მ

Research Article

Leszek Gasiński*, Ireneusz Krech, and Nikolaos S. Papageorgiou

Positive solutions for parametric (p(z), q(z))-equations

https://doi.org/10.1515/math-2020-0074 received May 22, 2020; accepted August 17, 2020

Abstract: We consider a parametric elliptic equation driven by the anisotropic (p, q)-Laplacian. The reaction is superlinear. We prove a "bifurcation-type" theorem describing the change in the set of positive solutions as the parameter λ moves in $\mathbb{R}_+ = (0, +\infty)$.

Keywords: anisotropic regularity, anisotropic maximum principle, positive solutions, minimal positive solution, superlinear reaction

MSC 2020: 35J20, 35J70

1 Introduction

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial\Omega$. We study the following parametric anisotropic (p, q)-equation:

$$\begin{cases} -\Delta_{p(z)}u(z) - \Delta_{q(z)}u(z) = \lambda f(z, u(z)) & \text{in } \Omega, \\ u|_{\partial\Omega} = 0, u > 0, \lambda > 0. \end{cases}$$
 (P_{λ})

In this problem, the exponents p and q are Lipschitz continuous on $\overline{\Omega}$, that is, $p,q\in C^{0,1}(\overline{\Omega})$ and $1< q_-=\min_{\overline{\Omega}}q\leqslant q_+=\max_{\overline{\Omega}}q< p_-=\min_{\overline{\Omega}}p\leqslant p_+=\max_{\overline{\Omega}}xp$.

By $\Delta_{p(z)}$ (respectively $\Delta_{q(z)}$) we denote the p(z)-Laplacian (respectively the q(z)-Laplacian) defined by

$$\Delta_{p(z)}u = \operatorname{div}(|Du|^{p(z)-2}Du) \quad \forall u \in W_0^{1,p(z)}(\Omega)$$

(respectively
$$\Delta_{q(z)}u = \operatorname{div}(|Du|^{q(z)-2}Du) \quad \forall u \in W_0^{1,q(z)}(\Omega)$$
).

In the reaction (right hand side of (P_{λ})), f(z,x) is a Carathéodory function (that is, for all $x \in \mathbb{R}$, $z \mapsto f(z,x)$ is measurable and for almost all $z \in \Omega$, $x \mapsto f(z,x)$ is continuous), which is $(p_{+}-1)$ -superlinear in the x-variable, but need not satisfy the Ambrosetti-Rabinowitz condition which is common in problems with superlinear reactions. Also, $\lambda > 0$ is a parameter. We are looking for positive solutions of (P_{λ}) . More precisely, our aim is to determine the precise dependence on the parameter $\lambda > 0$ of the set of positive solutions. We prove a bifurcation-type result, which establishes the existence of a critical parameter value $\lambda^* > 0$ such that

- for all $\lambda \in (0, \lambda^*)$ problem (P_{λ}) has at least two positive solutions;
- for $\lambda = \lambda^*$ problem (P_{λ}) has at least one positive solution;
- for all $\lambda > \lambda^*$ there are no positive solutions for problem (P_{λ}) .

^{*} Corresponding author: Leszek Gasiński, Department of Mathematics, Pedagogical University of Cracow, Podchorazych 2, 30-084 Cracow, Poland, e-mail: leszek.gasinski@up.krakow.pl

Ireneusz Krech: Department of Mathematics, Pedagogical University of Cracow, Podchorazych 2, 30-084 Cracow, Poland Nikolaos S. Papageorgiou: Department of Mathematics, National Technical University, Zografou Campus, Athens, 15780, Greece, e-mail: npapg@math.ntua.gr

Open Access. © 2020 Leszek Gasiński *et al.*, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

Our work here extends those of Gasiński-Papageorgiou [1,2], who studied parametric equations driven by the isotropic p-Laplacian with a (p-1)-superlinear reaction. Nonlinear, nonparametric superlinear equations were also considered by Mugnai-Papageorgiou [3], Papageorgiou-Rădulescu [4], Papageorgiou-Scapellato [5] (isotropic problems) and Gasiński-Papageorgiou [6], Papageorgiou-Rădulescu-Repovš [7], Papageorgiou-Vetro [8] (anisotropic problems). They prove multiplicity results, producing also nodal (that is, sign changing) solutions. Also, we mention the relevant studies of Bahrouni-Rădulescu-Repovš [9] (existence of infinitely many solutions for anisotropic Dirichlet problems), Papageorgiou-Vetro-Vetro [10] (produce a continuous part of the spectrum for the Robin (p, q)-Laplacian), Vetro [11] (dealing with the asymptotic properties of the solutions of nonhomogeneous parametric isotropic equations), Vetro [12] (existence of a solution of an anisotropic Dirichlet problem), Vetro-Vetro [13] (a three-solution theorem for (p, q)-equations) and Vetro [14] (an infinity of solutions for isotropic (p, q)-equations).

Equations with variable exponents arise in many physical models. We refer to the book of Růžička [15] for such meaningful examples. The analysis of such problems requires the use of Lebesgue and Sobolev spaces with variable exponents. A comprehensive presentation of such spaces can be found in the book of Diening-Harjulehto-Hästö-Růžička [16] (see also the survey paper of Harjulehto-Hästö-Lê-Nuortio [17]). Various parametric boundary value problems with variable exponents can be found in the book of Rădulescu-Repovš [18]. Finally, we mention that we encounter (p, q)-equations (both isotropic and anisotropic), in many problems of mathematical physics. We refer to the studies of Bahrouni-Rădulescu-Repovš [19] (transonic flow problems), Benci-D'Avenia-Fortunato-Pisani [20] (quantum physics), Cherfils-Il'yasov [21] (reaction-diffusion systems) and Zhikov [22] (elasticity theory). We also mention the two informative survey papers by Marano-Mosconi [23] (isotropic problems) and Rădulescu [24] (isotropic and anisotropic problems).

Mathematical background – hypotheses

Let $M(\Omega)$ be the space of measurable functions $u:\Omega\to\mathbb{R}$. We identify two such functions that differ only on a set of zero Lebesgue measures. Also, let

$$E_1 = \{r \in C(\overline{\Omega}) : 1 < r_- = \min_{\overline{\Omega}} r\}.$$

In the sequel given $r \in C(\overline{\Omega})$, we define

$$r_{-} = \min_{\overline{\Omega}} q$$
 and $r_{+} = \max_{\overline{\Omega}} q$.

Given $r \in E_1$, the variable exponent Lebesgue space $L^{r(z)}(\Omega)$ is defined as follows:

$$L^{r(z)}(\Omega) = \left\{ u \in M(\Omega) : \int_{\Omega} |u|^{r(z)} dz < +\infty \right\}.$$

This space is equipped with the so-called "Luxemburg norm" defined by

$$||u||_{r(z)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left(\frac{|u|}{\lambda} \right)^{r(z)} dz \leq 1 \right\}.$$

Furnished with this norm, the space $L^{r(z)}(\Omega)$ becomes a separable, reflexive (in fact, uniformly convex) Banach space. Let $r' \in E_1$ be defined by $\frac{1}{r(z)} + \frac{1}{r'(z)} = 1$. We know that $L^{r(z)}(\Omega)^* = L^{r'(z)}(\Omega)$ and we have the following Hölder-type inequality:

$$\left| \int_{\Omega} uh dz \right| \leq \left(\frac{1}{r_{-}} + \frac{1}{r_{-}'} \right) \|u\|_{r(z)} \|h\|_{r'(z)} \quad \forall u \in L^{r(z)}, h \in L^{r'(z)}(\Omega).$$

If $r_1, r_2 \in E_1$ and $r_1(z) \le r_2(z)$ for all $z \in \overline{\Omega}$, then the embedding $L^{r_2(z)}(\Omega) \subseteq L^{r_1(z)}(\Omega)$ is continuous.

Using the variable exponent Lebesgue spaces, we can define in the usual way the variable exponent Sobolev spaces. So, if $r \in E_1$, then we define

$$W^{1,r(z)}(\Omega) = \{ u \in L^{r(z)}(\Omega) : |Du| \in L^{r(z)}(\Omega) \}$$

(where the gradient *Du* is understood in the weak sense). This space is equipped with the following norm:

$$||u||_{1,r(z)} = ||u||_{r(z)} + |||Du|||_{r(z)}.$$

In the sequel for notational simplicity, we write $||Du||_{r(z)} = |||Du|||_{r(z)}$. Suppose that $r \in E_1$ is Lipschitz continuous (that is, $r \in E_1 \cap C^{0,1}(\overline{\Omega})$). Then we define

$$W_0^{1,r(z)}(\Omega) = \overline{C_c^{\infty}(\Omega)}^{\|\cdot\|_{1,r(z)}}$$
.

Both $W^{1,r(z)}(\Omega)$ and $W^{1,r(z)}_0(\Omega)$ are separable, reflexive (in fact uniformly convex) Banach spaces.

For the space $W_0^{1,r(z)}(\Omega)$, the Poincaré inequality holds, namely

$$||u||_{r(z)} \leq c_0 ||Du||_{r(z)} \quad \forall u \in W_0^{1,r(z)}(\Omega),$$

for some $c_0 > 0$. So, on $W_0^{1,r(z)}(\Omega)$ (recall that $r \in E_1 \cap C^{0,1}(\overline{\Omega})$), we can consider the following equivalent norm:

$$||u||_{1,r(z)} = ||Du||_{r(z)} \quad \forall u \in W_0^{1,r(z)}(\Omega).$$

For $r \in E_1$, the critical Sobolev exponent corresponding to r is defined by

$$r^*(z) = \begin{cases} \frac{Nr(z)}{N-r(z)} & \text{if } r(z) < N, \\ +\infty & \text{if } N \leq r(z). \end{cases}$$

Suppose that $r \in E_1 \cap C^{0,1}(\overline{\Omega})$, $p \in E_1$, $p_+ < N$ and $1 < p(z) \le r^*(z)$ (respectively $1 < p(z) < r^*(z)$) for all $z \in \overline{\Omega}$. We have

$$W_0^{1,r(z)}(\Omega) \subseteq L^{p(z)}(\Omega)$$
 continuously

(respectively: compactly).

Useful in the analysis of these variable exponent spaces is the following modular function:

$$\varrho_r(u) = \int_{\Omega} |u|^{r(z)} dz \quad \forall u \in L^{r(z)}(\Omega),$$

with $r \in E_1$. We write $\varrho_r(Du) = \varrho_r(|Du|)$.

There is a close relation between this modular function and the norm. We assume $r \in E_1$.

