ2

[
λ − λq + ω

E
(1 − λλq )

]

×
(

1

2
− log

(
Eδ

me

))
, (C.83)

which is more simplified

∫ δ

0

d3k

(2π)32ω

(
iAR

1

(
iAR

2

)∗ + h.c.
)

≈ − e6

(2π)4

∫
dω

∫
dω′

{
2
ω′
ω

(1 − λλq )

(
1 − 2 log

(
Eδ

me

))

− δ2

2

[
ω

E
(1 − λλq )

(
1 + 2 log

(
Eδ

me

))

+
(

1 − 2
ω′
E

)
(λ − λq )

]}
. (C.84)

The first log term in the second line of (C.84) is coming
from the phase space integration

∫
d3k/ω. There are no log2

terms and the IR divergent term is coming from the
∫

dω/ω

integration not from the loop integral
∫

dω′. This is conform
with [5,6,36], since the IR term comes from the interference
term of the amplitudes iA1 and iA2,1 + iA2,2 + iA2,5 + iA2,6,
which are the amplitudes where the incoming photon is
attached to a external electron line.

Appendix C.3.2: Full interference term

The unpolarized contribution is given by (C.72) which is now

Fig. 9 Two-loop diagrams at order e5 for a forward scattered electron
with 4-momentum pμ

1

4

∫
d3k

(2π)32ω

[
iAR

1 (λ, λq )
(

iAR
2 (λ, λq )

)∗

+iAR
1 (−λ,−λq )

(
iAR

2 (−λ,−λq )
)∗ + h.c.

]

= − e6

(2π)4

∫
dω

∫
dω′

{
4
ω′
ω

(1 − λλq )

(
1 − 2 log

(
Eδ

me

))

−δ2
[

ω

E
(1 − λλq )

(
1 − 2 log

(
Eδ

me

))]}
. (C.85)

The collinear divergent part is given by

e6

8π4

∫
dω

∫
dω′

{
4
ω′

ω
− δ2 ω

E

}
(1 − λλq) log

(
Eδ

me

)
.

(C.86)

This term does not cancel the KLN anomaly in Eq. (8).

Appendix D: Two-loop amplitude

There are also possible cancelation with two-loop diagrams,
since an interference term of an amplitude of order e and the
two-loop amplitude in Fig. 9 (order e5) is again of order e6.

Appendix D.1: Amplitude iA3,1

From the diagram in Fig. 9 one can read off

iAR/L
3,1 = ie5

(2π)8

∫
d4k d4k′

k2 k′2

× ū R/L
p γ μ(/p − /k′)γ ν(/p − /k′ − /k)εq (/p − /k′ − /k)γν(/p − /k′)γμu

R/L
p

[
(p − k′ − k)2 − m2

]2 [
(p − k′)2 − m2

]2 .

(D.87)

To simplify the amplitude we use the same steps and identities
of “Appendix C.2”. Then the amplitude iAR/L

4,1 is simplified
to

iAR/L
4,1 = −ie5

(2π)6

∫
d3k d3k′

ωω′

× ūL/R
p (/p − /k′)(/p − /k′ − /k)/εq (/p − /k′ − /k)(/p − /k′)uL/R

p

[−2pk′ − 2pk + 2kk′]2 (2pk′)2 .

(D.88)
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As before we will look first at the
∫ 2π

0 dφ′ integration. The
integration is a bit different since the denominator is of the
form

[
a + b cos(φ′ − φ)

]2, where a and b are again inde-
pendent of φ and φ′. Mathematica calculates the nomina-
tor inside the integrals of the amplitude (D.88) and what
we get are terms proportional to the exponential functions
e±i(φ−φq ), e±i(φ′−φq ), e±i(φ′−φ) and e±i(2φ−φ′−φq ).13 The
amplitude iAR/L

3,1 vanishes, since

∫ 2π

0
dφ′ e±i(φ−φq )

[a + b cos(φ′ − φ)]2 = 0 , (D.89)

∫ 2π

0
dφ′ e±i(φ′−φq )

[a + b cos(φ′ − φ)]2 = 0 , (D.90)

∫ 2π

0
dφ′ e±i(φ′−φ)

[a + b cos(φ′ − φ)]2 = 0 , (D.91)

∫ 2π

0
dφ′ e±i(2φ−φ′−φq )

[a+b cos(φ′ − φ)]2 = 0 . (D.92)

Thus, there can only be a contribution from the other diagram
in Fig. 9.

Appendix D.2: Amplitude iA3,2

From the Fig. 9 one can read off that the amplitude is given
by

iAR/L
3,2 = ie5

(2π)8

∫
d4k d4k′

k2 k′2

× ū R/L
p γ μ(/p − /k′)γ ν(/p − /k′ − /k)/εq (/p − /k′ − /k)γμ(/p − /k)γνu

R/L
p

[
(p − k′ − k)2 − m2

]2 [
(p − k′)2 − m2

] [
(p − k)2 − m2

] .

