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Abstract: Understanding the spatiotemporal regime of summer precipitation at local scales plays a
key role in regional prevention and mitigation of floods disasters and water resources management.
Previous works focused on spatiotemporal characteristics of a region as a whole but left the
influence of associated physical factors on sub-regions unexplored. Based on the precipitation data of
77 meteorological stations in the Poyang Lake basin (PYLB) from 1959 to 2013, we have investigated
regional characteristics of summer precipitation in the PYLB by integrating the rotated empirical
orthogonal function (REOF) analysis with hierarchical clustering algorithm (HCA). Then the long-term
variability of summer precipitation in sub-regions of the PYLB and possible links with large-scale
circulations was investigated using multiple trend analyses, wavelet analysis and correlation analysis.
The results indicate that summer precipitation variations in the PYLB were of very striking regional
characteristics. The PYLB was divided into three independent sub-regions based on two leading REOF
modes and silhouette coefficient (SC). These sub-regions were located in northern PYLB (sub-region I),
central PYLB (sub-region II), and southern PYLB (sub-region III). The summer precipitation in different
sub-regions exhibited distinct variation trends and periodicities, which was associated with different
factors. All sub-regions show no trends over the whole period 1959–2013, rather they show trends in
different periods. Trends per decade in annual summer precipitation in sub-region I and sub-region
II were consistent for all periods with different start and end years. The oscillations periods with
2–3 years were found in summer precipitation of all the three sub-regions. Summer precipitation in
sub-region I was significantly positively correlated with the previous Indian Ocean Dipole (IOD) event,
but negatively correlated with East Asian Summer Monsoon (EASM). While summer precipitation in
sub-region II and sub-region III showed weak teleconnections with climate indices. All of the results
of this study are conducive to further understand both the regional climate variations in the PYLB
and response to circulation patterns variations.

Keywords: sub-region; climate index; hierarchical clustering; REOF; wavelet analysis

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report indicated that
global temperature was likely to rise by 1.5 ◦C in advance, which would produce violent challenges
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in the climate of the Earth [1]. The increasing global warming will trigger significant changes in
water and heat patterns in many regions of the world and even the frequent occurrence of extreme
weather events [2,3]. The increase in surface temperature will also cause higher evapotranspiration
rates and force the atmosphere to transport higher amounts of water vapor, thus, in turn, altering the
hydrological cycle [4]. Precipitation is one of the most important climatic factors in a region, and the
evolution of its distribution pattern has a considerable impact on land surface processes and global
ecosystem [5,6]. For example, studies on the basis of observational datasets at the global scale have
suggested that extreme precipitation events have increased remarkably over many mid–latitude regions
in the Northern Hemisphere, bringing about tremendous impacts of floods hazards [7]. In the wake of
global warming, therefore, there is growing concern from public, government, and academic circles
about research on exploring the spatiotemporal changes of precipitation and possible influencing factors
at the regional scale. For example, spatiotemporal variability of seasonal precipitation in Canada was
investigated by employing the cross–wavelet analysis to illustrate insights into the relationship between
the seasonal rainfall and the primary factors in the Northern hemisphere [8]. The interannual variability
of mean summer rainfall in northern China was studied and then the regional characteristics were
revealed by rotated empirical orthogonal function (REOF) [9]. Spatiotemporal and abrupt variations
of daily precipitation by concentration index were discovered and their correlations with large–scale
atmospheric circulations over Northeast China were investigated [10]. A novel spatial downscaling
approach was proposed by integrating precipitation zoning with random forest regression based on
satellite–based precipitation [11]. Empirical orthogonal function (EOF)/REOF and Mann–Kendall
testing method were used to study spatiotemporal changes of spring precipitation of South China
and their relations to atmospheric circulations based on precipitation data and National Centers for
Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis [12].
Most of these studies investigated the spatiotemporal variations of precipitation in large regions and
the influencing factors or physical mechanisms from different perspectives.