Proposition 2.1.

(a)
$$\|u\|_{r(z)} = \lambda \Leftrightarrow \varrho_r\left(\frac{u}{\lambda}\right) = 1 \text{ for all } u \in L^{r(z)}(\Omega), u \neq 0.$$

(b)
$$||u||_{r(z)} < 1$$
 (resp. = 1, > 1) $\Leftrightarrow \varrho_r(u) < 1$ (resp. = 1, > 1).

(c)
$$||u||_{r(z)} < 1 \Rightarrow ||u||_{r(z)}^{r_+} \leq \varrho_r(u) \leq ||u||_{r(z)}^{r_-}$$
.

(d)
$$||u||_{r(z)} > 1 \Rightarrow ||u||_{r(z)}^{r_{-}} \leq \varrho_{r}(u) \leq ||u||_{r(z)}^{r_{+}}$$
.

(e)
$$||u_n||_{r(z)} \to 0 \Leftrightarrow \varrho_r(u_n) \to 0$$
.

(f)
$$||u_n||_{r(z)} \to +\infty \Leftrightarrow \varrho_r(u_n) \to +\infty$$
.

More details can be found in the book of Diening-Harjulehto-Hästö-Růžička [16].

Consider the map $A_{r(z)}:W_0^{1,r(z)}(\Omega)\to W_0^{1,r(z)}(\Omega)^*=W^{-1,r'(z)}(\Omega)$ defined by

$$\langle A_{r(z)}(u), h \rangle = \int_{\Omega} |Du|^{r(z)-2} (Du, Dh)_{\mathbb{R}^N} dz \quad \forall u, h \in W_0^{1,p}(\Omega).$$

This map has the following properties (see Gasiński-Papageorgiou [6, Proposition 2.5] and Rădulescu-Repovš [18, p. 40]).

Proposition 2.2. The map $A_{r(z)}:W_0^{1,r(z)}(\Omega)\to W_0^{1,r(z)}(\Omega)^*$ is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone (hence maximal monotone too) and of type $(S)_+$, that is, " $u_n \stackrel{w}{\to} u$ in $W_0^{1,r(z)}(\Omega)$ and $\limsup \langle A_{r(z)}(u_n), u_n - u \rangle \leq 0$, imply that $u_n \to u$ in $W_0^{1,r(z)}(\Omega)$."

In addition to the variable exponent spaces, we will also use the Banach space

$$C_0^1(\overline{\Omega}) = \{ u \in C^1(\overline{\Omega}) : u|_{\partial\Omega} = 0 \}.$$

This is an ordered Banach space with positive (order) cone

$$C_+ = \{ u \in C_0^1(\overline{\Omega}) : u(z) \ge 0 \text{ for all } z \in \overline{\Omega} \}.$$

This cone has a nonempty interior given by

int
$$C_+ = \left\{ u \in C_+ : u > 0, \frac{\partial u}{\partial n} \Big|_{\partial \Omega} < 0 \right\},\,$$

with *n* being the outward unit normal on $\partial\Omega$.

Given $u, v \in W^{1,r(z)}(\Omega)$ with $u \leq v$, we define

$$[u, v] = \{h \in W_0^{1,r(z)}(\Omega) : u(z) \le h(z) \le r(z) \text{ for a.a. } z \in \Omega\},$$

$$[u] = \{h \in W_0^{1,r(z)}(\Omega) : u(z) \le h(z) \text{ for a.a. } z \in \Omega\}.$$

If $h_1, h_2 : \Omega \to \mathbb{R}$ are measurable functions, then we write $h_1 < h_2$, if for every compact set $K \subseteq \Omega$, we have $0 < c_K \le h_2(z) - h_1(z)$ for almost all $z \in K$. Evidently, if $h_1, h_2 \in C(\Omega)$ and $h_1(z) < h_2(z)$ for all $z \in \Omega$, then $h_1 \prec h_2$.

A set $S \subseteq W_0^{1,p(z)}(\Omega)$ is said to be "downward directed," if for $u_1, u_2 \in S$, we can find $u \in S$ such that $u \leq u_1, u \leq u_2.$

By $|\cdot|_N$ we denote the Lebesgue measure on \mathbb{R}^N and by $|\cdot|_*$ the norm of $W_0^{1,p(z)}(\Omega)^*$.

In the sequel for notational economy, by $\|\cdot\|$ we denote the norm of the Sobolev space $W_0^{1,p(z)}(\Omega)$. Recall that

$$||u|| = ||Du||_{p(z)} \quad \forall u \in W^{1,p(z)}(\Omega).$$

If X is a Banach space and $\varphi \in C^1(X)$, then we set

$$K_{\varphi}=\{u\in X:\varphi'(u)=0\}$$

(the critical set of φ). We say that φ satisfies the "Cerami condition," if the following property holds:

"Every sequence $\{u_n\}_{n\geq 1}\subseteq X$ such that $\{\varphi(u_n)\}_{n\geq 1}\subseteq \mathbb{R}$ is bounded and

$$(1 + \|u_n\|_X)\varphi'(u_n) \to 0$$
 in X^* as $n \to +\infty$,

admits a strongly convergent subsequence."

Now we introduce the hypotheses on the data problem (P_{λ}) .

$$H_0: p, q \in E_1 \cap C^{0,1}(\overline{\Omega}), q_+ < p_-.$$

 $\underline{H_1}$: $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that f(z, 0) = 0 for a.a. $z \in \Omega$ and

- (i) $f(z, x) \le a(z)(1 + x^{r-1})$ for a.a. $z \in \Omega$, all $x \ge 0$, with $a \in L^{\infty}(\Omega)$ and $p_+ < r < p^*(z)$ for all $z \in \overline{\Omega}$;
- (ii) if $F(z, x) = \int_{0}^{x} f(z, s) ds$, then

$$\lim_{x\to +\infty} \frac{F(z,x)}{x^{p_+}} = +\infty \text{ uniformly for a.a. } z\in \Omega;$$

(iii) if $\sigma(z, x) = f(z, x)x - p_+F(z, x)$, then there exists $\eta \in L^1(\Omega)$ such that

$$\sigma(z, x) \le \sigma(z, y) + \eta(z)$$
 for a.a. $z \in \Omega$, all $0 \le x \le y$;

(iv) for every s > 0, there exists $m_s > 0$ such that

$$f(z, x) \ge m_s > 0$$
 for a.a. $z \in \Omega$, all $x \ge s$,

and

$$\lim_{x\to 0^+} \frac{f(z,x)}{x^{q_--1}} = +\infty \text{ uniformly for a.a. } z\in\Omega;$$

(v) for every $\varrho > 0$, there exists $\hat{\xi}_{\varrho} > 0$ such that for a.a. $z \in \Omega$, the function $x \mapsto f(z, x) + \hat{\xi}_{\varrho} x^{p(z)-1}$ is nondecreasing on $[0, \varrho]$.

Remark 2.3. Since we want to find positive solutions and the aforementioned hypotheses concern the positive semiaxis $\mathbb{R}_+ = [0, +\infty)$, without any loss of generality, we may assume that

$$f(z, x) = 0$$
 for a.a. $z \in \Omega$, all $x \le 0$. (2.1)

Hypotheses $H_1(ii)$, (iii) imply that $f(z,\cdot)$ is (p_+-1) -superlinear. Usually in the literature, such problems are treated using the well-known Ambrosetti-Rabinowitz condition (see Ambrosetti-Rabinowitz [25]). Here instead we use the less restrictive condition $H_1(iii)$, which is an extension of a condition used by Li-Yang [26]. This quasimonotonicity condition on the function $\sigma(z,\cdot)$ is equivalent to saying that there exists M>0 such that for a.a. $z\in\Omega$, the quotient function $x\mapsto \frac{f(z,x)}{x^{p_+-1}}$ is nondecreasing on $[M,+\infty)$. This superlinearity condition incorporates in our framework superlinear nonlinearities with "slower" growth near $+\infty$. For example, consider the following function:

$$f(z,x) = \begin{cases} x^{\tau(z)-1} & \text{if } 0 \le x \le 1, \\ x^{p_+-1} \ln x + x^{\mu(z)-1} & \text{if } 1 < x \end{cases}$$

(see (2.1)), with $\tau, \mu \in E_1$ and $\tau_+ < q_-$, $\mu(z) \le p(z)$ for all $z \in \overline{\Omega}$. This function satisfies hypotheses H_1 , but fails to satisfy the Ambrosetti-Rabinowitz condition.

We introduce the following two sets:

 $\mathcal{L} = \{\lambda > 0 : \text{problem } (P_{\lambda}) \text{ admits a positive solution} \}$

 S_{λ} = the set of positive solutions of (P_{λ}) .

Also, we set

$$\lambda^* = \sup \mathcal{L}$$
.

3 Positive solutions

We start by showing that the set of admissible parameters \mathcal{L} is nonempty. Also, we determine the regularity properties of the elements in S_{λ} .

Proposition 3.1. If hypotheses H_0 , $H_1(i)$, (iv) hold, then $\mathcal{L} \neq \emptyset$ and for every $\lambda > 0$, $S_{\lambda} \subseteq \text{int } C_+$.

Proof. We consider the following auxiliary Dirichlet problem:

$$\begin{cases}
-\Delta_{p(z)}u(z) - \Delta_{q(z)}u(z) = 1 & \text{in } \Omega, \\
u|_{\partial\Omega} = 0.
\end{cases}$$
(3.1)

The operator $u \mapsto A_{p(z)}(u) + A_{q(z)}(u)$ from $W_0^{1,p(z)}(\Omega)$ into $W_0^{1,p(z)}(\Omega)^*$ is continuous, strictly monotone (hence maximal monotone too) (see Proposition 2.2) and coercive. So, it is surjective (see Gasiński-Papageorgiou [27, Corollary 3.2.31, p. 319]). Hence, we can find $\overline{u} \in W_0^{1,p(z)}(\Omega)$, $\overline{u} \ge 0$, $\overline{u} \ne 0$ such that

$$A_{p(z)}(\bar{u}) + A_{q(z)}(\bar{u}) = 1 \text{ in } W_0^{1,p(z)}(\Omega)^*.$$

The strict monotonicity of the operator implies that this solution is unique. So, \overline{u} is the unique positive solution of (3.1). Theorem 4.1 of Fan-Zhao [28] implies that $\overline{u} \in L^{\infty}(\Omega)$. Then from Fukagai-Narukawa [29, Lemma 3.3] (see also Tan-Fang [30, Corollary 3.1] and Lieberman [31] for the corresponding isotropic regularity theory), we have that $\overline{u} \in C_0^{1,\alpha}(\overline{\Omega}) = C^{1,\alpha}(\overline{\Omega}) \cap C_0^1(\overline{\Omega})$ with $\alpha \in (0, 1)$. Hence, $\overline{u} \in C_+ \setminus \{0\}$. From the anisotropic maximum principle (see Zhang [32]), we obtain that $\overline{u} \in \operatorname{int} C_+$.

