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1 Introduction

Let Q cRY be a bounded domain with a C2-boundary 0Q. We study the following parametric anisotropic
(p, @)-equation:

- Ny u(2) — Agmyu(z) = Af(z, u(z)) in Q,
(Py)

Ulajo =0, u>0,A>0.

In this problem, the exponents p and q are Lipschitz continuous on Q, that is, p,q € C>'(Q) and
1< g =ming < ¢, = maxqg < p_ = minp < p, = maxp.
a o
By Ay (respectively Ay(;)) we denote the p(z)-Laplacian (respectively the g(z)-Laplacian) defined by

Apyu = div(|DulP®@-2Du)  Vu € WyP@(Q)
(respectively Ay u = div(|Dult®-2Du) Yu € Wy19(Q)).

In the reaction (right hand side of (P})), f(z, x) is a Carathéodory function (that is, forallx € R, z — f(z, x) is
measurable and for almost all z € Q, x — f(z, x) is continuous), which is (p, — 1)-superlinear in the
x-variable, but need not satisfy the Ambrosetti-Rabinowitz condition which is common in problems with
superlinear reactions. Also, A > 0 is a parameter. We are looking for positive solutions of (P,). More precisely,
our aim is to determine the precise dependence on the parameter A > 0 of the set of positive solutions. We
prove a bifurcation-type result, which establishes the existence of a critical parameter value A* > 0 such that

e for all A € (0, A*) problem (P;) has at least two positive solutions;
e for A = A* problem (P;) has at least one positive solution;
e for all A > A* there are no positive solutions for problem (P,).
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Our work here extends those of Gasifniski-Papageorgiou [1,2], who studied parametric equations driven
by the isotropic p-Laplacian with a (p — 1)-superlinear reaction. Nonlinear, nonparametric superlinear
equations were also considered by Mugnai-Papageorgiou [3], Papageorgiou-Radulescu [4], Papageorgiou-
Scapellato [5] (isotropic problems) and Gasifiski-Papageorgiou [6], Papageorgiou-Radulescu-Repovs [7],
Papageorgiou-Vetro [8] (anisotropic problems). They prove multiplicity results, producing also nodal (that
is, sign changing) solutions. Also, we mention the relevant studies of Bahrouni-Radulescu-Repovs [9]
(existence of infinitely many solutions for anisotropic Dirichlet problems), Papageorgiou-Vetro-Vetro [10]
(produce a continuous part of the spectrum for the Robin (p, g)-Laplacian), Vetro [11] (dealing with the
asymptotic properties of the solutions of nonhomogeneous parametric isotropic equations), Vetro [12]
(existence of a solution of an anisotropic Dirichlet problem), Vetro-Vetro [13] (a three-solution theorem for
(p, q9)-equations) and Vetro [14] (an infinity of solutions for isotropic (p, g)-equations).

Equations with variable exponents arise in many physical models. We refer to the book of Ruizicka [15]
for such meaningful examples. The analysis of such problems requires the use of Lebesgue and Sobolev
spaces with variable exponents. A comprehensive presentation of such spaces can be found in the book of
Diening-Harjulehto-Hast6-Ruzicka [16] (see also the survey paper of Harjulehto-Hasto-Lé-Nuortio [17]).
Various parametric boundary value problems with variable exponents can be found in the book of
Radulescu-Repovs [18]. Finally, we mention that we encounter (p, g)-equations (both isotropic and
anisotropic), in many problems of mathematical physics. We refer to the studies of Bahrouni-Radulescu-
Repovs [19] (transonic flow problems), Benci-D’Avenia-Fortunato-Pisani [20] (quantum physics), Cherfils-
II’'yasov [21] (reaction-diffusion systems) and Zhikov [22] (elasticity theory). We also mention the two
informative survey papers by Marano-Mosconi [23] (isotropic problems) and Radulescu [24] (isotropic and
anisotropic problems).

2 Mathematical background — hypotheses

Let M(Q) be the space of measurable functions u : Q — R. We identify two such functions that differ only
on a set of zero Lebesgue measures. Also, let

Ei={reCQ:1<r.= mﬁinr}.

In the sequel given r € C(Q), we define

r-=ming and r, = maxq.
o o
Given r € E;, the variable exponent Lebesgue space L'@(Q) is defined as follows:
LI'@@Q) ={u e M(Q) : J uf®@dz < +oo}.
o
This space is equipped with the so-called “Luxemburg norm” defined by
A

r(z)
lulis = inf {2 >0+ | [Mj dz <1l
Q

Furnished with this norm, the space L@ (Q) becomes a separable, reflexive (in fact, uniformly convex)
Banach space. Let ' € E; be defined by % + r,l(z) = 1. We know that L'@(Q)* = L@ (Q) and we have the
following Holder-type inequality:

I uhdz | < (rl + %jnun,(z) Ikl Vu e '@, hel @Q).

Q
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If n, 1 € E; and 1(2) < n(z) for all z € Q, then the embedding L@ (Q) < I"®(Q) is continuous.
Using the variable exponent Lebesgue spaces, we can define in the usual way the variable exponent
Sobolev spaces. So, if r € E;, then we define

WL@(Q) = {u € I'@(Q) : |Du| € L'@(Q)}
(where the gradient Du is understood in the weak sense). This space is equipped with the following norm:
”u"l,r(z) = "u”r(z) + " IDu“Ir(z)'

In the sequel for notational simplicity, we write [|Dull,;) = |[|Dulll.). Suppose that r € E; is Lipschitz
continuous (that is, r € E; n C%YQ)). Then we define

Wé,r(z)(Q) - mll-lh,ru).

