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Abstract We review our progress on 3+1D Glasma sim-
ulations to describe the earliest stages of heavy-ion colli-
sions. In our simulations we include nuclei with finite lon-
gitudinal extent and describe the collision process as well
as the evolution of the strongly interacting gluonic fields
in the laboratory frame in 3+1 dimensions using the col-
ored particle-in-cell method. This allows us to compute the
3+1 dimensional Glasma energy-momentum tensor, whose
rapidity dependence can be compared to experimental pion
multiplicity data from RHIC. An improved scheme cures the
numerical Cherenkov instability and paves the way for sim-
ulations at higher energies used at LHC.

1 Introduction

QCD matter under extreme temperatures and densities in the
form of the quark-gluon plasma is experimentally accessible
in relativistic heavy-ion collisions. The possibility to conduct
these experiments for a wide range of collision energies and
baryon chemical potentials allows for the successive explo-
ration of the QCD phase diagram. The highest collision ener-
gies have been achieved at LHC and RHIC, and lower col-
lision energies are being explored in the Beam Energy Scan
programs of RHIC [1] and upcoming programs at GSI FAIR
[2] and JINR NICA [3]. The matter created in such collisions
isinitially very far from an ideal thermodynamic equilibrium.
With the experimental progress also an improved theoretical
understanding of the collision process from first principles is
desirable.

The Color Glass Condensate (CGC) framework [4—6] pro-
vides such a theoretical basis for describing nuclear matter at
ultrarelativistic energies. It is a classical effective field the-
ory where hard partons within the nuclei act as sources for
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soft gluonic fields. In the simplest version, describing very
large nuclei, the distribution of the color charges is given
by the McLerran-Venugopalan (MV) model [7,8]. The pre-
equilibrium stage that is created right after the collision is
characterized by longitudinal color flux tubes and has been
termed the Glasma [9]. In more sophisticated models like the
IP-Glasma, the color charge distribution is based on fits to
deep-inelastic-scattering data [ 10, 11]. In combination with a
subsequent hydrodynamical evolution, the IP-Glasma model
is able to correctly reproduce many observables, including
azimuthal anisotropies or event-by-event multiplicity distri-
butions [12,13]. Nevertheless, the underlying Glasma evo-
lution is commonly based on a boost-invariant formulation
[14-17] where incoming nuclei are assumed to be Lorentz-
contracted to infinitesimally thin discs. This assumption is
justified for observables close to mid-rapidity at very high
energies, but is a severe conceptual limitation when studying
rapidity-dependent quantities or collisions at lower energies.

It is possible to break boost invariance by introducing fluc-
tuations on top of boost invariant background fields [18-20].
Boost invariance is also broken by the JIMWLK evolution
[21-24]. Apart from recent attempts [25,26], Glasma simula-
tions using JIMWLK-based initial conditions still have to be
performed in an effectively boost invariant manner [27]. The
generated rapidity dependence of the Glasma can reproduce
observables like gluon [27] and charged hadron multiplicities
[26]. However, deviations from boost invariance may already
arise at the classical level if one considers nuclei with finite
extent in the beam direction [28]. A three-dimensional for-
mulation has been introduced by using an extended source
that is not quite aligned with the light cone [29-31], however
in a way that violates the covariant conservation condition at
order g2. An alternative approach to include such finite extent
corrections has been developed for proton-nucleus collisions
[32-34] which however is difficult to generalize to nucleus-
nucleus collisions.
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In the following we review our progress towards an alter-
native approach of a 3+1D simulation for heavy-ion colli-
sions including finite longitudinal extent of the nuclei [35-
39]. The loss of boost invariance requires us to keep track of
the hard color sources throughout the subsequent evolution
after the collision. This is achieved using the colored particle-
in-cell method (CPIC), which has been originally developed
to study aspects of the evolution of the quark-gluon plasma
[40-44]. We apply this technique to study the collision pro-
cess itself within the CGC framework. The simulation is
performed in the laboratory frame and follows the nuclei
throughout the collision process. Using this approach, we
demonstrate that already a classical leading-order CGC sim-
ulation can give rise to a rapidity dependency consistent with
experimental findings. Recent algorithmic developments will
allow us to scrutinize our findings at even higher energies.