Let $m = \|f(\cdot, \overline{u}(\cdot))\|_{\infty}$ (see hypothesis $H_1(i)$) and choose $\lambda_0 > 0$ such that $\lambda_0 m \le 1$. We have

$$-\Delta_{p(z)}\overline{u} - \Delta_{q(z)}\overline{u} \geqslant \lambda f(z, \overline{u}) \text{ in } \Omega, \tag{3.2}$$

for all $\lambda \in (0, \lambda_0]$. We introduce the Carathéodory function $\hat{g}(z, x)$ defined by

$$\hat{g}(z,x) = \begin{cases} f(z,x^+) & \text{if } x \leq \bar{u}(z), \\ f(z,\bar{u}(z)) & \text{if } \bar{u}(z) < x. \end{cases}$$
(3.3)

We set

$$\hat{G}(z, x) = \int_{0}^{x} \hat{g}(z, s) ds$$

and for all $\lambda \in (0, \lambda_0]$ consider the C^1 -functional $\hat{\varphi}_{\lambda} : W_0^{1,p(z)}(\Omega) \to \mathbb{R}$ defined by

$$\hat{\varphi}_{\lambda}(u) = \int\limits_{\Omega} \frac{1}{p(z)} |Du|^{p(z)} dz + \int\limits_{\Omega} \frac{1}{q(z)} |Du|^{q(z)} dz - \int\limits_{\Omega} \lambda \hat{G}(z, u) dz \quad \forall u \in W_0^{1, p(z)}(\Omega).$$

From (3.3) and Proposition 2.1, it is clear that $\hat{\varphi}_{\lambda}$ is coercive. Also, the anisotropic Sobolev embedding theorem implies that $\hat{\varphi}_{\lambda}$ is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find $u_{\lambda} \in W_0^{1,p(z)}(\Omega)$ such that

$$\hat{\varphi}_{\lambda}(\hat{u}_{\lambda}) = \min_{u \in W_0^{1,p(z)}(\Omega)} \hat{\varphi}_{\lambda}(u). \tag{3.4}$$

Hypothesis $H_1(i\nu)$ implies that given any $\theta > 0$, we can find $\delta = \delta(\theta) \in (0, 1)$ such that

$$F(z, x) \geqslant \frac{\theta}{q_{-}} x^{q_{-}} \text{ for a.a. } z \in \Omega, \text{ all } 0 \leqslant x \leqslant \delta.$$
 (3.5)

Let $u \in \text{int } C_+$. Since $\bar{u} \in \text{int } C_+$, using Proposition 4.1.22 of Papageorgiou-Rădulescu-Repovš [33, p. 274], we can find $t \in (0, 1)$ small such that

$$tu(z) \le \min{\{\bar{u}(z), \delta\}} \text{ for all } z \in \overline{\Omega}.$$
 (3.6)

From (3.3), (3.5) and (3.6) and since $t \in (0, 1)$, we have

$$\hat{\varphi}_{\lambda}(tu) \leqslant \frac{t^{q_{-}}}{q_{-}}(\varrho_{p}(Du) + \varrho_{q}(Du) - \theta \|u\|_{q_{-}}^{q_{-}}).$$

Since $\theta > 0$ is arbitrary, choosing $\theta > 0$ big from the aforementioned inequality, we infer that

$$\hat{\varphi}_{\lambda}(tu) < 0$$
,

so

$$\hat{\varphi}_{\lambda}(u_{\lambda}) < 0 = \hat{\varphi}_{\lambda}(0)$$

(see (3.4)) and thus $u_{\lambda} \neq 0$.

From (3.4), we have

$$\hat{\varphi}_{\lambda}'(u_{\lambda})=0,$$

so

$$\langle A_{p(z)}(u_{\lambda}), h \rangle + \langle A_{q(z)}(u_{\lambda}), h \rangle = \int_{\Omega} \lambda \hat{g}(z, u_{\lambda}) h dz \quad \forall h \in W_0^{1, p(z)}(\Omega).$$
 (3.7)

We test (3.7) with $h = -u_{\lambda}^- \in W^{1,p(z)}(\Omega)$ and obtain

$$\varrho_n(Du_{\lambda}^-) + \varrho_a(Du_{\lambda}^-) = 0,$$

so $u_{\lambda} \ge 0$, $u_{\lambda} \ne 0$ (see Proposition (2.1)).

Next in (3.7) we choose $h = (u_{\lambda} - \bar{u})^+ \in W_0^{1,p(z)}(\Omega)$. We have

$$\begin{split} \langle A_{p(z)}\left(u_{\lambda}\right),\left(u_{\lambda}-\bar{u}\right)^{+}\rangle &+\langle A_{q(z)}\left(u_{\lambda}\right),\left(u_{\lambda}-\bar{u}\right)^{+}\rangle \\ &=\int\limits_{\Omega}\lambda f(z,\bar{u})(u_{\lambda}-\bar{u})^{+}\mathrm{d}z\leqslant\langle A_{p(z)}(\bar{u}),\left(u_{\lambda}-\bar{u}\right)^{+}\rangle &+\langle A_{q(z)}(\bar{u}),\left(u_{\lambda}-\bar{u}\right)^{+}\rangle \end{split}$$

(see (3.3) and (3.2)), so

$$u_{\lambda} \leq \bar{u}$$
.

So, we have proved that

$$u_{\lambda} \in [0, \bar{u}], u_{\lambda} \neq 0. \tag{3.8}$$

From (3.8), (3.3) and (3.7), it follows that u_{λ} is a positive solution of (P_{λ}) . As before using the anisotropic regularity theorem (see Fan-Zhao [28], Fukagai-Narukawa [29]) and the anisotropic maximum principle (see Zhang [32]), we obtain that $u_{\lambda} \in \text{int } C_+$.

Therefore, we conclude that

$$(0, \lambda_0] \subseteq \mathcal{L} \neq \emptyset$$

and

$$S_{\lambda} \subseteq \operatorname{int} C_{+} \quad \lambda > 0.$$

Next, we show that \mathcal{L} is connected.

Proposition 3.2. If hypotheses H_0 , $H_1(i)$, (iv) hold, $\lambda \in \mathcal{L}$ and $0 < \mu < \lambda$, then $\mu \in \mathcal{L}$.

Proof. Since $\lambda \in \mathcal{L}$, we can find $u_{\lambda} \in S_{\lambda} \subseteq \text{int } C_+$ (see Proposition 3.1). We introduce the Carathéodory function \tilde{g} defined by

$$\tilde{g}(z,x) = \begin{cases} f(z,x^+) & \text{if } x \leq u_{\lambda}(z), \\ f(z,u_{\lambda}(z)) & \text{if } u_{\lambda}(z) < x. \end{cases}$$
(3.9)

We set

$$\tilde{G}(z, x) = \int_{0}^{x} \tilde{g}(z, s) ds$$

and consider the C^1 -functional $\tilde{\varphi}_u:W^{1,p(z)}_0(\Omega)\to\mathbb{R}$ defined by

$$\tilde{\varphi}_{\mu}(u) = \int\limits_{\Omega} \frac{1}{p(z)} |Du|^{p(z)} dz + \int\limits_{\Omega} \frac{1}{q(z)} |Du|^{q(z)} dz - \int\limits_{\Omega} \mu \tilde{G}(z, u) dz \quad \forall u \in W_0^{1, p(z)}(\Omega).$$

On account of (3.9) and Proposition 2.1, $\tilde{\varphi}_u$ is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find $u_{\mu} \in W_0^{1,p(z)}(\Omega)$ such that

$$\tilde{\varphi}_{\mu}(u_{\mu}) = \min_{u \in W_0^{1,p(z)}(\Omega)} \tilde{\varphi}_{\mu}(u) < 0 = \tilde{\varphi}_{\mu}(0)$$

(see the proof of Proposition 3.1), thus $u_{\mu} \neq 0$. We have

$$\tilde{\varphi}'_{u}(u_{u})=0$$

and from this as in the proof of Proposition 3.1, using (3.9), we obtain

$$u_{\mu} \in [0, u_{\lambda}], \quad u_{\mu} \neq 0,$$

so

$$u_u \in S_u \subseteq \text{int } C_+$$

(see (3.9) and Proposition 3.1), hence $\mu \in \mathcal{L}$.

A byproduct of the above proof is the following monotonicity property of the solution multifunction $\lambda \mapsto S_{\lambda}$.

Corollary 3.3. If hypotheses H_0 , $H_1(i)$, $(i\nu)$ hold, $\lambda \in \mathcal{L}$, $u_{\lambda} \in S_{\lambda} \subseteq \text{int } C_+$ and $0 < \mu < \lambda$, then $\mu \in \mathcal{L}$ and we can find $u_u \in S_u \subseteq \text{ int } C_+ \text{ such that } u_u \leq u_\lambda$.

We can improve this monotonicity property, if we bring in the picture hypothesis $H_1(v)$.

Proposition 3.4. If hypotheses H_0 , $H_1(i)$, (iv), (v) hold, $\lambda \in \mathcal{L}$, $u_{\lambda} \in S_{\lambda} \subseteq \text{int } C_+$ and $0 < \mu < \lambda$, then $\mu \in \mathcal{L}$ and there exists $u_{\mu} \in S_{\mu} \subseteq \text{int } C_{+} \text{ such that }$

$$u_{\lambda} - u_{\mu} \in \text{ int } C_+.$$

Proof. From Corollary 3.3, we already know that $\mu \in \mathcal{L}$ and that there exists $u_{\mu} \in S_{\mu} \subseteq \text{int } C_+$ such that $u_{\mu} \leq u_{\lambda}$. Let $\varrho = \|u_{\lambda}\|_{\infty}$ and let $\hat{\xi}_{\varrho} > 0$ be as postulated by hypothesis $H_1(\nu)$. We have

$$-\Delta_{p(z)}u_{\mu} - \Delta_{q(z)}u_{\mu} + \hat{\xi}_{\varrho}u_{\mu}^{p(z)-1} = \mu f(z, u_{\mu}) + \hat{\xi}_{\varrho}u_{\mu}^{p(z)-1} = \lambda f(z, u_{\mu}) + \hat{\xi}_{\varrho}u_{\mu}^{p(z)-1} - (\lambda - \mu)f(z, u_{\mu}) \\
\leq \lambda f(z, u_{\lambda}) + \hat{\xi}_{\varrho}u_{\lambda}^{p(z)-1}(\lambda - \mu)f(z, u_{\mu}) \leq -\Delta_{p(z)}u_{\lambda} - \Delta_{q(z)}u_{\lambda} + \hat{\xi}_{\varrho}u_{\lambda}^{p(z)-1} \tag{3.10}$$

(see hypothesis $H_1(v)$). Since $u_{\mu} \in \text{int } C_+$, on account of hypothesis $H_1(iv)$, we have that

$$0 < (\lambda - \mu) f(\cdot, u_{\mu}(\cdot)).$$

Then from (3.10) and Proposition 2.4 of Papageorgiou-Rădulescu-Repovš [7], we conclude that $u_{\lambda} - u_{\mu} \in$ int C_+ .