Both Wtr@)(Q) and Wé”(z)(Q) are separable, reflexive (in fact uniformly convex) Banach spaces.
For the space W3"®(Q), the Poincaré inequality holds, namely

”u"r(z) < Co "Du"r(z) Yu € Wé,r(z)(Q)’

for some ¢y > 0. So, on W&”(Z)(Q) (recall that r € E; n C%(Q)), we can consider the following equivalent
norm:

”u"l,r(z) = ||Du"r(z) Yu € Wé,r(z)(Q).
For r € Ej, the critical Sobolev exponent corresponding to r is defined by

Nr(z) .
r(z) = | N-r@ if r(z) <N,
+oo if N<r(z).

Suppose thatr € E; n C%YQ), p € E;, p, < N and 1 < p(z) < r*(z) (respectively 1 < p(z) < r*(z)) forall z € Q.
We have

Wy (Q) < LP®(Q) continuously

(respectively: compactly).
Useful in the analysis of these variable exponent spaces is the following modular function:

0,) = j|u|’<z>dz Vi e IO(Q),
Q

with r € E;. We write p,(Du) = p,(|Dul).
There is a close relation between this modular function and the norm. We assume r € E;.

Proposition 2.1.

(@) Nl = A & 0,(%) =1 for allu € (@), u #0.

(b) llulyz <1 (resp.=1,>1) & p,(u) <1 (resp. =1, > 1).
(©) lulbe <1 = lull, <e,0) < lully.

@ lulvzy > 1= lulie) <o) < lully,.

(e lunllz — 0 < o,(un) — 0.

N luplrez — +oo © @,(uy) — +oo.

N

More details can be found in the book of Diening-Harjulehto-Hast6-Ruizicka [16].
Consider the map Ay : We™@(Q) — WE@(Q)* = W"?(Q) defined by

(Arizy ), hY = I |Duf®-2(Du, Dh)gvdz  Vu, h € WEP(Q).
Q
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This map has the following properties (see Gasinski-Papageorgiou [6, Proposition 2.5] and Radulescu-
Repovs [18, p. 40]).

Proposition 2.2. The map A, : Wy'@(Q) — W' (Q)* is bounded (that is, maps bounded sets to bounded
sets), continuous, strictly monotone (hence maximal monotone too) and of type (S),, that is, “u, X uin
Wy"@(Q) and lim sup{A,) (un), u, — uy < 0, imply that u, — u in Wy'@(Q).”

n—+oo

In addition to the variable exponent spaces, we will also use the Banach space
Co(Q) = {u € CYQ) : ulyo = O}
This is an ordered Banach space with positive (order) cone

C,={ueCiQ):ulz) =0 for all ze Q}.
< 0},
b

[u,v] = {h € WE@(Q) : u(z) < h(z) < r(z) for a.a. z € Q},

This cone has a nonempty interior given by

intC+={ueC+:u>O,a—u

on

with n being the outward unit normal on 0Q.
Given u, v e W@ (Q) with u < v, we define

W) = {h e WE@(Q) : u(z) < h(z) for a.a. z € Q.

If hy, h, : Q — R are measurable functions, then we write h; < h;, if for every compact set K < Q, we have
0 < cx < hy(z) — ly(z) for almost all z € K. Evidently, if hy, h, € C(Q) and hi(z) < hy(z) for all z € Q,
then h1 < hz.

A set S ¢ WiPP(Q) is said to be “downward directed,” if for u;, u, € S, we can find u € S such that
U<, U< .
By |-|y we denote the Lebesgue measure on RY and by |- |l the norm of W3P@(Q).

In the sequel for notational economy, by ||-|| we denote the norm of the Sobolev space Wé’p(z)((l). Recall
that

lull = IDullye) Vu € WHPE(Q).
If X is a Banach space and ¢ € CY(X), then we set
Ky={ueX:q¢'=0}
(the critical set of ¢). We say that ¢ satisfies the “Cerami condition,” if the following property holds:
“Every sequence {up}n>1 € X such that {¢p(u,)}n>1 € R is bounded and
A+ uplx)@'uy) —» 0 in X* as n — +oo,
admits a strongly convergent subsequence.”

Now we introduce the hypotheses on the data problem (P,).
Ho: p,q € E1n C%YQ), ¢, < p_.
H;: f: QxR — R is a Carathéodory function such that f(z, 0) = 0 for a.a. z € Q and
i) fz,x)<a@) (@ +xY)foraa.zeQ,all x>0, witha e L°(Q) and p, <r < p*(z) for all z € Q;

(i) if F(z, x) = jo f(z, s)ds, then

lim £&X)

= +o0o uniformly for a.a. z € Q;
x—+oo  XF+
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(iii) if o(z, x) = f(z, x)x - p.F(z, x), then there exists n € L}(Q) such that
0(z,x) < o(z,y) + n(z) for a.a. ze Q, all 0 < x<y;
(iv) for every s > 0, there exists ms > 0 such that
f(z,x) >mgs >0 for a.a. ze Q, all x > s,
and

lim f(z, x)

= +oo uniformly for a.a. z € Q;
x—0* x%1

(v) for every p > 0, there exists 59 > 0 such that for a.a. z € Q, the function x — f(z, x) + .{AQXP(Z)‘I is

nondecreasing on [0, .