Located in the middle and lower reaches of the Yangtze River, the Poyang Lake basin (PYLB)
is subjected to the influence of subtropical humid monsoon climate. Historically, frequent droughts
and floods disasters took place in the PYLB due to precipitation anomaly, which brought about huge
damage to the environment and the agricultural economy [13–16]. Therefore, in the context of global
precipitation pattern changes, the regional response characteristics of precipitation in the PYLB will
have an important influence on the regional ecological environment and the sustainable development
of social economy. Some scholars have discussed the change characteristics and mechanism of
precipitation in the PYLB. Some studies suggested that there was distinct differences between the
extreme precipitation from south to north in the PYLB, which were affected by topographic factor [17,18].
Seasonal transitions of precipitation in the PYLB showed different feature according to time spans of
study [19,20]. Sub–regions of precipitation in the PYLB can be identified by using REOF method [21].
In addition, possible influence of El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation
(NAO), Indian Ocean Dipole (IOD), and Pacific Decadal Oscillation (PDO) on the annual and seasonal
precipitation extremes in the PYLB were analyzed in some studies [22–24]. A spatiotemporally
distributed downscaling model was developed to project precipitation in the Poyang Lake watershed
using the MRI-CGCM3 (A New Global Climate Model of the Meteorological Research Institute) [25].
Recently, there have emerged machine learning technology (e.g., hierarchical Bayesian method) to
quantify spatiotemporal influences of climate indices on seasonal extreme precipitation in the PYLB [26].

There still exist following problems albeit these studies about precipitation in the PYLB were
conducted from different aspects such as spatial distribution, time trend, and influencing factors.
Firstly, the number of sites used in some studies is small, which affects the accuracy of the research
results. Secondly, time series of some researches are short, which influences the long-term law of
rainfall. Thirdly, precipitation in sub-regions of the PYLB and their causes are not conducted in depth.
In this case, the objectives of this study are as follows: (1) to obtain objective and reasonable sub-regions
of interannual variability of mean summer (June–July–August) precipitation in the PYLB by combining
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REOF with hierarchical clustering algorithm (HCA); (2) to explore the long-term variability of summer
precipitation in each sub-region using multiple trend analysis and wavelet analysis; and (3) to discuss
the teleconnections between large-scale atmospheric circulations and summer precipitation in each
sub-region. Results of this study will be of significance in providing reference for summer precipitation
prediction and water resource allocation management in the PYLB.

2. Study Area and Data

2.1. Description of Study Area

The Poyang Lake basin (24◦24′–29◦46′ N, 113◦23′–118◦46′ E, Figure 1) is located in the southeast
of the middle-lower reaches of the Yangtze River basin with a drainage area of 1.62 × 105 km2 (9% of
the Yangtze River basin and 96.6% of Jiangxi province), consisting of the Ganjiang River basin, the Fuhe
River basin, the Xinjiang River basin, the Raohe River basin, and the Xiushui River basin [27,28].
The boundary of the basin is highly consistent with that of Jiangxi province, and the overlap area
between them attains to 157,000 km2, accounting for 94% of Jiangxi province. The PYLB is characterized
by a subtropical warm and humid monsoon climate with mean annual temperature of 17.9 ◦C and
mean annual rainfall of 1642 mm. The land cover types of the PYLB are diverse, mainly including
woodland, cultivated land, and grassland, accounting for about 64%, 26%, and 4% of the total area of
the basin, respectively. The national meteorological stations are distributed over the PYLB (Figure 1),
which can stand for the precipitation of the whole basin.
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Figure 1. Distribution of meteorological stations over the Poyang Lake basin.

2.2. Data Source and Processing

Precipitation data used in this study is derived from National Meteorological Science Data Center
(http://data.cma.cn/). In order to obtain summer rainfall of every station, according to the climatic
characteristics of the study area, monthly precipitation (June–July–August) was taken as summer

http://data.cma.cn/
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precipitation in this paper. The East Asian Monsoon index (EASMI) is defined as an area–averaged
seasonally (June–July–August) dynamical normalized seasonality at 850 hPa within the domain
(10◦–40◦ N, 110◦–140◦ E) and the South Asian summer monsoon index (SASMI) is defined as an
area–averaged seasonally (June–July–August–September) dynamical normalized seasonality at 850 hPa
within the domain (5◦–22.5◦ N, 35◦–97.5◦ E) [29,30]. Both EASMI and SASMI are derived from the
website (http://ljp.gcess.cn/dct/page/65540). The Niño3.4 index is one of several El Niño/Southern
Oscillation (ENSO) indicators based on sea surface temperatures (SST) in the Niño3.4 region (5◦ N–5◦ S,
120–170◦ W). The NAO index is defined as the normalized pressure difference between the Subtropical
(Azores) High and the Subpolar Low, which indicates the intensity of westerlies in the North Atlantic
mid–latitudes zone. Both Niño3.4 and NAO indices are obtained from the Climate Prediction Center of
National Oceanic and atmospheric administration (https://www.cpc.ncep.noaa.gov/). The IOD index is
defined as the sustained changes in the difference between sea surface temperatures of the tropical
western (50◦–70◦ E, 10◦S–10◦ N) and eastern Indian Ocean (90◦–110◦ E, 10◦ S–0◦ N), which is derived
from Japan Agency for Marine–Earth Science and Technology (http://www.jamstec.go.jp/frsgc/research/