2 The 2+1D Glasma

From the viewpoint of the laboratory frame, a high energy
nucleus is highly Lorentz-contracted along the beam axis
and its dynamics are slowed down by time dilation. At col-
lision energies available to RHIC and LHC, nuclei therefore
appear to be almost infinitesimally thin, static discs moving
athighly relativistic velocities. In CGC effective theory [4—6]
the partons of high nuclei are split into hard and soft degrees
of freedom. At leading order, hard partons are described in
terms of classical color currents J# and soft partons in terms
of classical color fields A*, whose dynamics are governed by
the Yang-Mills (YM) field equations. For example, the clas-
sical color current associated with a nucleus moving along
the negative x> = 7 axis (shown as nucleus “A” in Fig. 1) is
given by

JN () = 8" pl (x 7t xp)t, Q)

where we have used light cone coordinates x* = (x° £
x3) / /2 and transverse coordinates x7 = (x, y). The matri-
ces t¢ are the traceless, hermitian generators of the color
gauge group SU(N,). The color charge density is given by
oa(xT,x7) and is assumed to be highly peaked around
x* = 0 to account for the high Lorentz contraction of the
nucleus. Additionally, pa (x, x7) is static in the sense that
it does not explicitly depend on x —, which is a consequence
of time dilation.

The color current J* induces a classical color field A*,
which is to be determined from the non-linear YM equations.

Dy F™ =8, F" +ig[A,, F*]=1J", )

@ Springer

Nucleus B Nucleus A

Glasma

Fig. 1 Three-dimensional simulation of the collision of two nuclei.
The distribution of the energy density between the two nuclei “A” and
“B” right after the collision reveals the flux tube structure of the Glasma
that develops between them. The simulation only covers a small part of
the full collision in the transverse plane spanned by x and y. Adapted
from [36]

where D, denotes the gauge covariant derivative. The non-
Abelian field strength tensor is defined as

FRY =" AY — 9" AF 4 ig [A*, A”], A3)

where g is the YM coupling constant. If J# is given by
Egs. (1), the YM Egs. (2) can be solved analytically by
employing covariant gauge 9, A" = 0. In this gauge choice,
the field Egs. simplify to

—Ar AL (x) = ph (T, xp)te, “)

where Ar is the two-dimensional Laplace operator in the
transverse plane. The other components of AX(x) vanish.
This can be formally solved by inverting the Laplace opera-
tor:

A

2
AR (et xp) = 55/ @k pa " kr)

@2n)? k3 + m?

eikT.XTta. (5)

Infrared divergences are avoided by including a small regu-
lator m, which dampens the long-range behavior of the color
field. The length scale m™! is usually identified with the
confinement radius. It is also possible to regulate ultraviolet
modes with a cutoff A. The color field of the nucleus con-
sists of purely transverse color-electric and -magnetic fields
located near xT = 0. The color field of a high energy nucleus
is therefore analogous to the Lorentz-boosted electromag-
netic field of an ultrarelativistic charge.

In CGC effective theory the color currents of nuclei are
stochastic fields whose distribution is described by a prob-
ability functional W[p]. Expectation values of observables
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(expressed as functionals of the color fields O[ A, ]) are com-
puted by averaging over all possible realizations of p:

(0) = /D,O OlAulplI WLp]. 6)

A simple and popular model for W[p] is the MV model [7,8],
which assumes the functional to be Gaussian:

1 a =+ a +
Wipl = exp <—/d2dex+p (o, x7)p (x ,xT)>

2822 (xF, x7)
@)

where Z is a normalization constant and the function
w?(xt,x7) describes the variance of the randomly dis-
tributed color charges.

The description of nucleus “B” (see Fig. 1), which moves
along the positive z axis is completely analogous.

A collision of two CGCs can be described by solving

D, F* (x) = JX(x) + Jg (x), ®)

where the source is given by the combined color current
of the colliding nuclei. We assume nucleus “A” to be cen-
tered around x = 0 and nucleus “B” to be centered around
x~ = 0 such that the collision occurs at x* = x~ = 0.
A Minkowski diagram of the collision scenario is shown in
Fig. 2.