Remark 2.3. Since we want to find positive solutions and the aforementioned hypotheses concern the
positive semiaxis R, = [0, +00), without any loss of generality, we may assume that

f(z,x) =0 for a.a. z€ Q, all x<O. 2.1)

Hypotheses H,(ii), (iii) imply that f(z, -) is (p, — 1)-superlinear. Usually in the literature, such problems are
treated using the well-known Ambrosetti-Rabinowitz condition (see Ambrosetti-Rabinowitz [25]). Here
instead we use the less restrictive condition Hi(iii), which is an extension of a condition used by Li-Yang
[26]. This quasimonotonicity condition on the function o(z, -) is equivalent to saying that there exists
M > 0 such that for a.a. z € Q, the quotient function x — ’; (;’f‘l) is nondecreasing on [M, +co). This
superlinearity condition incorporates in our framework superlinear nonlinearities with “slower” growth
near + oco. For example, consider the following function:

xT@-1 if 0<x<1,

xP-1n x + x*)-1 if 1 < x

fz,0) = {
(see (2.1)), with 7, u € E; and 1, < q_, u(z) < p(z) for all z € Q. This function satisfies hypotheses H;, but
fails to satisfy the Ambrosetti-Rabinowitz condition.
We introduce the following two sets:
L = {A > 0 : problem (P,) admits a positive solution},
Sy = the set of positive solutions of (P;).
Also, we set

A =sup L.

3 Positive solutions

We start by showing that the set of admissible parameters £ is nonempty. Also, we determine the regularity
properties of the elements in S;.

Proposition 3.1. If hypotheses Hy, Hi(i), (iv) hold, then L + & and for every A > 0, S; € int C,.

Proof. We consider the following auxiliary Dirichlet problem:

{—Apu)u(z) - Agpu(z) =1 in Q,

(3.1)
u|ag =0.
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The operator u > Ay () + Ay () from WyP@(Q) into WyP@(Q)* is continuous, strictly monotone (hence
maximal monotone too) (see Proposition 2.2) and coercive. So, it is surjective (see Gasinski-Papageorgiou
[27, Corollary 3.2.31, p. 319]). Hence, we can find & € W&’p(z)(Q), o > 0, i # 0 such that

Ap) (@) + Agy (@) = 1 in WHPD(Q).

The strict monotonicity of the operator implies that this solution is unique. So, & is the unique positive
solution of (3.1). Theorem 4.1 of Fan-Zhao [28] implies that &t € L*°(Q). Then from Fukagai-Narukawa [29,
Lemma 3.3] (see also Tan-Fang [30, Corollary 3.1] and Lieberman [31] for the corresponding isotropic
regularity theory), we have that 1 € C3*Q) = C%Q) n CAQ) with « € (0, 1). Hence, i € C,\{0}. From the
anisotropic maximum principle (see Zhang [32]), we obtain that & € int C,.

Let m = |f(-,u(-))lle (see hypothesis Hi(i)) and choose Aq > 0 such that Aom < 1. We have

- p(z)ﬁ - Aq(z)ﬁ Z /lf(Z, u)in Q, (3.2
for all A € (0, Ap]. We introduce the Carathéodory function g(z, x) defined by

flz,x*) if x <1(z),

f(z, u(z)) if a(z) < x. (3.3)

8(z,x) = {

We set
G(z, x) = '[g(z, s)ds
0

and for all A € (0, Ao] consider the C'-functional ¢, : Wé”’(z)(Q) — R defined by

¢ = IL|Du|p<Z>dz + IL|Du|q<Z>dz - jAG(z, wdz Yu e WHPO(Q).
! p() ! q(z) !

From (3.3) and Proposition 2.1, it is clear that ¢, is coercive. Also, the anisotropic Sobolev embedding
theorem implies that ¢, is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli
theorem, we can find u; € Wi**(Q) such that

Q) = i i@ (3.4)

Hypothesis Hi(iv) implies that given any 6 > 0, we can find § = §(6) € (0, 1) such that

F(z, x) > ixqf for a.a. z€ Q, all 0 <x<6é. (3.5)
q

Let u € int C,. Since @ € int C,, using Proposition 4.1.22 of Papageorgiou-Radulescu-Repovs [33, p. 274],
we can find t € (0, 1) small such that

tu(z) < min{i(z), 6} for all z € Q. (3.6)

From (3.3), (3.5) and (3.6) and since t € (0, 1), we have
N t%-
Bi(t) < (@, (Du) + 0(Dw) - Olulf).

Since 6 > 0 is arbitrary, choosing 6 > O big from the aforementioned inequality, we infer that
@,(tu) < 0,
so
P, (up) < 0 = 9(0)

(see (3.4)) and thus u, # 0.
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From (3.4), we have
@(wp) = 0,
SO

Apy W), By + Agery W), by = ng(z, w)hdz Vh e WyP?(Q). 3.7)
Q

We test (3.7) with h = —ujy € WY@ (Q) and obtain
0,(Duy) + g (Duy) = 0,

so uy = 0, uy # 0 (see Proposition (2.1)).
Next in (3.7) we choose h = (u) — )" € WiP“(Q). We have

CApry W), Uy — W) + (Age) (W), (up — 1))

- j Nz @)y — Yz < Ay (@), (W — B + Agey @), (g — D)
Q

(see (3.3) and (3.2)), so

I

u <
So, we have proved that
u, € [0, ], uy # 0. (3.8)

From (3.8), (3.3) and (3.7), it follows that u, is a positive solution of (P,). As before using the anisotropic
regularity theorem (see Fan-Zhao [28], Fukagai-Narukawa [29]) and the anisotropic maximum principle
(see Zhang [32]), we obtain that u, € int C,.