d1/iod/e/index.html). The PDO index is defined as an SST anomaly pattern of Pacific climate variability
(20◦N), obtained from Tokyo Climate Center (http://ds.data.jma.go.jp/tcc/tcc/.)

The rotate empirical orthogonal function method (REOF) was conducted by Microsoft Visual
Studio 2013 to explore the climate division of summer precipitation in the PYLB. Surfer15 was applied
to perform Kriging interpolation of space loads from the results of REOF and draw contour lines.
R software (version 3.6.5) was taken to study the correlation between summer precipitation and global
climate index with R package pheatmap (version 1.0.1.2). Multiple trend analyses and wavelet analysis
were employed to investigate the trend and period of summer precipitation in the PYLB using R
software (version 3.6.5) and Matlab 2016b, respectively.

3. Methods

3.1. EOF/REOF

Empirical orthogonal function decomposition (EOF) is widely used in climate diagnosis, which can
decompose climatic factors into orthogonal eigenvectors to reflect the spatiotemporal distribution
structure of meteorological factors. For Climate variable matrix composed of m stations and
n observations, Xm×n can be orthogonally decomposed as a linear combination of p spatial eigenvectors
and corresponding time weight coefficients [31,32]:

Xm×n = vm×ptp×n (1)

where v is spatial eigenvector and t is the corresponding time coefficient. Thus, the information of the
original variable field is maximized by the first few eigenvectors that pass the North test.

Based on EOF decomposition, the original meteorological variable matrix is rotated orthogonally
with maximum variance by rotation empirical orthogonal function decomposition (REOF) so that the
high load vector field of the same spatial mode are concentrated in a few variables in some regions.
Xm×n can be indicated as form [33–35] like,

X = VT∗ + U (2)

where T∗p×n(p < m) is common factor matrix, vp×p is factor load matrix, and um×n is special factor only
correlated with X. The common factors of the standardized variables are independent variables with
mean value of 0 and variance of 1.

The characteristic field rotated is more stable in time, and the spatial distribution structure is
clearer. Therefore, REOF method is an effective tool for regional climatic division.

http://ljp.gcess.cn/dct/page/65540
https://www.cpc.ncep.noaa.gov/
http://www.jamstec.go.jp/frsgc/research/d1/iod/e/index.html
http://www.jamstec.go.jp/frsgc/research/d1/iod/e/index.html
http://ds.data.jma.go.jp/tcc/tcc/
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3.2. Hierarchical Clustering Algorithm

The hierarchical clustering algorithm (HCA) is one of the popular clustering algorithms in machine
learning which includes two types of hierarchical clustering: agglomerative (bottom–up) and divisive
(top–down) [36]. HCA is an unsupervised clustering algorithm which can divide the dataset into
several clusters where data objects in the same cluster have higher similarity than those in different
clusters according to distance between all objections. In this study, square Euclidean distance was used
to calculate the distance between clustering indexes of each site. Then, Ward method was applied to
measure the distance between classes. Finally, the most reasonable clustering number is determined
by silhouette coefficient (SC) [37,38]. The value of silhouette coefficient is between −1 and 1. If SC
approaches 1, the number of clusters is reasonable. When SC approaches 0, the number of clusters is
uncertain. While SC approaches −1, it is unreasonable. In conclusion, the closer the SC value is to 1,
the more reasonable the clustering number is.

3.3. Multiple Trend Analyses

The beginning and end years of the investigation period have great influence on the trend of the
time series. Multiple trend analyses with different start and end years extend the traditional trend
analyses. The non-parametric Mann–Kendall test, with significance levels of 5 and 1%, was performed
to explore time series trend at least 30 years in length. Pre-whitened process for the rainfall series is
performed to void the lag–1 correlation which may affect the significance test. Changes are presented
in terms of precipitation change in mm/decade using Sen’s slope estimate.