Fig. 2 A Minkowksi diagram of a boost invariant heavy ion colli-
sion. The colliding nuclei move along x* and x~ (red arrows) and
are assumed to be infinitesimally thin along the beam axis z. The gray
hyperbolas in region IV are contour lines of constant proper time t and
the straight dashed lines are lines of constant rapidity 1. Adapted from
[39]

In the boost invariant limit, the color charge densities
become effectively two-dimensional due to Lorentz contrac-
tion:

o) () & 8(xF) pea By (X7). )

This approximation is only correct in the limit of infinite col-
lision energy. In this case, the space-time shown in Fig. 2 sep-
arates into four distinct regions. Invoking causality, the solu-
tion A*(x) to Eq. (8) inregions I - Il is given by the superpo-
sition of the single nucleus solutions Ax (x) and Ag (x). The
solution in the future light cone, which describes the Glasma,
generally does not exist in closed form and has to be deter-
mined perturbatively or numerically. In the boost invariant
limit however, the gauge field can be determined along the
boundary of the light cone. Using proper time t = ~/2x+tx~
and (space-time) rapidity 7, = In (x~/x™) /2 and employ-
ing temporal gauge A* = 0 for ¢ > 0, the color field at
7 = 0% is given by [14]

Al(t = 0%, x7) = &\ (%) + ah (%), (10)

AT = 0", xp) = % [ag(x), ag(x)] . (11)

Here, the color fields ozé AB) are the light cone (LC) gauge
AT = 0 solutions

Alpp) (T x7) = (), g (x7), (12)

i 1 .
a(p gy (XT) = EV(A,B)(X)E)I V&B)(x), (13)

where the lightlike Wilson lines are given by

Vi () = Jim Vi g (%, x7), (14)
x:t
V&’B) (xE, x7) = Pexp <ig/dx’iAaB)(x’i, XT)).
—00
(15)

The initial conditions Egs. (10) and (11) describe a highly
anisotropic initial state consisting of purely longitudinal
color-electric and -magnetic flux tubes [9,45]. Since these
initial conditions do not depend on rapidity 7, the Glasma
and any observables remain boost invariant for t > 0. For
charge densities which are not §-shaped as in Eq. (9) and
instead have finite longitudinal length along x¥, there are
no rigorous derivations of generalized initial conditions. In
order to allow for charge densities which explicitly break
boost invariance, we have to move to a fully 3+1 dimen-
sional description of the Glasma. In particular, it is necessary
to solve the YM Egs. (8) in a different way.

@ Springer
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3 Simulating the Glasma in 3+1D

The motivation for relaxing Eq. (9) is to go beyond the
approximation of infinite collisional energy and be able to
describe observables such as the energy momentum tensor
of the Glasma in a rapidity dependent manner. A simple gen-
eralization is given by

o) () & A(xE) peap) (X7, (16)

where A is a normalized function, which determines the lon-
gitudinal shape of the charge density. The width of A should
be directly related to the Lorentz-contracted diameter of the
nucleus. It should be noted that Eq. (16) is a special case
where the color structure does not depend on the longitudi-
nal coordinate x* and more general color charge densities
p(A,B)(xi, xr) are possible as well.

A direct consequence of allowing for finite longitudinal
extent is that the collision event is not just a single point in
the Minkowski diagram (see Fig. 2), but an extended space-
time region in which the nuclei are able to interact. The non-
perturbative nature of the color fields of the nuclei and the
extended interaction time generally make analytical calcula-
tions in this space-time region intractable. Our approach to
the 3+1D Glasma is therefore to simulate not just the evolu-
tion in the future light cone, i.e. region IV in Fig. 2, but the
whole collision [35]. This setup is formulated in the labora-
tory frame using (#, z) coordinates and the time evolution is
performed in the direction of ¢ instead of proper time t. The
initial conditions of such a time evolution in ¢ are specified
in the following way: at some initial time #y < O sufficiently
far away from the collision time ¢ = 0, the color charge den-
sities of the nuclei are non-overlapping in z. In LC gauge,
the color field of each nucleus is given by

- 1 .
A (10,0 = = Viaw) (10, )2 Vi (0. %), (17)

where X = (x, y, z) is a three-dimensional coordinate vec-
tor. Equation (17) solves the classical YM Egs. (2) with the
current given by Eq. (16) [35]. Since the fields vanish expo-
nentially fast between the two nuclei, the superposition of
both color fields

Ao, %) =8 (A0, %) + AR (10, %)) (18)

is a valid solution to the YM Egs. (8) at time #(. Evolving this
initial condition for the YM field to ¢ > 0 yields a genuinely
3+1D description of the rapidity dependent Glasma. Equa-
tions (17) and (18) are compatible with the temporal gauge
condition A%(r, x) = 0, V¢ € R, which is a convenient gauge
choice for an evolution along x° = r.