Therefore, we conclude that

and

S cintC, A>0. O

Next, we show that £ is connected.
Proposition 3.2. If hypotheses Hy, Hi(i), (iv) hold, A € £L and O < u < A, then u € L.

Proof. Since A € £, we can find u; € S; € int C, (see Proposition 3.1). We introduce the Carathéodory
function & defined by

g(z,x) = (3.9

flz,up(2)) if wa(z) < x.

. { fz,x") if x <upz),
We set
Gz, x) = jg(z, s)ds
0

and consider the C'-functional @, : WP (Q) - R defined by

B,(u) = Iiwuwz)dz " jL|Du|q<Z>dz - jyé(z, wdz Vu e WO Q).
A p(2) ! q(2) !
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On account of (3.9) and Proposition 2.1, (ﬁy is coercive. Also, it is sequentially weakly lower semicontinuous.
So, we can find u, € Wy??(Q) such that

(ﬁy(u]l) = ueVIV.f)ll‘Il’(I})(Q) (py(u) < O = (py(o)

(see the proof of Proposition 3.1), thus u, # 0. We have
@) =0
and from this as in the proof of Proposition 3.1, using (3.9), we obtain
u € [0,uy], uy,#0,
S0
u, €S, < intC,
(see (3.9) and Proposition 3.1), hence u € L. O

A byproduct of the above proof is the following monotonicity property of the solution multifunction
A S).

Corollary 3.3. If hypotheses Hy, Hy(i), (iv) hold, A € L, uy € S € intC, and O < u < A, then y € L and we
can find u, € S, < int C, such that uy, < uy.

We can improve this monotonicity property, if we bring in the picture hypothesis H(v).
Proposition 3.4. If hypotheses Hy, Hy(i), (iv), (v) hold, A € L, uy € S € intC, and O < u <A, then y € £

and there exists u, € S, < int C, such that

uy — uy € int C,.

Proof. From Corollary 3.3, we already know that y € £ and that there exists u, € S, < int C, such that
u, < up. Let g = [luplloo and let fg > 0 be as postulated by hypothesis H;(v). We have

Doty = Dyt + EuPP™ = pf(z,w)) + Euf® ™ = M(z,w) + LuPP™ - (A - Wf(z, u)

! ; (3.10)
<Mz, w) + §ufD A = Wf (2, w) < ~Bpeyn = Dy + Euf® !

(see hypothesis Hi(v)). Since u, € int C,, on account of hypothesis Hy(iv), we have that
0 <@ = Wf(u(-)).

Then from (3.10) and Proposition 2.4 of Papageorgiou-Radulescu-Repovs [7], we conclude that u; — uy €
int C,. =

Next for every A € £, we will produce a smallest (minimal) positive solution for problem (P;). To this
end, we need some preparation.
Hypotheses Hi(i), (iv) imply that given S > 0, we can find ¢ = ¢(8) > O such that

flz,x) =2 x4 1 - gx™! for a.a. z€ Q, all x> 0. (3.11)

Motivated from this unilateral growth estimate for f(z, -), we consider the following auxiliary Dirichlet
problem:

- Ay u(2) — Agyu(z) = ABu(z)?! - qu(z)™") in Q,
(Qn)

Ulpg = 0, u>0,1>0.
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Proposition 3.5. For every A > 0, we can choose 8 = B(A) > O big such that (Q;) has a unique positive solution
ﬁ,\ € int C+.

Proof. First we show the existence of a positive solution. To this end, we consider the C!-functional
o : WiPP(Q) — R defined by

A
E||u*||$ - —ﬁllu*llgj Vu € WyP@(Q).

o) = I LIDuP’(Z)dz + j L|Du|q(z)dz "
! p@) ) 4@ r q

Since q_ < q(z) < p(z) < p. < r for all z € O (see hypothesis Hy), we see that g, is coercive. Also, it is
sequentially weakly lower semicontinuous. So, we can find iy € Wy*®(Q) such that

oi(tiy) = min oy (u).
) ueWir@ Q) (W) (3.12)

Consider u € C, with |Ju, < 1. For t € (0, 1), we have

tully

tpr- t9- A
a(tu) < —o,(Du) + —(g,(Du) - ABlulg) + =2
p7 q r

te- A
< (D) + 0, (Du) ~ ABlul) + SRl

and obtain
Allu i

Recall that > 0 is arbitrary. So, we choose f; >

o(tu) < Aat’ — gt
for some ¢, ¢; > 0. Since g_ < r, choosing t € (0, 1) small, we have
oy(tu) < 0,
so
ai(iia) < 0 = 6x(0)

(see (3.12)), hence iy + O.
From (3.12), we have

oyt = 0,
)

ooy (@), By + g (@), 1) = ABy I (@)% hdz - Aq j @)y-hdz vhe WHPOQ).  (3.13)
Q Q

In (3.13), we choose h = —ii- € Wy??(Q) and obtain
0,Diiy) + 0 (D) = O,
so iy = 0, @iy # O (see Proposition 2.1).