3.4. Wavelet Analysis

Wavelet analysis is a time-frequency localization signal analysis method, which is often used for
periodic analysis of climatic factors. The continuous wavelet transform [39,40] is defined as

w f (t0, a) =
1
√
|a|

∫
f (t)g

( t− t0

a

)
dt, (3)

where w f (t0, a) is the wavelet transform coefficient, correlated with scale factor and time translation
factor b. By means of wavelet transform, a one-dimensional signal is expanded in two directions of
time and frequency, and the wavelet coefficients related to time and frequency are obtained. The larger
the absolute value of the wavelet coefficient, the more significant the change in the time scale, and the
corresponding time scale at the peak is the main period of the sequence.

Cross wavelet transform is a signal processing method combining cross spectrum analysis and
wavelet transform, including wavelet cross spectrum and wavelet coherent spectrum, which can
analyze the correlation of different time series in time domain and frequency domain. The cross wavelet
energy spectrum can reflect the region of the same energy spectrum of two signals after the wavelet
analysis, which can reflect the degree of interaction between two signals in different frequency domains.
The specific formula [39,40] is

WXY(α, τ) = CX(α, τ)C∗Y(α, τ) (4)

where WXY(α,τ) is the cross wavelet spectrum of two signals, CX(α,τ) is the wavelet transform
coefficient of the first signal and C*Y (α,τ) is the complex commutation of the wavelet transform
coefficients of the second signal. The greater the cross–wavelet power is, the stronger the time series
correlation is.
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Coherent wavelet can compensate for the shortage of cross wavelet transform by measuring the
time-delay correlation of time series in the low energy region. The wavelet coherent spectrum [39,40]
of two time series can be defined as

R2
n(a) =

∣∣∣∣S(S−1wxy
n (a)

)∣∣∣∣2
S
(
S−1

∣∣∣wx
n

∣∣∣2)S(S−1
∣∣∣wy

n

∣∣∣2) (5)

where the operator smooths (S) acts as a smoothing agent, and other symbols are the same as the
corresponding symbols in the cross spectrum.

4. Results

4.1. Spatial Patterns of Summer Precipitation in the PYLB

Empirical orthogonal function (EOF) decomposition was performed on the normalized summer
precipitation during 1959–2013 in the PYLB, and the first two EOFs pass the North test. The two
eigenvectors were then rotated and two leading REOFs that make relatively large contributions to the
total variance are obtained. Table 1 presents the variance contribution rates and cumulative variance
contribution rates of two leading EOFs and REOFs. As Table 1 shows, the two leading EOFs and REOFs
explain 64.5% of the total variance. Both EOF1 and REOF1 are larger than EOF2 and REOF2, indicating
EOF1 dominates the change of summer precipitation, and REOF1 is the most optimal mode of summer
precipitation. Based on spatial distributions of high loading eigenvectors (the absolute values of
the contours larger than 0.5) that correspond to the two leading modes of summer precipitation,
two summer precipitation sub-regions separated by 28◦ N in the PYLB are identified (Figure 2).

Table 1. The percentage of variance and cumulative variance of two leading modes of empirical
orthogonal function (EOF) and rotate empirical orthogonal function (REOF).

Mode
EOF REOF

Variance (%) Cumulative Variance (%) Variance (%) Cumulative Variance (%)

1 45.4 45.4 38.8 38.8
2 19.1 64.5 25.7 64.5
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As shown in Unal et al. [41], it is quite subjective to select high rotation loading eigenvector critical
value, which has an effect on the partition result to a large extent. Here we have taken the REOF
eigenvectors as the classification feature to adopt HCA method and determine the optimal clustering
number according to silhouette coefficient (SC), so as to obtain a reasonable objective partition of
precipitation. As the SC curve (Figure 3) indicates, the maximum value of SC corresponds to a cluster
number of 3 (Figure 3). So, it is reasonable to divide the PYLB into three sub-regions (Figure 4), in which
the summer precipitation at the same cluster is homogeneous.Atmosphere 2020, 11, x FOR PEER REVIEW 7 of 17 
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According to the HCA results, the regionalization map of summer precipitation in the PYLB
and the Thiessen polygon areas calculated by area weight of each station were made. As Figure 4
shows, three sub-regions present obvious spatial consistency with each sub-region distributed zonally
from west to east. These sub-regions are northern PYLB (sub-region I), central PYLB (sub-region II),
and southern PYLB (sub-region III), respectively. The number, area, and average summer precipitation
of meteorological stations in each sub-region are listed in Table 2. It can be seen from Table 2 that
there are relatively more meteorological stations in sub-region I. Number of stations in sub-region I is
approximately the sum of stations in sub-region II and sub-region III. The area ratio of each sub-region
to the basin area is around about 2:1:1.5. The mean summer precipitation of each sub-region increases
successively from south to north.