@ Springer

One of the main differences to the standard 2+1D Glasma
is that in the laboratory frame the system not only consists
of the color fields but also the color currents of the nuclei. In
order to solve the YM Eqgs. which include color currents, we
make use of the CPIC method [40—44]. CPIC allows for con-
sistent simulations of color charged point particles coupled
to color fields on a lattice. For a comprehensive description
of our numerical methods we refer to [35,39].

The numerical treatment of the fields follows the com-
mon real-time lattice gauge theory approach: by discretizing
Minkowski space-time as a hypercubic lattice with spacings
a' and time-step At, the YM Egs. can be written in the stan-
dard leapfrog scheme

At At
Ei(t + 7,x) = _; @r [Uij . %) + Ui —j(t.%)],

At
+ALJi (4, %) + Ei(t = ==, %), 19)

At
Ui(t + A1, x) = exp (iAt EiGt+— X)) Ui(t,x), (20)

where U;(t,X) =~ exp (igaiAi (t, x)) are the gauge links,
E;(t,x) is the chromo-electric field on the lattice and [X ],
denotes the anti-hermitian, traceless part of a matrix X. The
plaquette variables U; ;(t, X) are defined as

U j (6. %) = Ui(t. U (t. X + a)Uf (t.x + 4 U (1, %).
@

The color currents of the nuclei j; (¢, X), which enter on the
right hand side of Eq. (19), require careful treatment. The
main idea of using the CPIC method to describe collisions
in the CGC framework is to replace the continuous color
charge distributions p of the nuclei by a large number of
auxiliary particles with time-dependent color charges Qy (¢)
such that the original color charge distribution is sufficiently
well approximated on a lattice:

p(t,x) = Y 0r(1)8 (x — xi. (1)), (22)
k

where k is the particle index. Similar to the boost invariant
case, we assume these auxiliary particles to be recoil-less.
Thus, the trajectories of the particles xx (¢) are fixed and not
part of the dynamics of the system. The time-dependence of
the color charges Qy(¢) is determined from the discretized
continuity Eq.

p(t+ 55 %) = pt = 5.%)

At
_y Jit.%) = U/ (t.x = a) ji (6, x — a) Ui (1. X — &)
- -

9
i

(23)
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r+a;

(a) Standard plaquette term

Fig. 3 Two schematic diagrams of terms used in the lattice discretiza-
tion of the YM equations: the standard spatial plaquette term (a) as
defined in Eq. (21), which is used in the leapfrog scheme, and a time-
averaged generalization of this term (b), which is used in our semi-

which is the discrete analogue of gauge covariant continuity
equation

D, J"(t,x) = 0. (24)

In our setup, the color charge Qy () of each particle is mapped
to its nearest grid point on the spatial lattice in each time-step.
Whenever the nearest grid point of a particular point charge
changes from one lattice site X to a neighbouring lattice site y,
parallel transport is applied to the color charge accordingly:

At ) At
04 <t + 7) — UL, (00 (r - 7) Usoy(@). (25

where Ux_,y(t) is the appropriate gauge link connecting x
and y. At the same time, the movement of the particle gen-
erates a color current j;(z, x) in accordance with Eq. (23).
In CPIC, this treatment of particles is known as the nearest-
grid-point scheme [40]. By evolving the color charges of the
particles in this manner, the discretized field Egs. (19) and
(20) are solved consistently in the sense that the discrete
Gauss law

At ~ At .
E Eiit+—,x)—Ei(t+—,x—a;) ) =
- 2 2

At
,o(t—l—?,x), (26)

remains satisfied throughout the simulation and gauge covari-
ance on the lattice is retained. In Eq. (26) the parallel trans-
ported electric field is given by

c+At+a; + a;

: x—At+a;+a;
v

xXr— At + a j
(b) Time-averaged plaquette-like term

implicit method. While (a) only contains gauge links defined at a com-
mon equal-time slice of discretized Minkowski space, the generalized
term (b) includes terms from both future and past equal-time slices.
Adapted from [38]