Then from (3.13) we infer that @, is a positive solution of (Q,). Moreover, as before the anisotropic
regularity theory and the anisotropic maximum principle imply

iy € int C,. (3.14)
Let V) € WEP@(Q) be another positive solution of (Q;). Again we have
Vy € int C,. (3.15)
We consider the integral functional j : L'(Q) —» R = R U {+oo} defined by
I ﬁwuq‘, [P@ dz + _[ %lDuﬂq(z)dz if u>0,usr e WHPA(Q),

j) =<+ 0

+ 00, otherwise.



DE GRUYTER Positive solutions for parametric (p(2), g(z))-equations = 1085

From Theorem 2.2 of Takac-Giacomoni [34], we have that j is convex. Let
domj = {u € LI(Q) : j(u) < +oo}
(the effective domain of j). From (3.14), (3.15) and Proposition 4.1.22 of Papageorgiou-Radulescu-Repovs
[33, p. 274], we have
L} € L®(Q), @ € L®(Q).
17 i)
Let h € C}Q) with [kl € WEP@(Q). For ¢ € (0, 1) small, we have
i} + th e domj and v} + th € domj.
Choose h = i} — V. Evidently,
heC)Q) and || <af + V.
We have
lhle < iy + W,

so |hle- € WiP@(Q).
Then on account of the convexity of j, it is Gateaux differentiable at iij- and at V{- in the direction
h= ﬁ,{’* - 17}*. Moreover, we have (see also Takac¢-Giacomoni [34])
—Dpyliy — Dgzy
R e
0 e

—Npyiy W — D)V,
Jagm = [ 200 A g,
Q V/{Iii
The convexity of j implies the monotonicity of j'. Hence,

<Agq I @1 - - al)dz <0
(recall that g_ < r), so
liy = Wy,

thus iy € int C, is the unique positive solution of (Q,). O

Using iy € int C, from Proposition 3.5, we can have a lower bound for the elements of S;.
Proposition 3.6. If hypotheses Hy, Hy(i), (iv), (v) hold and A € L, then iiy < u for all u € S,.
Proof. Let u € S;. We introduce the Carathéodory function k(z, x) defined by

Kz, x) = {ﬁ(X*)q - a1t if x <u(z),

Bu(z)+1 - qu(zy! if u(z) < x. (3.16)

We set

K(z, x) = J k(z, s)ds

and consider the C!-functional y, : Wy*®(Q) — R defined by
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YW = j L pupr@dz + j L puperqz - I/\K(Z, wdz Vu e WPOQ).
! p(2) A q(z) A

From Proposition 2.1 and (3.16) it is clear that y, is coercive. Also, it is sequentially weakly lower semicon-
tinuous. So, we can find i, € W&’p(z)(Q) such that

N = s n. (3.17)

As before (see the proof of Proposition 3.5), we have
Y}l(a/l) <0= Y}[(O)a

so iy # O.
From (3.17), we have

yy@p) =0,

SO

Ay @), Y + {Agey @), by = A I kz, p)hdz  Vh € WEPD(Q). (3.18)
Q

We test (3.18) with h = —ii; € W3?“(Q) and obtain
0,(DF;) + 0 (DF}) = 0
(see (3.16)), so iy = O, iy # O.
Next in (3.18) we choose h = (&l — u)* € W3?“(Q). Then

Ay (@), (M — W) + (Agey (@), M — W'y = f APud-—1 — qu N (@ - u)dz < f Mz, u) (i — u)tdz
Q Q

= Apy (W), [Ty — W) + Ay (W), (T — w*)

(see (3.16), (3.11) and use the fact that u € S), so @, < u (see Proposition 2.2).
So, we have proved that

i € [O,u], 1wy #O. (3.19)
From (3.19), (3.16) and (3.18), it follows that i, is a positive solution of (Q,), hence @iy = iy (see
Proposition (3.6)). We conclude that iy < u for all u € S,. O

Now we are ready to produce the minimal positive solution of problem (Py), A € L.

Proposition 3.7. If hypotheses H,, Hi(i), (iv), (v) hold and A € L, then problem (P)) admits a smallest
positive solution uy € S; < int C, (that is, uy < u for all u € S).

Proof. From Papageorgiou-Radulescu-Repovs [35] (proof of Proposition 7; see also Filippakis-
Papageorgiou [36]), we know that S, is downward directed. So, by Lemma 3.10 of Hu-Papageorgiou [37,
p. 178], we can find a decreasing sequence {u,},>1 € S such that

infS) = infu, (3.20)

nz1
and
Up<u,<u; VvneN (3.21)

(see Proposition 3.6). We have

(Apzy (Un), by + (Agez) (Un), hY = J/lf(z, u)hdz Vh e WpP9(Q), n e N. (3.22)
Q
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In (3.22), we use h = u, € Wi*?(Q). From (3.21), hypothesis Hi(i) and Proposition 2.1, it follows that the
sequence {Up}ps1 S W&’p(z)(Q) is bounded.
So, we may assume that

Uy > uf in WAPE(Q) and wu, — u} in LP@(Q). (3.23)
We test (3.22) with h = u, — uj € W&’p(z)(Q), pass to the limit as n — +co and use (3.23). We obtain

lim (<Ap(z) (un): Un — u;lk> + <Aq(z) (un), Un — u;{>) = 0,
n—+oo

SO

1imsup(<Ap(z) (un)a Up — u;{> + <Aq(z) (u/’lk): Un — u;>) <0

n—+oo
(since Ay, is monotone), thus

limsup{Ap(z;) (Un), un — U;» <0

n—+oo
(see (3.23)) and hence

u, - uj in Wrr9Q) (3.24)
(see Proposition 2.2).