Next for every $\lambda \in \mathcal{L}$, we will produce a smallest (minimal) positive solution for problem (P_{λ}) . To this end, we need some preparation.

Hypotheses $H_1(i)$, (iv) imply that given $\beta > 0$, we can find $c_1 = c_1(\beta) > 0$ such that

$$f(z, x) \ge \beta x^{q-1} - c_1 x^{r-1}$$
 for a.a. $z \in \Omega$, all $x \ge 0$. (3.11)

Motivated from this unilateral growth estimate for $f(z,\cdot)$, we consider the following auxiliary Dirichlet problem:

$$\begin{cases}
-\Delta_{p(z)}u(z) - \Delta_{q(z)}u(z) = \lambda(\beta u(z)^{q-1} - c_1 u(z)^{r-1}) & \text{in } \Omega, \\
u|_{\partial\Omega} = 0, u > 0, \lambda > 0.
\end{cases}$$

$$(Q_{\lambda})$$

Proposition 3.5. For every $\lambda > 0$, we can choose $\beta = \beta(\lambda) > 0$ big such that (Q_{λ}) has a unique positive solution $\tilde{u}_{\lambda} \in \text{int } C_{+}$.

Proof. First we show the existence of a positive solution. To this end, we consider the C^1 -functional $\sigma_{\lambda}: W_0^{1,p(z)}(\Omega) \to \mathbb{R}$ defined by

$$\sigma_{\lambda}(u) = \int_{\Omega} \frac{1}{p(z)} |Du|^{p(z)} dz + \int_{\Omega} \frac{1}{q(z)} |Du|^{q(z)} dz + \frac{\lambda c_1}{r} ||u^+||_r^r - \frac{\lambda \beta}{q_-} ||u^+||_{q_-}^{q_-} \quad \forall u \in W_0^{1,p(z)}(\Omega).$$

Since $q_- \le q(z) < p(z) \le p_+ < r$ for all $z \in \overline{\Omega}$ (see hypothesis H_0), we see that σ_{λ} is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find $\tilde{u}_{\lambda} \in W_0^{1,p(z)}(\Omega)$ such that

$$\sigma_{\lambda}(\tilde{u}_{\lambda}) = \min_{u \in W_0^{1,p(c)}(\Omega)} \sigma_{\lambda}(u). \tag{3.12}$$

Consider $u \in C_+$ with $||u||_{\infty} \le 1$. For $t \in (0, 1)$, we have

$$\sigma_{\lambda}(tu) \leq \frac{t^{p_{-}}}{p_{-}} \varrho_{p}(Du) + \frac{t^{q_{-}}}{q_{-}} (\varrho_{q}(Du) - \lambda \beta \|u\|_{q_{-}}^{q_{-}}) + \frac{\lambda c_{1}}{r} t^{r} \|u\|_{r}^{r} \\
\leq \frac{t^{q_{-}}}{q_{-}} (\varrho_{p}(Du) + \varrho_{q}(Du) - \lambda \beta \|u\|_{q_{-}}^{q_{-}}) + \frac{\lambda c_{1}}{r} t^{r} \|u\|_{r}^{r}.$$

Recall that $\beta>0$ is arbitrary. So, we choose $\beta_{\lambda}>\frac{\varrho_{p}(Du)+\varrho_{q}(Du)}{\lambda\parallel u\parallel_{2r}^{0}}$ and obtain

$$\sigma_{\lambda}(tu) \leq \lambda c_2 t^r - c_3 t^{q_-}$$

for some c_2 , $c_3 > 0$. Since $q_- < r$, choosing $t \in (0, 1)$ small, we have

$$\sigma_{\lambda}(tu) < 0$$
,

so

$$\sigma_{\lambda}(\tilde{u}_{\lambda}) < 0 = \sigma_{\lambda}(0)$$

(see (3.12)), hence $\tilde{u}_{\lambda} \neq 0$.

From (3.12), we have

$$\sigma'_{\lambda}(\tilde{u}_{\lambda})=0$$

so

$$\langle A_{p(z)}(\tilde{u}_{\lambda}), h \rangle + \langle A_{q(z)}(\tilde{u}_{\lambda}), h \rangle = \lambda \beta_{\lambda} \int_{\Omega} (\tilde{u}_{\lambda}^{+})^{q_{-}-1} h dz - \lambda c_{1} \int_{\Omega} (\tilde{u}_{\lambda}^{+})^{r-1} h dz \quad \forall h \in W_{0}^{1, p(z)}(\Omega).$$
(3.13)

In (3.13), we choose $h = -\tilde{u}^- \in W_0^{1,p(z)}(\Omega)$ and obtain

$$\varrho_p(D\tilde{u}_{\lambda}^-) + \varrho_q(D\tilde{u}_{\lambda}^-) = 0$$
,

so $\tilde{u}_{\lambda} \ge 0$, $\tilde{u}_{\lambda} \ne 0$ (see Proposition 2.1).

Then from (3.13) we infer that \tilde{u}_{λ} is a positive solution of (Q_{λ}) . Moreover, as before the anisotropic regularity theory and the anisotropic maximum principle imply

$$\tilde{u}_{\lambda} \in \text{int } C_{+}.$$
 (3.14)

Let $\tilde{v}_{\lambda} \in W_0^{1,p(z)}(\Omega)$ be another positive solution of (Q_{λ}) . Again we have

$$\tilde{v}_{\lambda} \in \text{int } C_{+}.$$
 (3.15)

We consider the integral functional $j: L^1(\Omega) \to \mathbb{R} = \mathbb{R} \cup \{+\infty\}$ defined by

$$j(u) = \begin{cases} \int_{\Omega} \frac{q}{p(z)} |Du^{\frac{1}{q}}|^{p(z)} dz + \int_{\Omega} \frac{q}{q(z)} |Du^{\frac{1}{q}}|^{q(z)} dz & \text{if } u \geq 0, u^{\frac{1}{q}} \in W_0^{1,p(z)}(\Omega), \\ + \infty, & \text{otherwise.} \end{cases}$$

From Theorem 2.2 of Takáč-Giacomoni [34], we have that i is convex. Let

dom
$$j = \{u \in L^1(\Omega) : j(u) < +\infty\}$$

(the effective domain of j). From (3.14), (3.15) and Proposition 4.1.22 of Papageorgiou-Rădulescu-Repovš [33, p. 274], we have

$$\frac{\tilde{u}_{\lambda}}{\tilde{v}_{\lambda}} \in L^{\infty}(\Omega), \quad \frac{\tilde{v}_{\lambda}}{\tilde{u}_{\lambda}} \in L^{\infty}(\Omega).$$

Let $h \in C_0^1(\overline{\Omega})$ with $|h|^{\frac{1}{q_-}} \in W_0^{1,p(z)}(\Omega)$. For $t \in (0,1)$ small, we have

$$\tilde{u}_{\lambda}^{q_{-}} + th \in \text{dom} j \quad \text{and} \quad \tilde{v}_{\lambda}^{q_{-}} + th \in \text{dom} j.$$

Choose $h = \tilde{u}_{\lambda}^{q_{-}} - \tilde{v}_{\lambda}^{q_{-}}$. Evidently,

$$h \in C_0^1(\overline{\Omega})$$
 and $|h| \leq \tilde{u}_{\lambda}^{q_-} + \tilde{v}_{\lambda}^{q_-}$.

We have

$$|h|^{\frac{1}{q_{-}}} \leqslant \tilde{u}_{\lambda} + \tilde{v}_{\lambda},$$

so $|h|^{\frac{1}{q_{-}}} \in W_0^{1,p(z)}(\Omega)$.

Then on account of the convexity of j, it is Gâteaux differentiable at $\tilde{u}_{\lambda}^{q_{-}}$ and at $\tilde{v}_{\lambda}^{q_{-}}$ in the direction $h = \tilde{u}_{\lambda}^{q_{-}} - \tilde{v}_{\lambda}^{q_{-}}$. Moreover, we have (see also Takáč-Giacomoni [34])

$$j'(\tilde{u}_{\lambda}^{q_{-}})(h) = \int_{\Omega} \frac{-\Delta_{p(z)}\tilde{u}_{\lambda} - \Delta_{q(z)}\tilde{u}_{\lambda}}{\tilde{u}_{\lambda}^{q_{-}-1}}hdz,$$

$$j'(\tilde{v}_{\lambda}^{q_{-}})(h) = \int_{\Omega} \frac{-\Delta_{p(z)}\tilde{v}_{\lambda} - \Delta_{q(z)}\tilde{v}_{\lambda}}{\tilde{v}_{\lambda}^{q_{-}-1}} h dz.$$

The convexity of j implies the monotonicity of j'. Hence,

$$0 \leqslant \lambda c_1 \int\limits_{\Omega} (\tilde{u}_{\lambda}^{r-q} - \tilde{v}_{\lambda}^{r-q})(\tilde{v}_{\lambda}^{q_{-}} - \tilde{u}_{\lambda}^{q_{-}}) \mathrm{d}z \leqslant 0$$

(recall that $q_- < r$), so

$$\tilde{u}_{\lambda} = \tilde{v}_{\lambda},$$

thus $\tilde{u}_{\lambda} \in \text{ int } C_+$ is the unique positive solution of (Q_{λ}) .

Using $\tilde{u}_{\lambda} \in \text{int } C_+$ from Proposition 3.5, we can have a lower bound for the elements of S_{λ} .