~ At N
E,‘ t+7,X—ai =

Ul-T (t,X—&i)Ei (l+ %,X—&,) U; (t,X—&,‘).
(27)

We find that numerically stable 3+1D Glasma simulations
using the leapfrog scheme Eqgs. (19) and (20) require high lat-
tice resolution with particularly fine lattice spacing along the
beam axis z. In practice, this can be computationally pro-
hibitive. This problem is related to a subtle numerical insta-
bility inherent to the leapfrog scheme known as the numeri-
cal Cherenkov instability [46], which also affects traditional
electromagnetic plasma simulations. This unphysical insta-
bility is caused by lattice artifacts which modify the propa-
gation of wave modes on the lattice: high frequency modes
propagate at a lower phase velocity compared to low fre-
quency modes (i.e. numerical dispersion). In contrast, the
auxiliary particles move at the speed of light by design. This
situation is reminiscent of charged particles moving through
a medium in which the in-medium speed of light is lower
than the particle velocity, which leads to the well-known
phenomenon of Cherenkov radiation. The particular lattice
discretization used in Egs. (19) and (20) leads to a similar,
although purely numerical generation of Cherenkov radia-
tion. Due to the numerical instability the nuclei are not able to
propagate stably unless a very small lattice spacing is chosen
along z, which reduces the mismatch in propagation veloc-
ities. Fortunately, these numerical problems can be solved
by modifying the lattice discretization of the color fields. In
[38] we show how an improved numerical scheme restores
the correct propagation of wave modes along the beam axis
such that artificial Cherenkov radiation is effectively avoided.
This modification mainly amounts to replacing specific spa-

@ Springer
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tial plaquette terms (see Fig. 3a) with time-averaged gener-
alizations of these terms. Figure 3b shows one example of
such a time-averaged term. In comparison to the leapfrog
scheme Eqs. (19) and (20), which is an explicit finite differ-
ence method, our numerical method is in the form of a sys-
tem of semi-implicit equations, which is solved in an iterative
manner. Our semi-implicit method therefore trades compu-
tational performance for numerical stability and accuracy.

4 Results

Here we review the most important results that have been
obtained from simulations of collisions of nuclei with finite
longitudinal extent using the standard leapfrog scheme [35-
37]. In these simulations we use initial conditions of the form
Eq. (16), where X is a Gaussian of width L along z. We also
assume /4” to be constant in the transverse plane. The longi-
tudinal thickness L has been set to L = myR//syn With
collision energy ./syn, nuclear radius R and nucleon mass
my = 1GeV. The saturation momentum Q, grows with col-
lision energy as 02 ~ (/syw) > GeV2 [47-49]. The MV
model parameter 1 can be determined from 0.75 g2 ~ Q;
with coupling ¢ &~ 2 [10]. The ultraviolet modes are regu-
lated by A = 10 GeV, and we vary the infrared regulator
m in the range from 0.2 to 0.8 GeV to check for its depen-
dency. The simulations presented use the gauge group SU(2)
instead of SU(3), which should give qualitatively compara-
ble results [50]. The simulations have been performed on a
lattice with 2048 x 192 cells with finer resolution along the
longitudinal direction. The simulation box corresponds to a
volume of (6 fm)3.

The main observables can be obtained from the com-
ponents of the energy-momentum tensor 7%" which are
extracted from the gluon fields of the simulation. We aver-
age over 15 collision events to obtain the expectation value
(T*"V). Due to the symmetries of the MV model, certain com-
ponents vanish, and the remaining contributions of the aver-
aged energy-momentum tensor are given by

(28)
(Se) 0 0

where (¢) is the energy density in the laboratory frame, (pr)
and (pr) are the longitudinal and transverse pressure compo-
nents and (Sy) is the longitudinal component of the Poynting
vector. The energy density (&) as given in the laboratory frame
isdepicted in Fig. 1. By diagonalizing the energy-momentum
tensor, we obtain the local rest frame energy density (€joc),
which can be expressed in terms of proper time T = /12 — z2
and space-time rapidity n;, = In[(t —z) / (t + 2)] /2.