Then passing to the limit as n — +oo in (3.22) and using (3.24) and (3.21), we obtain

Loy W), 1 + Ay (), B = f M uphdz  Vh € WP (Q),
Q

o)
Uy s uy
and hence

uy € S ¢ intC,, uj=infS,. O

We consider the map A — uj from £ into CLQ).

Proposition 3.8. If hypotheses Hy, Hy(i), (iv), (v) hold, then the map A — uj from £ into C}(Q) is
(a) strictly increasing (that is, if 0 < u < A € L, then uj — u; € int C,);
(b) left continuous.

Proof. (a) Suppose that 0 < u <A € L. Let uy € S; € int C, be the minimal solution of problem (P,) (see
Proposition 3.7). According to Proposition 3.4, we can find u, € S, < int C, such that

uy — uy € intC,,
o)

Uy —uy € intC,
and hence the map A — j is strictly increasing.

(b) Let A, — A~ with A € L. Letu, = u, € int C, for all n € N. From part (a) and hypothesis H(i), we see
that the sequence {u;},s1 < WiP®(Q) is bounded.

Then from the anisotropic regularity theory (see Fukagai-Narukawa [29] and Tan-Fang [30]), we can
find a € (0, 1) and ¢, > O such that
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uy € Cy*(Q), luyllgre@ < ¢4 VneN.
Exploiting the compactness of the embedding C}%Q) ¢ C)(Q), we have
u; — 4 in C{(Q). (3.25)
Evidently @i} € S). If @iy # uj, then we can find z € Q such that
Ui(zo) < U3(zo),
S0
Ui(zo) < up(zo) Vn =no
(see (3.25)). This contradicts part (a). So, the map A — uj is left continuous. O
So far, we only know that £ is nonempty and connected. We do not know if it is bounded or not. The

next proposition shows that £ is bounded. In what follows, by ¢, : Wy?“(Q) — R we denote the energy
(Euler) functional of problem (P,) defined by

) = f L pupdz + Iquyﬂz)dz - I/\F(Z, wdz Vu e WpPP(Q).
! P@) ! 42) !

Proposition 3.9. If hypotheses Hy, H; hold, then A* < +co.

Proof. We argue by contradiction. So, suppose that A* = +co (that is, £ = (0, +00)). Let {A;}n>1 € L be
such that A,/ + co. Then on account of Proposition 3.8 and hypothesis H;(ii), we can find a nondecreasing
sequence u, € S, < int C, for n € N such that

(pAn(un) <c VneN, (3.26)
for some ¢; > 0 and
‘PAI,,(”") =0 VneN, (3.27)
From (3.27), we have
Apy (Un), by + (Agz)(Un), h) = A If(Z, u)hdz Vh € WP (Q). (3.28)
Q

We test (3.28) with h = u, € WP (Q). Then

- ,(Duy) — 0 (Duy) + An '[f(z, Upu,dz =0 VneN, (3.29)
Q

Also from (3.26), we have

I %IDMHIP(Z)dZ + I %IDunlq(Z)dz - Ay J. F(z,up)dz <c; VneN,
z z
p o ? Q

SO

1
0, + 0, D) = Ao j Flz,u)dz <cs Vn eN,
* Q

thus

0,(Dun) + 0,Dun) - A | PP u)dz < prcs meN. (330)
Q
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Adding (3.29) and (3.30), we obtain

An '[ oz, up)dz < p,cs VneN

SO

I o(z, uy)dz < % vn e N, (3.31)

n
Q

Suppose that the sequence {u,},>1 € Wé'p(z)(Q) is not bounded. We may assume that

lu,ll = +oco as n — +oo. (3.32)

We set y, = for n € N. Then ||y, |l =1, y, > O for all n € N. We may assume that

H |I

Y, >y in WPPQ) and y,—y in LP@(Q),y > O. (3.33)
First suppose that y # 0. Let Q-= {y > O}. Then IQIN > 0 (see (3.33)) and u,(z) — +oo for almost all z € Q.
On account of hypothesis Hi(ii), we have

F(z,u,(z))  F(z, up(z))

= Vo(2) —» +00 for a.a. z € Q.
|2ty [[P- Un(z)?"