Proposition 3.6. If hypotheses H_0 , $H_1(i)$, (iv), (v) hold and $\lambda \in \mathcal{L}$, then $\tilde{u}_{\lambda} \leq u$ for all $u \in S_{\lambda}$.

Proof. Let $u \in S_{\lambda}$. We introduce the Carathéodory function k(z, x) defined by

$$k(z, x) = \begin{cases} \beta(x^{+})^{q_{-}-1} - c_{1}(x^{+})^{r_{-}1} & \text{if } x \leq u(z), \\ \beta u(z)^{q_{-}-1} - c_{1}u(z)^{r_{-}1} & \text{if } u(z) < x. \end{cases}$$
(3.16)

We set

$$K(z, x) = \int_{0}^{x} k(z, s) ds$$

and consider the C^1 -functional $\gamma_{\lambda}:W^{1,p(z)}_0(\Omega)\to\mathbb{R}$ defined by

$$\gamma_{\lambda}(u) = \int\limits_{\Omega} \frac{1}{p(z)} |Du|^{p(z)} dz + \int\limits_{\Omega} \frac{1}{q(z)} |Du|^{q(z)} dz - \int\limits_{\Omega} \lambda K(z, u) dz \quad \forall u \in W_0^{1, p(z)}(\Omega).$$

From Proposition 2.1 and (3.16) it is clear that γ_{λ} is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find $\bar{u}_{\lambda} \in W_0^{1,p(z)}(\Omega)$ such that

$$\gamma_{\lambda}(\bar{u}_{\lambda}) = \min_{u \in W_0^{1,p(z)}(\Omega)} \gamma_{\lambda}(u). \tag{3.17}$$

As before (see the proof of Proposition 3.5), we have

$$y_{\lambda}(\bar{u}_{\lambda})<0=y_{\lambda}(0),$$

so $\bar{u}_{\lambda} \neq 0$.

From (3.17), we have

$$y_{\lambda}'(\bar{u}_{\lambda})=0,$$

SO

$$\langle A_{p(z)}(\bar{u}_{\lambda}), h \rangle + \langle A_{q(z)}(\bar{u}_{\lambda}), h \rangle = \lambda \int_{\Omega} k(z, \bar{u}_{\lambda}) h dz \quad \forall h \in W_0^{1, p(z)}(\Omega).$$
(3.18)

We test (3.18) with $h = -\bar{u}_{\lambda}^- \in W_0^{1,p(z)}(\Omega)$ and obtain

$$\varrho_p(D\bar{u}_{\lambda}^-) + \varrho_q(D\bar{u}_{\lambda}^-) = 0$$

(see (3.16)), so $\bar{u}_{\lambda} \ge 0$, $\bar{u}_{\lambda} \ne 0$.

Next in (3.18) we choose $h = (\bar{u}_{\lambda} - u)^+ \in W_0^{1,p(z)}(\Omega)$. Then

$$\begin{split} \langle A_{p(z)}(\bar{u}_{\lambda}), (\bar{u}_{\lambda}-u)^{+} \rangle + \langle A_{q(z)}(\bar{u}_{\lambda}), (\bar{u}_{\lambda}-u)^{+} \rangle &= \int\limits_{\Omega} \lambda (\beta u^{q_{-}-1} - c_{1}u^{r_{-}1})(\bar{u}_{\lambda}-u)^{+} \mathrm{d}z \leqslant \int\limits_{\Omega} \lambda f(z,u)(\bar{u}_{\lambda}-u)^{+} \mathrm{d}z \\ &= \langle A_{p(z)}(u), (\bar{u}_{\lambda}-u)^{+} \rangle + \langle A_{q(z)}(u), (\bar{u}_{\lambda}-u)^{+} \rangle \end{split}$$

(see (3.16), (3.11) and use the fact that $u \in S_{\lambda}$), so $\bar{u}_{\lambda} \leq u$ (see Proposition 2.2).

So, we have proved that

$$\bar{u}_{\lambda} \in [0,u], \quad \bar{u}_{\lambda} \neq 0.$$
 (3.19)

From (3.19), (3.16) and (3.18), it follows that \bar{u}_{λ} is a positive solution of (Q_{λ}) , hence $\bar{u}_{\lambda} = \tilde{u}_{\lambda}$ (see Proposition (3.6)). We conclude that $\tilde{u}_{\lambda} \leq u$ for all $u \in S_{\lambda}$.

Now we are ready to produce the minimal positive solution of problem $(P_{\lambda}), \lambda \in \mathcal{L}$.

Proposition 3.7. If hypotheses H_0 , $H_1(i)$, (iv), (v) hold and $\lambda \in \mathcal{L}$, then problem (P_{λ}) admits a smallest positive solution $u_{\lambda}^* \in S_{\lambda} \subseteq \text{int } C_+$ (that is, $u_{\lambda}^* \leq u$ for all $u \in S_{\lambda}$).

Proof. From Papageorgiou-Rădulescu-Repovš [35] (proof of Proposition 7; see also Filippakis-Papageorgiou [36]), we know that S_{λ} is downward directed. So, by Lemma 3.10 of Hu-Papageorgiou [37, p. 178], we can find a decreasing sequence $\{u_n\}_{n\geq 1} \subseteq S_{\lambda}$ such that

$$\inf S_{\lambda} = \inf_{n \geqslant 1} u_n \tag{3.20}$$

and

$$\tilde{u}_{\lambda} \leqslant u_n \leqslant u_1 \quad \forall n \in \mathbb{N}$$
 (3.21)

(see Proposition 3.6). We have

$$\langle A_{p(z)}(u_n), h \rangle + \langle A_{q(z)}(u_n), h \rangle = \int_{\Omega} \lambda f(z, u_n) h dz \quad \forall h \in W_0^{1, p(z)}(\Omega), n \in \mathbb{N}.$$
(3.22)

In (3.22), we use $h = u_n \in W_0^{1,p(z)}(\Omega)$. From (3.21), hypothesis $H_1(i)$ and Proposition 2.1, it follows that the sequence $\{u_n\}_{n\geqslant 1}\subseteq W_0^{1,p(z)}(\Omega)$ is bounded.

So, we may assume that

$$u_n \stackrel{w}{\to} u_{\lambda}^* \text{ in } W_0^{1,p(z)}(\Omega) \text{ and } u_n \to u_{\lambda}^* \text{ in } L^{p(z)}(\Omega).$$
 (3.23)

We test (3.22) with $h = u_n - u_h^* \in W_0^{1,p(z)}(\Omega)$, pass to the limit as $n \to +\infty$ and use (3.23). We obtain

$$\lim_{n\to+\infty}(\langle A_{p(z)}(u_n),u_n-u_{\lambda}^*\rangle+\langle A_{q(z)}(u_n),u_n-u_{\lambda}^*\rangle)=0,$$

so

$$\limsup_{n \to +\infty} (\langle A_{p(z)}(u_n), u_n - u_{\lambda}^* \rangle + \langle A_{q(z)}(u_{\lambda}^*), u_n - u_{\lambda}^* \rangle) \leq 0$$

(since $A_{q(z)}$ is monotone), thus

$$\limsup_{n\to+\infty}\langle A_{p(z)}(u_n), u_n-u_{\lambda}^*\rangle\leqslant 0$$

(see (3.23)) and hence

$$u_n \to u_h^* \text{ in } W_0^{1,p(z)}(\Omega)$$
 (3.24)

(see Proposition 2.2).

Then passing to the limit as $n \to +\infty$ in (3.22) and using (3.24) and (3.21), we obtain

$$\langle A_{p(z)}(u_{\lambda}^*), h \rangle + \langle A_{q(z)}(u_{\lambda}^*), h \rangle = \int\limits_{\Omega} \lambda f(z, u_{\lambda}^*) h dz \quad \forall h \in W_0^{1,p(z)}(\Omega),$$

SO

$$\tilde{u}_{\lambda} \leq u_{\lambda}^*$$

and hence

$$u_{\lambda}^* \in S_{\lambda} \subseteq \operatorname{int} C_+, \quad u_{\lambda}^* = \operatorname{inf} S_{\lambda}.$$

We consider the map $\lambda \mapsto u_{\lambda}^*$ from \mathcal{L} into $C_0^1(\overline{\Omega})$.

Proposition 3.8. If hypotheses H_0 , $H_1(i)$, (iv), (v) hold, then the map $\lambda \mapsto u_{\lambda}^*$ from \mathcal{L} into $C_0^1(\overline{\Omega})$ is

- (a) strictly increasing (that is, if $0 < \mu < \lambda \in \mathcal{L}$, then $u_{\lambda}^* u_{\mu}^* \in \text{int } C_+$);
- (b) left continuous.

Proof. (a) Suppose that $0 < \mu < \lambda \in \mathcal{L}$. Let $u_{\lambda}^* \in S_{\lambda} \subseteq \text{int } C_+$ be the minimal solution of problem (P_{λ}) (see Proposition 3.7). According to Proposition 3.4, we can find $u_{\mu} \in S_{\mu} \subseteq \text{int } C_+$ such that

$$u_{\lambda}^* - u_{\nu} \in \text{int } C_+$$

so

$$u_{\lambda}^* - u_{u}^* \in \text{int } C_+$$

and hence the map $\lambda \mapsto u_{\lambda}^*$ is strictly increasing.

(b) Let $\lambda_n \to \lambda^-$ with $\lambda \in \mathcal{L}$. Let $u_n^* = u_{\lambda_n}^* \in \text{int } C_+$ for all $n \in \mathbb{N}$. From part (a) and hypothesis $H_1(i)$, we see that the sequence $\{u_n^*\}_{n \geq 1} \subseteq W_0^{1,p(z)}(\Omega)$ is bounded.

Then from the anisotropic regularity theory (see Fukagai-Narukawa [29] and Tan-Fang [30]), we can find $\alpha \in (0, 1)$ and $c_4 > 0$ such that

$$u_n^* \in C_0^{1,\alpha}(\overline{\Omega}), \|u_n^*\|_{C_0^{1,\alpha}(\overline{\Omega})} \leq c_4 \quad \forall n \in \mathbb{N}.$$

Exploiting the compactness of the embedding $C_0^{1,\alpha}(\overline{\Omega}) \subseteq C_0^1(\overline{\Omega})$, we have

$$u_n^* \to \hat{u}_\lambda^* \text{ in } C_0^1(\overline{\Omega}).$$
 (3.25)

Evidently $\hat{u}_{\lambda}^* \in S_{\lambda}$. If $\hat{u}_{\lambda}^* \neq u_{\lambda}^*$, then we can find $z_0 \in \Omega$ such that

$$u_{\lambda}^*(z_0) < \hat{u}_{\lambda}^*(z_0),$$

so

$$u_{\lambda}^*(z_0) < u_{n}^*(z_0) \quad \forall n \geqslant n_0$$

(see (3.25)). This contradicts part (a). So, the map $\lambda \mapsto u_{\lambda}^*$ is left continuous.