@ Springer
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Fig. 4 Comparison between simulation and experimental results for
the space-time rapidity profile [36]. The thick black solid lines show
simulation results of the local rest frame energy density &joc (70, 775) at
79 = 1 fm/c for various values of the infrared regulator m. The following
widths of the Gaussian profiles have been extracted: (a) m = 0.2 GeV
witho, = 2.34,(b)m = 0.4 GeV witho,, = 1.66 and (¢c)m = 0.8 GeV
with o;, = 1.28. For comparison, the experimentally obtained profile of
7 F multiplicity d N /dy at RHIC is given by the blue data points [51],
with a width of oexp = 2.25. The thin red line corresponds to the profile
predicted by the Landau model with 0 andau = /Iny ~ 2.15

Figure 4 shows the local energy density &;,0(70, 175) as a
function of space-time rapidity n, for /syy = 200GeV.
The black solid lines show the rapidity profiles as extracted
from of our simulations, which can be fitted to a Gaus-
sian shape (dashed continuing lines). The profiles have been
extracted at tg = 1fm/c where the Glasma turns into the
QGP. Already at times 79 = 0.3 fm/c, the system enters a
free-streaming evolution with longitudinal velocity v, ~ z/¢
and the shape of the profile does not change anymore [37].
The width of the profiles depends on the energy /syy and
becomes flatter with increasing energy as expected from the
recovery of boost invariance at higher energies [36]. We also
find a strong dependency on the infrared regulator m, where
higher values of m make the rapidity profiles narrower. While
this strong dependence on the infrared regulator seems unex-
pected, it may indicate that the screening length Ap o 1/m
plays an important role in generating a deviation from boost
invariance. It is not only the longitudinal thickness L, but
the dimensionless ratio L /A p, which seems to determine the
shape of the profiles.

Interestingly, the simulation results agree well with mea-
sured rapidity profiles of pion multiplicities at RHIC [51]
which are indicated by the blue data points in Fig. 4. At these
energies, the experimental results also agree with the Gaus-
sian rapidity profile as obtained by the hydrodynamic Lan-
dau model [52] where the width is given by o anday = +/Iny
with the Lorentz gamma factor y. For other particle species,
the experimental momentum rapidity distribution of particle
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multiplicities deviates from the Landau picture but can still
be fitted to a Gaussian distribution with slightly larger width
[53]. However, it should be noted that especially at higher
energies the Landau model predicts rapidity profiles which
are too narrow as measured by the ALICE collaboration [53].
Whether our simulations of the 3+1D Glasma can describe
these wider profiles at LHC energies will be the topic of
future work.

Itis important to note that Fig. 4 shows the rapidity profiles
of two different quantities: the local energy density €1oc (7, 1)
as a function of space-time rapidity n, and the distribution
of particle multiplicities d N /dy as a function of momentum
rapidity y. This comparison is justified because our simu-
lations show [36,37] that the 3+1D Glasma settles into a
state of free-streaming flow v, ~ z/t and vanishing longi-
tudinal pressure py & 0, similar to the 2+1D Glasma. Free-
streaming flow implies that —ignoring a subsequent hydrody-
namical phase — we can identify momentum rapidity y with
space-time rapidity 7y, similar to the case of the Bjorken
model [54]. It also implies that 7/ becomes diagonal in
the (t, ny) frame. Due to vanishing longitudinal pressure,
the energy-momentum tensor in the rest frame is anisotropic
and reads

(€loc) 0 0 0

vy _ 0 (€loc)/2 0 0
TO=1 0 0 o 29

0 0 0 0

where we used 2 pr = ¢€joc due to conformal symmetry.
In contrast to the Bjorken model, there are a priori no
restrictions on the rapidity dependence of the energy density
€loc(T, ns). This can be checked using energy-momentum
conservation

V, TH =0, (30)
which simply reduces to

0710 (T, Ms) = —Eloc (T, N5)/T. 3D

Equation (31) leads to g, o 1/7, but does not impose
any additional constraints on the rapidity dependence of the
energy density. On the other hand, the Bjorken model requires
that 7" is isotropic in the rest frame, which combined with
Eq. (30), then leads to boost invariance. As a first approxi-
mation, it is therefore reasonable to compare the space-time
rapidity profile of o to the momentum rapidity profile of
charged particles as shown in Fig. 4. For a more quantitative
comparison, our results should be used as input for a subse-
quent hydrodynamic simulation, which may slightly increase
the width of the profiles [27].