Then by Fatou’s lemma, we have

F(z, uy)

noteo J o [lun [
Q

= +0o. (3.34)

Hypotheses H(i), (ii) imply that we can find cs > 0 such that

F(z, x)

5 > -c¢ for a.a. ze Q, all x> 0. (3.35)
X

We have

FEu) g, (E@y,  [(EGUw) g o (F@W g o yp e
g 1P+ S un P I 0 Mot 1P+
Q Q O\Q Q

for some ¢; > 0 (see (3.35)), so

F(z, uy)

n—+oo J - lup [P+
Q

= +00 (3.36)

(see (3.36)). From (3.29), we have

_[ I ynl(Z)—I Dy, 7@ + Ay, Iﬂz UdUng. 0 wneN,
llun ||”* P llu ||p 4@ [lun [P

SO

A, [fEWUyg e,

llun [P+

for some cg > 0 (see (3.32), recall that g, < p(z) < p, for all z € Q), thus
J‘ pF@z u)

0| - Ml €cg VneN
n

(see hypothesis Hi(iv) and recall that u, > 0), hence
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J‘ p.F@z uy) o

+ vn e N,
0[P }ln 771k (3.37)

Comparing (3.36) and (3.37), we have a contradiction.
Next suppose that y = 0. We consider the C'-functional ¢} : WP (Q) - R defined by

G = —0,D) - A [Fz,wdz vu e WEP(@).
2

Evidently, we have

Py <@ YA>O. (3.38)
Let 9,(t) = 40;,1 (tu,) for all t € [0, 1], all n € N. We can find ¢, € [0, 1] such that

9,(t,) = max 9,(t).

o<t<1
Let B > 1 and set
Va(2) = 2B)roy,(z) Vn €N,
Clearly, we have
Vs — 0 in LP®(Q)

(see (3.33) and recall that y = 0), so

I Fz,v)dz > 0 as n — +oo. (3.39)
Q

From (3.32), we see that we can find ng € N such that

vn = ne, z € Q.

e I n”

It follows that

1
n(tn) = Sn[%J Vn =z ngp,z € ﬁ,

it
SO
03 (tattn) > 95 ((@B)y;) = @5, () ¥ > o,
thus
. 2B
i, ) > >~0,(Dy,) - [Femdz vnzn,
+
and hence

(p/{n(t,,un) > ﬁ Yn =n; = ng (3.40)

(see (3.39) and Proposition 2.1(a)).
Since § > 1 is arbitrary, from (3.40) we infer that

(p;"(tnun) — 400 as n — +oo. (3.41)
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We have
O<twu, <u, vneN,
so
o(z, taup) < 0(z, uy) + n(z) for a.a. ze Q, all neN

(see hypothesis H,(iii)), so

Jotz. trnz < [0tz undz + < e vmen (3.42)

Q Q
for some cg > O (see (3.31)). We know that

(p;‘n(O) =0 and (p;‘n(un) <¢ VneN (3.43)

(see (3.26) and (3.38)). Then from (3.41) it follows that ¢, € (0, 1) for all n > n,. Therefore, we can say that

d
0=t E(p,\n(tun) |t:t,,s

SO

{py) (tatty), trttn) = 0

(by the chain rule), thus

QP(D(tnun)) + Qq(D(tnun)) - An -[f(Z, tnun)(tnun)dz =0 Vvnz n;
Q

and hence

D@y (talty) S Co VN 2y (3.44)

(see (3.42)).
We compare (3.41) and (3.44) and have a contradiction. This proves that the sequence {up}n>1<

WiP@(Q) is bounded. Recall that
Apy (Un) + Agzy(Un) = AnNp(un)  in WP@(Q)* Wn €N,
with N(up) () = f(-,us(+)) (the Nemytskii map corresponding to f). From Proposition 2.2, it follows that
AnlINf(un)ll < 6o Vn €N
for some ¢y > 0. Since u, > y; € int C,, on account of hypothesis Hy(iv) and since A, — +0o, we have
AnlINf(un)lle — +00,

a contradiction. This proves that A* < +co. O

According to Proposition 3.9, we have

(0, A) € L < (0, A*].

Proposition 3.10. If hypotheses Hy, H, hold and A € (0, A*), then problem (P)) has at least two positive
solutions

~

Ug, U € int C,, ug <, ug # u.

Proof. Let 1,9 € (0,A*), A < 9. We have A, 9 € £. We can find ug € Sy € int C, and uy € S, ¢ int C, such
that

ug — ug € int C,
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(see Proposition 3.4). We introduce the Carathéodory function g(z, x) defined by

2z, x) = { f(z,uo(2)) if x < uo(2), (3.45)

f(z,x) if up(z) < x.

We set
G(z, x) = _[g(z, s)ds
0

and consider the C'-functional ¥, : W-P&)(Q) — R defined by

Y w) = jquW)dz + jimuw@)dz -2 J.G(z, wdz Vu e Whr@(Q).
! p(2) ! qz) A

Using (3.45) and the anisotropic regularity theory, we obtain
Ky, < [uo) N int C,. (3.46)

We introduce the following truncation of g(z, -)

n 8(z, x) if x < uo(2),
» X) = . 3.47
8 {g(z, wo(2)) if uo) < x. G4D
This is a Carathéodory function. We set
X
G(z, x) = Ig(z, s)ds
0
and consider the C'-functional i, : WP (Q) — R defined by
lﬁA(u) = leDulp(z)dz + ILlDulq(z)dz -A J-G(z, w)dz VYu e Whr@(Q),
p(2) q2)
Q Q Q
For this functional, we have that
Ky, < [uo, ug] n int C.. (3.48)
We may assume that
Ky, 0 [uo, ug] = {uo}. (3.49)

Otherwise, on account of (3.46) and (3.45), we see that we already have a second positive smooth solution
bigger than ug and so we are done.