So far, we only know that \mathcal{L} is nonempty and connected. We do not know if it is bounded or not. The next proposition shows that \mathcal{L} is bounded. In what follows, by $\varphi_{\lambda}:W_0^{1,p(z)}(\Omega)\to\mathbb{R}$ we denote the energy (Euler) functional of problem (P_{λ}) defined by

$$\varphi_{\lambda}(u) = \int\limits_{\Omega} \frac{1}{p(z)} |Du|^{p(z)} \,\mathrm{d}z + \int\limits_{\Omega} \frac{1}{q(z)} |Du|^{q(z)} \,\mathrm{d}z - \int\limits_{\Omega} \lambda F(z,u) \,\mathrm{d}z \quad \forall u \in W^{1,p(z)}_0(\Omega).$$

Proposition 3.9. *If hypotheses* H_0 , H_1 *hold, then* $\lambda^* < +\infty$.

Proof. We argue by contradiction. So, suppose that $\lambda^* = +\infty$ (that is, $\mathcal{L} = (0, +\infty)$). Let $\{\lambda_n\}_{n \geq 1} \subseteq \mathcal{L}$ be such that $\lambda_n \nearrow +\infty$. Then on account of Proposition 3.8 and hypothesis $H_1(ii)$, we can find a nondecreasing sequence $u_n \in S_{\lambda_n} \subseteq \text{int } C_+$ for $n \in \mathbb{N}$ such that

$$\varphi_{\lambda_{-}}(u_n) \leqslant c_5 \quad \forall n \in \mathbb{N},$$
 (3.26)

for some $c_5 > 0$ and

$$\varphi_{\lambda}'(u_n) = 0 \quad \forall n \in \mathbb{N}. \tag{3.27}$$

From (3.27), we have

$$\langle A_{p(z)}(u_n), h \rangle + \langle A_{q(z)}(u_n), h \rangle = \lambda \int_{\Omega} f(z, u_n) h dz \quad \forall h \in W_0^{1, p(z)}(\Omega).$$
(3.28)

We test (3.28) with $h = u_n \in W_0^{1,p(z)}(\Omega)$. Then

$$-\varrho_{p}(Du_{n})-\varrho_{q}(Du_{n})+\lambda_{n}\int_{\Omega}f(z,u_{n})u_{n}dz=0\quad\forall n\in\mathbb{N}.$$
(3.29)

Also from (3.26), we have

$$\int_{\Omega} \frac{1}{p(z)} |Du_n|^{p(z)} dz + \int_{\Omega} \frac{1}{q(z)} |Du_n|^{q(z)} dz - \lambda_n \int_{\Omega} F(z, u_n) dz \leqslant c_5 \quad \forall n \in \mathbb{N},$$

so

$$\frac{1}{p_{+}}(\varrho_{p}(Du_{n})+\varrho_{q}(Du_{n}))-\lambda_{n}\int_{\Omega}F(z,u_{n})dz\leqslant c_{5}\quad\forall n\in\mathbb{N},$$

thus

$$\varrho_p(Du_n) + \varrho_q(Du_n) - \lambda_n \int_{\Omega} p_+ F(z, u_n) dz \leq p_+ c_5 \quad \forall n \in \mathbb{N}.$$
(3.30)

Adding (3.29) and (3.30), we obtain

$$\lambda_n \int_{\Omega} \sigma(z, u_n) dz \leq p_+ c_5 \quad \forall n \in \mathbb{N}$$

SO

$$\int_{\Omega} \sigma(z, u_n) dz \leq \frac{p_+ c_5}{\lambda_n} \quad \forall n \in \mathbb{N}.$$
(3.31)

Suppose that the sequence $\{u_n\}_{n\geq 1}\subseteq W_0^{1,p(z)}(\Omega)$ is not bounded. We may assume that

$$||u_n|| \to +\infty$$
 as $n \to +\infty$. (3.32)

We set $y_n = \frac{u_n}{\|u_n\|}$ for $n \in \mathbb{N}$. Then $\|y_n\| = 1$, $y_n \ge 0$ for all $n \in \mathbb{N}$. We may assume that

$$y_n \xrightarrow{w} y$$
 in $W_0^{1,p(z)}(\Omega)$ and $y_n \to y$ in $L^{p(z)}(\Omega), y \ge 0$. (3.33)

First suppose that $y \neq 0$. Let $\widehat{\Omega} = \{y > 0\}$. Then $|\widehat{\Omega}|_N > 0$ (see (3.33)) and $u_n(z) \to +\infty$ for almost all $z \in \widehat{\Omega}$. On account of hypothesis $H_1(ii)$, we have

$$\frac{F(z, u_n(z))}{\|u_n\|^{p_+}} = \frac{F(z, u_n(z))}{u_n(z)^{p^+}} y_n(z)^{p_+} \to +\infty \quad \text{for a.a. } z \in \widehat{\Omega}.$$

Then by Fatou's lemma, we have

$$\lim_{n \to +\infty} \int_{\widehat{\Omega}} \frac{F(z, u_n)}{\|u_n\|^{p_+}} dz = +\infty.$$
(3.34)

Hypotheses $H_1(i)$, (ii) imply that we can find $c_6 > 0$ such that

$$\frac{F(z,x)}{x^{p_{+}}} \geqslant -c_{6} \quad \text{for a.a. } z \in \Omega, \quad \text{all } x \geqslant 0.$$
 (3.35)

We have

$$\int\limits_{\Omega} \frac{F(z, u_n)}{\|u_n\|^{p_+}} \mathrm{d}z = \int\limits_{\widehat{\Omega}} \frac{F(z, u_n)}{\|u_n\|^{p_+}} \mathrm{d}z + \int\limits_{\Omega \setminus \widehat{\Omega}} \frac{F(z, u_n)}{\|u_n\|^{p_+}} \mathrm{d}z \geqslant \int\limits_{\widehat{\Omega}} \frac{F(z, u_n)}{\|u_n\|^{p_+}} \mathrm{d}z - c_7 \quad \forall n \in \mathbb{N}$$

for some $c_7 > 0$ (see (3.35)), so

$$\lim_{n \to +\infty} \int_{0}^{\infty} \frac{F(z, u_n)}{\|u_n\|^{p_+}} dz = +\infty$$
 (3.36)

(see (3.36)). From (3.29), we have

$$-\int_{\Omega} \frac{1}{\|u_n\|^{p_+-p(z)}} |Dy_n|^{p(z)} - \int_{\Omega} \frac{1}{\|u_n\|^{p_+-q(z)}} |Dy_n|^{q(z)} + \lambda_n \int_{\Omega} \frac{f(z,u_n)u_n}{\|u_n\|^{p_+}} dz = 0 \quad \forall n \in \mathbb{N},$$

SO

$$\lambda_n \int_{\Omega} \frac{f(z, u_n)u_n}{\|u_n\|^{p_n}} dz \leqslant c_8 \quad \forall n \in \mathbb{N},$$

for some $c_8 > 0$ (see (3.32), recall that $q_+ < p(z) \le p_+$ for all $z \in \overline{\Omega}$), thus

$$\lambda_n \int_{\Omega} \frac{p_+ F(z, u_n)}{\|u_n\|^{p_+}} dz - \lambda_n \|\eta\|_1 \leqslant c_8 \quad \forall n \in \mathbb{N}$$

(see hypothesis $H_1(iv)$ and recall that $u_n \ge 0$), hence

$$\int_{\Omega} \frac{p_{+}F(z, u_{n})}{\|u_{n}\|^{p_{+}}} dz \leqslant \frac{c_{8}}{\lambda_{n}} + \|\eta\|_{1} \quad \forall n \in \mathbb{N}.$$

$$(3.37)$$

Comparing (3.36) and (3.37), we have a contradiction.

Next suppose that y = 0. We consider the C^1 -functional $\varphi_{\lambda}^* : W_0^{1,p(z)}(\Omega) \to \mathbb{R}$ defined by

$$\varphi_{\lambda}^*(u) = \frac{1}{p_+} \varrho_p(Du) - \lambda \int_{\Omega} F(z, u) dz \quad \forall u \in W_0^{1, p(z)}(\Omega).$$

Evidently, we have

$$\varphi_{\lambda}^* \leqslant \varphi_{\lambda} \quad \forall \lambda > 0.$$
 (3.38)

Let $\vartheta_n(t) = \varphi_{\lambda_n}^*(tu_*)$ for all $t \in [0, 1]$, all $n \in \mathbb{N}$. We can find $t_n \in [0, 1]$ such that

$$\vartheta_n(t_n) = \max_{0 \le t \le 1} \vartheta_n(t).$$

Let $\beta \ge 1$ and set

$$v_n(z) = (2\beta)^{\frac{1}{p(z)}} y_n(z) \quad \forall n \in \mathbb{N}.$$

Clearly, we have

$$v_n \to 0$$
 in $L^{p(z)}(\Omega)$

(see (3.33) and recall that y = 0), so

$$\int_{\Omega} F(z, \nu_n) dz \to 0 \quad \text{as } n \to +\infty.$$
 (3.39)

From (3.32), we see that we can find $n_0 \in \mathbb{N}$ such that

$$(2\beta)^{\frac{1}{p(z)}}\frac{1}{\|u_n\|} \leqslant 1 \quad \forall n \geqslant n_0, z \in \overline{\Omega}.$$

It follows that

$$\vartheta_n(t_n) \geqslant \vartheta_n\left(\frac{(2\beta)^{\frac{1}{p(z)}}}{\|u_n\|}\right) \quad \forall n \geqslant n_0, z \in \overline{\Omega},$$

so

$$\varphi_{\lambda_n}^*(t_nu_n) \geqslant \varphi_{\lambda_n}^*\left((2\beta)^{\frac{1}{p(z)}}y_n\right) = \varphi_{\lambda_n}^*(v_n) \quad \forall n \geqslant n_0,$$

thus

$$\varphi_{\lambda_n}^*(t_n u_n) \geq \frac{2\beta}{p_+} \varrho_p(Dy_n) - \int_{\Omega} F(z, v_n) dz \quad \forall n \geq n_0$$

and hence

$$\varphi_{\lambda_n}^*(t_n u_n) \geqslant \frac{\beta}{p_+} \quad \forall n \geqslant n_1 \geqslant n_0 \tag{3.40}$$

(see (3.39) and Proposition 2.1(a)).