Table 2. The area and precipitation averaged over the three sub-regions.

Name of
Sub-Region

Number of
Stations

Area of
Sub-Regions/km2

Percentage of
Sub-Regions/%

Mean Summer
Precipitation/mm

sub-region I 38 75,157.5 47.3 587.8
sub-region II 17 33,331.1 21.0 543.5
sub-region III 22 50,461.7 31.7 533.1

4.2. Multi-Time Scale Characteristic of Summer Precipitation of Sub-Regions

Based on the multiple trend analyses, trends in annual summer precipitation for three sub-regions
and the whole basin were analyzed. Time series of mean summer precipitation averaged over the three
sub-regions and the whole basin (Figure 5) and multiple trend analyses with Sen’s slope estimator for
periods with different start and end years are present (Figure 6). The results indicate all sub-regions
show no trends over the whole period 1959–2013 but show trends in different periods. For sub-region I
and sub-region II, in particular, there were strong significant positive trends in mean summer rainfall
in the period from 1974 to 2000. Sub-region III, meanwhile, took on a downward and then upward
tendency. Particularly, strong significant negative trends were found in mean summer precipitation
from 1959 to late 1970s, and strong significant positive trends in mean summer precipitation from late
1970s to 2000. In addition, we can also conclude that trends in summer rainfall of sub-region I and II
were consistent with that of the whole basin.Atmosphere 2020, 11, x FOR PEER REVIEW 9 of 17 
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The wavelet power spectrum structures of summer precipitation time series in different sub-regions
and the whole basin are seen in Figure 7. It can be seen from Figure 7 that the mean summer precipitation
in the three sub-regions and the whole basin varied with distinct periodicities. Summer precipitation
significantly oscillated with periods of 2–3 and 4–6 years in sub-region I, wherein periods of 2–3 years
were located in the late 1970s and early 1990s, and periods of 4–6 years were located in 1990s (Figure 7a).
Summer precipitation significantly also oscillated with periods of 2–3 and 4–6 years in sub-region
III, and both of them are located in the late 1990s (Figure 7c). In sub-region II, summer precipitation
exhibited 16 years periods of 2–3 years (Figure 7b), wherein the periods of 2–3 years were located
in late 1970s, and where most of wavelet power spectrums of 16 years periods were located outside
the conic line due to the influence of the boundary effect. Briefly, the periods at the scale of around
2–3 years in summer precipitation were found in all the three sub-regions; however, wavelet power
spectrum were distinctly different with each other.
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cone of influence (COI) where edge effects might distort the picture is shown as a lighter shade. Figures
for (a–d) represent continuous wavelet power spectrum for sub-region I, sub-region II, sub-region III
and the whole basin respectively.