The functional 1/3/1 is coercive (see Proposition 2.1 and (3.47)). Also, it is sequentially weakly lower

semicontinuous. So, we can find i, € Wé’p(z)(ﬂ) such that

i) = min u,
P, (o) uer'p(z)(Q)l/JA( )

so 1l € Ky, < [ug, ug] N int C, (see (3.33)).
Note that
~l
‘/’,{ |[uo,us] = ':b,\ |[uo,us]

(see (3.45) and (3.47)). So, it follows that iip = ug (see (3.49)).
Since ug — ug € int C,, we see that

Uo is a local C}(Q)-minimizer of y,,
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S0
U is a local Wy*®(Q)-minimizer of i),

(see Gasinski-Papageorgiou [6] and Tan-Fang [30]).
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(3.50)

From (3.46), we see that we may assume that Ky, is finite (otherwise we already have infinity of
positive smooth solutions bigger than uy and so we are done). Then on account of (3.50) and using
Theorem 5.7.6 of Papageorgiou-Radulescu-Repovs [33, p. 449], we can find p € (0, 1) small such that

U(uo) < inf{yhy(u) : llu — uoll = @} = my.
Also, if u € int C,, then from (3.45) and hypothesis H;(ii) we have that

Y (fu) - —co as t — +oo.

Claim. 1, satisfies the Cerami condition.

Consider a sequence {uy}ns1 € Wé'p(z)((l) such that
()l <cn VneN,
for some ¢; > 0, so
A + lun ;) —» 0 in WpPP(Q)* as n — +oo.
From (3.54), we have

enllhll

vh € WiPE(Q),
1+ lugl

ooy (), b + Ay W), By — A f gz, uhdz | <
Q

with &, — 0*. In (3.55), we use h = —u,, € Wé’p(z)(Q) and obtain
0,(Duy) + @,(Duy) < 2 VneN,
for some ¢, > O (see (3.45)), so
the sequence {u;}ns1 € WEP@(Q) is bounded

(see Proposition 2.1).
Next in (3.55) we choose h = u,; ¢ W@ (Q). Then

—Qp(Dun*) - Qq(Du;) +A jg(z, uupdz<e, vneN,
Q

o)
—Qp(Du,f) - Qq(Du;) +A Jf(z, uupdz < ¢z VneN,
Q
for some ¢;3 > 0.
From (3.53), (3.56) and (3.45), we have
Qp(Dun*) + Qq(Du,f -A .[pj(z, u)dz< gy VneNn,
Q
for some ¢, > 0.

We add (3.57) and (3.58) and obtain

A I o(z,uy)dz< s VneN,
Q

for some ¢;5 > 0.

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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Using (3.59) and reasoning as in the proof of Proposition 3.9 (see the part of the proof after (3.31) up to
(3.44)), we obtain that

the sequence {u,} ¢ Wcl,'p(z)(Q) is bounded. (3.60)
Then (3.50) and (3.60) imply that
the sequence {u,} ¢ Wi*?(Q) is bounded.
So, we may assume that
Uy > u in WHP(Q) and u, »u in I'(Q) as n — +oo. (3.61)

In (3.55), we test with h = u, — u € Wy?®(Q) and pass to the limit as n — +oco. As in the proof of
Proposition 3.7, we obtain

U, - u in WHF9Q) as n - +oo

(see (3.24)), so Y, satisfies the Cerami condition. This proves the Claim.

Then (3.51), (3.52) and the Claim permit the use of the mountain pass theorem and find i € Wé’p(z)(Q)
such that

e Ky <[up)nintC, and my < yy(i) (3.62)

(see (3.46) and (3.51)).
From (3.62), (3.51) and (3.45), we conclude that @i € int C, is a positive solution of (Py), ug < i, ug # u.
O

It remains to decide what happens with critical parameter value A* < +co.
Proposition 3.11. If hypotheses Hy, H; hold, then A* € L.
Proof. Let A, € (0, A*), n € N be such that A, 7A*. We can find u, € Sy, ¢ int C, nondecreasing such that
¢y un) <G VnmeN, (3.63)
for some ¢ > 0, so
go}’ln(u,,) =0 VneN, (3.64)

Using (3.63), (3.64) as in the proof of Proposition 3.9, first we obtain that the sequence {u}n>1<
Wé’p(z)(Q) is bounded and then via Proposition 2.2, at least for a subsequence, we have

u, - u* in Wpr9(Q). (3.65)

From (3.64) and (3.65), in the limit as n — +oco, we obtain

Apy W*), By + (Agey W), by = A* I f(z,u)hdz Vh € WP (Q),
Q

so u; < u*. Therefore, u* € Sy ¢ int C, and so A* € L. a

We conclude that
L = (0, A*].

So, summarizing our findings for problem (P,), we can state the following bifurcation-type theorem.
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Theorem 3.12. If hypotheses Hy, H; hold, then there exists A* > 0 such that
(a) for all A € (0, A*) problem (P,) has at least two positive solutions
Ug, U € int C,, ug < 1, up # U
(b) for A = A* problem (P,) has at least one positive solution
u* € int C,;

(c) for all A > A* problem (P;) has no positive solutions;
(d) for all A € (0, A*] problem (Py) has a smallest (minimal) positive solution uy € int C, and the map A — u;

from £ = (0, A*] into C{(Q) is strictly increasing and left continuous.

Acknowledgements: The authors wish to thank the two knowledgeable referees for their corrections and
remarks.
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