To better understand how rapidity dependence of observ-
ables develops in our simulations, we can look at the

T
— 05

2 [fm]

Fig. 5 Space-time distribution of the normalized transverse pressure
(pr(t,2))/{pr(0,0)) [36]. The parameters are the same as in Fig. 4
with m = 0.2GeV. The transverse pressure corresponds to longitu-
dinal chromo-magnetic and -electric fields and thus to the the longi-
tudinal component of the energy density (e (z,z)). Contrary to the
boost-invariant case, this quantity falls off steeply along the boundary
of the light cone

transverse pressure (pr(z,t)) in Fig. 5. From the energy-
momentum tensor, one finds that the transverse pressure is
linked to the longitudinal fields of the Glasma, whereas lon-
gitudinal pressure involves both, transverse and longitudinal
field components [35]

1
2

1
(p) = 5(E7 + B} — E] — B), (33)

(pr) = ~(E7 + B}), (32)

where the square implies a summation over color indices. In
the boost invariant case, the initial conditions of the Glasma
are specified at T = 0. This corresponds to the boundary of
the forward light cone, where the longitudinal fields would
be constant. In contrast, in our simulation the longitudinal
fields are peaked around the collision region at t ~ z ~ 0
and decrease rather quickly along the light cone boundaries.
Accordingly, there is less Glasma being produced at larger
values of rapidity ny which produces the Gaussian profiles.
It is interesting to see that our weak coupling results are
in qualitative agreement with strong coupling results from
holographic models of heavy-ion collisions that also exhibit
similar transverse pressure distributions [55,56].

5 Conclusions and outlook

In this paper we reviewed our progress on 3+1D Glasma
simulations. Our simulations allow to explore the creation
of the Glasma in heavy-ion collisions beyond the commonly
assumed boost-invariant case. We do this by introducing a
finite longitudinal extent for the incoming nuclei correspond-
ing to realistic Lorentz contractions as found for example at
RHIC. Without the usual simplifications of boost-invariance,
we have to keep the color currents of the hard partons in the
Glasma simulation. This is achieved using CPIC in the lab-
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oratory frame. Using the MV model, we demonstrated that
our approach can give rise to Gaussian rapidity profiles in the
energy density. These profiles depend on the energy of the
incoming nuclei, but also on an infrared regulator. For ener-
gies used at RHIC we obtain qualitative agreement of these
profiles [37]. This is remarkable as it shows that boost invari-
ance can be broken already at the classical level if the longi-
tudinal structure is properly taken into account. This nicely
complements findings from holographic models where sim-
ilar profiles can be found [55,56].

Algorithmic improvements in the form of a new semi-
implicit solver [38] will allow for further explorations of
our boost-invariance breaking simulations. By modifying the
standard Wilson gauge action we achieve a dispersion-free
propagation along the longitudinal direction which cures the
numerical Cherenkov instability which has plagued previous
simulations. This sets the basis for more accurate and larger
simulations valid for larger ranges of rapidity which are nec-
essary for a comparison of rapidity profiles at LHC collision
energies. One crucial aspect that shall be studied in this con-
text is the role of longitudinal color fluctuations. These are
usually approximated as an infinitely thin stack of uncorre-
lated sheets of color charge [57]. Dispersion-free propagation
will allow for the fine-grained simulation of collisions and the
study of the effect of internal longitudinal color structures on
the creation of the Glasma. In principle, it should be straight-
forward to also include more realistic sub-nucleonic color
structure in the transverse direction as is the case in the IP-
Glasmamodel [10, 11]. Here, one is essentially limited by the
large computational requirements of such three-dimensional
simulations.

On a more conceptual level, it would be interesting to
better understand the relation between the boost-invariance
breaking that we find at the leading classical order and a
similar breaking that can be found at next-to-leading order
from the JIMWLK evolution [27]. It would be a highly
desirable but presumably very non-trivial task to general-
ize the JIMWLK evolution Egs. to be applicable to three-
dimensional color distributions. Another extension to our
work would be the deviation from the eikonal approximation
and the inclusion of dynamical colored particles. This could
also be a way to accommodate three-dimensional extensions
of the calculation of quantities like energy loss or momentum
broadening from the Glasma [58].
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