4.3. The Relationship between Summer Precipitation and Large-Scale Circulations

ENSO, PDO, IOD, NAO, and EASM are dominant climate indices which couple ocean–atmosphere
phenomenon with global reach. Many investigations on the possible physical mechanisms of influence
of these indices on different regional climate change have been undertaken, e.g., China [22,42],
the Yangtze River basin [23,24], America, and the Huaihe River valley [43] etc. Figure 8 presents
the correlations of time series of summer precipitation in each sub-region with multiple climate
indices. As can be seen from Figure 8, summer precipitation in sub-region I was significantly positive
correlated with IOD–1, while it was significantly negative correlated with EASMI. This indicates that
the summer precipitation in sub-region I is strongly influenced by the previous IOD events and EASM.
The correlation coefficient between IOD–0 and summer precipitation in sub-region II was only 0.23.
The correlation coefficient between EASMI and summer precipitation in sub-region III was only 0.26.
Although it did not pass the 95% significance level, the correlation coefficient was greater than 0.2,
which still indicated that there was weak teleconnection between them. However, they were more
likely to be related to other factors, such as the topography and the vast area of the Poyang Lake.
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In order to further verify the influence of IOD–1 and EASMI on summer precipitation in sub-region
I, wavelet cross spectra and wavelet condensation spectra between them were calculated respectively
(Figure 9). The common high–energy region between IOD–1 and the summer precipitation of
sub-region I was mainly distributed at the time scale of around 2–4 years, reflecting the strong
resonance period between them, in which the cross–wavelet power reached significant levels in
1978–1982 and 1991–1994. The significant correlation between the wavelet coherence spectra of the
IOD–1 and summer precipitation of sub-region I in the low energy region was mainly found at the time
scale of 0–4 years from 1975 to 1985 and the time scale of >10 years (affected by the boundary). However,
the correlation between them was weak in other time-frequency spaces. In these time-frequency spaces
with significant consistency, the relationship between IOD–1 and summer precipitation of sub-region I
was mainly positive phase, and IOD–1 was one-quarter phase earlier than the summer precipitation of
sub-region I. The resonance period between summer precipitation of sub-region I and EASMI was
mainly at the time scales of 2–4 years and 4–6 years, and the wavelet crossovers in 1976–1983 and
1985–1991 were significant. The significant wavelet coherence spectra between them was mainly
shown at the time scale of 4–6 years from 1965 to 1973 and 1983–1991, respectively, and the time scale
of 1–4 years from 1975 to 1985. During the whole study period, the relationship between summer
precipitation of sub-region I and EASMI was mainly in inverse phase, showing a constantly changing
process. In general, EASMI was prior to summer precipitation, and its location difference increased
from <180◦ at the scale of 4–6 years from 1965 to 1973 to about 180◦ at the scale of 1–4 years from 1975
to 1985, and >180◦ at the scale of 4–6 years from 1983 to 1991.
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anti-phase pointing left, and climate index leading precipitation by 90◦ pointing straight down).

5. Discussion

In this study, the REOF coupled with HCA are applied to the summer precipitation of 77 stations
distributed over the PYLB for identifying sub-regions with different precipitation time dynamics
and regimes.

The REOF method revealed two sub-regions characterized by different precipitation time variability
(Figure 2). However, climate sub-regions based on REOF method is determined by the high loading
eigenvector critical value, so the partition results are uncertain with major subjectivity. For example,
taking the rotation eigenvector value larger than 0.6 as the boundary of high loading zone, Xie et al.
divided the PYLB into three sub-regions for precipitation in flood season [44]. Sun et al. took the
absolute value of rotation factor loading value larger than 0.4 as the critical value to divide Jiangxi
province into six sub-regions for the flood season rainstorm [45]. Ma et al. divided Jiangxi province
into five sub-regions for extreme precipitation by taking the absolute value of rotation factor loading
value larger than 0.5 [21]. In this research, we take the critical loading value larger than 0.5 to partition
the PYLB for summer rainfall. In order to avoid the subjectivity of REOF method, this paper introduces
the machine learning method (HCA) to optimize the objective partition of summer precipitation of the
PYLB, which seeks the most reasonable clustering number according to SC value, taking eigenvectors
of the REOF decomposition as classification variables (Figure 3).

The summer precipitation in the sub-region I and sub-region II showed an increasing trend,
while the summer precipitation in the sub-region III showed a decreasing trend (Figures 5 and 6).
This spatial pattern of precipitation changes has a clear dependence on topography of the PYLB.
The Poyang Lake basin is high in the southern PYLB with mountainous areas and low with hilly and
also low-lying alluvial plains in the northern PYLB. This result is in good line with Zhang et al.’s result
that summer precipitation at the stations located in the southern PYLB is in more significant increasing
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trends when compared to that at the stations located in the northern PYLB [19]. Therefore, this variability
of summer precipitation over the PYLB is extremely impacted by topographic characteristics which
affects water vapor flux at basin scale. In summer, water vapor fluxes over the PYLB spread from
southern and southwestern PYLB, carrying large amounts of water vapor from East or South China Sea
by the monsoon circulation in the landward direction, and which can bring about heavy precipitation
in the northern PYLB (sub-region I and sub-region II). While weakening in the EASM would limit its
northward propagation and result in more and even heavy precipitation in southern PYLB (sub-region
III). Many studies also demonstrated that the weakening of the EASM after the end of the 1970s
remarkably resulted in increasing summer precipitation in the northern PYLB, which is consistent with
the trend of summer precipitation in different sub-regions [24,46,47]. The continuous wavelet analysis
demonstrates 2–3 years periods were found in summer rainfall of all the three sub-regions over the
PYLB (Figure 7). According to previous studies, summer precipitation in the most parts of China,
especially South China, Yangtze River basin, Huaihe River basin, and North China, exhibited a cycle
of 2–3 years, which was called QBO feature (i.e., quasi-biennial oscillation) [19,43,48]. This may be
related to the QBO characteristics of the East Asian Summer Monsoon.