Since $\beta \ge 1$ is arbitrary, from (3.40) we infer that

$$\varphi_{\lambda_n}^*(t_nu_n) \to +\infty \quad \text{as } n \to +\infty.$$
 (3.41)

We have

$$0 \leq t_n u_n \leq u_n \quad \forall n \in \mathbb{N}$$

so

$$\sigma(z, t_n u_n) \le \sigma(z, u_n) + \eta(z)$$
 for a.a. $z \in \Omega$, all $n \in \mathbb{N}$

(see hypothesis $H_1(iii)$), so

$$\int_{\Omega} \sigma(z, t_n u_n) dz \leq \int_{\Omega} \sigma(z, u_n) dz + \|\eta\|_1 \leq c_9 \quad \forall n \in \mathbb{N}$$
(3.42)

for some $c_9 > 0$ (see (3.31)). We know that

$$\varphi_{\lambda_n}^*(0) = 0 \quad \text{and} \quad \varphi_{\lambda_n}^*(u_n) \leqslant c_5 \quad \forall n \in \mathbb{N}$$
 (3.43)

(see (3.26) and (3.38)). Then from (3.41) it follows that $t_n \in (0, 1)$ for all $n \ge n_2$. Therefore, we can say that

$$0 = t_n \frac{\mathrm{d}}{\mathrm{d}t} \varphi_{\lambda_n}^*(tu_n)|_{t=t_n},$$

so

$$\langle (\varphi_{\lambda_n}^*)'(t_nu_n), t_nu_n \rangle = 0$$

(by the chain rule), thus

$$\varrho_p(D(t_nu_n)) + \varrho_q(D(t_nu_n)) - \lambda_n \int_{\Omega} f(z, t_nu_n)(t_nu_n) dz = 0 \quad \forall n \geq n_2$$

and hence

$$p_+ \varphi_{\lambda_n}^*(t_n u_n) \leqslant c_9 \quad \forall n \geqslant n_2 \tag{3.44}$$

(see (3.42)).

We compare (3.41) and (3.44) and have a contradiction. This proves that the sequence $\{u_n\}_{n\geq 1}\subseteq W_0^{1,p(z)}(\Omega)$ is bounded. Recall that

$$A_{p(z)}(u_n) + A_{q(z)}(u_n) = \lambda_n N_f(u_n)$$
 in $W_0^{1,p(z)}(\Omega)^* \quad \forall n \in \mathbb{N}$,

with $N_f(u_n)(\cdot) = f(\cdot, u_n(\cdot))$ (the Nemytskii map corresponding to f). From Proposition 2.2, it follows that

$$\lambda_n \|N_f(u_n)\|_* \leq c_{10} \quad \forall n \in \mathbb{N}$$

for some $c_{10} > 0$. Since $u_n \ge u_1 \in \text{int } C_+$, on account of hypothesis $H_1(iv)$ and since $\lambda_n \to +\infty$, we have

$$\lambda_n \|N_f(u_n)\|_* \to +\infty,$$

a contradiction. This proves that $\lambda^* < +\infty$.

According to Proposition 3.9, we have

$$(0, \lambda^*) \subseteq \mathcal{L} \subseteq (0, \lambda^*].$$

Proposition 3.10. If hypotheses H_0 , H_1 hold and $\lambda \in (0, \lambda^*)$, then problem (P_{λ}) has at least two positive solutions

$$u_0, \hat{u} \in \text{int } C_+, u_0 \leq \hat{u}, u_0 \neq \hat{u}.$$

Proof. Let λ , $\vartheta \in (0, \lambda^*)$, $\lambda < \vartheta$. We have λ , $\vartheta \in \mathcal{L}$. We can find $u_{\vartheta} \in S_{\vartheta} \subseteq \text{int } C_+$ and $u_0 \in S_{\lambda} \subseteq \text{int } C_+$ such that

$$u_{\vartheta} - u_{0} \in \text{int } C_{+}$$

(see Proposition 3.4). We introduce the Carathéodory function g(z, x) defined by

$$g(z,x) = \begin{cases} f(z, u_0(z)) & \text{if } x \le u_0(z), \\ f(z,x) & \text{if } u_0(z) < x. \end{cases}$$
(3.45)

We set

$$G(z, x) = \int_{0}^{x} g(z, s) ds$$

and consider the C^1 -functional $\psi_{\lambda}:W^{1,p(z)}(\Omega)\to\mathbb{R}$ defined by

$$\psi_{\lambda}(u) = \int_{\Omega} \frac{1}{p(z)} |Du|^{p(z)} dz + \int_{\Omega} \frac{1}{q(z)} |Du|^{q(z)} dz - \lambda \int_{\Omega} G(z, u) dz \quad \forall u \in W^{1, p(z)}(\Omega).$$

Using (3.45) and the anisotropic regularity theory, we obtain

$$K_{\psi_{\lambda}} \subseteq [u_0) \cap \text{ int } C_+. \tag{3.46}$$

We introduce the following truncation of $g(z, \cdot)$

$$\bar{g}(z,x) = \begin{cases} g(z,x) & \text{if } x \le u_0(z), \\ g(z,u_0(z)) & \text{if } u_0(z) < x. \end{cases}$$
(3.47)

This is a Carathéodory function. We set

$$\bar{G}(z,x) = \int_{0}^{x} \bar{g}(z,s) ds$$

and consider the \mathcal{C}^1 -functional $\hat{\psi}_{\lambda}:W^{1,p(z)}(\Omega) o \mathbb{R}$ defined by

$$\hat{\psi}_{\lambda}(u) = \int\limits_{\Omega} \frac{1}{p(z)} |Du|^{p(z)} \,\mathrm{d}z + \int\limits_{\Omega} \frac{1}{q(z)} |Du|^{q(z)} \,\mathrm{d}z - \lambda \int\limits_{\Omega} \bar{G}(z,u) \,\mathrm{d}z \quad \forall u \in W^{1,p(z)}(\Omega).$$

For this functional, we have that

$$K_{\hat{\psi}_1} \subseteq [u_0, u_{\vartheta}] \cap \text{ int } C_+. \tag{3.48}$$

We may assume that

$$K_{\hat{u}_0} \cap [u_0, u_0] = \{u_0\}.$$
 (3.49)

Otherwise, on account of (3.46) and (3.45), we see that we already have a second positive smooth solution bigger than u_0 and so we are done.

The functional $\hat{\psi}_{\lambda}$ is coercive (see Proposition 2.1 and (3.47)). Also, it is sequentially weakly lower semicontinuous. So, we can find $\hat{u}_0 \in W_0^{1,p(z)}(\Omega)$ such that

$$\hat{\psi}_{\lambda}(\hat{u}_0) = \min_{u \in W^{1,p(z)}(\Omega)} \hat{\psi}_{\lambda}(u),$$

so $\hat{u}_0 \in K_{\hat{\psi}_{\lambda}} \subseteq [u_0, u_{\vartheta}] \cap \text{ int } C_+ \text{ (see (3.33))}.$

Note that

$$\psi'_{\lambda}|_{[u_0,u_{\vartheta}]} = \hat{\psi}'_{\lambda}|_{[u_0,u_{\vartheta}]}$$

(see (3.45) and (3.47)). So, it follows that $\hat{u}_0 = u_0$ (see (3.49)).

Since $u_{\vartheta} - u_{0} \in \text{ int } C_{+}$, we see that

 u_0 is a local $C_0^1(\overline{\Omega})$ -minimizer of ψ_{λ} ,

so

$$u_0$$
 is a local $W_0^{1,p(z)}(\overline{\Omega})$ -minimizer of ψ_{λ} (3.50)

(see Gasiński-Papageorgiou [6] and Tan-Fang [30]).

From (3.46), we see that we may assume that $K_{\psi_{\lambda}}$ is finite (otherwise we already have infinity of positive smooth solutions bigger than u_0 and so we are done). Then on account of (3.50) and using Theorem 5.7.6 of Papageorgiou-Rădulescu-Repovš [33, p. 449], we can find $\rho \in (0, 1)$ small such that

$$\psi_{\lambda}(u_0) < \inf\{\psi_{\lambda}(u) : \|u - u_0\| = \rho\} = m_{\lambda}. \tag{3.51}$$

Also, if $u \in \text{int } C_+$, then from (3.45) and hypothesis $H_1(ii)$ we have that

$$\psi_{\lambda}(tu) \to -\infty$$
 as $t \to +\infty$. (3.52)

Claim. ψ_{λ} satisfies the Cerami condition.

Consider a sequence $\{u_n\}_{n\geq 1}\subseteq W_0^{1,p(z)}(\Omega)$ such that

$$|\psi_{\lambda}(u_n)| \leqslant c_{11} \quad \forall n \in \mathbb{N}, \tag{3.53}$$

for some $c_{11} > 0$, so

$$(1 + ||u_n||)\psi_{\lambda}'(u_n) \to 0 \quad \text{in } W_0^{1,p(z)}(\Omega)^* \quad \text{as } n \to +\infty.$$
 (3.54)

From (3.54), we have

$$\left| \langle A_{p(z)}(u_n), h \rangle + \langle A_{q(z)}(u_n), h \rangle - \lambda \int_{\Omega} g(z, u_n) h dz \right| \leq \frac{\varepsilon_n \|h\|}{1 + \|u_n\|} \quad \forall h \in W_0^{1, p(z)}(\Omega), \tag{3.55}$$

with $\varepsilon_n \to 0^+$. In (3.55), we use $h = -u_n^- \in W_0^{1,p(z)}(\Omega)$ and obtain

$$\varrho_{p}(Du_{n}^{-}) + \varrho_{a}(Du_{n}^{-}) \leq c_{12} \quad \forall n \in \mathbb{N},$$

for some $c_{12} > 0$ (see (3.45)), so

the sequence
$$\{u_n^-\}_{n\geq 1} \subseteq W_0^{1,p(z)}(\Omega)$$
 is bounded (3.56)

(see Proposition 2.1).

Next in (3.55) we choose $h = u_n^+ \in W^{1,p(z)}(\Omega)$. Then

$$-\varrho_p(Du_n^+)-\varrho_q(Du_n^+)+\lambda\int\limits_{\Omega}g(z,u_n^+)u_n^+\mathrm{d}z\leqslant\varepsilon_n\quad\forall n\in\mathbb{N},$$

so

$$-\varrho_{p}(Du_{n}^{+})-\varrho_{q}(Du_{n}^{+})+\lambda\int_{\Omega}f(z,u_{n}^{+})u_{n}^{+}\mathrm{d}z\leqslant c_{13}\quad\forall n\in\mathbb{N},$$
(3.57)

for some $c_{13} > 0$.