(D.93)

Notice the difference to (D.87). The two last γ -matrices are
exchanged and in the denominator there is a propagator pk.
This differences makes it impossible to directly apply the
identities of “Appendix C.2”. Before using them we will
apply an other γ -matrix identity, γ μγ νγ ρ = ημνγ ρ +
ηνργ μ−ημργ ν−iεσμνργσ γ 5, where ημν is the metric tensor
in Minkowski spacetime, εσμνρ is the Levi–Civita symbol in
4d. With that we rewrite the middle part of the nominator to

(/p − /k′ − /k)εq (/p − /k′ − /k)

= 2(p − k′ − k) · εq (/p − /k′ − /k) − (p − k′ − k)2 /εq . (D.94)

The term with the Levi–Civita symbol is zero since there
is a summation of 2 equal terms, i.e. εαβμνaαaβbμcν = 0.
Once this identity is used one can also apply the identities

13 Notice that the angles of θ and φ are the ones of the on-shell photon
that runs in the loop with momentum k.

of “Appendix C.2”. Putting all together then the amplitude
(D.93) is

iAR/L
3,2 = − ie5

(2π)6

∫
d3k d3k′

2ω ω′ (p − k′ − k) · εq

× ū R/L
p γ μ(/p − /k′)γ ν(/p − /k′ − /k)γμ(/p − /k)γνu

R/L
p

[−2pk′ − 2pk + 2kk′]2 (2pk′)(2pk)

+ ie5

(2π)6

∫
d3k d3k′

2ω 2ω′
ū R/L
p γ μ(/p−/k′)γ ν/εqγμ(/p−/k)γνu

R/L
p

[−2pk′ − 2pk+2kk′] (2pk′)(2pk)
,

(D.95)

where in the second line one −2pk′ −2pk+2kk′ propagator
is canceled by the (p − k′ − k)2 = −2pk′ − 2pk + 2kk′
term in the identity (D.94). Now we use the identities
γ μγ αγ βγ νγμ = −2γ νγ βγ α and γ μγ αγ βγμ = 4ηαβ to
get

iAR/L
3,2 = ie5

(2π)6

∫
d3k d3k′

ω ω′ 2(p − k′ − k) · εq

× ū R/L
p (/p − /k′ − /k)uR/L

p

[−2pk′ − 2pk + 2kk′] (2pk′)(2pk)

− ie5

(2π)6

∫
d3k d3k′

ω ω′
ū R/L
p /εqu

R/L
p

(2pk′)(2pk)
. (D.96)

A small matrix calculation by hand or using Mathematica for
the nominators gives

iAR/L
3,2 = ie5

(2π)6

4E√
1 + cos2 θq

∫
d3k d3k′

ω ω′

×
[
ω′ sin θ ′ cos θqeiλq (φ′−φq ) + ω sin θ cos θqeiλq (φ−φq )

+ E sin θq − ω′ cos θ ′ sin θq − ω cos θ sin θq

]

· 2E − ω(1 + cos θ) − ω′(1 + cos θ ′)
[−2pk′ − 2pk + 2kk′] (2pk′)(2pk)

− ie5

(2π)6

2E sin θq√
1 + cos2 θq

∫
d3k d3k′

ω ω′
1

(2pk′)(2pk)
. (D.97)

The
∫ 2π

0 dφ
∫ 2π

0 dφ′ integration of the first integral of (D.97)
will make this term 0. This can be seen by the following
integrals, where as before the denominator is of the form
a + b cos(φ′ − φ):

∫ 2π

0
dφ

∫ 2π

0
dφ′ eiλq (φ′−φq )

a + b cos(φ′ − φ)
= 0 , (D.98)

∫ 2π

0
dφ

∫ 2π

0
dφ′ eiλq (φ−φq )

a + b cos(φ′ − φ)
= 0 , (D.99)

∫ 2π

0
dφ

∫ 2π

0
dφ′ 1

a + b cos(φ′ − φ)
= 0 . (D.100)

What is left over is the second line of (D.97) as result for the
two-loop amplitude iA4:

123
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iAR
3 = iAL

3 = iAR
3,2 = iAL

3,2

= − ie5

(2π)6

2

E

sin θq√
1 + cos2 θq

log2
(
Eδ

m

)(∫
dω

)2

,

(D.101)

where we performed the angular integration of d3k d3k′ and
we abbreviate

∫
dω
∫

dω′ = (∫
dω
)2. Thus, there is again

no cancelation of the KLN anomaly in Eq. (8).
This means that the two-loop amplitude iA3 from the dia-

grams in Fig. 9 has only a log2(me) divergence. Notice that
this result (D.101) is neither IR divergent, which is conform
with [6], because in the forward limit the B-factor is 0, nor
there are single log(me) divergent terms.
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