Correlation analysis indicates that the summer precipitation in sub-region I of the PYLB was
positively correlated with IOD–1 and negatively correlated with EASM, respectively. The common
resonance period of 2–4 years was found between IOD–1 and summer precipitation in sub-region I
of the PYLB, and the positive previous IOD event was one-quarter phase earlier than the summer
precipitation of sub-region I. While common resonance periods of 2–4a and 4–6a were found between
EASM and summer precipitation in sub-region I of the PYLB, and EASM was prior to summer
precipitation with inverse phase. Previous studies have demonstrated the influence of IOD event and
EASM on summer rainfall in the PYLB. Yang and Sun et al. indicated that when the high ridge extends
westward (retreats eastward), precipitation in the Yangtze River basin tends to increase (decrease),
while rainfall in southern China tends to decrease (increase) [49]. Yuan et al. showed that the high
ridge of the 500 hPa western pacific subtropical high advances more westward and controls southeast
China in the summer after an positive IOD event in the previous year [50]. These are in agreement
with Xiao et al.’s results that the positive IOD event at the same year tends to increase the summer
precipitation in the southeastern part of the Yangtze River basin [24]. Similar conclusion can be also
found in Liu et al. ‘s result that summer precipitation will be above normal in south China in the
years of positive IOD occurring independently [51]. The transport of water vapor is determined by
the strength of East Asian Summer Monsoon. While East Asian Summer Monsoon has weaken in
strength, particularly since the late 1970s, which negatively impacts the northward propagation of
the vapor flux, thus leading to more summer precipitation in the middle and lower Yangtze River
basin [23,46]. However, the variation of monsoon strength may be related to the anomaly of global sea
surface temperature, and specific physical mechanisms needs to be further studied.

6. Conclusions

In this study, we studied the spatial structural patterns and multi–time scale changes in summer
precipitation in the PYLB from 1959 to 2013 using REOF, multiple trend analyses, and wavelet analyses.
Then, possible links of summer precipitation in sub-regions with large–scale circulations were also
discussed. The results are presented as follows.

(1) Two key precipitation areas in the PYLB were identified by REOF. These key areas were optimally
divided into three sub-regions on the basis of the HCA method, which were northern PYLB
(sub-region I), central PYLB (sub-region II), and southern PYLB (sub-region III), respectively.
The area of sub-region I was lightly less than that of sum of sub-region II and sub-region III.
This will help us understand the spatial distribution of water resources in the PYLB, which will
also be conducive to make better use of water resources.

(2) The same trends per decade in annual summer precipitation were found in sub-region I and
sub-region II, which was distinctly increasing from 1974 to 2000. Sub-region III, meanwhile,
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showed summer precipitation apparently in a decreasing trend in the period from 1959 to late
1970s and apparently in an increasing trend from late 1970s to 2000. Summer rainfall in the three
sub-regions of the PYLB exhibited distinct periodicities, to be specific, 2–3 and 4–6 years periods
in sub-region I and sub-region III, and 16 years and 2–3 years periods in sub-region II. Such results
reveal the variation trend and periodic characteristics of summer precipitation in the PYLB and
will help to predict drought and flood disasters.

(3) Summer precipitation in sub-region I was positively correlated with previous IOD events (at 95%
significant confidence level) and the common 2–4 years resonance period was found between
them. Wavelet coherence spectra showed IOD–1 was one–quarter phase earlier than the summer
precipitation of sub-region I. Summer precipitation in sub-region I was negatively correlated
with EASM (at 99% significant confidence level) and they exhibited common 2–4 years and
4–6 years resonance periods. Wavelet coherence spectra demonstrates EASM was prior to
summer precipitation in sub-region I. Summer precipitation in sub-region II and sub-region III
showed weak correlations with multiple indices. The findings of these results may help to better
understand the possible influence of circulations on the spatial patterns of summer precipitation.

It is noted that local climatic factors including lake area, changes in land cover, and other human
activities, might also have significant influence on regional precipitation, and attempts were not made
in this paper to explore them, though correlations between summer precipitation and circulations were
discussed comprehensively.
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