From (3.53), (3.56) and (3.45), we have

$$\varrho_{p}(Du_{n}^{+}) + \varrho_{q}(Du_{n}^{+}) - \lambda \int_{\Omega} p_{+}F(z, u_{n}^{+}) dz \leq c_{14} \quad \forall n \in \mathbb{N},$$
(3.58)

for some $c_{14} > 0$.

We add (3.57) and (3.58) and obtain

$$\lambda \int_{\Omega} \sigma(z, u_n^+) dz \leq c_{15} \quad \forall n \in \mathbb{N},$$
(3.59)

for some $c_{15} > 0$.

Using (3.59) and reasoning as in the proof of Proposition 3.9 (see the part of the proof after (3.31) up to (3.44)), we obtain that

the sequence
$$\{u_n^+\}\subseteq W_0^{1,p(z)}(\Omega)$$
 is bounded. (3.60)

Then (3.50) and (3.60) imply that

the sequence $\{u_n\} \subseteq W_0^{1,p(z)}(\Omega)$ is bounded.

So, we may assume that

$$u_n \stackrel{w}{\to} u$$
 in $W_0^{1,p(z)}(\Omega)$ and $u_n \to u$ in $L^r(\Omega)$ as $n \to +\infty$. (3.61)

In (3.55), we test with $h = u_n - u \in W_0^{1,p(z)}(\Omega)$ and pass to the limit as $n \to +\infty$. As in the proof of Proposition 3.7, we obtain

$$u_n \to u$$
 in $W_0^{1,p(z)}(\Omega)$ as $n \to +\infty$

(see (3.24)), so ψ_{λ} satisfies the Cerami condition. This proves the Claim.

Then (3.51), (3.52) and the Claim permit the use of the mountain pass theorem and find $\hat{u} \in W_0^{1,p(z)}(\Omega)$ such that

$$\hat{u} \in K_{\psi_{\lambda}} \subseteq [u_0) \cap \text{ int } C_+ \quad \text{and} \quad m_{\lambda} \leqslant \psi_{\lambda}(\hat{u})$$
 (3.62)

(see (3.46) and (3.51)).

From (3.62), (3.51) and (3.45), we conclude that $\hat{u} \in \text{int } C_+$ is a positive solution of (P_{λ}) , $u_0 \leqslant \hat{u}$, $u_0 \neq \hat{u}$.

It remains to decide what happens with critical parameter value $\lambda^* < +\infty$.

Proposition 3.11. *If hypotheses* H_0 , H_1 *hold, then* $\lambda^* \in \mathcal{L}$.

Proof. Let $\lambda_n \in (0, \lambda^*)$, $n \in \mathbb{N}$ be such that $\lambda_n \nearrow \lambda^*$. We can find $u_n \in S_{\lambda_n} \subseteq \text{int } C_+$ nondecreasing such that

$$\varphi_{\lambda_n}(u_n) \leqslant c_{16} \quad \forall n \in \mathbb{N},$$
 (3.63)

for some $c_{16} > 0$, so

$$\varphi_{\lambda_{-}}'(u_n) = 0 \quad \forall n \in \mathbb{N}. \tag{3.64}$$

Using (3.63), (3.64) as in the proof of Proposition 3.9, first we obtain that the sequence $\{u_n\}_{n\geq 1}\subseteq W_0^{1,p(z)}(\Omega)$ is bounded and then via Proposition 2.2, at least for a subsequence, we have

$$u_n \to u^* \quad \text{in} \ W_0^{1,p(z)}(\Omega).$$
 (3.65)

From (3.64) and (3.65), in the limit as $n \to +\infty$, we obtain

$$\langle A_{p(z)}(u^*), h \rangle + \langle A_{q(z)}(u^*), h \rangle = \lambda^* \int_{\Omega} f(z, u^*) h dz \quad \forall h \in W_0^{1, p(z)}(\Omega),$$

so $u_1 \leq u^*$. Therefore, $u^* \in S_{\lambda^*} \subseteq \text{ int } C_+$ and so $\lambda^* \in \mathcal{L}$.

We conclude that

$$\mathcal{L} = (0, \lambda^*].$$

So, summarizing our findings for problem (P_{λ}) , we can state the following bifurcation-type theorem.

Theorem 3.12. *If hypotheses* H_0 , H_1 hold, then there exists $\lambda^* > 0$ such that

(a) for all $\lambda \in (0, \lambda^*)$ problem (P_{λ}) has at least two positive solutions

$$u_0, \hat{u} \in \text{int } C_+, u_0 \leq \hat{u}, u_0 \neq \hat{u};$$

(b) for $\lambda = \lambda^*$ problem (P_{λ}) has at least one positive solution

$$u^* \in \text{int } C_+$$
:

- (c) for all $\lambda > \lambda^*$ problem (P_{λ}) has no positive solutions;
- (d) for all $\lambda \in (0, \lambda^*]$ problem (P_{λ}) has a smallest (minimal) positive solution $u_{\lambda}^* \in \text{int } C_+$ and the map $\lambda \mapsto u_{\lambda}^*$ from $\mathcal{L} = (0, \lambda^*]$ into $C_0^1(\overline{\Omega})$ is strictly increasing and left continuous.

Acknowledgements: The authors wish to thank the two knowledgeable referees for their corrections and remarks.

References

- [1] L. Gasiński and N. S. Papageorgiou, Bifurcation-type results for nonlinear parametric elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 3, 595-623.
- [2] L. Gasiński and N. S. Papageorgiou, Positive solutions for the Robin p-Laplacian problem with competing nonlinearities, Adv. Calc. Var. 12 (2019), no. 1, 31-56.
- [3] D. Mugnai and N. S. Papageorgiou, Wanq's multiplicity result for superlinear (p,q)-equations without the Ambrosetti-Rabinowitz condition, Trans. Amer. Math. Soc. 366 (2014), no. 9, 4919-4937.
- [4] N. S. Papageorgiou and V. D. Rădulescu, Coercive and noncoercive nonlinear Neumann problems with indefinite potential, Forum Math. 28 (2016), no. 3, 545-571.
- [5] N. S. Papageorgiou and A. Scapellato, Constant sign and nodal solutions for parametric (p,2)-equations, Adv. Nonlinear Anal. 9 (2020), no. 1, 449-478.
- [6] L. Gasiński and N. S. Papageorgiou, Anisotropic nonlinear Neumann problems, Calc. Var. Partial Differential Equations 42 (2011), no. 3-4, 323-354.
- [7] N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Anisotropic equations with indefinite potential and competing nonlinearities, Nonlinear Anal. 201 (2020), 111861, DOI: 10.1016/j.na.2020.111861.
- [8] N. S. Papageorgiou and C. Vetro, Superlinear (p(z),q(z))-equations, Complex Var. Elliptic Equ. 64 (2019), no. 1, 8-25.
- [9] A. Bahrouni, V. Rădulescu, and D. Repovš, A weighted anisotropic variant of the Caffarelli-Kohn-Nirenberg inequality and applications, Nonlinearity 31 (2018), no. 4, 1516-1534.
- [10] N. S. Papageorgiou, C. Vetro, and F. Vetro, Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential, J. Differential Equations 268 (2020), no. 8, 4102-4118.
- [11] C. Vetro, Parametric and nonparametric A-Laplace problems: Existence of solutions and asymptotic analysis, Asymptotic Analysis (2020), DOI: 10.3233/ASY-201612.
- [12] C. Vetro, Weak solutions to Dirichlet boundary value problem driven by p(x)-Laplacian-like operator, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), no. 98, 1-10, DOI: 10.14232/ejqtde.2017.1.98.
- [13] C. Vetro and F. Vetro, On problems driven by the $(p(\cdot), q(\cdot))$ -Laplace operator, Mediterr. J. Math. 17 (2020), 24, DOI: 10.1007/s00009-019-1448-1.
- [14] F. Vetro, Infinitely many solutions for mixed Dirichlet-Neumann problems driven by the (p,q)-Laplace operator, Filomat 33 (2019), no. 14, 4603-4611.
- [15] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.
- [16] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesque and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011.
- [17] P. Harjulehto, P. Hästö, Ú. V. Lê, and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. **72** (2010), no. 12, 4551–4574.
- [18] V. Rădulescu and D. Repovš, Partial Differential Equations with Variable Exponents, CRC Press, Boca Raton, FL, 2015.
- [19] A. Bahrouni, V. Rădulescu, and D. Repovš, Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity 32 (2019), no. 7, 2481-2495.
- [20] V. Benci, P. D'Avenia, D. Fortunato, and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154 (2000), no. 4, 297-324.

- [21] L. Cherfils and Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian, Commun. Pure Appl. Anal. 4 (2005), no. 1, 9-22.
- [22] V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.) 173 (2011), no. 5, 463-570.
- [23] S. A. Marano and S. J. N. Mosconi, Some recent results on the Dirichlet problem for (p,q)-Laplace equations, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 2, 279-291.
- [24] V. Rădulescu, Isotropic and anisotropic double-phase problems: old and new, Opuscula Math. 39 (2019), no. 2, 259-279.
- [25] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381,
- [26] G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal. 72 (2010), no. 12, 4602-4613.
- [27] L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, FL, 2006.
- [28] X. Fan and D. Zhao, A class of De Giorqi type and Hölder continuity, Nonlinear Anal. 36 (1999), no. 3, 295-318.
- [29] N. Fukagai and K. Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Ann. Mat. Pura Appl. 186 (2007), no. 3, 539-564.
- [30] Z. Tan and F. Fang, Orlicz-Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 402 (2013), no. 1, 348-370.
- [31] G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), no. 2-3, 311-361.
- [32] Q. Zhang, A strong maximum principle for differential equations with nonstandard p(x)-growth conditions, J. Math. Anal. Appl. 312 (2005), no. 1, 24-32.
- [33] N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Nonlinear Analysis Theory and Methods, Vol. 1, Springer, Switzerland, 2019.
- [34] P. Takáč and J. Giacomoni, A p(x)-Laplacian extension of the Díaz-Saa inequality and some applications, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 1, 205-232.
- [35] N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2589-2618.
- [36] M. E. Filippakis and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations 245 (2008), no. 7, 1883-1922.
- [37] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Theory, Kluwer Academic Publishers, Dordrecht, 1997.